Proceedings of TIME-96

Gaining Efficiency and Flexibility in the Simple Temporal Problem

Amedeo Cesta

IP-CNR
National Research Council of Italy
Viale Marx 15, [-00137 Rome, Italy

amedeo@pscs2.armiant.rm.cnr.it

Abstract

The paper deals with the problem of managing guan-
titative temporal nctworks without disjunclive con-
straints. The problem is known as Simple Temporal
Problem. Dynamic maenogement algorithms are con-
stdered to be coupled with tncremental constraint post-
thg approcches for planning and scheduling. A ba-
stc algorithm for incremental propagation of a new
time constraint is presented that is a modification of
the Belliman-Ford clgorithm for Single Source Shortest
Path Problem. For this algorithm ¢ sufficicnt condi-
tion for inconsisicncy s given based on cycle detection
in the shortest paths groph. Morcover, the problem
of constraind retraction from o consistent situation is
considered and propertics for repropagating the nei-
work locelly arc caploited. Some caperiments are also
preseated that show the uscfulness of the propertics.

1 Introduction

Knowledge-based architecturcs for planning and
scheduling based on constraint propagation, c.g. [5,
3, 8, 2], perform incremental constraint posting and
retraction on a current partial solution. A complete
plan is created by officiently scarching in partial plans
gpace, and, in other cases, i1t 18 adapted to new sit-
uations by partially removing parts of the solution.
A module for temporal constraint management that
supports plan space scarch and eurrent solution main-
tenance should be extremely cfficient becanse is called
into play at any modification (monotonic or not) of the
current plan. Such an cfficiency is usnally guaranteed
by restricting the cxpressive power of the temporal
representation. Usunally the so called 5imple Tempo-
ral Problem (STP) [7] is uscd that allows the repre-
scntation of binary quantitative constraints without
digjunction. In spitc of the restriction of cxpressivity,
also for 8TP it resulta useful to consider how the of-
ficiency of manipulation primitives may be improved.
In our rescarch, we have been investigating possible

Angelo Odd1

Dipartimento di Informatica e Sistemistica

Universita di Roma “La Sapienza”
Via Salaria 113, I-00198 Rome, Italy

oddi@asst. dis.uniromal.it

algorithms for managing temporal information that:
(a) allow dynamic changes of the constraint sct for
both incremental constraint posting and retraction;
(b) cxploit the localization of offects of any change
in a subnetwork of the whole constraint graph; (¢} do
not compute the minimal network as done in [7] but
Jjust check for consistency. A previous paper [1], in
the same line of [6], has concerned the specialization
of arc-consistency algorithm to the STP. The choice
of arcconsistency to propagate temporal constraints
was motivated by the good trade-off wrt spacc and
time complexity. In the same paper some propertics
were given that were shown experimentally to improve
the performance of the algorithm in the average case.
The present paper contains a further step in the diree-
tion of gaining cfficiency in the solution of the STP.
After presenting the cssentials of STP (Section 2), it
presents dynamic algorithms based on the well known
Bellman-Ford algorithm for computing Single Source
Shortest Paths (Scetion 3). It also introduces (See-
tion 4) the concept of dependency that computes a
particular spanning trec on the constraint graphs that
allows the definitions of a sufficient condition for in-
congistency detection (Section 5) and an algorithm for
local constraint retraction (Section 6). Some experi-
ments (Section 7) show the usefulness of the proper-
tics.

2 The Temporal Problem

A Simple Temporal Problem 1s defined in [7] and in-
volves a sct of temporal variables {X;,..., X,], hav-
ing continuous domains [Ib;, ub;] and a sct of con-
straints {ay < X; — Xi <€ b}, where a3 > 0,
bi;; > 0 and aj; < ¥&;. A special variable Xp is
added to ropresent the origin of the time (the begin-
ning of the considered temporal horizon) and its do-
main is fixed to [0,0]. A solution of the STP is a tuple
(@ ...,) such that 2; € [Ib;, ub;| and cvery constraint
a;; < X; — X; € b5 i0 satisfied. An STP is dnconsts-

Proceedings of TIME-96

tent if no solution cxdsta. In order to find the sct of
possible values [18;, ub;] for overy variable X:, a direct
constraint graph Ga(Vi, E4) is associated to the STP,
where the set of nodes Vi represents the sct of vari-
ables {X1,...,X.} and the set of edges Fg reprosents
the sct of constraints {a:; < X; — Xi < bi;].
Given a constraint ¢;; < X; —X; < §;;, we can rewrite
it as a pair of incqualitics:

o X; - X;<b; o X;—X; < —a;
For cvery lincar imequality X; — X; < wy; (with
wi; oqual to b; or —ay) we have an edge (1, 7) in
G4(Va, Ez) labced with the weight w;;. Each path in
(74 from the node ¢ tothenode §, ¢ = dp, 81 .. .4 =
induces between the variables X; and X;the constraint
X; — X: < Lj;, where I;; 18 the sum of weights along
the path, that is l;; = wo14wia+. . .+ wWm_1)m. Con-
sidcring the sct of all paths between the nodes £ and 7,
these paths induee a constraint X; — X; < d;;, where
d;; is the length of a shortest path between the nodes
t and j. Finally a cyele on the graph 74 is closed path
i = ig,%1...8, = 1 and a negative cycle 18 a cycle with
associated a negative length (8; < 0).
In [7] some uscful propertics of an STP are given and
reported in the following theorems.

Theorem 1 [7] A Simple Temporal Problem is con-
sistent iff Gy docs not have negative cycles.

Defining dp; aa the length of a shortest path on the
graph ;4 from the origin 0 and the node ¢ and d;p as
the length of a ghortest path from the node ¢ to the
origin 0 we can also have the other following theorem.

Theorem 2 [7] Given a consistent Simple Temporal
Problem, the set [1b;, ul;] of feasible valucs for the vari-
abic X; 1s the interval [—d;o, doi]

Theorem 2 showa that the Bimple Temporal Problem
is a Shortest Patha Problem and precisely we have to
calculate two scts of shortest paths length: (a) the sct
of shortest paths from the node 0 (that represent the
variable Xg) to the nodes 1...n; (b) and the set of
ghortest paths from the nodes 1. . .5 to node 0.

3 An Algorithm for the STP

To solve the basic 5TP we use the Bellman-Ford
algorithm for the Single Source Shortest Patha Prob-
lem [4] giving an incremental version of the algo-
rithm named Propagetion, which accepts as an in-
put the graph Gy and a new constraint Cy; (where
Ci; = a; £ X; — X; < by;) and produces in output
a now sct of feasible values [—d;q, do;] for every vari-
able X; or a valuc fail in the case the new constraint
mduces a inconsistent situation.
To understand the algorithm, shown in Figure 1, some

2

simple definitions are nseful: given a node ¢ of the
graph Gz we define EdgesOut(d) as the sot of edges
which leave from the node ¢ and FdgesIn(f) as the sct
of edges which arrive to the node i, T and F arc the
hoolean constants Truc and Falsc.

The algorithm has two differenecs wrt the standard
implementation on Bellman-Ford with a qucue. First,
it calculates at the same time two scts of shortest dis-
tances. Sccond, the algorithm has an internal test
which detects negative eycles on the graph Gy which
contain the reference node Xy, In addition, every node
u € Vi has two boolcan marks: LB(u) and IV B(u).
This marks arc nscful in order to distingnish the two
types of propagation in the graph Gy, that is, respec-
tively U B(u) = T and LB(u) = T when a node is
modificd by the propagation process for the distance
do; and the distances di;o. The Propagation calculates
the act of distances {dp:} between Steps 6 and 14 and
the sct of distances {d;g} between Steps 16 and 24.
This last section of the algorithm, in order to caleu-
lates the set of distances dyg, (that is, the length of
the shortest paths on the graph Gy between the nodes
1...n and the node 0) considers the sct of direct edges
in (G4 as oriented in the opposite direction. In this
way when a shortest path between the nodes 0 and ¢
ia found, it is actnally a shortest path in the opposite
direction. Finally, the tests at Steps 10 and 20 check
for negative cycles in the graph 4 when they contain
the node 0. The algorithm calculates also two short-
oot path trecs. In fact Steps 11 and 21 respectively
update the predecessor function pu, which represents
the shortest path tree of the distanecs {dg;] and the
predecessor function pl, which represents the shorteat
path tree of the distances {d;o}-

The complexity of the algorithm, as well mown, is
O(EN). Where N and F arc respectively the number
of nodes and the mimber of edges in Gy.

negative cycles

4 Focusing on Dependency

The temporal meaning of shortest path trees on
the (74 graph is simple. Every bound {dg;} (or {di0})
is induced by the sct of temporal constrainta in the
shortest paths between the origin 0 and the node ¢
(or between the node ¢ the origin 0). The following
definitions are uscful:

Definition 1 Let Gy ¢ consistent distance graph.
The tree DT, of the shortest paths from the origin
0 to the nodes 1...n is called Upper Bounds’ Depen-
dency Tree.

Definition 2 Let Gy @ consistenl distance graph.
The tree DTy of the shortest paths from lo the nodes

Proceedings of TIME-96

Propagation (G4, Cy;)

1. begin
2. Q « {45}
2a. LB(f) =T, UB(i) =T

2b. LB(j):=T,UB(j)==T
3. While @ # § do begin

4, u + Pop(@Q)

5. if 7 B(u) then

6. Foreach (u,v) € EdgcsOui(u) do

7. if doy + Wy < doy

8. then begin

9. doy 1= doy + ey

10. if do, + dio < 0 then exit (fail)
11. pu(v) n=u

12. UB(v) n=T

13. ifo ¢ Q then « QU v}
14. end

15. if LB(u) then

16. Foreach (u,v) € EdgesIn(u) do

17. if dug + Wen < duo

18. then begin

19. dug = dug + Won

20. if do, + dio < 0 then exit (fail)
21. pl(v) i=u

22. LB(v) u=T

23. ifo ¢ Q then « QU v}
24, end

25. LB(u)u=F

26. UB(u) u=F

27. end

28 end

Figure 1: Propagation algorithm

1...n to origin 0 is called Lower Bounds’ Dependency
Tree.

If a given graph (74 i8 consistent then the trocs DT,
and DT, arc always defined. In fact, without nega-
tive cycles, the distances {dg;} and {d:o} arc always
defined. In gencral, the trecs DT, and DTy may not
be simgle. In fact, the graph 74 may contain scveral
paths with the same length.

A rclevant situation is verified when the graph Ga
containa at lcast a negative cycle. In this case, the
following Theorem holds.

Theorem 3 Give ¢ distance graph Gy. If during the
update process of the Propagation algorithm the prede-
cessor function pu (pl} represents ¢ graph containing
at least a eycle then the graph Gy ts nconsistontd.

3

Proof. We give the proof for the distances {do:},
but an analogous proof can be given for the distances
{dio}. Supposc by hypothesis that during the update
process of the algorithm, a dependency path exista be-
twoen the nodes £ and § named p1 @ € = dp, 1., .8 = 4,
that is, a path such that pu(ix) = éx_1, with k =
1...r. I we sum the weights along this path, we have
the following rclation:

doj — doi = wor + w1z + .. A W 1) (1)

If succcadively the Propegetion algorithm builds a
dependency pathps @ § = 70,71 .. .4: = 7, We can write
the following rclation:

doi™ —doj =wor + Wiz + ..+ W1y, (2)

Where djf* is the new valuc of the distances dg;
updated along the path pz. If we sum the relations 1
and 2 we obtain the length of the cyele I

Li = &7 — doi. (3)

Observing that the Iink of two paths p; and p; 1s
a cycle and djfY <« do;, then the length I; is negative
and this proves the inconsistency of the graph ;. O

5 Cycle Detection

In order to use the property expressed by Theo-
1em 3 fow changes are introduced in the Propagetion
algorithm. Each odge (£, 7} in the graph Gy have three
new boolean marks: NEW((i,4)), LBP((1,j)) and
UBP((t,4)). The matk NEW is uscful in order to
distinguish the new edges introduced in (4, by the
new temporal constraint Cy;. In fact, if in the graph
there is at least a negative eycle, then it must contain
at least one of the new edges introduced. Instead, the
two marks LBP((i, 7)) and UBP((i, 7)) arc used to
check when a bound changes two times ag explained
in the next Theorem 4:

Theorem 4 Let Gy ¢ consisient distance graph and
Cy = a;; € X; — X; < by the new constraint added.
If during the propagation process the distance do; (dio)
changes two times, then the constraint Cyy is inconsis-
tent with the other constraints represented in Gy.

Proof. Wo give the proof for the distances [do;},
but an analogous proof can be given for the distances
{dj0}. If the constraint represented by the edge (¢, 7)
changes the distance dg; a first time, this means every
new shortest paths built by the Propegation algorithm
will contain the node j. If the distances is changed a
sccond time, then the algorithm has built a closed de-
pendency path and for the Theorem 3 the graph Gy
18 incongwtent. O

Proceedings of TIME-96

Figure 2 shows the modified version of the algo-
rithm to check for cycle detection. It is intercsting
to notice the complexaty of the algorithm with cycles
detection is the same of the Propegation algorithm.
In fact, the only difference with the previous algo-
rithm is the chock of the boolcan marks N EW ([, 5))
LBP((1,7)) and UBP((£,).

Propagation-cd (G4, Cy)
1. - 9. as in the Propagation algorithm

10a. if do, +duo < 0

10b. then exit(fail)

10e. else if NEW((u,v))

10d. then if UBP((u,v))

10c. then exit (fail)

101 else UBP((u,v)) =T
11. - 19. as in the Propagation algorithm

20a. if doy +duo < 0

20Db. then exit(fail)

20e. else if N EW ((u,v))

20d. then if LBP((x,v))

20¢. then exit (fail)

201. else LBP((v,v)) =T

24, - 28. as in the Propagation algorithm

Figure 2: Differences introduced by cycle detection

the average time

6 Retraction of Temporal Constraints
from a Consistent Context

This paragraph deals with the problem of remov-
ing temporal constraints from a consistent graph Gy
(a graph without negative cycles). A basic way to
do this consists of: physically removing the constraint
from the graph Gy; sctting cvery distance {dg;} and
{dio} to the valuc +oo; finally, running the Propege-
tzon algorithm on the whole graph.
As a matter of fact, this method is not very cfficient.
In fact, when retracting a constraint from the time
map a lot of distances are likely not to be affected
by the removal. The dependency information may be
used to focalize the part of the network actually af-
feeted by the ramoval and to run the Propegetion al-
gorithm on that part of the graph.
To statc same propertics some definitions are nscful
Given an upper
bounds’ dependency tree DT (Vpr,,, Epr,,), cach
sub-tree ST,p[8](Veru,, Far,,) of root i € Vpr,, 18
called an Upper Bounds® Dependency Sub-tree. Given
a lower bounds’ dependency tree DTy (Vpr,,, Eprs)

4

cvery sub-tree STh [E](Ven,, Fsr,,) of root ¢ € Vg,
i called a Lower Bounds’ Dependency Sub-tree. Given
a a distance graph Gu(Va,, Fs,) and a node ¢ € Vg,
IN () is the sct of start nodes of the odges which enter
in the node ¢ (in the edge (4,), 7 iv the start node and
¢ is the end node). The next Proposition explaing the
1cal cffects of a removal constraints from a graph Gy
and it is a starting point to writc a new algorithm to
rcmove temporal constraints from 4.

Proposition 1 Let (7 be a consistent graph and
DT (Vor,,, Ep71,,) its upper bounds’ dependency
tree (D11, (Vpr,,, EpT,) its lower bounds’ dependency
trec). The rciraction of an edge (i,j) € Epr,
{({,7) € Epm,) modifics at most the distances of the
nodes k € Vsz,,[5] (kB € Vezy,[;))- No distances are
modified when (8,7) € Epr,, ((1,§) € Ep1)

Proof. We give the proof for the distances {dg;},
but an analogous proof can be given for the dis-
tances {dig}. The removal of an odge (1, 7) € Epr,,
can’t modify a node’s distance {dpg} in the case k ¢
Vs1,, k]. In fact the removal of (2,) docs not change
the shortest path between the origin 0 and the node k.
If (¢,5) € Ep7,, then no distance is changed because
no shortest path is changed. 0O

The basic idea to write an cfficient removal algo-
rithm 1s run the Propegetion algorithm on the only
part of the 7y graph affected by the removal of the
conatraint. The next Theorem formalize this concept
and explains how to initialize the Propegetion algo-
rithm.

Theorem 5 Let Ga be a consistent distence greph.
To remove the effects of the constraint represented by
the edge (8, 4) € Epr,, ((1,7) € Epty} the quene @
of the Propagation algorithm and the sct of distances
{do:} {{dio}) in the graph Gg need of the following
inttialize operations.

]" Q A UﬁEVgTubU] IN(k) (Q A UkeVSTibU] IN(k))
2. doy = +00,u € Var,,[j] (duo = 400, u € Ver,[1])

Proof. We give the proof for the distances {dg;},
but an analogous proof can be given for the distances
{d:0}. By Proposition 1, for every node k € Ver,,[4],
the distance {dgx} can change after the removal. The
Propagation algorithm have to rcbuild the new short-
cat paths for cvery node k& € Vgr,,[j] In order to
update these distances to the new values, it is neces-
sary to initialize them to the maximum possible value
+o00. In fact, it is not known what the new valucs will
be and the Propagation algorithm can only reduce the
bounds. In addition, we have to put in the queune ¢ all

Proceedings of TIME-96

the nodes of the constraints (%, §) which enter in the
gt of updated nodes. That is, the nodes in the sct
UkEVsru,,[z“] IN(k). In fact, these arc the only nodes of
the graph from which can start the new shortest paths
of the nodes & € Var,,[4]. O

The Bemowc algorithm is shown in Figure 3. It ac-
cepts aa an input a graph (7; and a constraint Cy
which have to be removed from 74 and return the
graph (4 updated. At the step 13 is used the Re-
Propagaetion algorithm that is similar to the Propaga-
tion algorithm but aceepts as an input a list of nodes
(} instead of an edge Ci;. The paramcter @ is used
ag an initialization for the internal quene. Morcover
RePropagation docs not check for the congistency of a
modification because the removal of one or more con-
straints, relax the STP holding the consistency prop-
crty.

Remove (G4, Cij)
begin
Vi 0
QB
if (?::j) S E-DTub
then ¥V, « V,, U VST“U]
else if (§,1) € Epr,,
then ¥V, « V., U VST“[?:]
if (?::j) = EDTIb
then ¥V, « V,, U VST;b[?:]
else if (,1) € Epr,,
then V,, « Vi, UVer,[4]
9. Foreach v € V,, do begin
10. Q@+ QUIN(u)
11. end
12. Eg, + Eg, — {(i,j),(j,!l)}
13. RePropagation (G4, Q)
14. end

OO - 0 Q0 =] T O odh OGS BRI =

Figure 3: Removwe algorithm

7 Performance Evaluation

In order to get some realistic evaluations of the al-
gorithms, we have nsed a scheduling system deseriboed
in [3] and the time network gencrated by the sched-
uler. This scheduler solves instances of the Deadline
Job Shop Scheduling Problem (DJSSP) by incremen-
tal precedence constraint posting between the activi-
tics until any conflict in the nse of resources is resolved.

In the DJSSP, cach activity in a job can request
only one resource and a resource i requested only
once mm a job. The sequence of resources requested
by the activitics in a job is random. Every job has a

5

fixed release date and a due date. More detaila on the
random problem gencrator are described in [3].

All the evaluations are given as number of time
points cxplored by the algorithms. This choice I8 mo-
tivated from the fact that such number is both pro-
portional to the time of computation and machine in-
dependent.

We have built two different types of time networks
from the resolution of two different DJSSPa: the
8 x 8x8 (named P8) and the 10x10x 10 (named P10},
where the firat number indicate the number of jobs,
the sccond once the number of activitica in a job and
the third one the number of resonrces. The data are
obtained running ten instances of cach type of prob-
lem.

Table 1 showa the mumber of time points ¥, the
maximum number of distance constraints ., and
maximum connectivity €. for cach problem. The
conncclivity 19 defined aa the ratio between the num-
her of distance congtrainta F and the number of time
points N. The value N is two times the number
of activitics plus two (the origin point and horizon
pot nt}. The value E,, ., represents the maximmm num-
her of digtance constraints which can be contained in
a time network associated to the solution of the in-
stance of the DJSSP. F.,,, I8 obtained by the sum
of the maximum values of the number of precedence
congtraints for cach resource and the number of con-
straints before the scheduling algorithm starts to find
a golution. Table 2 and Table 3 present the perfor-

Table 1: Number of time points and maximum con-
nectivity for the experimental time networks

[Problem | N | Bmar | Crmar = Bmaz/N |
P8 130 | 333 2.56
P10 [202 | 661 3.27

mance of the Propagetion algorithm when a modifi-
cation 18 cither consistent or inconsistent respectively.
This values arc shown as a function of the average
connectivity Aw-conn, that is, cvery row of the table
1cprescents the average value obtained in the mterval
Aw-conn £0.25. In order to get several values of the
connectivity we have built a solution of an instance
of a DJSSP and progressively reduced the number
of odges and sclected a time constraint C;; in ran-
dom way. In order to get the results showed in Ta-
ble 2, we have modified the distance constraint se-
lected Cyp = a5 < X; —X; < by

4, in the constraint

Proceedings of TIME-96

Ciy = ay + (d,-j — G;j)U[U.U5,01] < X; —X; < b,
Where [z, y] represents a random value » with uni-
form distribution such that # < v < v and d;; is min-
imal temporal distance between the nodes ¢ and § on
the (74 graph. In this case, it is possible to make
a comparison between the number of nodes scanned
by the Propegetion algorithm (Loc-prop valics) and
the number of nodes scanned by an algorithm which
works from scratch (Seretch values). In order to get
the results showed in Table 3, we have induced an in-
consistent situation by modifying the constraint €5 in
the constraint dg; (1 + U[0.05,01]) € X; — X; < &; In
this other casc, it is posgible make a comparison be-
twoen the number of nodes visited by the Propagation
algorithm which uscs the property expresscs by Theo-
rem 4 (Cycle-det values) and the number without the
previous property (No-cyele-det values).

Table 2: Incremental ve scratch propagation

| Problem || Av-conn | Loc-prop | Scratch

P§ 1.25 38.76 652.67
1.95 52.33 1111.47
2.25 34.08 1641.19
2.75 39.51 2048.28
P10 1.25 51.42 1108.38
1.5 67.20 1928.54
2.25 64.34 2876.22
2.75 57.00 3817.79
3.2 63.92 4388.71

Table 3: Propagation with and without cycle detection

| Problem [| Av-conn | Cycle-det | No-cyele-det |

Ps 1.25 3.02 114.42
1.75 2.92 77.30
2.2b 247 43.87
2.75 1.92 0.75

210 1.25 3.21 199.45
1.75 2.78 133.81
2.2b 2.68 86.85
2.75 2.55 27.15
3.2 2.63 14.58

Finally, Table 4 presents the performance of the
RBemovwe algorithm. These results are obtained in the
game way as the previous oncs. First we have built

6

a solution; then we have reduced progressively the
number of time constraints by nging the Bemove algo-
rithm. In this case, is possible to make a comparison
between the average number of nodes scanned by the
Remove algorithm (Loc-rem values) and the number
of nodes scanned in the same case by a acratch al-
gorithm (Seretch-rem valucs). The scratch algorithm
climinates first the constraint from the time map; then
puts all the bounds of the time points to the value 4+-00;
finally npdates all the network.

Table 4: Incremental ve scratch remove

| Problem || Av-conn | Locrem | Scratch-rem |

Ps 1.25 2.37 652.67
L.75 35.34 1111.47
2.2 56.02 1641.19
2.75 96.35 2048.28
P10 1.25 2.69 1108.38
1.75 33.12 1928.54
225 55.006 2876.22
2.75 70.58 3817.79
3.2 156.97 4388.71
Acknowledgments

‘This research is partially supported by: ASI - Italian Space
Apgency, CNR Spedial Project on Planning, CNR Committee 04
on Biology and Medicine.

References

[1] Cervoni, R., Cesta, A., Oddi, A., Managing Dynamic Tem-
poral Constraint Networks, Preceedings of the Second In-
ternationsl Conference on Al Planning Systems (AIPS34),
AAAT Press, 1934.

[2] Cesta, A., Oddi, A., DDL.1: A Formal Description of a
Constraint Heprezentation Language for Physical Domains,
Proceedings of the Ird Burepecan Workshep on Planning
{EWSP85}, IOS Preas, 1996.

[3] Cheng, C. Smith, 8.,F., Generating Feaaible Schedules un-
der Complex Metric Constraints, Proceedings of the 12th
Natienal Conference on Artificial Intelligence (AAAI94),
AAAT Press, 1934.

[4] Cormen, T.H., Leierson, C.E., Rivest, R.L., Intreduction te
Algorithms, MIT Press, 1990.

[] Currie, K., Tate, A., O-Plan: the open planning architec-
ture, Artsficial Intelligence, 52, 1991, 49-86.

[6] Davis, E., Constraint Propagation with Interval Labels, Ar-
tificial Intelligence, 32, 1987, 281-331.

[7] Dechter, R., Meiri, I., Pead, J., Temporal constraint net-
works. Artificial Intelligence, 49, 1991, 61-95.

[8] Ghallab, M, Laruelle, H., Representation on Control in Ix-
TeT, a Temporal Planner, Proceedings of the Second In-
ternational Conference on Al Planning Systems (AIPS34),
AAAT Press, 1994.

