
Implementation of the Minfill Heuristic

Shant Karakashian
Constraint Systems Laboratory
University of Nebraska-Lincoln

Email: shantk@cse.unl.edu

Working Note 1-2010

February 25, 2010

Contents

1 Related Work 1

2 An O(n4) Implementation for Minfill 1

3 Pseudocode of Cliques and JoinTree 4

4 Complexity Analysis 4

1 Related Work

The Karypis Lab has developed a large library1 of graph partitioning algorithm
(MeETIS, ParMETIS, hMETIS). This library is particularly well suited for large
graphs. It is commonly used by the UAI community for tree decomposition, and
should be checked before doing any implementation work.

[1] presents a linear time algorithm for minimal elimination ordering approx-
imation in planar graphs.

2 An O(n4) Implementation for Minfill

Below, we describe an implementation of the well-known minfill algorithm,
which is described in [2]. In our implementation, we store in fcount[x] the
number of fill edges that need to be added to the graph when the vertex x is
removed.

1http://glaros.dtc.umn.edu/gkhome/views/metis

1



Algorithm 1: MinFill(G)

Input: A graph G = (V,E), where |V | = n.
Output: Perfect elimination order σ[]
FillCount(G)1

for i = 1 to n do2

v ← the vertex in G with the smallest value of fcount3

σ[i]← v4

AddFillEdgesAndRemoveNode(G, v)5

return σ6

Algorithm 2: FillCount(G)

Input: A graph G = (V,E).
Output: Vertices labeled with the fill count, which is the number of

edges that need to be added to make the vertex simplicial
foreach v ∈ V do1

count← 02

foreach v′ ∈ {v′|(v, v′) ∈ E} do3

foreach v′′ ∈ {v′′|(v′′ 6= v′) ∧ ((v, v′′) ∈ E)} do4

if (v′, v′′) /∈ E then5

count← count + 16

fcount(v)← count7

2



Algorithm 3: AddFillEdgesAndRemoveNode(G,v)

Input: A graph G = (V,E), a vertex v ∈ V .
Output: A graph from which v is eliminated and where the fill counts of

the remaining vertices are updated.
foreach v′ ∈ {v′|(v, v′) ∈ E} do1

foreach v′′ ∈ {v′′|(v′′ 6= v′) ∧ ((v, v′′) ∈ E)} do2

if (v′, v′′) /∈ E then3

foreach x ∈ {x|(x, v′) ∈ E} do4

if (x, v′′) ∈ E then5

fcount(x)← fcount(x)− 16

else7

fcount(v′)← fcount(v′) + 18

foreach x ∈ {x|(x, v′′) ∈ E} do9

if (x, v′) /∈ E then10

fcount(v′′)← fcount(v′′) + 111

E ← E ∪ {(v′, v′′)}12

foreach v′ ∈ {v′|(v, v′) ∈ E} do13

foreach y ∈ {y|(y 6= v) ∧ ((y, v′) ∈ E)} do14

if (y, v) /∈ E then15

fcount(v′)← fcount(v′)− 116

V ← V \ {v}17

3



3 Pseudocode of Cliques and JoinTree

The algorithm for finding the maximal cliques is called Cliques and borrowed
from [4].

Algorithm 4: Cliques(G, σ)

Input: Graph G = (V,E) and the perfect elimination order σ[], where
|V | = n.

Output: Q, list of maximal cliques
Q← ∅1

foreach v ∈ V do S(v)← 02

for i = 1 to n do3

v ← σ(i)4

X ← {x ∈ Adj(v)|σ−1(v) < σ−1(x)}5

if Adj(v) = ∅ then Q← Q ∪ {{v}}6

if X = ∅ then return Q7

u← σ(min{σ−1(x)|x ∈ X})8

S(u)←max{S(u), |X| − 1}9

if S(v) < |X| then10

Q← Q ∪ {{v} ∪X}11

return Q12

The algorithm for computing the join tree is the well-known max-cardinality
algorithm, also presented in [3].

Algorithm 5: JoinTree(Q)

Input: Q a set of cliques
Output: A join tree T (Q,E)
X ← ∅1

E ← ∅2

foreach q ∈ Q do3

E ← E ∪ {(q, q′)} where (q′ ∈ X) and (@q′′ ∈ X, |q ∩ q′′| > |q ∩ q′|)4

X ← X ∪ {q}5

return T (Q,E)6

4 Complexity Analysis

The complexity of Algorithm 1 depends on the complexity of

• Line 1 in Algorithm 1 (FillCount). The complexity of FillCount is
determined by the three nested loops: O(n3).

4



• Line 3 in Algorithm 1. The complexity of this step is×(n) (list) orO(log n)
(heap).

• Line 5 in Algorithm 1 (AddFillEdgesAndRemoveNode). AddFillEdge-
sAndRemoveNode has three nested loops, each looping over at most all
the vertices of the graph. Thus, the complexity of AddFillEdgesAn-
dRemoveNode is O(n3).

The complexity of MinFill is dominated by n times the complexity of
AddFillEdgesAndRemoveNode, and is thus O(n4).

The complexity of Cliques is O(|V | + |E|). The loops iterate |V | times.
The call to Adj once for each node visits each edge at most twice, hence we add
O(|E|).

The complexity of JoinTree is O(|Q|2).

References

[1] Elias Dahlhaus. An Improved Linear Time Algorithm for Minimal Elimina-
tion Ordering in Planar Graphs that is Parallelizable, 1999.

[2] Rina Dechter. Constraint Processing, chapter Directional Consistency,
page 89. Morgan Kaufmann, 2003.

[3] Rina Dechter. Constraint Processing, chapter Directional Consistency,
page 90. Morgan Kaufmann, 2003.

[4] Martin C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, chapter
Triangulated Graphs, page 99. Academic Press Inc., New York, NY, second
edition, 2004.

5


