Project Report

Comparison of MRV and Promise-based Dynamic Variable Ordering Heuristics

Mengchu Cai

Introduction

The ordering in which the search algorithm instantiates the variables is known to have a potentially profound effect on its efficiency. For example, if we can cluster conflicted variables together and instantiate them first, we can discover the conflict soon and reduce the number of backtracks. Various heuristics have been investigated for choosing good variable ordering. Dynamic variable ordering (DVO) is an even more effective technique [Pur83, BR95]. With DVO the ordering in which the variables are instantiated during search can vary from branch to branch in the search tree. [BR95] investigated how to combine CSP search algorithms with DVO technique. It used minimum remaining values heuristic (MRV) to select the variable ordering: choose the variable that has the fewest values compatible with the previous instantiations as the next variable to instantiate.

Geelen [Gee92] proposed more complex DVO heuristic based on the variable’s promise. Geelen also proposed some dynamic value ordering heuristics for the problem to find one solution to a CSP.

Both Bacchus [BR95] and Geelen [Gee92] did some experiments to show that their DVO heuristics help to improve the performance of a searching algorithm. But they did their experiments independently on different sets of CSP instances. We do not know which heuristic is better, or one is better for one class of problems the other is better for another class. In this project, we combine Geelen’s promise-based DVO heuristics with CSP search algorithms, we also implement Bacchus and van Run’s MRV heuristic in search algorithms. We try to compare their performance by doing experiments on the same set of test instances. Although [BR95] showed that DVO with MRV heuristic is effective for both cases of finding one solution and all solutions to CSPs, we only compare their effectiveness with respect to find one solution to a CSP by experiments since Geelen’s heuristics [Gee92] are specially suited to the problem of finding one solution to a CSP.

Geelen’s DVO Heuristics

In order to find one solution to a CSP, of course, we would like the search algorithm to select values that do not cause constraint-violations. However, such “perfect” value selection is usually impossible. And the success of value-selection heuristic may depend on which variable is selected. On the other hand, if an assignment of a value to a variable is not in any solution, we would like to find the constraint-violation soon. Variable selection often determines how soon a constraint-violation is noticed.

The basic idea of Geelen’s heuristic for variable selection is to select the most constrained variable. The basic idea of Geelen’s heuristic for value selection is to select the least constraining value for a given variable.

Given a set of assignments S, and a future variable Xi, the set of useful values for Xi , denoted by DOMS(Xi), are values that can be assigned to Xi such that no inconsistency with S is caused. Let Di denote the domain of Xi, then

DOMS (Xi) = { Vi | Vi (Di, Consistent (S ({ Xi=Vi }) }

After assigning Vi (DOMS (Xi) to Xi, the number of useful values lefted for Xj (j(i) is

LEFTS(Xj | Xi = Vi) = | DOM S({Xi = Vi) |

The promise of a value Vi fro Xi, denoted by promiseS (Xi = Vi) is defined as follows:

promiseS (Xi = Vi) = ((j(i, Xj is future var) LEFTS (Xj | Xi = Vi)

It represents the number of different sets of assignments to the future variables that can still be made such that no constraint on Xi is violated. It thus represents an upper bound on the number of different solutions that include S ({ Xi=Vi }. Geelen’s promise-based value selection heuristic is to choose the value Vi for Xi with maximum promise. The idea is that, assuming every set of assignments to the future variables has an equal chance of being a solution, we have the best chance of finding one solution if we try to leave as many chance as possible. We call this assumption Geelen’s assumption.

The promise of a variable Xi is the sum of the promise of each value in DOMS(Xi), that is

promiseS (Xi) = (Vi (DOMs (Xi) promiseS(Xi = Vi)

Geelen’s promise-based variable selection heuristic is to choose the variable with minimum promise.

Implementation

We implement simple backtracking (BT), forward checking (FC), and forward checking with conflict-directed backjumping (FCCBJ) with the following technique:

 (1): (Bacchus and van Run)

 - dynamic variable ordering with MRV heuristic

 - static value ordering

(2): (Geelen)

 - dynamic variable ordering (based on minimum promise heuristic)

 - static value ordering

(3): (Geelen)

 - dynamic variable ordering with minimum promise heuristic

· dynamic value ordering with minimum promise heuristic

We call the backtracking with the three DVO heuristics BT_1, BT_2, BT_3 respectively. Similarly, the three versions of FC and FCCBJ are FC_1, FC_2, FC_3, and FCCBJ_1, FCCBJ_2, FCCBJ_3.

The Forward Checking algorithms keeps track of DOMS(Xi) for every future variable Xi. But backtracking algorithm does not, we need to compute it every time a value is assigned to a variable. As pointed out by Bacchus and van Run [BR95], with simple implementation of MRV heuristic in backtrack, computing the MRV heuristic will consume many redundant constraint checks. It is the same for promise-based heuristics. So they proposed an implementation strategy for MRV in backtracking called MRV_FC. The idea is similar with FC. Basically, we allow the MRV procedure maintain a set of pruned domains for all future variables. We implement two new procedures called forward prune (FPrune) and Restore. Whenever the search algorithm instantiates a variable, MRV call FPrune to prune the future variable domains using the new instantiation. And whenever the search algorithm backtrack, it call Restore to restore the value pruned by FPrune. Notice that FPrune does not change the current domain used by backtracking. The structure containing the pruned domain is invisible to the backtracking algorithm. All MRV does is to choose the next variable, it communicate no other information to backtracking. We use the same strategy to implement backtracking with promise-based DVO heuristic.

Since we have computed the values’ promise when we compute promise –based DVO heuristic, to implement promise-based dynamic value ordering with promise-based DVO,

we just sort the current domain by the value’s promise in the variable promise procedure, this order does not change unless the variable is uninstantiated and selected again some time later. At that we will call NextVar again and resort the values. By this way, we do not need to write another NextValue procedure.

Proposition 1. FC_2, FC_3, FCCBJ_2, FCCBJ_3 consume more checks for computing heuristic than for searching a solution.

Proof: For FC and FCCBJ, it is easy to see since every time it choose a value, it prune k future domains once for searching suppose there are k future variables. But it prunes (k-1) domain once the for each value of each future variable, so there are k*d*(k-1) which is larger than for search.

Experiments

We choose Zebra problem , resource allocation problem and random problems. For each problem, we run search algorithms with DVO heuristic BT_1, BT_2, BT_3, FC_1, FC_2, FC_3, FCCBJ_1, FCCBJ_2 and FCCBJ_3 and record the number of checks and the number of backtracks that is required for the algorithm to find one solution. Since computing the heuristics consume many checks and different heuristics need different number of checks, comparing only the total number of checks may not be enough with respect to find which heuristic find the best order. We record the number of checks consumed for searching and for computing heuristic respectively.

Experiment on Zebra Problem

In this experiment, we choose Prosser’s version of the Zebra problem [Pro93]. It is the instance used in Bacchus’s experiment [BR95].

Constraint Density:0.134058, Constraint Tightness1: 0.32119

	Algorithms
	# of backtracks
	chks for search
	chks for heuristic
	Time

	BT_1
	6
	173
	298
	0.09

	BT_2
	61
	591
	8679
	1.21

	BT_3
	68
	626
	8769
	1.61

	FC_1
	0
	275
	0
	0.07

	FC_2
	32
	634
	7799
	1.01

	FC_3
	33
	626
	7799
	1.05

	FCCBJ_1
	0
	275
	0
	0.06

	FCCBJ_2
	29
	634
	7799
	1.01

	FCCBJ_3
	29
	626
	7799
	1.04

Analysis: Clearly MRV beats Geelen’s heuristic in this instance.

(1) Since the effect of a value can propagate through inferring constraint in this instance, there are still a lot of arc inconsistency and path inconsistency in constraint network after pruning future vars’ domain only according to assigned variables, different sets of assignments to future vars do not have an equal chance of being a solution, so Geelen’s assumption does not hold in this case, his n heuristic cannot choose good variable ordering.

Experiment on resource allocation problem (data set 2)

The instance we use here is the data set 2 in our homework 3.

constraint density is:0.455462, constraint tightness: 0.087

	Algorithms
	# of backtracks
	chks for search
	chks for heuristic
	Time

	BT_1
	3105
	118172
	112275
	50.47

	BT_2
	0
	617
	92285
	19.14

	BT_3
	0
	314
	114596
	21.77

	FC_1
	2001
	109199
	0
	24.74

	FC_2
	0
	1327
	90958
	17.24

	FC_3
	0
	1374
	113222
	21.05

	FCCBJ_1
	299
	19272
	0
	4.49

	FCCBJ_2
	0
	1327
	90958
	17.95

	FCCBJ_3
	0
	1374
	113222
	21.31

Analysis:

(1) From the number of backtracks and the number of checks for search, it is clear that Geelen’s heuristic find a better variable ordering. It produces an optimal variable order that makes the three search algorithm backtrack free. In this problem, all constraints are difference constraints and the domain size of the variable is large, the constraints are pretty loose. For this kind of constraint, the effect of assigning a value to a variable can only propagate through direct constraints to its neighbors. So Geelen’s assumption is reasonable.

(2) The second result experiment also shows that promise-based heuristic is quite complex. For this problem it cost more checks for computing heuristic than for searching. Actually, this is true in any case. So according to total number of checks or execution time, FCCBJ+MRV has the best performance. For FC and FCCBJ, MRV does not cost more heuristic checks, since FC and FCCBJ keep track of useful values remained for every future variables. FCCBJ effectively reduces the cost of backtracking by backjumping.

(3) The third result is that with Geelen’s DVO heuristic the performance of BT, FC and FCCBJ are very close to each other. But with MRV their performances are quite different. FCCBJ has the best performance. Since the DVO heuristic produces a backtrack free variable order, we do not need to backtrack, so we cannot take advantage from CBJ.

(4) Since Geelen’s DVO heuristic has found a backtrack free variable order for this instance, dynamic value ordering heuristic cannot improve the performance again. And by dynamic value order heuristic, every time we choose the value with max promise, after the assignment we can prune less from the future vars’ domain, this lead to the number of checks for heuristic with dynamic value ordering is greater that without.

(5) Last observation is that the number of checks for BT_2 (BT_3) is less than that for FC_2 (FC_3) and FCCBJ_2 (FCCBJ_3). But its total number of checks is still greater than FC_2 (FC_3) and FCCBJ_2 (FCCBJ_3).

Experiments on random problems

In this experiment, we test BT_1, BT_2, BT_3, FC_1, FC_2, FC_3, FCCBJ_1, FCCBJ_2, FCCBJ_3 on the two classes R1 and R2 of random CSPs in [GR95]. These problem classes are defined by four parameters: N the number of variables; K the domain size of each variable; T the number of incompatible value pairs in each non-trivial constraint; and C the number of non-trivial constraints. The random problem generator we use is taken from F. Bacchus, which is the same distribution used in [BR95].

R1: N=25, K=3, T=1, and C=199. R4: N = 35, K=6, T=4, and C=500. For each class, we generate three instances, run the algorithms on each instance, and compute the average number of backtracks (number of checks, execution time) over the three.

The test result is shown in the following tables. In both R1 and R4, we can see that Geelen’s heuristic choose a better variable order than MRV. But it cannot beat MRV according execution time since it consume too much checks on computing heuristic. And the order MRV choose are not so bad.

The result for R1 is shown in the following table:

Constraint Density:0.634058, Constraint Tightness1: 0.111111

	Algorithms
	# of backtracks
	chks for search
	chks for heuristic
	Time

	BT_1
	169
	2128
	4523
	0.81

	BT_2
	91
	1056
	20865
	1.66

	BT_3
	80
	977
	18350
	1.57

	FC_1
	138
	4131
	0
	0.45

	FC_2
	95
	2844
	18835
	1.57

	FC_3
	95
	2844
	18835
	1.58

	FCCBJ_1
	95
	3650
	0
	0.41

	FCCBJ_2
	72
	2808
	18835
	1.58

	FCCBJ_3
	72
	2808
	18835
	1.58

The result for R4 is shown in the following table:

Constraint Density:0.83066, Constraint Tightness1: 0.111111

	Algorithms
	# of backtracks
	chks for search
	chks for heuristic
	Time

	BT_1
	5686
	202171
	351825
	123.58

	BT_2
	1090
	32660
	911408
	166.14

	BT_3
	3913
	111499
	3238144
	469.77

	FC_1
	5140
	331513
	0
	70.25

	FC_2
	859
	60684
	790015
	154.65

	FC_3
	859
	60684
	790015
	154.05

	FCCBJ_1
	4275
	318718
	0
	73.02

	FCCBJ_2
	868
	71688
	930451
	178.15

	FCCBJ_3
	868
	71734
	930541
	183.24

Conclusions

For CSPs with high constraint density and low constraint tightness, Geelen’s promise-based DVO heuristic chooses a better variable ordering than MRV with respect to the number of backtracks. Except the zebra problem, all the other CSPs have constraint density greater than 0.6 and constraint tightness less than 0.11. This is reasonable. Geelen’s heuristic assumes that all the values remained in the future variables’ domain have equal chances to be in a solution, it takes only the values’ local effect (how a value of a variable affects its neighbors) into account, it does not measure how a value play a effect on non-connected variables by propagation.. If the constraint is not tight, more value pairs are allowed, so the effect of a value on a single neighbor is relative small, its propagation effect is much smaller. And if the constraint density is larger, that means the CSP has more constraints, each variable will connect to more neighbors, so assigning a value will affect more variables. For zebra problem, the constraint density is 0.13, and constraint tightness is 0.32, each variable connects only a few neighbors, the values of a variable affect other variables through propagation, which are not measured by Geelen’s heuristic. Geelen’s heuristic is beaten by MRV in this case. So it is more suited for CSPs with dense constraint density and loose constraint tightness

However, the complexity of Geelen’s heuristic is very high comparing to that of MRV. The number of consistency checks for computing heuristic is always more than that for searching a solution. In many cases, although it choose a better variable ordering, it is beaten by MRV with respect to the total number of checks and computing time.

The promise-based dynamic variable ordering + dynamic value ordering (3) performs almost the same as promise-based dynamic variable ordering only (2). Dynamic value ordering is expected to be helpful to find one solution by choosing the most promising value first. It does not help when there is no solution since anyway we should try all the values. When there are many solutions, it also does not help much since the least constraining value prune future domain less than other values which is also in a solution, so it would lead to more consistency checks. This technique helps when the CSP has only a few solutions. One instance in R1 is this kind of CSPs, we can see BT_3 beat BT_2 in that case.

An important feature of FC and FCCBJ is that they do not require additional consistency checks to support MRV dynamic ordering. This feature makes up the loss when MRV cannot produce the best variable ordering, FC+MRV and FCCBJ+MRV have the best performance with respect to the total number of consistency checks and the execution time in many cases. However, the performance gain obtained by adding conflict directed backjumping hardly seems worthwhile. The better order DVO choose, the less improvement can be obtained from CBJ. The reason is with DVO heuristic, variables that have conflicts with past assignments are likely to be instantiated sooner. Thus the conflicted variables are clustered together. Hence, CBJ is unlikely to generate large backjumps.

In my point of view, if we use full arc consistency or full path consistency to prune the future domain before we compute LEFTS(Xj|Xi = Vi), it should produce a better variable ordering for CSPs with tight constraints. However, computing the promise-based heuristic consumes more consistency checks than searching does, adding arc consistency check or path consistency will make it more complex. In some case, when MRV can find a pretty good variable ordering, using a more complex heuristic is not worthwhile. But we know that to solve a general CSP is a NP-complete problem. In many cases, if we could find a backtrack-free (or almost) variable order, that would be very helpful since the heuristic can still be computed in polynomial time.

Reference

[BR95] Fahiem Bacchus, Paul van Run. Dynamic Variable Ordering in CSPs. In: Principles and Practice of Constraint Programming (CP-95), pages 258-275, 1995.

[Gee92] P.A. Geelen. Dual Viewpoint Heuristics for Binary Constraint Satisfaction Problems. In: ECAI 92.

[Pro93] P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. In: Computational Intelligence, 9(3), 1993.

