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1. Introduction 
 

 The Graduate Teaching Assistant Assignment Problem (GTAAP) is the problem 

of allocating graduate teaching assistants to various teaching tasks including lecturing, 

grading, and administering laboratory sessions while accounting for constraints such as 

TA preferences, maximum workload, and the scheduling of the courses. When 

formulated as a simple constraint satisfaction problem, the GTAAP is, in general, 

overconstrained and thus not solvable. As a constraint optimization problem, the optimal 

solution to a GTAAP instance is the assignment of teaching assistants which maximizes 

the preferences of the teaching assistants while minimizing the number of unsatisfied 

“hard” constraints.  We refer to this formulation as the weighted constraint satisfaction 

problem (WCSP) form of the GTAAP. 

 Genetic algorithms (GAs) are a well-known approach to achieving good solutions 

to difficult combinatorial optimization problems such as the WCSP. By simulating the 

natural process of evolution through the differential reproduction of individuals with 

randomly varying genotypes, GAs “breed” solutions of increasingly high quality from an 

initial random population. This paper discusses the implementation and evaluation of a 

genetic algorithm solver for the WCSP form of the GTAAP.  

 

2. Methodology 
 

2.1 Description of GTAAP Constraints 
 

 A constraint satisfaction problem is a set of variables, their domains, and relations 

on those variables that describe valid combinations of assigned values. The GTAAP was 

remapped to a weighted constraint satisfaction problem as follows: 

 

2.1.1 Variables 

 

 The variables were the various teaching-related tasks to which the TAs could be 

assigned. 

 

2.1.2 Domain 

 

 All variables had the same domain: the various graduate TAs that could be 

assigned to each teaching task.  



 

2.1.3 Constraints 

  

 There were a total of . Because the problem is formulated as a WCSP, the 

constraints were “soft” constraints. For a soft constraint, each possible assignment of 

values to variables results in a certain “cost” for the constraint. The solution to the WCSP 

is the assignment that minimizes the total cost. For “hard” constraints – constraints for 

which some assignments are unacceptable – the special value “infinity” was assigned to 

the unacceptable assignments. 

 

2.1.3.1 Mutex Constraint 

 

 The Mutex constraint exists between two courses that take place at the same 

time. Two courses which occur at overlapping times cannot be taught by the same 

TA. For the GTAAP, the Mutex constraint assigns a weight of “infinity” if two 

courses that occur at overlapping times are assigned the same TA, and zero 

otherwise. 

 

2.1.3.2 Overlap Constraint 

 

 The Overlap constraint exists when a teaching task occurs during a course for 

which the TA is registered as a student. The overlap constraint assigns a weight of 

“infinity” if a TA is assigned to a teaching task that occurs during a course for 

which the TA is registered as a student, and zero otherwise. 

 

2.1.3.3 Certification Constraint 

 

 The Certification constraint exists when a teaching task requires that the TA 

assigned to it is either a US citizen or holds current ITA certification. The 

certification constraint assigns a weight of “infinity” if a TA that does not meet 

these requirements is assigned to a teaching task that requires certification, and 

zero otherwise. 

 

2.1.3.4 Preference Constraint 

 

 The Preference constraint exists for all combinations of teaching tasks and 

TAs. When applying for their assistantships, each TA specified his or her 

preference for each teaching tasks on a range from 0 (not at all prefereable) to 5 

(very preferable). To be consistent with the goal of minimizing the overall cost, 

the preferences were remapped as follows: for a TA assigned to a course for 

which he or she has expressed a preference of between 1 and 5, the Preference 

constraint assigns the weight (5 - preference); for a TA assigned to a course for 

which he or she has expressed a preference of 0, the Preference constraint assigns 

the weight “infinity.”  

 

2.1.3.5 Taking Course Constraint 



 

 The Taking Course constraint exists when a TA is enrolled as a student in a 

course that is somehow related to a teaching task. The Taking Course constraint 

assigns a weight of “infinity” if the TA is enrolled in the corresponding course, 

and zero otherwise. 

 

2.1.3.6 Capacity Constraint 

 

 The Capacity constraint is a global constraint on all variables that restricts the 

workload of each TA. Teaching assistants are hired for a range of times 

commitments ranging from 1/6
th
 time to full-time. For each teaching assistant, the 

Capacity constraint assigns a weight of “infinity” if the TA’s assigned teaching 

tasks exceed his or her maximum workload, and zero otherwise. 

 

2.2 Generation of GTAAP Datasets 
 

 The data for the GTAAP is stored in a relational database. In order to work with 

the data more easily, it was first converted to the XCSP 2.1 format for weighted CSPs 

[1]. This process involved two steps. First, the data was retrieved from the database and 

transformed into specifications of domain, variables, and constraints by an existing Java 

program [2, 3]. Then, the idiosyncratic string representation of these data was 

transformed into XCSP format by a separate utility. 

 

2.2.1 Conversion of Raw Data to XCSP Format 

 

 A tool was implemented in C++ to convert the string-based data retrieved from 

the database to XCSP format. The names of the teaching assistants were encoded by first 

hashing the name strings using the SHA-1 algorithm [4] (to preserve anonymity), then the 

hashed names were sorted and each TA was assigned a number based on his or her 

position in the list. Course names (un-hashed) were also sorted and numbered according 

to their position. All constraints except the Capacity constraint were specified in 

extension with weights as described in Section 2.1. The Capacity constraint was specified 

in intension: for each TA, the function adds the workload assigned to the TA, and assigns 

a cost of “infinity” if the TA has exceeded his or her workload limit and zero otherwise. 

 

2.3 Genetic Algorithm Implementation 
 

 The implementation of a genetic algorithm consists of the fitness function, the 

selection function, the crossover function, and the mutation function. This section 

describes each function in detail. 

 

2.3.1 Fitness Function 

 

 The fitness function consists of adding the costs from each constraint, along with 

some variations. In the interest of producing a reusable XCSP dataset, the remapping 

from the raw GTAAP data to the XCSP format data encoded the problem with hard 



constraint violations producing a weight of “infinity.” However, this is not useful for a 

fitness function, because a solution that violates fewer hard constraints is a better solution 

than one that violates more. In addition, it is useful to have the option of not assigning a 

TA to a teaching task if doing so would avoid violating some hard constraints. Thus, the 

fitness function makes two modifications to the basic problem: 

 

1. The special value “unassigned” is added to the domain of the variables. An 

Unassigned constraint is specified for every variable, which assigns the weight 

(sum of maximum possible cost due to TA preferences) + 1 to every variable with 

the value “unassigned.” In this way, any solution that leaves k variables 

unassigned but completely assigns all TAs only to tasks for which they have a 

preference of 5 is worse than any solution that leaves k - 1 variables unassigned 

but assigns all TAs to tasks for which they have a preference of 1 (in other words, 

it is better to provide TAs for more teaching tasks than to assign TAs to courses 

they prefer).  

2. The value “infinity” is re-coded to a value greater than the largest possible weight 

due to non-infinite weights. In practice, this means (number of constraints) * 

(value for “unassigned” from (1) above) + 1. 

 

With these modifications, all possible solutions can be unambiguously compared. 

 

2.3.2 Selection Function 

 

 The tournament selection function [5] is used to choose the best individuals for 

recombination. For a population with size N, the function operates as follows: 

 

1. Choose 2N individuals uniformly at random with replacement from the 

population. 

2. For each N pairs of individuals, choose the most-fit individual with probability p 

and the least-fit individual with probability 1 – p. 

3. The new population consists of the N individuals chosen in step (2). 

 

2.3.3 Crossover Function 
 

 The crossover function combines the genomes of two individuals to form a new 

individual that combines traits of both. Sometimes, the new individual is better than 

either of its parents. For a given pair of individuals with a genome consisting of the 

assignments of values to the n variables in the problem, the crossover function generates 

a new individual as follows: 

 

1. Order the values comprising the solution lexicographically by the name of the 

variables to which they are assigned. 

2. Choose an index i in the resulting list of variables uniformly at random. 

3. The new individual consists of the variable assignments at positions [0..i) from 

the first parent concatenated with the variable assignments at positions [i..n) from 

the second parent.  



 

2.3.4 Mutation Function 

 

 The mutation function alters the genome of a single individual to produce a new 

individual. In general, the mutation function has one of two goals. Sometimes, the 

function is designed to preserve variability in the population, increasing the chance that 

the search will break out of local minima. In this case, the mutation function generally 

makes a random change to the genome, and is applied with a low probability. The 

second option is a mutation function which attempts to improve the fitness of the 

individual. In this case, the mutation function drives the solution toward a local optimum 

more quickly, and is applied to all individuals. For this project, both varieties of mutation 

function were implemented.  

 The “random mutation” function selects one variable in the genome uniformly at 

random and changes the value assigned to it to another value in the domain, also chosen 

uniformly at random.  

 The “guided mutation” function performs a single step of greedy local search: the 

function applies the single value assignment change that produces the greatest 

improvement in fitness. 

 

2.3 Experiments  
 

 The genetic algorithm approach was compared to [the algorithms that I had time 

to implement]. Each algorithm was run to completion a total of 50 times for each 

GTAAP dataset, and descriptive statistics for each algorithm were computed and 

compared. 

 

3. Results and Discussion 
 

 Someday… 
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