# A Constraint Processing Approach to the Assignment of Graduate Teaching Assistants (GTAs) in CSE

Robert L. Glaubius and Berthe Y. Choueiry
Constraint Systems Laboratory
Computer Science & Engineering (CSE)
glaubius@cse.unl.edu

Joint work with M. Augustyn, Ch. Hammack, H. Zou, Ch. Daniel, B.Y. Choueiry Partially supported by CSE

### Problem definition

#### Given:

- Many classes in CSE require teaching assistants
  - Lecture courses: graders
  - Labs, recitations: instructors & graders
- CSE hires Graduate Teaching Assistants (GTAs)
  - Experienced (material, language, etc.)
  - New ( $\pm$  degree of preparedness)

## Question:

Assign GTAs to classes in a 'satisfactory' manner.

## Background

- Time horizon: 1 semester, 8 classes with half-semester duration
- About 70 classes, 35 GTAs
- Currently solved by hand: Chair, Vice-chair, Graduate Program Secretary, GTAs
- Shortcomings:
  - inconsistencies(e.g., GTAs assigned to courses that they are taking)
  - unbalanced load across students
  - difficult to quantify a 'satisfactory' solution
  - time-consuming task, about 3 weeks to stabilize

# An interactive system

#### Goals

- Substantial reduction in administrative overhead
- Decreased number of inconsistent assignments
- High expected GTA satisfaction

#### How well have we done?

- 2 to 3 weeks assignment time  $\longrightarrow$  2 days
- Relatively few assignment changes (less than 4, swapping)

## Project: a multi-faceted effort

- 1. Data collection: Augustyn, Glaubius, Choueiry choice of attributes, preferences, . . .
- 2. Interfaces: Hammack, Zou, Daniel, Choueiry student-end, administrator-end, security, . . .
- 3. Modeling: Augustyn, Glaubius, Choueiry constraints, data structures, . . .
- 4. Processing: Glaubius, Kavan, Zou, Choueiry propagation, search, evaluation criteria, ... (on-going)

ĊП

## Data collection

#### $\mathbf{GTAs}$

- New attribute: course preferences  $\{0, 1, \dots, 5\}$
- semester enrollment, deficits, half or full teaching assistantship
- ITA certification, ...

### Courses

- type: lab, recitation, lecture
- load: large, medium, small classes
- duration within the semester, ...

 $\bigcirc$ 

| Netscape: Computer Science GTA Registration |                 |                                       |             |  |  |  |  |
|---------------------------------------------|-----------------|---------------------------------------|-------------|--|--|--|--|
| Request for Assistantship                   |                 |                                       |             |  |  |  |  |
| Name:                                       | Mary Smith      |                                       |             |  |  |  |  |
| Advisor:                                    | Barbara Brown   | [                                     |             |  |  |  |  |
| Degree Program:                             | (M.S. (Thesis)  | (M.S. (Thesis) (M.S. (Project) (Ph.D. |             |  |  |  |  |
| Semester Admitted:                          | Fall 2000       |                                       |             |  |  |  |  |
| Expected Graduation Date:                   | Spring 02       |                                       |             |  |  |  |  |
| Years Supported by CSE:                     | 1 <u>*</u>      |                                       |             |  |  |  |  |
| Indergrad GPA (if available):               | 3. 9 <u>ĭ</u>   |                                       |             |  |  |  |  |
| Current Grad GPA:                           | 3.94            |                                       |             |  |  |  |  |
| Current Assistantship per Semester (\$):    | 5000 <u>″</u>   |                                       |             |  |  |  |  |
|                                             | Course          | Semester                              | Instructor  |  |  |  |  |
| Last 2 Teaching Assignments:                | CSCE310         | SPRING 2001                           | Courvoisier |  |  |  |  |
|                                             | CSCE421 <u></u> | FALL 2001                             | Stevens     |  |  |  |  |
| Deficiencies still to be taken:             |                 |                                       |             |  |  |  |  |
| CSCE 340 <u>i</u>                           | Ĭ.              | Ĭ.                                    | Ĭ.          |  |  |  |  |
| <u> </u>                                    | Ĭ.              | <u> </u>                              | Ĭ.          |  |  |  |  |
| GRE General                                 |                 |                                       |             |  |  |  |  |
| Verbal: § 92 %                              |                 |                                       |             |  |  |  |  |
| Quantitative: 1 97 %                        |                 |                                       |             |  |  |  |  |

| lass | Section | Course Name                                | Preference | Will Enroll in: | Justification for 0                     |
|------|---------|--------------------------------------------|------------|-----------------|-----------------------------------------|
| 01   | 001     | Computer Science Fundamentals              | 5 🗆        |                 | ¥<br>                                   |
| .01L | 001     | Computer Science Fundamentals Lab          | 2 🗆        |                 | ¥                                       |
| 101L | 002     | Computer Science Fundamentals Lab          | 2 🗆        |                 | ¥<br><br>                               |
| 101L | 003     | Computer Science Fundamentals Lab          | 5 🗆        |                 | ¥<br>::<br>::                           |
| 101L | 004     | Computer Science Fundamentals Lab          | 5 🗆        |                 | ¥<br>::<br>::<br>::                     |
| L50  | 150     | Intro to Computer Programming              | 0 🗆        |                 | too much work                           |
| 150  | 151     | Intro to Computer Programming Lab          | 5 🗆        |                 | Ĭ.i.                                    |
| 150  | 152     | Intro to Computer Programming Lab          | 5 🗆        |                 | <u>*</u>                                |
| 155  | 150     | Intro to Computer Science I                | 2 🗆        |                 | <u>*</u>                                |
| 155  | 151     | Intro to Computer Science I Lab            | 1 🗆        |                 | *************************************** |
|      |         |                                            |            |                 |                                         |
| 897  | 002     | Masters Project–Software Design            | 3 🗆        |                 | <u></u>                                 |
| 923  | 001     | Dev and Analysis of Eff. Algorithms        | 0 🗆        | ~               | ¥                                       |
| 952  | 001     | Advanced Computer Networks                 | 1 🗆        |                 | Samuel.                                 |
| 963  | 001     | Software Process Eng-JDE                   | 3 🗆        |                 | *************************************** |
| 979  | 001     | Adv in Neural Networks and Gen. Algorithms | 0 🗆        | ₹               | *************************************** |
| 990  | 003     | Seminar-Bioinformatics                     | 1 🗆        |                 | *************************************** |
| 990  | 004     | Seminar-Network Systems                    | 0 🗆        |                 | no experience                           |

#### Motivation

a flexible & expressive paradigm

### Contributions

- Modeling: elicitation and modeling of constraints and preferences
- Processing: systematic search & advanced propagation mechanisms

9

# Elements of Constraint Processing

#### Given:

- Variables: CSCE155, CSCE476, ...
- Values: Mary Smith, James Doe, Bob Brown, . . .
- Constraints: James can't teach between 10:00-11:00 a.m.,

  Mary can't teach more than 2 courses, ...



#### Question:

Assign a value (GTA) to every variable (course)

... such that all constraints are satisfied decision problem... everyone is pleased optimization problem

# Illustrating example

Variables (courses):

|       | Course               | Type       | Size          | Time            |
|-------|----------------------|------------|---------------|-----------------|
| $V_1$ | Intro to CS          | lab        | medium        | MWF 08:00-09:00 |
| $V_2$ | Data Struct. & Algo. | lecture    | $_{ m large}$ | MWF 11:00-12:00 |
| $V_3$ | Discrete Structures  | recitation | medium        | MWF 08:00-09:00 |
| $V_4$ | Intro to AI          | lecture    | medium        | MWF 08:00-09:00 |

Values (GTAs):

| Name       | ]     | Preferences |       |       | ITA? | Unavailable     |
|------------|-------|-------------|-------|-------|------|-----------------|
|            | $V_1$ | $V_2$       | $V_3$ | $V_4$ |      |                 |
| James Doe  | 3     | 5           | 3     | 4     | No   | MWF 10:00-11:00 |
| Mary Smith | 4     | 0           | 4     | 0     | Yes  | MWF 12:00-1:00  |
| Bob Brown  | 5     | 3           | 5     | 4     | Yes  | MWF 8:00-9:00   |

|       | Course Type          |                    | Size           | Time            |
|-------|----------------------|--------------------|----------------|-----------------|
| $V_1$ | Intro to CS          | lab                | medium         | MWF 08:00-09:00 |
| $V_2$ | Data Struct. & Algo. | lecture            | $_{ m large}$  | MWF 11:00-12:00 |
| $V_3$ | Discrete Structures  | recitation         | $_{ m medium}$ | MWF 08:00-09:00 |
| $V_4$ | Intro to AI          | $\mathbf{lecture}$ | $_{ m medium}$ | MWF 08:00-09:00 |

| Name       |       | Preferences |       |       | ITA?       | Unavailable     |
|------------|-------|-------------|-------|-------|------------|-----------------|
|            | $V_1$ | $V_2$       | $V_3$ | $V_4$ |            |                 |
| James Doe  | 3     | 5           | 3     | 4     | No         | MWF 10:00-11:00 |
| Mary Smith | 4     | 0           | 4     | 0     | ${ m Yes}$ | MWF 12:00-1:00  |
| Bob Brown  | 5     | 3           | 5     | 4     | ${ m Yes}$ | MWF 8:00-9:00   |

Unary constraint: James can't teach between 10:00 and 11:00 a.m.









|       | Course Type          |            | Size           | Time            |
|-------|----------------------|------------|----------------|-----------------|
| $V_1$ | Intro to CS          | lab        | medium         | MWF 08:00-09:00 |
| $V_2$ | Data Struct. & Algo. | lecture    | $_{ m large}$  | MWF 11:00-12:00 |
| $V_3$ | Discrete Structures  | recitation | $_{ m medium}$ | MWF 08:00-09:00 |
| $V_4$ | Intro to AI          | lecture    | $_{ m medium}$ | MWF 08:00-09:00 |

| Name       |       | Preferences |       |       | ITA?       | Unavailable     |
|------------|-------|-------------|-------|-------|------------|-----------------|
|            | $V_1$ | $V_2$       | $V_3$ | $V_4$ |            |                 |
| James Doe  | 3     | 5           | 3     | 4     | No         | MWF 10:00-11:00 |
| Mary Smith | 4     | 0           | 4     | 0     | ${ m Yes}$ | MWF 12:00-1:00  |
| Bob Brown  | 5     | 3           | 5     | 4     | ${ m Yes}$ | MWF 8:00-9:00   |

Binary constraint: Bob can't teach two labs that overlap in time



|       | Course Type          |            | Size           | Time            |
|-------|----------------------|------------|----------------|-----------------|
| $V_1$ | Intro to CS          | lab        | medium         | MWF 08:00-09:00 |
| $V_2$ | Data Struct. & Algo. | lecture    | $_{ m large}$  | MWF 11:00-12:00 |
| $V_3$ | Discrete Structures  | recitation | $_{ m medium}$ | MWF 08:00-09:00 |
| $V_4$ | Intro to AI          | lecture    | $_{ m medium}$ | MWF 08:00-09:00 |

| Name       |       | Preferences |       |       | ITA?       | Unavailable     |
|------------|-------|-------------|-------|-------|------------|-----------------|
|            | $V_1$ | $V_2$       | $V_3$ | $V_4$ |            |                 |
| James Doe  | 3     | 5           | 3     | 4     | No         | MWF 10:00-11:00 |
| Mary Smith | 4     | 0           | 4     | 0     | ${ m Yes}$ | MWF 12:00-1:00  |
| Bob Brown  | 5     | 3           | 5     | 4     | ${ m Yes}$ | MWF 8:00-9:00   |

Global constraint: Mary can grade at most 2 courses



# Modeling: constraints



Unary: James can't teach between 10:00-11:00 a.m. (5 types)

**Binary:** Bob can't teach two labs that overlap in time (1 type)

Global (non-binary): Mary can grade at most 2 courses (3 types)

#### Major, critical endeavor:

— elicitation and innovative modeling of non-binary constraints

## Modeling: objectives

- Maximize the number of courses covered

  Cover 

  5 courses with medium satisfaction

  3 courses with high satisfaction

  (Typically, we have seen a shortage of GTAs)
- Maximize student preferences
  - 1. Geometric mean vs. arithmetic mean

Prefer 
$$\begin{cases} \langle V_1, 5 \rangle, \langle V_2, 5 \rangle, \langle V_3, 5 \rangle, \langle V_4, 1 \rangle, \langle V_5, 1 \rangle & (\sqrt[5]{100} \text{ vs. 3}) \times \\ \langle V_1, 3 \rangle, \langle V_2, 3 \rangle, \langle V_3, 3 \rangle, \langle V_4, 3 \rangle, \langle V_5, 3 \rangle & (\sqrt[5]{243} \text{ vs. 3}) & \checkmark \end{cases}$$

2. The lowest preference

Prefer 
$$\begin{cases} \langle V_1, 5 \rangle, \langle V_2, 5 \rangle, \langle V_3, 5 \rangle, \langle V_4, 5 \rangle, \langle V_5, 1 \rangle & \times \\ \langle V_1, 2 \rangle, \langle V_2, 2 \rangle, \langle V_3, 2 \rangle, \langle V_4, 2 \rangle, \langle V_5, 2 \rangle & \sqrt{} \end{cases}$$

#### Solution method

- Basic computational mechanisms
  - Backtrack search: examines possibilities systematically
  - Ordering heuristics: avoid dead-ends, find better solutions
  - General propagation algorithms (e.g., FC)
  - Branch and bound strategy: find a first solution, exclude relatively 'poor' possibilities by comparing to the current retained solution
- Advanced computational mechanisms
  - Least discrepancy search: better coverage of solution space
  - Advanced propagation algorithms (e.g., n-FC, all-diffs)

#### Current status

- Modeling: several iterations
- Validating: Fall 2001 (good start), Spring 2002 (on-going)

#### Future research

- Reformulation: aggregating courses to reduce problem size
- Decomposition and localization of interactions

Kavan

• Local search

Zou

- Compact solutions Beckwith, Buettner, Xu by detecting interchangeable/symmetrical choices
- Problem specification & solving Glaubius, Hammack Incremental strategies to remove constraints, define new constraints, force choices, etc.