
A Constraint Processing Approach to Assigning Graduate Teaching
Assistants to Courses

Robert Glaubius
Honors Thesis

Constraint Systems Laboratory
Department of Computer Science and Engineering

University of Nebraska-Lincoln
glaubius@cse.unl.edu

December 23, 2001

Abstract

In recent years, scheduling problems have been advantageously modeled as Constraint Satisfaction
Problems (CSPs) and effectively solved by constraint propagation and processing techniques. In this
document, we discuss one such application: the assignment of graduate teaching assistants (GTAs) to
courses as instructors or grading assistants in a university setting. We analyze and model this problem
in the real-world setting of the Department of Computer Science and Engineering of the University of
Nebraska-Lincoln. This problem has traditionally been over-constrained. The results of our investiga-
tions are as follows. We enrich the definition of the problem by including students’ own preferences
to be assigned to courses. We propose, implement, and evaluate a representational model of the enti-
ties and constraints that constitute this problem, and explain how the current model has emerged from,
and improves upon, a series of modeling attempts. We also propose, implement, and test various op-
timization criteria that model ’satisfactory’ solutions.Finally, we describe, implement and test various
computational mechanisms for solving this problem such as ordering heuristics, constraint propagation
mechanisms, and search mechanisms.

1

Contents

1 Introduction 2
1.1 Definitions 2
1.2 Overview 5

2 Data Collection 5
2.1 Background 5
2.2 Refining data collection: preferences 6

3 Modeling 7
3.1 Variables 7
3.2 Domains 9
3.3 Constraints 10
3.4 Optimization objectives 12
3.5 Previous models 14

3.5.1 Binary model 14
3.5.2 Initial non-binary model 14

4 Processing 15
4.1 Propagation 15
4.2 Solution techniques 16

5 Implementation 18

6 Experiments 19
6.1 Data 19
6.2 Experiment Design 19

7 Conclusions and future research 21
7.1 Future research 21
7.2 Ideas for reformulation 22

1

1 Introduction

Constraint Satisfaction has emerged as a powerful paradigmfor modeling and solving large combinatorial

problems. One of the earliest application domains has addressed scheduling problems [4]. Today, and less

than 15 years after these initial efforts, commercial companies such as Ilog (http://www.ilog.com/), On Time

Systems (http://www.cirl.uoregon.edu/otsys/), and J.D.Edwards (http://www.numetrix.com/) are success-

fully commercializing this technology. In this document, we discuss a specific application of constraint

satisfaction techniques to a real-world application. Thisis the assignment of graduate teaching assistants to

courses in the Computer Science department of the University of Nebraska at Lincoln.

There are multiple goals to our study. The idea for this particular application is borrowed from Rina

Dechter, at the University of California, Irvine. The initial motivation for our investigations was the collec-

tion of data in order to articulate interesting homework topics for CSCE476/876 and CSE421/821. We soon

realized that what at first appeared to be a relatively simpleproblem was actually quite complex.

One of our intents is to define and carry out a challenging thesis motivated by a real-world application.

In this vein, we seek to understand and evaluate the application of theoretical concepts that exist in the

literature, while gaining insight into the research experience.

We also undertake this research in order to aid our department in this task. This task is a difficult and

time-consuming undertaking as it is currently performed within the department. It is carried out manually

each semester, and involves at least three administrators (i.e. the department chair, the vice-chair, and the

Graduate Program secretary) in addition to the faculty and students involved. In addition to the disadvantage

of a large and painful investment of effort, the results of this process tend to be less than satisfactory1 We

expect that automation of this process will facilitate the discovery of substantially less problematic solutions.

A final important research objective is the identification ofdirections for future research that is relevant to

real-world applications. Such direction can only serve to build and strengthen tools for critical applications,

and benefit the community as a whole.

Before we delve into the details of the data collection phaseof our system development, we introduce

the reader to the terminology of constraint satisfaction problems then explain the structure of this report.

1.1 Definitions

A Constraint Satisfaction Problem (CSP) is represented as atupleP = (V,D, C), whereV = {V1, V2, . . . , Vn}

is a set of variables, andD = {DV1
,DV2

, . . . ,DVn
} is the set variable domains, such thatDVi

is the do-

1GTAs are often assigned to help with courses that have time conflicts with their other commitments, or assigned to coursesin
which they have inadequate proficiency, among other difficulties.

2

main of variableVi. C = {Ci, Cj,k, . . . , Ci,j,...,m, . . . Cn} is a set of constraints such thatCi,j indicates a

constraint between variablesVi andVj. For a given constraintCi,j,...,m, the set of variablesVi, Vj , . . . , Vm

is called the constraint’sscopeand the size of this set is the constraint’sarity. Formally a CSP is defined as

follows. Given the tupleP = (V,D, C), find an assignment to eachVi ∈ V from its domainDVi
such that

no constraint is violated.

A constraintCVi,Vj
specifies the allowable tuples that can be assigned to the variablesViandVj . The

set of all such allowable tuples constitute the constraint’s definition. If all allowable tuples are completely

enumerated and stored, the constraint isextensivelydefined. If allowable tuples are functionally represented,

the constraint isintensivelydefined.

An instantiationto a variableVi is the assignment of valuea ∈ DVi
to Vi. We write such an instantiation

as an ordered pair(Vi, a). An instantiation that does not violate any constraints is consistent it; otherwise,

it is inconsistent. A solution to a CSP is a set of instantiations{(Vi, a), (Vj , b), . . . , (Vk, x)}. We use the

term global solution to describe a solution that instantiates all variables; if some but not all variables are

instantiated, then it is apartial solution.

For a specific example of a constraint satisfaction problem,we visit the map coloring problem. The

map coloring problem is defined as follows. Given a set of states, and a set ofx different colors, color each

state such that no two states that share a border have the samecolor. An example of such a problem, and a

subsequent mapping to a CSP, are given in the following example.

Example 1.1 Imagine that we want to color the map of the US, as shown in figure 1 with the 5 colors red,

blue, green, gold, and orange.

Each state must have one color and no two neighboring states can have the same color. Additionally,

suppose we have the following restrictions:

• NE must be colored red.

• FL must be colored either green or orange.

• Exactly one of NV, CA, or OR must be colored gold.

We model this problem instance as a CSP choosing as variablesthe states on the map:

V = {CA,OR,WA, ID,NV,AZ, . . .} (1)

3

Figure 1:Map of the United States of America.

Each of these variables has the set of colors{red, blue, green, gold, orange} as its domain. For example:

DNM = {red, blue, green, gold, orange} (2)

The constraints in the problem specify that no two adjacent states can have the same color. For example,

there would be a binary constraint between GA and AL :

CGA,AL = {((GA,x), (AL, y)) | (x ∈ DGA) ∧ (y ∈ DAL)(∧x 6= y)} (3)

We also model each of the restrictions listed above as a constraint. The first and second ones are unary

constraints:

CNE = {(NE, red)} (4)

CFL = {(FL, green), (FL, orange)} (5)

The last is a ternary constraint:

CNE,CA,OR = {((NE,x), (CA, y), (OR, z)) | (x = gold ∧ y 6= gold ∧ z 6= gold) ∨ (6)

(x 6= gold ∧ y = gold ∧ z 6= gold) ∨

(x 6= gold ∧ y 6= gold ∧ z = gold)}

4

1.2 Overview

This document is structured as follows. In Section 2, we discuss the data collection process. In particular,

we identify the attributes of courses and graduate teachingassistants that need to be specified for the task

of assigning GTAs to courses. In Section 3, we report on our strategies for modeling GTAs, courses, and

the constraints that dictate under what conditions we were able to assign a given GTA to a particular course.

In Section 4, we discuss the constraint processing techniques we have considered for solving this problem.

Section 5 describes our current implementation. Section 6 presents and discusses the results of our experi-

ments on two data sets pertaining to the academic semesters Spring 2001 and Fall 2001. Finally, Section 7

concludes this documents and draws directions for future research.

2 Data Collection

In this section, we discuss our methods for data collection.This includes the methods in place when we

began our study, our modifications to this process, as well asa description of the collected data. The type of

data collected heavily impacts the types of relationships we can model. For a parallel, in the map coloring

example earlier, if we were given the name of the states to be colored, but not their relative locations and

borders, it would not be possible to model the problem in a meaningful fashion. By this same token, without

acquiring key data for our problem, it is impractical to attempt to solve a model of the problem, as it will

bear little or no resemblance to the actual problem seen in practice.

2.1 Background

Previous to our study, when a graduate student applies for a teaching assistantship (TAship) in the Depart-

ment of Computer Science and Engineering (CSE) at the University of Nebraska-Lincoln (UNL), he or she

is asked to submit information about his or her academic history. The department has designed paper forms

that the students fill to provide this information. A sample form is included as an appendix to this paper.

Once assistantships are awarded, the information submitted by each graduate teaching assistant (GTA) is

then used, in addition to other information such as ITA certification status and previous TA experience. This

data is then used to determine the courses that the student may potentially be assigned to.

Further, depending upon the availability of funds or their involvement in research projects, graduate stu-

dents may receive one of two types of teaching assistantships. These are half or full teaching assistantships.

5

Typically, GTAs that receive a half TAship are assigned to fewer or smaller courses, while students with full

TAships receive a more demanding workload.

With the above information in hand, faculty and administration members then proceed to manually

assign the GTAs to scheduled courses. Typically this procedure results in barely satisfactory assignments.

GTAs frequently have time conflicts with courses that they are assigned to and requiring their physical

attendance. Sometimes, they are inadequately prepared forthe material of their assigned courses. These

conflicts are sometimes detected and GTAs are swapped between courses or brought up to speed. The

detection and correction of these conflicts result in frustration and a loss of time and effort for for the

students enrolled in the classes, the GTAs, the teaching faculty, and the administrators.

Our goal in automating this task is to reduce the quantity andmagnitude of conflicts observed in prac-

tice, while proposing solutions that better satisfy the involved parties – the faculty, students, and the GTAs

themselves.

At the time that we began this project, the information listed was collected by the department for each

GTA. The majority of these items are briefly mentioned here.

• Enrollment status:A list of courses that a GTA is enrolled in.

• ITA Certification: A boolean value that indicates whether an international student has or has not

passed the International Teaching Assistant Evaluation.

• Half/Full TAship: Indicates whether a GTA is employed full-time or half-time.

• Faculty advisor: The GTA’s individual advisor.

• Course deficiencies:Courses required for completion of the graduate program that have yet to be

taken.

• Past TA experience:A list of courses that the GTA has been assigned to in previoussemesters.

• Grade point average (GPA):An indicator of scholastic aptitude.

Of the above, a GTAs advisor, deficiencies, experience, and GPA are not taken into account in the current

version of the problem model. The rest of these attributes are discussed in Section 3.

2.2 Refining data collection: preferences

We observed that the data collected by the department from the students thus far is actually sufficient to avoid

conflicting decisions such as the ones mentioned above. Consequently, it is quite realistic to implement an

6

automated system that monitors decisions to avoid the generation of conflicting assignments. We are able

to utilize past procedures for data collection for a large portion of relevant data, including course attributes

such as meeting times and types, as well as GTA information such as ITA certification and enrollment status.

The information and mechanisms for evaluating how satisfactory a given solution is and for rating and

comparing distinct solutions, however, were not existent at the outset of this study. For this reason, we

introduced a range of six (6) integer values, from 0 to 5, and requested students to rate each offered course

using this scale. A rating of 5 indicates a strong preferencefor a course, while 0 indicates that the GTA has

a demonstrable justification for why he or she should not be assigned to the course.

This mechanism provides us with a basis for comparing two consistent solutions, thus otherwise equally

acceptable. We designed an optimization function that usesthis preference schema to better fit the preference

of GTAs with their actual assignments, see Section 3.4. We expect that matching GTAs to courses for which

they declare a stronger preference will enhance the qualityof their performance in their duties.

We generated a supplement to the existing questionnaire forstudents to fill out shown in the Appendix.

The collected data now has the information necessary for designing a representation of the problem, imple-

menting it and processing it on a computer. We choose the CSP paradigm for its simplicity, flexibility, and

the wealth of propagation methods and processing techniques available. In the next section we specify our

constraint satisfaction problem model formulation.

3 Modeling

Many of the challenges inherent to this problem are best addressed during the modeling stage. The CSP

paradigm, as introduced in Section 1.1, provides a most natural way to formulate scheduling problems such

as the one we address here. In this section, we describe how weformulate the GTA assignment problem

during a single academic semester as a CSP. We choose to modelcourses as variables and GTAs as domain

values. Further, we elicit and translate the relationshipsbetween GTAs and courses as seen in practice into

constraints that can be processed.

3.1 Variables

Each course constitutes a CSP variable and is represented bythe following attributes in our model:

• Course type:There are three (3) types of courses offered by the CSE department; namely lecture,

laboratory, and recitation. A course of a given type may require a GTA as either an instructor or a

grading assistant. Some courses may require both. Labs and recitation courses require a graduate

7

student as an instructor, while lectures utilize GTAs as grading assistants in most cases. for example,

in the Fall 2001 semester, there were 44 lectures, 25 laboratories, and 3 recitations.

• Course duration:The duration of most courses offered during a semester spansover the entire length

of the semester. However, a few exceptions exist. There are some courses that occupy only either the

first or second half of a semester. These courses typically require both one GTA as grading assistant

and another GTA as instructor. For example, in the Fall 2001 semester, there were 37 full-semester

courses and 7 half semester courses, 4 of which were held during the first half, and the rest during the

second half.

• Meeting times:It is important to include the meeting times of each course inorder to avoid time

conflicts in the assignments. For example, a GTA assigned as instructor to a course must be able to

attend all sessions of this course and thus should not be enrolled in another course that overlaps with

the course he or she is assigned to. The course schedule is given as input to the system. Each course

has one, two, or three sessions per week. For example, in the Fall 2001 semester, CSCE310 was held

on Mondays, Wednesdays and Fridays between 9:30 a.m. and 10:20 a.m.

• Expected load:The load of the course is a relative measure of the amount of effort that a GTA is

expected to spend on the course in question. This value is determined by department staff mem-

bers, based on anticipated enrollment in the course, as wellas the typical amount of course work.

Typical values for courses are 0.5 and 1, where a course with 0.5 load is a course with lower en-

rollment and small course work expectations, and a course with load of 1 has a larger number of

students enrolled, and may require a moderate to large amount of course work.2 For example, during

the Fall 2001 semester, CSCE155, an introductory level course in computer science, had load of 1,

while CSCE496/896, a senior-level special topics course, had load of 0.5. This reflects the fact that

CSCE155 tends to have enrollment of more than 100 students, while CSCE496/896 is likely to see

between 20 and 30 students.

In general, each course is represented by a single variable within the CSP. More specifically, each vari-

able represents the task an assigned GTA is expected to perform with respect to a given course. For this

reason, half semester courses requiring a GTA as an instructor, and another one as a grading assistant are

2A typical semester will have several courses with 0 load as well. This indicates that these courses do not require the services of
a GTA, and therefore are not considered for assignment in themodel. These courses tend to be graduate level courses (900 level)
or seminar sections that have relatively low enrollment, and the advanced nature of the course precludes the majority ofGTAs from
possessing sufficient proficiency in the area.

8

represented by two variables. Similarly, classes with loadof 0 do not have a variable representation. Typi-

cally a given semester in CSE has around 70 variables; for example, the Fall 2001 semester is modeled with

66 variables.

3.2 Domains

The domain of a CSP variable is the set of values that can be assigned to it. In our model, each value is a

graduate teaching assistant. Initially, the domain of eachvariable consists of the pool of all available GTAs.

Each GTA has a number of relevant attributes that should be checked before including him or her in the

domain of a variable. These include the following:

• Enrollment: The enrollment status is a list of courses that a GTA indicates he or she will enroll in

during the semester in question. It serves two purposes in our model. First, it is used to determine

when a given GTA is not available as an instructor. Second, itis used to prevent a student from being

assigned as either a grader or instructor to a course that he or she is actually enrolled in.

• ITA Certification: International students constitute the majority of our poolof GTAs. Due to various

considerations, it is required for these students to acquire International Teaching Association (ITA)

certification prior to assignment as instructors for courses. Incoming international students are usually

not ITA certified. This procedure may take a semester or two before an incoming international student

becomes ITA certified; in the meanwhile, he or she can be assigned only as a grading assistant. For

instance, during the Fall 2001 semester, 14 out of all 34 GTAshired required but did not possess ITA

certification.

• Half/Full TAship: As mentioned in Section 2.1, graduate students may receive either a half or full

TAship. Typically, it is desirable to rely more directly on GTAs with full teaching assistantships. In

practice, a GTA with a half-TAship will be assigned courses with the sum of their loads equal to 1,

while a GTA with a half-TAship is assigned a to courses with a load total of 0.5.

• Preferences:Preferences, as discussed in Section 2.2, are integer values ranging from 0 to 5 associated

with each class for a given GTA. These are used in the optimization criterion that discriminates among

consistent solutions.

Each of these attributes is taken into account before assigning a GTA to a given course. The values of

these attributes are checked by the constraints, which we will discuss next.

9

3.3 Constraints

There are several different types of constraints considered when assigning a GTA to a course. This system

uses unary (arity = 1), binary (arity = 2), andn-ary constraints to represent the variety of relations that

dictate valid instantiations. Several of these constraints were hinted at in previous sections; all constraints

that we model are covered in detail here. The unary constraints are:

• ITA certification- As touched on in Section 3.2, international students are required to be ITA certified

prior to instructing any courses. The ITA certification constraint is a unary constraint that enforces

this condition upon any variable that requires a GTA as aninstructor.

• Enrollment- The enrollment constraint is a unary constraint that prevents GTAs from being assigned

to courses that they are taking. Clearly it would be disadvantageous to allow a student to grade his or

her own work!

• Overlap- Overlap constraints prevent any GTA from being assigned asan instructor to a course that

he or she cannot attend. This is based on the GTAs enrollment status, using the meeting times of

courses he or she is enrolled in to indicate when he or she is unavailable.

• Zero Preference- Zero preference constraints prevent any GTA from being assigned to a course for

which he or she has indicated preference value zero. This constraint serves to restrict attention only

to those GTAs that have some desire (or little objection) to instructing or grading for a given course.

There is only one type of binary constraint used in this model:

• Mutex - Mutex constraints3 are binary constraints in place between any two courses thatrequire

GTAs as instructors and meet during overlapping times. Thisenforces the condition that a GTA must

attend courses he or she is instructing.

We choose to use non-binary constraints to model the capacity restrictions and containment situations

observed in practice. While the majority of processing techniques in CSPs have focussed on binary con-

straints and relied on reformulation techniques for mapping [1] non-binary formulations into binary ones,

it is commonly acknowledged that the representation shouldremain as faithful to the real-world constraint

(i.e., a capacity constraint should be represented as a non-binary constraint) and the processing should use

the encoding that is most likely to yield efficient processing. Few investigations have been carried out to

3a.k.a. constraints of difference, or coloring constraints.

10

establish the superiority of a binary versus a non-binary formulation with respect to the efficiency of the

processing technique. This is a new research area and no definite conclusions exist yet. We implement 3

types of high arity constraints:

• Equality - Equality constraints aren-ary constraints between a set of courses, all of which should be

assigned the same GTA.

• Capacity- Capacity constraints aren-ary constraints that prevent any GTAg from being assigned

more than some maximum loadmaxg. This is enforced by restrictingg’s current loadcurrg ≤ maxg,

wherecurrg is the sum of the load of all courses thatg has been assigned to.

• Containment- Containment constraints aren-ary constraints, similar in spirit to the aforementioned

mutex constraint. In general, a number of lab and recitation courses may be associated with a given

lecture course; for instance, the lecture course “Introduction to Computer Science I”, section 1, has

had as many as five associated labs. It is desirable that GTAs assigned to instruct one of these labs

not be assigned to any other course, unless it is another lab associated with this same lecture section.

Containment constraints enforce this condition. Since a GTA can be assigned to multiple courses,

containment constraints enforce assignments of a specific GTA to a subset of labs or recitations asso-

ciated to a same lecture section after he or she has been assigned to any one of these sections.

In addition to our stated goals – to find good solutions that cover many courses while optimizing solution

preference – we have two other goals in mind while modeling this problem. First, we wish to obtain solutions

that match the criteria used in practice. Secondly, we want to produce a model that does not force model

processing to be too complex. The introduction of many complex constraints can often increase the amount

of effort that is expended in finding a solution. We intend ourmodel to be descriptive, yet practical.

In order to do this, we feel that non-binary constraints are the most effective technique for modeling these

complex criteria, such as capacity and containment constraints. While the superiority of non-binary over

binary representations is still an open question Bacchus:98, the non-binary approach allows an intuitive

approach to handling these constraints. The capacity and containment constraints, in particular, are very

loose, highly disjunctive constraints, and as such, typical methods for translating binary problems into non-

binary ones can become expensive using either an intensive or extensive constraint definition. An initial

approach to our problem, that utilized only unary and binaryconstraints is discussed in Section 3.5.

11

3.4 Optimization objectives

The goal of modeling is to provide the basis for finding correct, practical solutions. Thus far, we have

discussed the aspects of problem modeling that deal with thedecision portion of our problem. That is, given

the variables, values, and constraints, determine whetheror not a solution that satisfies all constraints exists.

The problem of GTA assignment also involves an optimizationaspect as well. While a given instance of

the GTA decision problem may or may not be satisfiable, we are still required to discover the best solution

possible. We optimize solutions with respect to three criteria - consistency, solution size, and GTA course

preferences.

We will only select a solution that does not violate any constraints. All constraints in our model are

consistent provided that all assigned variables in the scope of each constraint is consistent. This allows

solutions to leave some variables unassigned. This is an important consideration, as this problem is often

overconstrained. Most algorithms that deal with CSPs will simply exit if no solution that satisfies all con-

straints and assigns all variables can be found. A notable exception is work by Freuder and Mackworth on

MAX-CSP [5].

If consistency were our only consideration, our system would select its initial state, in which no course is

assigned a GTA, as a good solution and exit. To resolve this, we optimize the returned solution with respect

to solution size. Solution size is defined as the number of instanciated variables.

This begs the question, what if two solutions have the same size? In this case, we rely on the third

optimization criteria, GTA preferences. The preference ofa solution is the preference of each GTA for

the course that he or she is assigned to in a given instantiation. We have experimented with two different

measures that optimize solution preference – maximizing the geometric mean and maximizing the minimum

preference.

The geometric mean of preferences is straightforward. Given two consistent instantiations with the same

solution size, we will select the solution with the greater geometric mean of preferences. This is defined as

n
√

∏n
i prefi, wherei corresponds to theith variableVi that receives an assignment in the current solution.

The second optimization measure is maximization of the minimum preference. In this measure, given our

two instantiations from earlier, we will select the one withfewer preferences of 1. If there are an equal

number of 1’s, we’ll select the one with fewer 2’s, and so on. The following example illustrates each of the

optimization criteria discussed here.

Example 3.1 We are given a semester with four courses and four GTAs. From this set, we have several

possible solutions.

12

• Courses -CSCE 310, CSCE 155, CSCE 235, CSCE 476

• GTAs -Kurt Gödel, Alan Turing, David Hilbert, Alonzo Church

Each GTAs preference for each course is shown in table 1

GTA 155 235 310 476

Alonzo Church 1 2 3 0
Kurt Gödel 3 5 5 2
David Hilbert 2 5 1 3
Alan Turing 5 3 2 5

Table 1: Example set of courses and GTAs with preferences

Given the following two instantiations denoted by tuples (course, GTA, preference)

(1) (155, Turing, 5) (235, Hilbert, 5) (310, Gödel, 5) (476,φ)

(2) (155, Hilbert, 2) (235, Church, 2) (310, Turing, 5) (476,Gödel, 2)

We will choose instantiation (2), since it covers more classes than (1) does. Comparing the next two

instantiations using the maximization of minimum preference evaluation function

(3) (155, Church, 1) (235, Gödel, 5) (310, Hilbert, 1) (476,Turing, 5)

(2) (155, Hilbert, 2) (235, Church, 2) (310, Turing, 5) (476,Gödel, 2)

We will again choose instantiation (2), as instantiation (1) has 2 assignments with preference 1, while

instantiation (2) has 0 assignments of preference 1. Finally, comparing the next two instantiations according

to the maximization of geometric mean,

(4) (155, Gdel, 3) (235, Turing, 3) (310, Church, 3) (476, Hilbert, 3)

(3) (155, Church, 1) (235, Gödel, 5) (310, Hilbert, 1) (476,Turing, 5)

In this last case, instantiation (4) has geometric mean 3, while (3) has geometric mean of about 2.24.

Therefore, we prefer (4) to (3). Notice also that this last pair illustrates the benefit of geometric versus

arithmetic mean, as (4) and (3) both have arithmetic mean of 3.

13

3.5 Previous models

Our model is the result of several prior attempts. While the variables, domains, and optimization criteria

have remained fairly unchanged, the constraints have undergone several modifications. The past models can

be broken up into two distinct precursors – an initial model with binary constraints, and a previous model

using non-binary constraints. Examination of these two models will yield some insight into the design

decisions and problems we faced in representing the GTA assignment problem.

3.5.1 Binary model

Early in this project we tried to model this problem using only unary and binary constraints, in order to

take better advantage of and build off of existing research.All of the unary and binary constraints in this

early model we still utilize in the current model. Containment constraints and equality constraints were

not modeled. Capacity constraints were simulated by replacing the currentk-ary constraint with a fully-

connected graph ofmutex constraints between allk variables in the simulated capacity constraint’s scope.

This solves the problem of preventing GTAs from being overloaded; however, it restricts GTAs to at most

one assignment. As a workaround, GTAs were then replicated,allowing each GTA to be assigned to a

maximum of two courses.

This replication strategy increased the size of the CSP substantially. For a given CSP withn = |V|

andd = |D|, the size, or number of possible solutions of a CSP isdn. Methods for solving CSPs rely on

navigating this search space in order to find a solution; by uniformly doubling domain size, we increase the

size of the solution space by a factor of2n, with a direct impact on run-time and effectiveness of search.

This size problem was the primary motivation for moving to our second, non-binary model.

3.5.2 Initial non-binary model

In the second model, we eliminated the fully-connected mutex networks and replaced them with a non-

binary capacity constraint. In addition to maintaining thesolution space todn size, this also allows a

degree of flexibility in specifying workload. Capacity constraints can be given a parameter,maximum

capacity, that sets a cutoff limit to the amount of load GTAs can be assigned. While we have only utilized

capacity constraints with a maximum capacity of two load units for full GTAs, it is possible to configure this

maximum to allow GTAs to take larger loads when an insufficient number of GTAs is available, or it can be

lowered if there is a surplus of GTAs.

The difference between this non-binary model and the model in use is the inclusion of the equality

14

constraint, and the containment constraint. The addition of these two constraints was motivated by a desire

for increased accuracy in fitting to new department strategies.

4 Processing

Generally, problem instances involve around 70 courses and35 GTAs. Courses tend to have an expected

load of about 1 unit, though many have less, and few have load of more than 1. Due to this and many of

the constraints on the problem, it is expected that many problem instances will be unsatisfiable. However,

it is essential that we find some partial solution in the absence of any global solutions. For this reason, the

assignment of the empty valueφ to a a variableVi is considered consistent with any constraintCi,j,...,m

such thatVi ∈ Scope(Ci,j,...,m). In other words, this system necessarily will consider an instantiation to be

consistent even when some courses are not assigned GTAs.

We focus our research on the use of systematic techniques forsolving CSPs. These methods are based

on a systematic, depth-first search of the solution space. Weselect these methods for their soundness and

completeness. Other solution techniques, such as local search, are powerful methods, but lack completeness.

As this project presents proof-of-concept, we desire the guarantee to find a consistent global solution, when

one exists.

In addition to the solution methods mentioned above, we’ve experimented with various methods for

constraint propagation. These methods attempt to reduce the effort of search by eliminating domain elements

in a variable’s domain if they are found to be inconsistent with the constraints. For example, enforcement of

node consistency is used to propagate the effects of unary constraints prior to search. For instance, if GTA

Winston Smith is enrolled Information Retrieval, he will beremoved from Information Retrieval’s domain

when node consistency is enforced due to the enrollment constraint that is in place on the course. In this

section, we will first examine some of the propagation methods we have experimented with, and then discuss

the solution methods that we have implemented.

4.1 Propagation

The most basic propagation algorithm is node consistency (NC). Node consistency is enforced by examining

each valuea in the domain of each variableVi. If a is not consistent with some unary constraintC defined

on Vi, a is removed from the domain ofVi. This simple algorithm tends to yield a significant reduction to

the size of GTA assignment problems, increasing the speed offinding a solution.

In Section 3.5.1, we referred to an earlier model that represented the capacity constraint as a network

15

of mutex constraints. It is worth mentioning here some of our findingsin using the arc-consistency propa-

gation method formutex constraints proposed by Régin [10]. This filtering algorithm is based on finding

a variable-to-value maximal matching in a fully-connectednetwork ofmutex constraints. The network of

variables is first transformed into a bipartite graph, with one set of nodes representing variables and the other

representing values. Edges between these sets tie each variable to the values in its domain. A matching in

this graph is a set of edges such that each variable is associated with a unique value4. Independent of all

other constraints besides the mutices, this matching represents a solution to this set of variables. However,

due to the presence of other constraints, Régin’s algorithm then uses this initial matching to find all possible

matchings. For each value in the graph, if it is not incident upon an edge in any matching, it can be filtered

from the problem, as it cannot be included in any global solution.

This algorithm proves useful when we are searching specifically for a global consistent solution. How-

ever, since we do not focus on finding a global solution (due tothe fact that in many cases they do not exist),

this algorithm was not often particularly useful. Once the problem model evolved away from the binary

model, and large networks ofmutex constraints were replaced by capacity constraints, this algorithm was

removed from the solver system.

Node consistency and Régin’smutex filtering algorithm are the two stand-alone constraint propagation

algorithms that we’ve implemented and used in this system. Other methods for constraint propagation

that we have tested are forward-checking [6], and forward-checking for non-binary constraints [2]. These

methods are used during search; they will be covered in the next section.

4.2 Solution techniques

We utilize systematic search techniques based on depth-first search to solve the GTA assignment problem. In

order to cope with the problem size, we include some look-ahead strategies when searching. Earlier models

have used standard forward-checking to propagate the effect of past assignments; the current implementation

uses a form of forward-checking for non-binary constraints. Branch-and-bound mechanisms are another

feature integrated into our search strategy.

Forward checking (FC) is perhaps best described by Prosser in [9]. This is a strategy used in CSPs con-

taining only unary and binary constraints. Each time an assignment is made, allfuturevariables (variables

that have not yet been assigned at the current point in search) have values removed from their domains if

these values are not consistent with the new assignment.

Alterations to the model that involved the inclusion of non-binary constraints forced a change in the

4The algorithm used to compute this matching is attributed toHopcroft and Karp [8].

16

look-ahead strategy used. We implement and use forward-checking for non-binary constraints, as discussed

in [2]. Specifically, at each assignment, we filter future variables with respect to all constraints that involve

the new assignment, and check with respect to all assigned variables in the scope of the constraint. This is an

improvement over earlier methods for FC with non-binary constraints that required that all but one variable

in the scope of a constraint be assigned before any filtering can occur.

Each of the prior methods attempt to ease computational effort in the average case by eliminating the

need to check against past assignments when making new ones.The next augmentation to search, a branch-

and-bound mechanism, attempts to reduce computational effort by detecting and rejecting when a partial

solution will not yield a better solution than one that’s already been encountered.

The branch-and-bound mechanism we include in search on thisproblem keeps track of the size and

evaluation value of the best solution seen up to any point in search. As depth-first search expands nodes in a

search path by assigning values to variables, we check to seeif the search path being expanded can improve

on the current best solution. Once the current best cannot beimproved upon, search backtracks until a path

that presents the potential for improvement is encountered.

One alternative to the search methods mentioned above is theuse of Least Discrepancy Search (LDS).

LDS is another type of systematic search that alters the order of node expansion significantly in order to give

better coverage of the search space. LDS operates by first expanding every node that is suggested by some

variable/value ordering heuristic. If this fails to find an acceptable global solution, it then expands all search

paths according to the ordering heuristic, except that it ignores the heuristic at exactly one node. Ignoring

this one point is referred to as adiscrepancy. If this second set of search paths is also unsatisfactory, search

then allows 2 discrepancies, and so on up to|D| [7].

Least discrepancy search attempts to navigate around two major difficulties present in systematic search.

First, backtrack search is prone tothrashing; it tends to spend a large amount of time trying to repair paths

that cannot yield a good solution due to mistakes early in search. Second, ordering heuristics are much more

discriminative later in search, but tend not to have a significant effect early in search; due to this, mistakes

tend to be made early in search. Combined, these difficultiestend to induce a large amount of wasted

computation. LDS allows search to reconsider early assignments much sooner than these same assignments

would be reconsidered in other systematic searches [7].

Least Discrepancy search was considered prior to the changeto a non-binary model. However, it has

not yet been adapted to the current non-binary model.

17

5 Implementation

This system is implemented in ANSI Common Lisp. We rely on theCommon Lisp Object System (CLOS)

for implementation of the CSP structures (the variables, values, constraints, and the problem itself), as well

as the GTAs and courses. We choose this language for the speedof prototyping and the potential the ease of

incremental development. Here we discuss the design of GTA,course, and CSP objects, such as variables,

values, constraints, and a solution container.

Each course is represented by a class object with slots for each important attribute. GTAs are represented

similarly; each GTA object stores an associative list of (course, preference) pairs that are used when building

variable domains. These structures are read in from ASCII files and stored in globally-accessible hash tables.

A CSP object is then built, which stores its essential components – the variables, values, and constraints.

The CSP object also has slots for storage of a solution, and bookkeeping elements used during search.

Variables are stored in the CSP object as a list, as the primary action performed on this list is a sort operation.

Values are stored the same way. Constraints are stored in a hash table that is keyed by scope; each entry to

the hash table is a list of constraints on the key. The bookkeeping elements stored in a CSP object are the

future and past variables; these are lists that operate as stacks during search, and are initialized from the list

of variables by one of the variable ordering functions.

The solution structure is used to preserve the instantiation that best satisfies the evaluation function

during search. It stores a list of assignments in triples of the form (variable, value, preference). The solution

object has several methods that compute the size and evaluation value of the stored instantiation.

The hash table of GTAs is used to build each CSP value. Each CSPvalue is a wrapper for a GTA

structure that serves to provide a named value object. Once this set is constructed, it is stored in the CSP

object. The set is also made available to CSP variables as they are constructed, in order to construct each

variable’s domain.

The CSP variables are then constructed for each course. Variables store their associated course, domain,

assignment, and some bookkeeping information for use during search. The domain of each variable is

constructed from the pool of available CSP values. The domain is stored as a list of (value, preference)

pairs; each pair is drawn from the CSP value’s stored GTA object. Assignments made during search are

stored in the variable as a pair drawn from the variable’s domain. Each variable stores a list of references to

constraints involving itself. The variable also stores thefollowing for bookkeeping during search: a list of

future-checked variables, and a list of reductions, both for use during forward checking. The list of future-

checked variables keeps track of which variables the variable in question has been checked against, and the

18

reductions list acts as a stack of values filtered from the domain (See [9] for a more in-depth discussion of

each of these structures).

There are a wide variety of constraint objects in our system.We use an extensive enumeration of valid

tuples for the unary constraints, while using an intensive enumeration of the valid tuples for constraints with

arity ≥ 1. Extensively defined constraints use a list to store acceptable tuples, and have a generic associated

consistency check method. Each intensively-defined constraint uses a specialized consistency check method.

This could be remedied by storing a constraint predicate as amember of the constraint object.

6 Experiments

6.1 Data

We studied and experimented with two sets of data obtained from the CSE department. These sets pertained

to the Spring and Fall 2001 semesters. GTA half and full TAships and course loads were not defined in

our data for Spring 2001. In our tests, we used the default of full TAship, and a default course load of 0.5.

Preferences were not provided for the entire Fall 2001 data;in this case we artificially enforced a default

preference value of 3 for GTAs who did not report preferences. 20 GTAs did not report preferences in this

data set.

Spring 2001 Fall 2001
GTAs 25 34
Lectures 40 44
Labs 24 24
Recitations 3 3
Half-semester 6 7

Table 2: Description of test data

6.2 Experiment Design

We tested our system’s performance on these two data sets using 8 tests per data set. Each test involved

one of the two possible evaluation functions, maximizing the minimum or the geometric mean. Values were

ordered according to one of two value ordering heuristics, and variables were ordered according to one of

two variable ordering heuristics. These heuristics are described briefly below.

We implemented static value ordering heuristics; the first ordered all values by sorting according to

preference such that values with high preference would be considered first. The second heuristic considered

19

values that occurred in the fewest domains before those thatoccurred in many. Ties were broken according

to preference, with higher preferences considered first. These heuristics were used in conjunction with either

least-domain variable ordering, or domain-degree ratio ordering. Least domain variable ordering considers

first the variable with smallest domain, while domain-degree ratio ordering chooses the variable that has the

smallest ratio|domain|
|degree| , wheredegree is the number of constraints on the variable.

Each test was run for approximately one hour. We report here the best solution found during that time by

each test. Table 3 shows these results in terms of constraintchecks, nodes visited, CPU time, and solution

quality in terms of solution size and the two evaluation criteria.

Preferences
Test CC NNV Time Size GM 1 2 3 4 5

Spring 2001
GM-DP-LD 167301144 219282 3454900 49 3.7717085 5 1 6 8 29
GM-DP-DD 295782625 87074 2943150 51 3.8908036 3 5 4 6 33
GM-MIN-LD 72185616 51698 1288900 49 2.2945633 16 7 10 4 12
GM-MIN-DD 9889354 4853 155170 52 2.8628445 11 4 11 9 17
MM-DP-LD 166043703 212144 3444040 49 3.7717085 5 1 6 8 29
MM-DP-DD 193803188 50099 1901350 51 3.8908036 3 5 4 6 33
MM-MIN-LD 71184570 50068 1277380 49 2.2945633 16 7 10 4 12
MM-MIN-DD 9176961 3668 124400 52 2.8628445 11 4 11 9 17
Fall 2001
GM-DP-LD 5886422 112 32690 56 3.167192 7 0 28 0 21
GM-DP-DD 3249132 51 18820 40 3.8350053 1 0 15 6 18
GM-MIN-LD 7094746 1764 65880 51 2.8961947 8 0 28 3 12
GM-MIN-DD 5249870 123 27100 48 2.976746 4 3 29 4 8
MM-DP-LD 5886422 106 31680 56 3.167192 7 0 28 0 21
MM-DP-DD 3249132 51 19340 40 3.8350053 1 0 15 6 18
MM-MIN-LD 6978914 1448 53970 51 2.8961947 8 0 28 3 12
MM-MIN-DD 97282099 51256 1640270 48 3.0200438 3 4 29 4 8

Table 3: Best solution found during one hour interval for each test; each test is described by GM (geometric
mean) or MM (maximize minimum) evaluation, DP (preference ordered) or MIN (value that occurs in fewest
domain) value ordering, and LD (Least-domain) or DD (domaindegree ratio) variable ordering. Categories
are CC (constraint checks), NNV (number of nodes visited), CPU time (10ms resolution), GM (geometric
mean) and the number of occurrences of each preference.

When viewing the results in table 3, it is important to keep inmind how constraint checks are counted.

In the binary case, it is typical to count each constraint check once. However, in the non-binary case, a

single count is not likely to be indicative of the amount of work performed. For this reason, every constraint

check increments the total number of checks according to thearity of the constraint. For example, checking

a 57-ary capacity constraint increases the number of constraint checks by 57.

20

Our tests indicate that the geometric mean and maximizationof minimum preference evaluation func-

tions lead to the same result in most cases. The only exception to this are the GM-MIN-DD and MM-MIN-

DD tests. In these tests, the maximization of minimum preferences (MM) evaluation function seems to find

these similar solutions with slightly less effort, in termsof node expansion, constraint checks, and CPU time

than does the Geometric mean function. Maximizing the minimum was likely able to backtrack earlier, as

some path was discarded more quickly under this strategy than it was using maximization of the geometric

mean. This allowed the MM test to improve its solution at least one more time before the time limit was

reached.

No single variable-value ordering combination appears to dominate in these tests. It appears that the

effectiveness of each combination varies strongly betweenthese two test sets. Since variable/value ordering

heuristics seem to have a strong effect on the performance ofour system, experiments with more powerful

orderings is likely to be beneficial.

7 Conclusions and future research

We have shown that it is feasible to use CSPs to model and solvethis problem using this approach. There

are several apparent improvements that can be made to the system, that we briefly discuss in this section.

This system has been used in practice at the time of this writing, with satisfactory results. We were able

to reduce the amount of time spent on this task by a large interval. In practice, scheduling GTAs often would

take four or five days before a satisfactory solution was found, as GTAs were shuffled between courses. We

were able to generate solutions that reduced the time spent to one day. We intend to further reduce this over

the course of further work on this project.

7.1 Future research

There are many possible approaches that may improve the run time performance and accuracy of our system.

Below are some of the techniques we intend to employ in futureresearch on this task.

• Aggregation and Reformulation - We expect that the implementation of the methods discussed in

section 7.2 will improve the performance of this system.

• Parallelization - The implementation of parallel solvers presents an interesting approach to CSPs in

general. We intend to explore the usefulness of asynchronous methods (as described in [11] and [3]),

as well as the potential for using decomposition strategiesin conjunction with parallel programming.

21

• Local search strategies - Local search strategies, based onincomplete hill-climbing strategies, present

a powerful method for solving scheduling problems. We intend to examine the quality of solutions

and time necessary to find solutions using local strategies and comparing the results with systematic

approaches.

• A weakness with our implementation is the storage of GTA and course data. This data is currently

stored in ASCII format. The design of an interface for onlinedata input has exposed the weakness

and difficulty of this strategy; we hope to replace this approach with a database for storage to increase

flexibility and reduce effort.

7.2 Ideas for reformulation

We hope to improve the performance of our solver at a high level by the use of some reformulation strategies.

In particular, the approach to containment constraints andequality constraints may be modified in order to

enhance performance.

Equality constraints are used to indicate that all courses in scope should be assigned the same GTA.

Under the current formulation, it is possible that some courses in scope may be given an empty assignment.

To alleviate this, we intend to aggregate variables connected by an equality constraint into a single variable.

The union operation will most likely be used to establish constraints on these variables, as well as to establish

the time intervals of the course offering. Refinement of thisprocess can then occur, once we have evaluated

its effectiveness in practice.

The second reformulation strategy is an alteration to the modeling of containment constraints. We do

not wish to abandon this constraint altogether, but our experience has shown it to be unwieldy in prac-

tice. Further, we wish to retain it as an explicit constraint. We intend to evaluate the cost effectiveness of

implementing these constraints as a network ofmutex constraints, in terms of CPU time and constraint

checks.

A third reformulation step involves the translation of somecontainment constraints into equality con-

straints. For sufficiently small containment sets, it is desirable that all courses in the contained set of the

constraint be assigned the same GTA, in order to maximize course coverage. While an equality constraint

does not explicitly prevent courses out of scope from being assigned the same GTA as is assigned to variables

in scope, the capacity constraint in conjunction with the equality constraint tend to prevent the “outside” as-

signments. The motivation for this change is a hope that thiswill reduce the amount of time to find a solution

by eliminating some expensive containment constraints.

22

Acknowledgments

This work was partially supported by the Department of Computer Science & Engineering and the Constraint

Systems Laboratory. The author is thankful to the followingpeople for their help and support. Dr. Berthe

Choueiry, who advised the development of this project; Marilyn Augustyn, our “client” for this project;

Chris Hammack, who has been developing an online system interface for this project; and the members of

the Constraint Systems Laboratory for their suggestions and support.

References

[1] Fahiem Bacchus and Peter van Beek. On the conversion between non-binary and binary constraint

satisfaction problems. InAAAI/IAAI, pages 310–318, 1998.

[2] Christian Bessière, Pedro Meseguer, Eugene C. Freuder, and Javier Larrosa. On forward checking for

non-binary constraint satisfaction. InPrinciples and Practice of Constraint Programming (CP’99),

pages 88–102, 1999.

[3] Marius C.Silaghi, Djameela Sam-Haroud, and Boi Faltings. Asynchronous search with aggregations.

In AAAI 2000, pages 917–922, 2000.

[4] Mark S. Fox. Constraint-directed Search: A Case Study of Job-Shop Scheduling. Morgan Kaufmann

Publishers, 1987.

[5] Eugene C. Freuder and Richard J. Wallace. Partial constraint satisfaction.Journal of Artificial Intelli-

gence, 58:21–70, 1992.

[6] Robert M. Haralick and Gordon L. Elliott. Increasing Tree Search Efficiency for Constraint Satisfaction

Problems.Artificial Intelligence, 14:263–313, 1980.

[7] William Harvey and Matthew Ginsberg. Limited discrepancy search. InIJCAI’95: Proceedings of the

International Joint Conference on Artificial Intelligence, Montreal, 1995.

[8] John Hopcroft and Richard Karp. An n 5 2 algorithm for maximum matchings in bipartite graphs,

1973.

[9] Patrick Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem.Computational Intelli-

gence, 9 (3):268–299, 1993.

23

[10] Jean-Charles Régin. A filtering algorithm for constraints of difference in constraint satisfaction prob-

lems. InAAAI94P, pages 362–437, AAAI94L, 1994.

[11] Makoto Yokoo and Katsutoshi Hirayama. Algorithms for distributed constraint satisfaction: A review.

Autonomous Agents and Multi-Agent Systems, 3(2):185–207, 2000.

24

Figure 2:GTA data collection sheet

25

Figure 3:GTA preference collection sheet

26

