
 
 
 
 
 
 
 
 
 

ERA: Environment, Rules, Agents 
The Application of ERA in a Real-World, Tightly Constrained Problem 

Graduate Teaching Assistants at the University of Nebraska Computer 
Science Department 

 
 

Josh Reed 
 
 
 

Abstract 
 

Results of tests of an ERA-based algorithm when applied to 
a tightly constrained, or in some cases even over-
constrained, problem. The focus is on how a time-efficient 
approach can provide a decently optimized solution (or 
partial solution) to the problem of Graduate Teaching 
Assistant assignments within the University of Nebraska, 
Lincoln Computer Science and Engineering Department. 
Because of the optimization aspect, a few changes had to 
be made from the original ERA Algorithm that was 
presented by Jiming Liu et al. [7] The results show that this 
approach is very good especially based on what can be 
statistically measured, showing that it is an effective way to 
find a good quality solution when there is not an infinite, or 
even large for that matter, availability of time. 



Reed The Application of ERA in a Real-World, 
Tightly Constrained Problem 

2

 

ERA: Environment, Rules, Agents 
The Application of ERA in a Real-World, Over-Constrained Problem 

Graduate Teaching Assistants at the University of Nebraska Computer 
Science Department 

 
The Problem 
 
Real-world problems often present many challenges that do not present themselves as 
frequently in pre-defined common “trivia-based” problems. Following suit, the GTAAP 
(Graduate Teaching Assistant Assignment Project) is no exception. The goal is to 
automate the assignments of GTAs to courses, and thus eliminate some human error, as 
well as speed up the time it takes to figure out the assignments. In many cases, this 
particular problem is over-constrained and thus does not actually have a solution, in the 
sense that all the constraints are satisfied and all classes have GTAs assigned to them. So 
the task, then, is to be able to discover the solution that best satisfies as many of the 
constraints as possible, and additionally keeps the GTAs as happy as possible by 
respecting their preferences to as great an extent as possible.  While this may seem a lofty 
task, using computational strategies to generate such a solution that can be the basis of 
such an assignment decision should be very possible. 
 
 
The Process 
 
In diagnosing the task and in trying to understand all the requirements of the problem 
itself, several avenues were explored. First, the decision to look at local search methods 
was made due to the fact that various systematic search methods were explored 
previously by others researching this problem, and the results were still lacking. The real 
trouble was with trying to limit the time it takes to run the algorithm. It is not practical for 
an algorithm to take days to find a solution, or even that long to find the best possible 
solution. While various means were taken to attempt to make those systematic search 
algorithms to run faster, it seemed appropriate to go a different direction, and use it for 
comparison. 
 
So local search seemed the logical choice, especially since they are known for their 
speed. While they are expected to not always find the absolute best answer, they 
generally find a very good result and at the same time explore less of the search space, 
and thus reach their conclusion much quicker. 
 
So, with this, the research began. It all started with looking into social choice algorithms. 
This seemed like a good approach since it relied on agents to keep track of their own 
preferences, and each would act so that it could improve its own “status,” and thus the 
“happier” each individual agent is, then the better that particular solution is overall. This 
is quite an emerging topic, and so it was seemingly a perfect research direction. So many, 
many papers were read surrounding this idea. These included “Issues in Multiagent 
Resource Allocation” [2], “On Maximal classes of Utility Functions for Efficient one-to-



Reed The Application of ERA in a Real-World, 
Tightly Constrained Problem 

3

 

one Negotiation” [3], “A Rational Model of Cooperation Negotiation in Multi-Agent 
System” [6], “The 1st International Workshop on Computational Social Choice” [4], 
“Simulation of Negotiation Policies in Distributed Multiagent Resource Allocation” [1], 
“MDPOP: Faithful Distributed Implementation of Efficient Social Choice Problems” [8], 
and “Multiagent Resource Allocation in k-additive Domains: Preference Representation 
and Complexity”[5]. Unfortunately, after all this searching, the reading proved to not be 
as fruitful as anticipated. They all essentially stayed on a relatively high level, not delving 
as much into actual computational, algorithmic solutions. There was the discussion of 
how the problem was divided up into agents who were in charge of negotiating based on 
their own variables interests in gaining access to certain resources. They also all 
emphasized utility functions, which are essentially a way of determining the quality of a 
given solution both for the individual agent and for the problem as a whole. These utility 
functions can take a variety of forms: for the individual agents they could be based on the 
number of broken constraints, preferences of certain resources, or even a combination of 
the two. Then for the problem as a whole, it is always some form of a combination of the 
individual agent utility functions. Many times it appears as either the sum or the product 
of the individual agent utility functions.  
 
These methods had the limitation of often being presented in a very high level, and not 
always having an obvious direct computational implementation. Additionally, most of the 
methods presented agents as strictly rational, meaning they will only give up their current 
resource(s) if the alternative is strictly better, based on its utility function. While this may 
not seem at first like a problem, it did not seem practical for our application because such 
a greedy, hill-climbing approach does not give much room for error. For instance, it 
would not be uncommon that with a particular assignment, an agent would to need to take 
a bit of a loss so that another agent could have an even greater gain, and thus improving 
the overall solution to the problem. Even in knowing that, these social choice methods 
presented did not make it possible for an easy alteration to those purposes. It would have 
been difficult to determine when such a situation exists since one agent is only 
responsible for its own resources and does not have the vision to foresee future moves 
made by other agents. With all these questions still unanswered after a reasonable amount 
of research, it is only logical that the shift be made into another direction of investigation.  
 
Given the former direction, it seemed to have a lot of good elements, but just a few 
problems, so we wanted to avoid straying too far away from it. An option presented by 
Dr. Berthe Choueiry was to inquire into the ERA method, and attempt to apply it to this 
particular problem. Conveniently this method uses many vary similar ideas to social 
choice. It uses agents as the means of negotiation, and essentially its termination is 
determined by a utility function (minimize broken constraints was the utility function 
proposed in the paper introducing this method). Each agent acts individually and 
determines the utility of a particular move for its own purposes. The major place where 
ERA differs is that it introduces quite a bit more randomness. It also introduces a “better-
move” strategy in which the agent does act in its own interest to move to a better 
position, but it does not necessarily have to be the best current position available (this 
will be explained further later). In this way it allows for a large variety of movement, and 
thus agents will have a less likelihood of just staying in one place, and causing the rest of 



Reed The Application of ERA in a Real-World, 
Tightly Constrained Problem 

4

 

the agents to “suffer.”  So, ERA seems to have a lot of the advantages of local search 
while traditionally having the record of bringing pretty good quality results. Thus, it was 
decided to attempt to implement this method in the application. 
 
 
The Particulars 
 
 It is now time to go into the details of this new implementation of the ERA algorithm. It 
should be noted that it is strongly based on ideas/algorithms designed by Jiming Liu, Han 
Jing, and Y.Y. Tang [7]. This particular implementation was coded in Java, and made use 
of an “Interactive Solver” system designed by Ryan Lim for use on this same problem 
(also in Java). The use of this code greatly reduced the coding overhead for this particular 
project, for instance by already handling the importing of the course, GTA, and constraint 
data from the database. It also already had several constraint types that were already 
constructed and managed their own checking functions. This meant that the majority of 
my task was to create the algorithm and fit it in with the current interface. While this is an 
advantage, there was still plenty of tasks that required attention. 
 
The modeling of the problem sets up the variables as courses, with their domains being 
the GTAs. Each GTA has specified preferences for each course on the scale of 0-5, 5 
being the highest preference, and this information will be used in optimizing the solution. 
There are several main constraints that are important to keep track of. First there is a 
mutex constraint that says that no TA can be scheduled for two different courses that 
meet at the same time. Next, there is an equality constraint that maintains that certain 
user-specified courses (or sections of the same course in many cases) must have the same 
TA. Additionally, there is a capacity constraint because each TA has a limited amount of 
time they are able to spend as a TA. Finally, there is also a confinement constraint, which 
are user-specified sets of courses where if a TA is selected for one of them, all other 
courses the TA is assigned to must be within that same group. With this modeling, the 
problem is prepared for placing a solution algorithm on top of it, in this case it is going to 
be a version ERA algorithm. 
 
In the first phase, the ERA algorithm was implemented nearly strait based on the paper, 
which is based on the task on minimizing violations (also known as broken constraints). 
This method has three basic move types that an agent can perform, each respectively 
having a particular probability of occurring. These three types are random-move, better-
move, and least-move. The first is very self explanatory, a random position is selected 
and moved to regardless of whether it is better or not than the current position. Better-
move is a bit more complicated. It uses a random position, and then if it is better, it 
moves there, if it is not better, then it stays in its current position. Finally, least-move 
checks every position and figures out the absolute best position to move to, and then 
moves there. Like mentioned earlier, each of these would have their own proprietary 
probability of being selected as the move behavior.  
 
This move behavior functionality was adapted a bit, based on the paper’s subsequent 
mentioning of alternative movement selection behaviors that are still based on these 



movement principles. Liu et al mentions a strategy called rBLR, which basically has a 
probability for a random move occurring, and then the only other option if a random 
move does not occur would be to do a better-move “r” number of times and if still 
unsuccessful a least-move would occur. So basically if better-move fails to produce a 
better move, then better-move will be repeated “r” times, and finally if it fails all “r” 
times the least-move would occur. This was the approach selected, partially based on 
research by Zou Hui [9]. Another result of Zou Hui’s research was the use of 2% as the 
random-move probability, and thus the remaining 98% of the time rBLR would be 
selected. The value for “r” used in this instance was 3, which seemed to give good 
results, and going higher did not seem to provide any better or faster results. Again this 
was a discovery based on experimental attempts. 
 
Next, after the implantation of this phase was completed, the addition of slightly better 
optimization was a must. It seemed best to make as a secondary level of determining a 
solution’s quality based on the preference ranking that the assigned TA has for the 
particular class he/she is assigned to. The overall problem’s overall utility function (in 
respect to the TA preferences) is defined as follows: 
 

∑
∈Agentsagent

agent’s assigned TA’s preference for this class 

 
The method of performing the sum of all the agent’s preferences was chosen mostly out 
of experimental trials. First the product of all the preferences of the assigned TA’s was 
computed which gave a lot of weight to the “0” preference, making the entire utility zero 
in such a case that even only one “0” preference exists. This at first seemed to be an 
advantage, because it would be best to avoid all zeros if possible. But because the 
problem is so tightly constrained and usually does not possess an absolutely perfect 
solution, the results in many, many cases had to have a zero in at least one TA’s 
preference, making the utility function essentially useless. So the sum was computed 
instead so that at least some differentiation between solutions could be evaluated. This 
unfortunately loses a lot of the weight of a “0” preference that was desirable, but 
sometimes compromises must be made, especially in dealing with local search methods. 
 
This optimization was added in as a secondary form of optimization. First a better 
solution would be determined by the number of constraint violations, so the storage of the 
best solution would be replaced with this new, lower number of violations solution. The 
only other way that the storage of the best solution would be replaced is if there were an 
equal number of constraint violations, but a greater overall preference utility. This 
provides that at the same level of constraint violations, the best solution is the one that 
has the maximum utility. 
 
It should also be noted that each agent now determines a better move as a position that 
has strictly less violations or as a position that has equal number of violations and a 
higher preference value. Surprisingly, this addition itself proved to even benefit the 
quicker finding of lower violation solutions, making it much easier to find a zero 
constraint violation solution. While this was found in practice, it does make some sense 

Reed The Application of ERA in a Real-World, 
Tightly Constrained Problem 

5

 



on the theoretical level as well. If more movement occurs, solutions should be found 
quicker. 
 
 
The Program 
 
The program begins with either a login box or goes directly to the semester selection box 
(pictured below). This is based on if the connection is being made from cse.unl.edu or 
from the outside. If it is from the outside, then a CSE username and password must be 
supplied to set up an SSH Tunnel for the database communication. After a successful 
login, one can select the semester for which they wish to assign GTAs. 
 

              
After the semester has been selected, then the semester will be loaded from the database, 
which may take a minute depending on your internet connection speed. Then the main 
body of the program will become visible (pictured below). This screen is set up with the 
left side being the “task pane” and the right side being the “resource pane.” Essentially 
the left side shows the variables (courses) and what values (GTAs) are assigned to them. 
On the right side is the list of resources (GTAs) and what variables (courses) they are 
assigned to. 
 

 

Reed The Application of ERA in a Real-World, 
Tightly Constrained Problem 

6

 



 
From this view, one can manually assign TAs and then Arc-Consistency is performed to 
denote how the change affects other variables. Doing such a task manually might seem a 
little overwhelming, which is why ERA has now been implemented in this interactive 
solver. To run ERA to get at least a starting point or perhaps a perfectly acceptable 
solution, just go to the menu and select Run  Run ERA Assignment. This will bring up 
a box in which “OK” can be selected to begin the ERA assignment process. 
 

 
 
The algorithm terminates only upon the completion of 150 time steps. Time steps are 
incremented essentially once each agent has had an opportunity to make a move. So once 
all the agents in the system have made their moves (or chosen to stay put), the time step 
is incremented. The number of time steps is the sole termination condition because with 
the optimization implemented, there is no practical way to determine when it has been 
“fully optimized,” so it must be cut off at some point. That point selected was 150 time 
steps. This number of time steps seemed to be a fairly a fairly decent compromise 
between time and quality. It appeared, based on numerous test runs of the algorithm, that 
very little improvements were made after 150 time steps, and in actual runtime 150 time 
steps seemed to not be a too tortuous amount of time to wait. It should be noted though 
that each time step may take longer for problems with a larger number of variables and/or 
larger domain sizes.  
 
The interface still needs a little bit of work, and thus still has a few quirks to it, but 
overall it is still very usable. Once such quirk is, for instance, when the progress bar 
reaches 100%, the ERA assignment is completed, but instead of automatically 
progressing to the next screen at that point, you have to hit the “Done” button to get to 
the results screen. This screen is where it reports if there were still any violations in the 
best solution or not, and warns the user that these will be marked “Unassigned.” Click 
“Done” again to now close the window. 
 
Then the main window should be automatically updated with the results of the ERA 
assignment. In the bottom-left gray box is the “Current Quality” of the solution. This is 
basically a percentage and is based on the sum of the assigned GTAs’ preferences divided 
by the total possible preference score which would be 5’s for every course (which is 
nearly impossible). Anything above a 0.50 would denote that most of the GTAs are either 
happy about or neutral to their assignments. 
 
 
 
 
Reed The Application of ERA in a Real-World, 

Tightly Constrained Problem 
7

 



Reed The Application of ERA in a Real-World, 
Tightly Constrained Problem 

8

 

The Results 
 
There were several semesters of Data that were available for testing and comparison to 
the “actual” solution that was recorded in the web interface of GTAAP. The results for 
the Fall 2007 semester provide interesting insights: 
 
Fall 2007 * 
 ERA Algorithm Actual Assignment 
 Quality/Utility Percentage 0.68 0.66 
 Course Loads Remaining Unassigned 0.00 3.48 
 
These results show that the ERA Algorithm has a slight advantage over the human-
generated solution in overall numbers. This is incredible considering the ERA Algorithm 
took only a matter of minutes to run! The human-generated solution is guaranteed to 
require much, much more time to produce. Granted, the human-generated solution can 
take into account some intangible factors that a computer cannot in determining who 
would make a good TA for a particular course. Since those intangibles are somewhat 
necessary to take into account, a human will be making the final decision and taking into 
account the details a computer cannot really know about. In any case, it seems this 
computational result will likely improve the end result of the assignment. 
 
Spring 2007 * 
 ERA Algorithm Actual Assignment 
 Quality/Utility Percentage 0.65 0.62 
 Course Loads Remaining Unassigned 0.33 4.16 
 
While the ERA algorithm did not get down to zero unassigned courses for Spring 2007, it 
did get pretty close, with only one class remaining unassigned. This result is a bit 
deceiving though because there were a couple of “0” preferences in that result. One trend 
that was a little bit noticeable in the Fall 2007 data and very obvious in this Spring 2007 
data was that in leaving more courses unassigned, the human-generated solution was able 
to better maximize the individual TA preferences. This is how it is possible for there to 
be several fewer assigned classes but still a relatively close Quality Percentage. 
 
Fall 2004 *1 
 ERA Algorithm Actual Assignment 
 Quality/Utility Percentage 0.57 0.58 
 Course Loads Remaining Unassigned 0.75 2.00 
 
In this dataset (Fall 2004), though a bit of a different result appears. The Qualities are 
essentially the same, while the assigned course load is slightly better for the ERA 
algorithm. Thus these two are very comparable statistically, but the human-generated 
                                                 
*  These results are not set in stone, each time the algorithm is run, different results of both higher and lower 
quality are possible due to the randomness factor of the algorithm. 
 



Reed The Application of ERA in a Real-World, 
Tightly Constrained Problem 

9

 

actual assignment has the advantage of knowing which classes are best to leave 
unassigned, and which ones are absolutely necessary to have a TA assigned to it. In any 
case though, again, the ERA Algorithm’s result would make a good starting point for 
tweaking by a human user.  
 
These datasets were chosen partially because they are fairly representative of various 
situations in the data: GTA load exceeds (by a little bit) the total load to be assigned (Fall 
2007), GTA load and total load to be assigned are very close to the same (Spring 2007), 
and GTA load is a little less than the total load to be assigned (Fall 2004). Each of these 
semester comparisons of actual assignments to the ERA results was very tedious and thus 
some datasets that would require additional setting up were left out. Also the datasets for 
the current two semesters, Spring 2008 and Fall 2008, were left alone because those are 
both still currently being used, which would make changing things in the data, in order to 
do such a comparison test, dangerous and potentially harmful to the system.  
 
 
Limitations and Difficulties 
 
There were several difficulties that were experienced that caused setbacks in the research. 
One of these difficulties was the fact that this is a live system, meaning when it is having 
problems or something needs to be updated or changed I often had to set my research 
aside to fix the pressing problems. This mostly meant that I was not able to get around to 
putting more effort into improving the user-interface and fixing a few of the quirks (many 
of which I inherited with this code).  
 
Along similar lines, the code that I inherited in some ways was not very well structured, 
and so many rabbit-trails had to be searched in order to understand how certain things are 
working.  
 
Additionally, another limitation in the testing of the results is that the final assignment 
data I was getting from within the GTAAP system. This is a limitation because during 
some transcribing of some data there were several indications that maybe some parts of 
the data may have been out-of-date based on section additions or multiple TAs assigned 
to the same course as the “final assignment,” without that course being duplicated in the 
database as is the standard procedure in such a case. But overall, the representative data 
should be at least an approximate representation of the actual assignment and of human-
generated solutions in general. An additional unfortunate aspect of the data is that since 
in recent years the assignment of GTAs has been done by hand by a human, they relied 
on his knowledge of their preferences and skills rather than accurately expressing their 
preferences in the system. Due to this there are a particularly high quantity of “3” 
preference ratings, which is the default, essentially a neutral-to-the-course value. The 
system does not know that this is the case though, and assumes that all these neutral 
preferences are legitimate. Thus, this makes the statistical representation of both the 
actual assignments and the ERA algorithm assignments lose accuracy in comparison to 
the real-world value of a particular set of assignments.  
 



Reed The Application of ERA in a Real-World, 
Tightly Constrained Problem 

10

 

Another limitation, which has been mentioned before, is that human-generated solutions 
have the advantage of personal contact and other intangibles that are hard to represent to 
in a computer. By personally knowing the TAs, a human can easily determine who would 
make a good TA for a particular course, while a computer does not have that advantage. 
So as further tests are continued in the real-world, it will be interesting to see how well 
these intangibles are handled by the computer-generated results.  
 
 
Conclusion 
 
Overall this project has accomplished its given task: to use Constraint Processing to aid 
human users in making decisions concerning the assignments of the Computer Science 
and Engineering GTAs. ERA claims to be very quick, and I would confirm that to be 
absolutely true. ERA also claims to get good results in this short amount of time, and I 
believe that as the results have shown, it really does get very good results, especially 
statistically (which makes sense since it runs based off of such statistics).  
 
Also it has been proven that ERA can be used in over-constrained problems to find a very 
good partial solution. Such a situation would cause a systematic search model some 
problems, if not cause it to fail completely. In conjunction with human verification, 
which would generally be needed anyway, ERA performs perfectly to ease the pains of 
the alternative—a manual assignment process. 
 
This particular instance that was based on the ERA algorithm also used some additions, 
which really proved to better the search results. The main addition was a form of 
optimization based on preferences. This was used as a secondary form of verifying a 
better overall solution. It proved to be very, very important in practice, not only in 
maintaining a higher quality of solutions, but also in forcing more movement to truly 
better positions by agents, allowing better solutions (based on constraint violations) to be 
found quicker. 
 
Overall this is a very recommended algorithm basis for some types of problems. In 
general, it should perform well on real-world problems as well as problems were time is 
key and decent solutions are needed in a short amount of time.  
 
 
Future Research 
 
There are still a vast many things that need to be investigated in the future. First and 
foremost, once the upcoming fall semester is ready to go and has all the GTAs “hired” 
within the system, then it would be great to test how much it really helps the human-user 
in producing a solution for the assignment. This would test more for the intangibles rather 
than pure statistics. 
 



Reed The Application of ERA in a Real-World, 
Tightly Constrained Problem 

11

 

Another way to further gain better results would be to have a mechanism for a user to 
specify which courses are of low priority and thus can remain unassigned. This will most 
likely allow for more GTAs to get assigned a course that is higher on their preference list. 
This would also make the solution a little bit more similar to the human-generated 
solution, and perhaps giving it more value in the eyes of the user. 
 
More future research could be in other local search methods, such as genetic algorithms, 
among others, to see if such an approach would yield as good or better results than this 
ERA-based local search method. Additionally, if other local search methods are 
implemented, it might be possible that a hybrid model of two or more methods might  
provide better results. For instance if two algorithms are being run on two different 
threads they may be able to pass their best solutions so far back-and-forth, which might 
perhaps yield a higher quality result. Also it might be interesting to investigate if running 
several time steps of the ERA algorithm, and then passing the result(s) onto a genetic 
algorithm to start out with (so that it would have a better beginning generation), would 
result in higher quality, or perhaps faster, results. 
 
Also, taking into account that the assignment is currently human-generated, it may be 
interesting to take an approach that is somewhat human-like. Humans generally take a 
“greedy algorithm” approach in which they may make a few back changes, but overall 
they move forward along a set prioritization scheme. It might be interesting to interview 
the current person in charge of the GTA assignment and determine his process in making 
assignments, and then attempt to produce a computational model that is similar to his 
approach. Since it would be in essence a greedy algorithm that still can change a bit of 
the past, it would certainly be very, very quick in the runtime. Additionally it might give 
more human-like results, which may be a big advantage for some users. Finally, it would 
also be an attempt towards one goal of Artificial Intelligence: making computers behave 
more like humans. While there is never a desire to replace humans, it can be very 
important for computers to take away work that humans traditionally performed but 
would rather not put the computational energy into. It is a lofty goal, but sometimes goals 
need to be set high so that true achievement can really become possible. 



Reed The Application of ERA in a Real-World, 
Tightly Constrained Problem 

12

 

References 
 

[1] Buisman, Hylke, Gijs Kruitbosch, Nadya Peek, and Ulle Endriss. Simulation of 
Negotiation Policies in Distributed Multiagent Resource Allocation. In Engineering 
Societies in the Agents World VIII, Springer-Verlag, 2008. Postproceedings of ESAW-
2007. To appear. 

[2] Chevaleyre, Yann et al. Issues in Multiagent Resource Allocation (2005) 3-31. 

[3] Chevaleyre, Yann, Ulle Endriss, and Nicolas Maudet. On Maximal Classes of Utility 
Functions for Efficient one-to-one Negotiation. In Proceedings of the 19th International 
Joint Conference on Artificial Intelligence (IJCAI-2005), pages 941-946, August 2005. 

[4] Endriss, Ulle. The 1st International Workshop on Computational Social Choice (2007).  

[5] Chevaleyre, Yann, Ulle Endriss, Sylvia Estivie, Nicolas Maudet. Multiagent Resource 
Allocation in k-additive Domains: Preference Representation and Complexity (2004). 

[6] Li, Bang-Quing, Jian-Chao Zeng, Meng Wang. In Proceedings of the First International 
conference on Machine Learning and Cybernetics, Beijing, 4-5 November 2002, pages 
1332-1335. A Rational Model of Cooperation Negotiation in Multi-agent System (2002). 

[7] Liu, Jiming, han Jing, Y.Y. Tang. Multi-agent oriented constraint satisfaction (2001). 

[8] Petcu, Adrian, Boi Faltings, David C. Parkes. MDPOP: Faithful Distributed 
Implementation of Efficient Social Choice Problems (2006). ACM. 

[9] Zou Hui and Berthe Y. Choueiry. In Workshop on Applications of Constraint 
Programming pages 81-101. Characterizing the Behavior of a Multi-Agent Search by 
Using it to Solve a Tight, Real-World Resource Allocation Problem (2003). Kinsale, 
County Cork, Ireland. 


