Constraint Modeling and Reformulation in the
Context of Academic Task Assignment

Robert Glaubius and Berthe Y. Choueiry

Department of Computer Science and Engineering, 115 Ferguson Hall,
University of Nebraska-Lincoln, Lincoln NE 68588-0115
{glaubius | choueiry}@cse.unl.edu

Abstract. We discuss the modeling and reformulation of a resource al-
location problem, the assignment of Graduate Teaching Assistants to
courses in the University of Nebraska-Lincoln Computer Science Depart-
ment. We formulate this problem as a non-binary Constraint Satisfaction
Problem (CSP) and provide a new convention for consistency checking
to deal with the over-constraindness of the problem and the practical
requirements of our application. We introduce a new decomposable non-
binary constraint, which we call confinement constraint, and describe its
relevance in practical settings. We discuss the reformulation of confine-
ment constraints and equality constraints into an equivalent network of
binary constraints. Empirical evaluations on three sets of real-world data
demonstrate the benefit of such reformulations in reducing the processing
time to reach equivalent solutions.

1 Introduction

Constraint Satisfaction has emerged as a powerful paradigm for modeling and
solving large combinatorial problems. Scheduling and resource allocation are
some of the earliest application areas of this technology [4,3]. In this docu-
ment, we discuss a specific application of constraint satisfaction techniques to a
real-world application. This is the assignment of Graduate Teaching Assistants
(GTA) to courses in the Department of Computer Science and Engineering of
the University of Nebraska-Lincoln. The idea for this particular application was
found on the web page of Rina Dechter at the University of California, Irvine.
This application is in fact a critical and arduous responsibility that the depart-
ment’s administration has to handle every semester.

Typically, each semester a pool of 25 to 40 GTAs must be assigned as graders
or instructors to the majority of courses offered during that semester. In the past,
this task has been performed by hand by several members of the staff and faculty.
Tentative schedules were iteratively refined and updated based on feedback from
other faculty members and the students themselves, in a tedious and error-
prone process dragging over 3 weeks. It was quite common that the final hand-
made assignments still contained a number of conflicts and inconsistencies, which
negatively affects the quality of our program. For instance, when a course is
assigned a GTA that has little knowledge of the subject matter, the course’s

instructor has to take over a large portion of the GTA’s job and the GTA has
to invest considerable effort to adjust to the situation. Moreover, students in the
course may receive diminished feedback and unfair grading.

Our efforts in modeling and solving this problem using constraint processing
techniques have resulted in a prototype system under field-test in our department
since August 2001 [7]. This system has effectively reduced the number of obvious
conflicts, thus yielding a commensurate increase in course quality. It has also
decreased the amount of time and effort spent on making the assignment and
gained the approval and satisfaction of our staff, faculty and student body.

In this paper, we describe the modeling of this application, which involves a
number of non-binary constraints. In order to deal with the fact that the problem
is always over-constrained, we propose a new convention for consistency checking
that allows variables to be assigned a null value. Further, we identify a new type
of non-binary constraint that we call confinement constraint and demonstrate to
be network decomposable [8]. We introduce the confinement and equality con-
straints, give their reformulation as a network of binary constraints, and evaluate
the effects of these reformulations on the performance of backtrack search using
real-world data sets we have collected. We argue that, as a result of our par-
ticular consistency-checking mechanism, the reformulation of the confinement,
equality, and all-different constraints into networks of binary constraints yields
exactly the same tree and the same domain reductions for backtrack search while
substantially reducing the CPU time.

This paper is structured as follows. Section 2 defines a constraint satisfaction
problem. Section 3 describes the GTA assignment problem. Section 4 discusses
its formulation as a finite, non-binary CSP. Section 5 discusses the reformulation
of confinement and equality constraints into equivalent networks of binary con-
straints. Finally, Section 6 describes our experiments and Section 7 concludes
this paper.

2 Definitions

A Constraint Satisfaction Problem (CSP) is a triple, P = (V,D,C), where
V ={Vi,Va,...,V,}is aset of variables, and D = {Dy,, Dy,, ..., Dy, } is the set
variable domains, such that Dy, is the domain of variable V;. When the domains
are finite, the CSP is said to be finite. C = {C;,Cj,...,Cij. . m,... Cn} is a
set of constraints such that C; ; indicates a constraint between variables V; and
V;. Such a constraint (i.e., Cy; v;) specifies the set of allowable tuples of values
that can be assigned to the variables V; and V;. A constraint can be specified
in extension (allowable tuples are enumerated) or in intension (a predicate de-
termines whether a given tuple is acceptable). For a given constraint C; ; . m,
the set of variables V;, Vj, ..., Vi, is the constraint’s scope and the cardinality of
this set is the constraint’s arity.

Formally, solving a CSP P=(V, D, C), requires finding an assignment to each
Vi € V from its domain Dvy; such that all constraints are simultaneously satisfied.
Much effort in research on finite CSP is focused on binary constraints, in which

only constraints with arity < 2 are considered (notable exceptions are [10, 1, 6]).
We use both binary and non-binary constraints to model our application.

3 Problem definition

The GTA assignment problem can be stated as follows. In a given semester,
given a set G of graduate teaching assistants, a set V of courses, and a set of
constraints that specify allowable assignments, find a consistent and satisfactory
assignment of GTAs to courses. Since in practice this problem is systematically
over-constrained, some courses in the final assignment may not have GTA as-
signed to them. An assignment is said to be ‘consistent’ when no constraint is
broken even if some courses have not been assigned a GTA.

Since the goal of the department is to ensure GTA support to every course
that needs one, we measure the degree of ‘satisfaction’ of a solution primarily by
the number of courses that are assigned a GTA, and, secondarily by its quality
in terms of some preference criteria that we discuss in Section 3.4.

3.1 Course features

The courses in this problem can be described by a set of features. These features
determine some of the conditions under which a given GTA can be assigned to
a particular course. They are: course type, course duration, meeting time and
course weight. Below we describe these features.

We identify 3 distinct types of courses offered: lectures, labs, and recitations.
These courses may require a GTA as either an instructor or grading assistant,
or both. Labs and recitations require GTAs as instructors, while lectures usually
require GTAs as grading assistants. Few exceptions exist and are explicitly stated
by the administrator in charge of the assignment.

The duration of a course within a semester may vary. There are three possible
intervals a course may span: the full semester, the first half of the semester, or
the second half. The time spans of the half semesters are disjoint.

We consider courses that have a fixed, predetermined meeting time, specified
by time of day and days of the week. Meeting times are significant in cases where
a GTA is required as an instructor: a GTA cannot be assigned to teach a given
course A if he or she is enrolled in another course that overlaps in time with A.

Prior to assignment, each course is assigned an expected weight. This can a
real value in the interval [0,1] but is usually a discrete value (i.e., 0, 0.25, 0.5, or
1). A course A with weight(A) = 0 indicates that no GTA should be assigned
to A. Non-zero weight values are discussed in more detail in Section 3.2 where
we introduce the features of GTAs.

3.2 GTA features

In the previous section we gave an overview of the attributes of courses. This
section discusses the relevant features of GTAs. These features are the GTA’s

enrollment status, ITA certification, type of assistantship, and individual course
preferences.

A GTA’s enrollment status is the set of courses that he or she is enrolled
in during the semester. This feature is taken into consideration for two reasons.
The first is to avoid time conflicts with courses that the GTA is scheduled to
teach. The second purpose is to avoid situations in which a GTA is scheduled to
teach or grade for a course that he or she is enrolled in.

International Teaching Assistant (ITA) certification is required by law for
an international GTA to instruct a course. GTAs without ITA certification may
only be assigned as grading assistants, while ITA certified GTAs may be assigned
as either grading assistants or instructors.

GTAs may be awarded either half or full teaching assistantships. We associate
a capacity max, with each GTA. A GTA with a half TA-ship has capacity
mazg = 0.5 and a GTA with a full TA-ship has capacity mazr, = 1. A GTA’s
capacity indicates the maximum course weight he or she can be assigned at any
point in time during a semester.

Since the beginning of our effort, we introduced a new attribute into the
data collection process. This attribute is the GTA’s preference for each course
offered. These preferences are integer values in {0, 1,...,5}. When a GTA assigns
preference 0 to a course, this indicates that the GTA should not be assigned to
the course, while 5 expresses a strong preference of the GTA for the assignment.

3.3 Assignment constraints

In the previous two sections, we looked at features of individual courses and
GTAs. In this section we will discuss some of the rules and guidelines that
dictate whether a GTA can or cannot be assigned to certain courses. Some of
these constraints were alluded to in the discussion of features. For instance, a
GTA must be ITA certified before he or she can teach a course.

Other rules we have already hinted at avoid conflict between enrollment and
assignment, such as avoiding assignments that conflict in time with courses that
a GTA is enrolled in. We also want to prevent any GTA from being assigned to
courses that he or she is taking, or that he or she has zero preference for. Finally,
we want to prevent any GTA from being assigned a heavier workload than he
or she has capacity for.

In addition to the previous constraints, several guidelines are also followed
in practice, which we integrate into our model as constraints. For instance, the
department sometimes wants to assign to some arbitrary set of courses the same
GTA. Another guideline is concerned with labs and recitations. Some lecture
courses have several sections, for example, there may be four different sections
of Introduction to Computer Science. Each of these lecture sections may have
several labs or recitations associated with it. Often, the weight of these labs is
too much for one GTA, but we would like to keep the number of GTAs assigned
to a set of these labs and recitations relatively small, e.g. two or three GTAs for
five labs. Further, these GTAs should not be assigned to courses other than these

labs or recitations. Such a strategy allows these GTAs to focus their preparation
on a group of similar courses.

3.4 Solution quality

Above, we formalized the GTA assignment problem in terms of finding a con-
sistent and satisfactory assignment of GTAs to courses. The features of courses
and GTAs, and the rules and guidelines for assignments give a sense of what
it means for an assignment to be consistent. We have briefly addressed what
constitutes a ‘satisfactory’ assignment, or its quality. In practice, it is often im-
possible to find an assignment to every course. In the context of our application,
the natural criterion for a satisfactory assignment is to maximize the number
of courses covered. For two assignments that cover the same number of courses,
we further discriminate between them by choosing the one of highest quality,
obtained by a combination of the value of the preferences in each assignment.
We experimented with both maximization of the geometric mean of preferences
and maximization of the minimum preference value in an assignment. Due to
the similarity of the performance of the two measures in practice, we will discuss
results only for the former.

4 The GTA assignment problem as a CSP

We formulate the GTA assignment problem as a constraint satisfaction problem.
We express the courses as variables, the available GTAs as variable domains, and
the rules and guidelines discussed in Section 3.3 as constraints.

In this section we first recall our convention for consistency checking in the
context of over-constrained problems then the various constraints we have iden-
tified for our application. Our model includes four types of unary constraints,
one type of binary constraint, and three types of non-binary constraints.

4.1 Consistency checking

Since in our application, problems are over-constrained, some variables in a solu-
tion may not be assigned a value. We choose to handle this situation in backtrack
search by assigning the value null to such a variable and allow the search to
proceed beyond the variable. Therefore, we modify the convention of constraint
checking as follows. We say that a given tuple (vi,vq,...,v;) for k variables
Vi, Va, ...,V is consistent with the constraint Cy, v,.... v,, when all non-null v;
in the tuple satisfy the constraint, regardless of whether some of the values in the
tuple are actually null!. If we did not allow null values, then backtrack search
would not be able to proceed to the remaining future variables. In practice, this
convention results in the pruning power of nFC2 on the non-binary formulations

! Note that, in terms of relational algebra, this convention is equivalent to using the
outerjoin of the relations defined by the constraints.

of confinement, equality, and mutex constraints to collapse to that of FC on the
binary decomposition of these constraints.

Strictly speaking, our problem is not a CSP in that we do not require all
variables in a solution to be instantiated?. In Max-CSP [5], one tries to find a
complete assignment that minimizes the number of violated constraints. How-
ever, the practical requirements of our application dictate that we minimize the
number of un-instantiated variables, not counting the number of constraints vi-
olated. Other strategies for dealing with over-constrained problems include the
distinction between hard and soft constraints. Again, in our application, such a
distinction is not made in practice. Although it may be possible to theoretically
reduce our problem to some of the above listed general problems, we are not
compelled to do so in order to remain as faithful as possible to the practical
requirements of the application.

4.2 Constraint types

The unary constraints used in this application are ITA certification, enrollment,
overlap, and zero preference constraints. ITA certification constraints and overlap
constraints are placed on every course that requires a GTA as an instructor,
while enrollment and zero preference constraints are placed on all courses. The
enrollment constraint prevents a GTA from being assigned to a course that he
or she is enrolled in, while the overlap constraint prevents a GTA from being
assigned to teach a course that is held at the same time as a course he or she
is enrolled in. Zero preference constraints prevent us from assigning a GTA to a
course if he or she has zero preference for it.

The only binary constraint used in this application is a binary mutex con-
straint®, which specifies that both courses in its scope cannot be assigned the
same GTA, although both could possibly be assigned the null value?. In our
model, mutex constraints are placed between any two courses that meet at over-
lapping times and require a GTA as an instructor. One is tempted to model
this situation with a non-binary mutex constraint then use the powerful filter-
ing algorithm proposed by Régin in [9]. This solution would be incorrect in our
case since this filtering algorithm cannot handle null assignments to variables
and returns failure on over-constrained problems, which prevents search from
progressing.

We use three types of non-binary constraints: capacity constraints, equality
constraints, and confinement constraints. We define and discuss each one in detail
below.

Capacity constraints are n-ary constraints that prevent a GTA from being
assigned a heavier workload than he or she should have. This maximum capacity
is determined by the type of TA-ship of the GTA. Two capacity constraints are

2 The formal definition of a CSP requires an assignment to all variables.

3 a.k.a. all-diff, difference, or coloring constraint.

4 Note that we also use binary mutex constraints in the reformulation of the non-binary
confinement constraints.

used for each GTA. This is due to course durations throughout the semester. The
courses from a given semester can be partitioned into three sets: courses that
are held during just the first half of the semester, courses held during just the
last half of the semester, and courses that are held throughout the semester. For
a given GTA, one capacity constraint covers the courses that occur during the
first half of the semester (including full-semester courses) and another capacity
constraint covers the courses that occur during the second half of the semester
(also including full-semester courses), as shown in Figure 1. The constraint for
the specified GTA states that the sum of the weights of the courses in the scope
of the constraint to which he or she is assigned cannot exceed the capacity of
the GTA, and is expressed as follows:

Z assigned(g,v) - weight(v) < capacity(g)
vEScope(C)

where C' is a capacity constraint specific to GTA g, and assigned(g,v) is 1 if g
is assigned to v, otherwise it is 0.

| CSCE251U 951 I CSCE251Y 952
T 17

CSCE251K 951

CSCE101 150

CSCE230 001

—— timeintevd > varisble [] constraint

Fig. 1. Constraint network with two capacity constraints, one for courses in each half
of the semester. Full semester courses are in the scope of both, while half semester
courses are in the scope of just one capacity constraint.

If only one global constraint were used instead, it would be possible for a
GTA to be assigned his or her maximum capacity in courses that occur during
just one half of the semester. This is problematic, because during the other half
of the semester, the GTA would not be teaching or grading. We chose to use
two constraints, rather than increasing the complexity of checking a capacity
constraint by checking the portion of a semester courses are held in.

Equality constraints take an arbitrary subset of courses as scope. Each of
these courses should be assigned the same GTA. There may be a conflict between
the equality constraint and a capacity constraint, so it is more accurate to specify
the equality constraint as as preventing other GTAs from being assigned within
its scope of the constraint once any variable in the scope is assigned a GTA.
For instance, in Figure 2, we have five courses, three of which (CSCE150 002,
CSCE150 003, and CSCE252 001) are the scope of an equality constraint. Fig-
ure 2 (b) demonstrates filtering during backtrack search with non-binary forward

checking (nFC) [2] when Ali is assigned to CSCE150 002. Note that Bob and
Chang are filtered from the domains of the remaining variables in the scope of
the equality constraint.

CSCE252D 001 CSCE252D 001
Bdb, Cheng}

CSCEA430 001

CSCE150 002 {Ali, Bob, Chang} CSCE150 002

CSCE430 001

{Ali, Bob, Chang}

{Ali, Bob, Chang}

{Ali, Bob, Chang}

CSCE150 003 CSCE150 003

Fig. 2. (a) is an example of equality constraint use. (b) demonstrates filtering by FC
during search after an assignment to CSCE150 002.

CSCE230 001 CSCE230 001

{Ali, Bob, Chang} {Ali, Bob, Chang}

@ (b)

Confinement constraints allow us to specify that a GTA assigned to one or
more courses in a given set S, called the confinement set, cannot be assigned
to any course outside S, and vice versa. We use this constraint to prevent a
GTA from being assigned outside the set of labs or recitations associated with a
specific section of a course. Typically this is desirable when the section has several
labs or courses and we want to allow the GTA to focus his or her efforts to the
particular section. An example of such a constraint is illustrated in Figure 3 (a).

SO s CSCE230 001 JUS .s CSCE230 001

CSCE322 001

{Bob, Chang}

CSCE101 150

e |
(©

I
I I
I I
|)
I

K {Ali, Bob, Chang} A

()
"7 confined variables > vaiable [] non-binary constraint

Fig. 3. (a) shows a constraint network with one confinement constraint. The con-
straint’s confinement set is denoted by the dashed shape. (b) gives the filtering during
search when Ali is assigned to CSCE155 151, and (c) gives the subsequent filtering
when Bob is assigned to CSCE230 001.

The scope of a confinement constraint is the set of all courses that overlap
in time. GTAs assigned to courses in S cannot be assigned outside of S. For
instance, in Figure 3 (a), all courses are subject to a containment constraint C.
C’s confinement set S contains two variables, CSCE155 151 and CSCE155 152.
Figure 3 (b) and (c) demonstrates the effect of C' during backtrack search with
non-binary forward checking. In (b), once Ali is assigned to CSCE155 151, we
filter Ali from the domains of the variables outside S. In (c), once Bob is assigned

outside of S, he is removed from the domains of the variables in S. This new type
of constraint has in fact a wide applicability and can be advantageously used
to model other practical situations. For instance, in a system for scheduling
workers to machines in a factory setting, we could define confinement sets to
contain machines (variables) that are in the immediate vicinity or that require
similar skills to operate.

Given that the scope of this confinement constraint is very large, it may
prove expensive to check in practice. Therefore, it makes sense to attempt to
reformulate it as a set of binary constraints. In section 5 we establish that con-
finement constraint is network decomposable and discuss its reformulation as an
equivalent set of binary constraints.

5 Reformulation of constraints

Recently, researchers have been investigating whether it is advantageous to han-
dle non-binary constraints directly or to first reformulate them as binary con-
straints [10,1,6]. There are three types of non-binary constraints in our appli-
cation. In this paper, we address the reformulation of two of these constraints.
These are the confinement constraint and the equality constraint.

In the discussion above, we expressed and formulated these constraints as
non-binary constraints. We propose here to reformulate them through network
decomposition into networks of binary constraints. In this section we describe
the reformulation mechanism, the data, our experiments, and results.

5.1 Reformulation of equality constraints

We reformulate a k-ary equality constraint by replacing the constraint with a
clique of @ equality constraints between all variables in the scope of the
constraint. This may seem to be an overkill as the same effect could be achieved
with a chain of (k — 1) equality constraints as shown in Figure 4. However,

CSCE150 002 CSCE150 002

{Ali, Bob, Chang} CSCE252D 001 {Ali, Bob, Chang} CSCE252D 001

CSCE150 003 {Bob, Chang} CSCE150 003 {Bob, Chang}

{Ali, Bob, Chang} {Ali, Bob, Chang}

@ ®
Fig.4. (a) Shows a constraint network with one non-binary equality constraint (b) is

one possible reformulation of this equality constraint. This scheme is not equivalent to
the original constraint due to the possibility of assigning null.

since we admit null values, we cannot use the reformulation into a chain but
have to reformulate the non-binary equality constraint by a clique of binary

10

constraints. The example of Figure 4 (b) illustrates this situation. Assume search
first visits CSCE150 002, assigning Ali to it. The domain of CSCE252D 001 is
wiped out. Instead of backtracking, search assigns this variable null. At this
point, CSCE150 003 is not constrained to be assigned Ali, and may take a value
inconsistent with CSCE150 002. In order to avoid such situations, we must place
a binary equality constraint between every pair of variables in the scope of the
original non-binary constraint.

5.2 Reformulation of Confinement constraints

The reformulation procedure for confinement constraints consists in replacing
each confinement constraint C' by a set of mutex constraints between every vari-
able in S and every variable in scope(C)\S. We can show that the initial con-
straint C' is equivalent, in terms of the tuples entailed, to the set of projections
of C on every pair of variables in scope(C'), which is the proposed reformulation.
Thus, C is network decomposable. The reformulation transforms one confine-
ment constraint into |S| - |scope(C)\'S| binary constraints, as shown in Figure 5.

CSCE230 001 S CSCE230 001
\

{Ali, Bob, Chang}

CSCE322 001

- @ (b)
N confined variables © variable [| non-binary constraint

Fig. 5. (a) Shows the constraint network from figure 3. (b) is an equivalent CSP that
represents the confinement constraint as a network of mutex constraints.

5.3 Expectations

Gent et al. compare [6] the performance of backtrack search with non-binary
forward checking (nFC) [2] on non-binary constraints and to that of forward
checking (FC) on the binary decomposition of the constraints and conclude that
FC cannot visit less nodes than nFC1, nFC2, ..., nFC5. This can be justified
intuitively as follows. Any of the nFCi with ¢ > 1 has stronger pruning power on
the non-binary constraint than FC has on the binary decomposition®. Therefore,

® nFCO on the other hand has weaker pruning power on the non-binary constraint
than FC has on the binary decomposition.

11

such an nFCi may annihilate the domains of future variables more quickly than
nFC would, assuming the same variable ordering. Therefore, it may backtrack
earlier and may end up visiting less nodes than FC.

In Section 4.1, we explained that our CSP model allows search to assign null
to variables. This means that search does not backtrack when the domain of a
variable is annihilated. Consequently, the above mentioned advantage of nFCi
with ¢ > 1 over FC on the binary reformulation does not necessarily hold. In
fact, we can show that in the context of our convention for consistency checking,
nFC1 and nFC2 on the non-binary equality, confinement and mutex constraints
collapse to FC on their binary decompositions. In particular, the nodes explored
and the domain reductions are exactly the same.

6 The data and experiments

We tested the effect of the reformulation of the confinement constraint on three
data sets from the Spring 2001 and Fall 2001 and 2002 semesters in the Computer
Science and Engineering department at the University of Nebraska-Lincoln.
These data sets are summarized in Table 16.

Data set
Spring 2001|Fa11 2001|Fa]1 2002
Number of GTAs 25 34 31
Total number of courses 77 81 7
Lectures 44 47 45
Labs 24 24 24
Recitations 3 3 2
Half-semester 6 7 6
Number of equality constraints 3 3 10
Average arity 5 5.67 34
Number of capacity constraints 50 68 62
Average arity 63 58 65
Number of confinement constraints 12 16 14
Average arity 63 58 65
Average confinement set size 3.333 4.375 4.857

Table 1. Description of test data.

Our tests consisted of four experiments per data set. Each experiment is
a combination of either a binary or non-binary model with static or dynamic

5 The Spring 2001 data set did not include half and full TA-ship information; we
assumed a default full TA-ship for all TA’s. For the twenty GTAs who did not
submit preferences for the Fall 2001 data set, we assumed a default preference of 3.
This is also the case for 9 GTAs who did not submit preferences for Fall 2002

12

least domain variable ordering (SLD and DLD, respectively). We ran a depth-
first backtrack search with a branch and bound strategy based on maximizing
variables covered, breaking ties by choosing the solution that maximizes the
geometric mean of GTA preferences. For each case, we used nFC2 proposed by
Bessiére et al. [2], taking advantage of the fact that all nFCi collapse to FC on
binary constraints. Note that because of the way we handle consistency checking
(see Section 4.1), search does not backtrack when the domain of a variable is
annihilated.

6.1 Results of experiments

Each test was run for approximately one hour before halting, which was neces-
sary because the problem is over-constrained. In Table 2, We report CPU time to
find the best solution, the number of nodes visited (to best solution), the number
of constraints checked (to best solution), and solution quality. We use the con-
vention of Bacchus and van Beek [1] of incrementing the number of constraints
checked by the arity of the constraint in question. We also report the length of
the best solution (i.e., the number of variables assigned non-null values) and
solution quality in terms of the geometric mean of GTA preferences. Note that
we do not take into account the cost of the reformulation as it is polynomial in
the number of variables of the CSP and the cost of solving (i.e., reformulation
and search) is clearly dominated by the exponential cost of backtrack search.

6.2 Discussion

We compare the results in terms of the best solution found, the time spent on
finding the solution, and the numbers of constraint checks and nodes visited
during search. We examine the effect of problem modeling and variable ordering
on solution quality.

For a given data set and a given ordering heuristic, both the non-binary
and binary models resulted in the same solutions during the one-hour duration
of the experiment. However, the best solution was found earlier in the binary
model than the non-binary one and required fewer constraint checks. Indeed, the
reduction of CPU time ranges from 8% (Spring 2001, DLD) to 22% (Fall 2002,
SLD), with an average value of about 17%.

These experiments further show that the same number of nodes are visited
to reach these solutions, corroborating that the search trees are equivalent and
that nFC2 on the non-binary model collapses to FC on the binary model.

It is well known that dynamic variable ordering is superior to static ordering.
Our results confirm this, as the best solution to every problem was found by
dynamic variable ordering (DLD). In Fall 2001, the best solution found by DLD
has a higher geometric mean of preferences than its SLD counterpart. In the
other two data sets the final solutions found by DLD cover more variables than
the SLD-ordered search.

13

CSP Search running for one hour Quality of best solution found
Capacity Time
Data |Vars|Vals||Order| Model ||Sol|| Left CC NV | (ms) |GeoMean
SLD |binary | 49 2.5 |[1208257106|514389/2463680| 3.806217
Spring| 69 | 25 non-bin| 49 2.5 |[1424663866|514389/2848450| 3.806217
2001 DLD |binary | 51 2.5 400736550| 84423| 614080 3.673231

non-bin| 51 2.5 400998214 84423| 673020| 3.673231

SLD |binary | 56 1 77809896 112| 30630(3.167192

Fall | 65 | 34 non-bin| 56 1 97854466 112| 38970| 3.167192
2001 DLD |binary | 56 1 82827924 64| 33360| 3.354575
non-bin| 56 1 104189982 64| 42630| 3.354575

SLD |binary | 54 3.6 76231798 70| 24570 3.564383

Fall | 71 | 31 non-bin| 54 3.6 92933223 70| 31520| 3.564383
2002 DLD |binary | 57 3.15 225355613| 22560 255170| 3.451227

non-bin| 57 3.15 252293613| 22560 295790| 3.451227

Table 2. Results of experiments. Vars and vals are the number of variables and values
in each problem, respectively. Order is the ordering heuristic used: static least domain
(SLD) or dynamic least domain (DLD). Model is either non-binary or the binary de-
composition. |Sol| is the number of assigned variables in the solution. Capacity Left is
the amount of cumulated GTA capacity left unassigned. CC is the number constraint
checks. NV is the number of nodes visited. Time is CPU time in milliseconds, and
GeoMean is the geometric mean of preferences in the solution.

7 Conclusions

In this paper, we report how a real-world problem was formulated as a Constraint
Satisfaction Problem. We discuss the use of non-binary constraints for modeling
and solving the problem. We introduce a new type of non-binary constraint
useful in practical settings and provide its reformulation in a network of binary
constraints. We report the results of experiments on two sets of real-world data
and justify why theoretical predictions of the performance of search with forward
checking are not applicable in our context.

We plan to enrich our data set not only with real-world data, but perhaps
with some randomly generated ones. We also plan to refine this study by exper-
imenting with various aggregation and decomposition techniques.

Acknowledgments

Marilyn Augustyn provided the GTA and course data and helped in the elicita-
tion of the constraints. Christopher Hammack built the web-based user-interface
for data collection currently used in the department. We are grateful for a re-
viewer’s comments on a draft of this paper submitted to the ECAT 2002 Work-
shop on Modelling and Solving Problems with Constraints. This work has been
partially supported by the Department of Computer Science and Engineering at
UNL, the Constraint Systems Laboratory, and a Layman Award.

14

References

10.

. Fahiem Bacchus and Peter van Beek. On the Conversion between Non-Binary and

Binary Constraint Satisfaction Problems. In Proc. of AAAI-98, pages 310-319,
Madison, Wisconsin, 1998.

. Christian Bessiére, Pedro Meseguer, Eugene C. Freuder, and Javier Larrosa. On

forward checking for non-binary constraint satisfaction. In Principles and Practice
of Constraint Programming (CP’99), pages 88-102, 1999.

. Berthe Y. Choueiry and Boi Faltings. A Decomposition Heuristic for Resource Al-

location. In Proc. of the 11 ** ECAI, pages 585-589, Amsterdam, The Netherlands,
1994.

. Mark Fox. Constraint Directed Search: A Case Study of Job-Shop Scheduling.

Morgan and Kaufmann, Los Altos, CA, 1987.

. Eugene C. Freuder and Richard J. Wallace. Partial Constraint Satisfaction. Arti-

ficial Intelligence, 58:21-70, 1992.

. Tan Gent, Kostas Stergiou, and Toby Walsh. Decomposable Constraints. Artificial

Intelligence, 123 (1-2):133-156, 2000.

. Robert Glaubius. A Constraint Processing Approach to Assigning Graduate Teach-

ing Assistants to Courses. Undergraduate Honors Thesis. Department of Computer
Science and Engineering, University of Nebraska-Lincoln, 2001.

. Ugo Montanari. Networks of Constraints: Fundamental Properties and Application

to Picture Processing. Information Sciences, 7:95-132, 1974.

. Jean-Charles Régin. A filtering algorithm for constraints of difference in constraint

satisfaction problems. In Proc. of AAAI-94, pages 362-437, Seattle, WA, 1994.
Francesca Rossi, Charles Petrie, and Vasant Dhar. On the Equivalence of Con-
straint Satisfaction Problems. In Proc. of the 9 " ECAI, pages 550-556, Stock-
holm, Sweden, 1990.

