
Addendum To Technical Report on

“Exploring Parameterized Relational

Consistency”

(TR-UNL-CSE-2009-0009)

Shant K. Karakashian∗, Robert J. Woodward∗,
Berthe Y. Choueiry∗, and Christian Bessiere∗∗

∗Constraint Systems Laboratory
Department of Computer Science & Engineering

University of Nebraska-Lincoln
Email: {shantk|rwoodwar|choueiry}@cse.unl.edu

∗∗LIRMM-CNRS
University Montpellier, France
Email: bessiere@lirmm.fr

November 6, 2009

1

In this document, we revise the pseudo-code of all three algorithms in the
technical report, improving on their performance.

Initializing the constraints queue

The initialization phase Algorithm 1 builds a queue of all combination-relation
pairs.

Algorithm 1: Initialize-Q initializes the queue.

Input: ζ: set of all possible combinations
Output: Q: a queue of all combination-constraint pairs
foreach ϕ ∈ ζ do1

foreach R ∈ ϕ do2

Q ← Q∪ {〈ϕ, R〉}3

end4

end5

revision-time ← 06

Processing the constraint queue

The procedure ProcessQueue, described in Algorithm 2, revises every relation-
combination pair in the queue to ensure that all their tuples are supported in
each combination of m constraints where the relation appears.

We modified the queue of relations (as described in the technical report),
into a queue of combination-relation pairs for the following reason. Originally,
when a relation Ri is popped from the queue for revision,

• It was revised in every combination where it appears, and

• When the revision modified Ri, every other relation in every other com-
bination where the relation Ri appears was inserted in the queue.

According to the new queue management strategy, when a pair of combination-
relation 〈ϕ, Ri〉 is popped from the queue for revision,

• It is revised in only the paired combinationφ, and

• When the revision modified Ri, every other relation in every other combi-
nation where the relation Ri appears is inserted in the queue paired with
the corresponding combination.

This mechanics saves in computational effort, while maintaining soundness and
completeness.

2

Algorithm 2: ProcessQueue deletes tuples that have lost their support.

Input: Q, ζ,revisiouT ime
Output: true is the problem is R(∗,m)C, false otherwise
consistent← true1

while (Q 6= ∅) ∧ (consistent = true) do2

〈ϕ, R〉 ← Top(Q)3

revision-time ← revision-time +14

foreach 〈ϕ, R′〉 ∈ Q do5

Remove(〈ϕ, R′〉,Q)6

deleted← false7

foreach τ ∈ R′ do8

if RevisionTime(τ) = revision-time then9

GoTo 810

end11

support←FindSupport((τ,R′), ϕ)12

if support = false then13

Delete(τ)14

if R′ = ∅ then15

consistent← false16

GoTo 2917

deleted← true18

end19

end20

end21

if deleted then foreach ϕ′ ∈ ζ do22

if R′ ∈ ϕ′ then foreach R′′ ∈ (ϕ′ \ {R′}) do23

Q ← Q∪ {〈ϕ′, R′′〉}24

end25

end26

end27

end28

return consistent29

3

To access all the combination-relation pairs in the queue pertaining to the
same combination, we implement a hash-table on the queue whose indices are
combinations and the values are the relations in the combinations.

Further, when we find the tuples {τ ′} that support the tuple τ in a given com-
bination φ, all those tuples are guaranteed ‘support’ and need not be rechecked
for support in the combination φ. We use a ‘time stamp’ mechanism to record
this situation and save redundant checks, see Line 10.

revision-time is a global variable throughout the execution so that the time
stamp uniquely marks a revision of a combination. The time stamp remains
the same during the revision of all the relations in a given combination. For
that purpose, we need to revise, for a given same combination, all combination-
relation pairs in the queue sequentially.

Finding a support

The marking of the tuples with the time stamp is performed in the Find-
Support algorithm. Every time a support is found (either by search or simply
retrieved from the data structure Last), all the tuples in the support are marked
with the time stamp in Line 10 of Algorithm 3.

Algorithm 3: FindSupport finds a support for a tuple in a combination.

Input: (τ,Ri), ϕ, revision-time
support← true1

if Last((τ,Ri), ϕ) = ∅ then2

Last((τ,Ri), ϕ) ← Search(ϕ, Ri ← τ)3

if Last((τ,Ri), ϕ) = ∅ then4

support← false5

Goto 126

end7

end8

foreach τ ′ ∈ Last((τ,Ri), ϕ) do9

RevisionTime(τ ′)← revision-time10

end11

return support12

4

