How the Level of Interchangeability Embedded
in a Finite Constraint Satisfaction Problem
Affects the Performance of Search

Amy M. Beckwith, Berthe Y. Choueiry, and Hui Zou

Department of Computer Science and Engineering, 115 Ferguson Hall,
University of Nebraska-Lincoln, Lincoln NE 68588-0115
{abeckwit | choueiry | hzou}@cse.unl.edu

Abstract. We investigate how the performance of search for solving fi-
nite constraint satisfaction problems (CSPs) is affected by the level of in-
terchangeability embedded in the problem. First, we describe a generator
of random CSPs that allows us to control the level of interchangeability
in an instance. Then we study how the varying level of interchangeability
affects the performance of search for finding one solution and all solutions
to the CSP. We conduct experiments using forward-checking search, ex-
tended with static and dynamic ordering heuristics in combination with
non-bundling, static, and dynamic bundling strategies. We demonstrate
that: (1) While the performance of bundling decreases in general with
decreasing interchangeability, this effect is muted when finding a first
solution. (2) Dynamic ordering strategies are significantly more resistant
to this degradation than static ordering. (3) Dynamic bundling strate-
gies perform overall significantly better than static bundling strategies.
Even when finding one solution, the size of the bundles yielded by dy-
namic bundling is large and less sensitive to the level of interchangeabil-
ity. (4) The combination of dynamic ordering heuristics with dynamic
bundling is advantageous. We conclude that this combination, in ad-
dition to yielding the best results, is the least sensitive to the level of
interchangeability, and thus, indeed is superior to other searches.

1 Introduction

A Constraint Satisfaction Problem (CSP) [12] is the problem of assigning values
to a set of variables while satisfying a set of constraints that restrict the allowed
combinations of values for variables. In its general form, a CSP is NP-complete,
and backtrack search remains the ultimate technique for solving it. Because
of the flexibility and expressiveness of the model, Constraint Satisfaction has
emerged as a central paradigm for modeling and solving various real-world de-
cision problems in computer science, engineering, and management.

It is widely acknowledged that real-world problems exhibit an intrinsic non-
random structure that makes most instances ‘easy’ to solve. When the structure
of a particular problem is known in advance, it can readily be embedded in the
model and exploited during search [3], as it is commonly done for the pigeon-hole



problem. A challenging task is to discover the structure in a particular problem
instance. In our most recent research [5,2, 4], we have investigated mechanisms
for discovering and exploiting one particular type of symmetry structure, called
interchangeability, that allows us to bundle solutions, and have integrated these
bundling mechanisms with backtrack search. We have investigated and eval-
uated the effectiveness of this integration and demonstrated its utility under
particularly adverse conditions (i.e., random problems generated without any
particular structure embedded a priori and puzzles known to be extraordinarily
resistant to our symmetry detection techniques). In this paper, we investigate
how the performance of these new search strategies is affected by the level of
interchangeability embedded in the problem. We first show how to generate ran-
dom problems with a controlled level of inherent structure, then demonstrate
the effects of this structure on the performance of the various search mecha-
nisms with and without interchangeability detection.

Section 2 gives a brief background to the subject and summarizes our previous
work. Section 3 describes our random generator, designed to create random CSP
instances with a pre-determined level of interchangeability. Section 4 introduces
the problem sets used for testing, and demonstrates the performance of our
search strategies across varying levels of interchangeability. Section 5 concludes
the paper with directions for future research.

2 Background and contributions

A finite Constraint Satisfaction Problem (CSP) is defined as P=(V, D, C); where
V={WV1, Va, ..., Vp,} is a set of variables, D={Dy,, Dy, ..., Dy, } is the set
of their corresponding domains (the domain of a variable is a set of possible
values), and C is a set of constraints that specifies the acceptable combinations
of values for variables. A solution to the CSP is the assignment of a value to
each variable such that all constraints are satisfied. The question is to find one
or all solutions. A CSP is often represented as a constraint (hyper-)graph in
which the variables are represented by nodes, the domains by node labels, and
the constraints between variables by (hyper-)edges linking the nodes in the scope
of the corresponding constraint. We study CSPs with finite domains and binary
constraints (i.e., constraints apply to two variables).

Since a general CSP is NP-complete, it is usually solved by backtrack search,
which is an exponential procedure. We enhance this basic backtrack search
through the identification and exploitation of structure in the problem instance.
This structure is in the form of symmetries. In particular, we make use of a type
of symmetry called interchangeability, which was introduced and categorized by
Freuder in [7]. We limit our investigations to interchangeability among the val-
ues in the domain of one given variable. Interchangeability between two values
for the variable exists if the values can be substituted for one another without
affecting the assignments of the remaining variables. Two such values are said
to belong to the same equivalence class. Each equivalence class is a bundle of
values that can be replaced by one representative of the bundle, thus reducing



the size of the initial problem. We call the number of distinct equivalence classes
in the domain of a variable the degree of induced domain fragmentation, IDF.

Freuder [7] proposed an efficient algorithm, based on building a discrimi-
nation tree, for computing one type of interchangeability, neighborhood inter-
changeability (NT). NI partitions the domain of a variable into equivalence classes
given all the constraints incident to that variable. Haselbock [11] simplified NI
to a weaker form that we call neighborhood interchangeability according to one
constraint (NIg). He showed how to exploit NI advantageously in backtrack
search (BT), with and without forward-checking (FC) for finding all the solu-
tions of a CSP. He also showed how NI groups multiple solutions of a CSP
into solution bundles. In a solution bundle, each variable is assigned a specific
subset of its domain instead of the unique value usually assigned by backtrack
search. Any combination of one value per variable in the solution bundle is a
solution to the CSP. Such a bundle not only yields a compact representation of
this solution set, but is also useful in the event that one component of a solu-
tion fails, and an alternate, equivalent solution must be found quickly. In the
bundling strategy proposed by Haselbock, symmetry relations are discovered be-
fore search is started. These are static interchangeability relations. We refer to
this strategy as static bundling. Below we summarize our previous results [5,2,
4], which motivate the investigations we report here.

In [5], we proposed to compute interchangeability dynamically during search
using a generalized form of Freuder’s discrimination tree, the joint discrimination
tree of Choueiry and Noubir [6]. We called this type of interchangeability dy-
namic neighborhood partial interchangeability (DNPI). Since DNPI is computed
during search, we say that it performs dynamic bundling. DNPI induces less do-
main fragmentation (larger partitions) than NIx and is thus likely to find larger
solution bundles. We designed a new search strategy that combines dynamic
bundling (DNPI) with forward-checking, and compared it to searches without
bundling and with static bundling (NI¢) for forward-checking search, see Fig. 1.
We proved that the relations shown in Fig. 2 (left) hold when searching for all so-

[Search [Comparison criteria |
Non Bundling [10] FC |Number of constraint checks CC,
Static bundling [I11] NI¢c [nodes visited NV, solution
Dynamic bundling [5] DNPI|bundles SB, and CPU time.

Fig. 1. Search and bundling strategies.

lutions (provided the variable and value orderings are the same for all searches),
thus establishing that dynamic bundling is always worthwhile when solving for
all solutions. In addition to the theoretical guarantees of Fig. 2 (left), we showed
empirically that neither non-bundling (FC) nor static bundling (NI¢) search
outperforms dynamic bundling search in terms of the quality of bundling (i.e.,
number of solution bundles generated) and in terms of the standard compari-
son criteria for search (i.e., number of constraint checks and number of nodes
visited). CPU time measurements were reasonably in-line with the other criteria.

In [2], we modified the forward-checking backtrack-search procedures of Fig. 1
to allow the integration of dynamic variable-value orderings with bundling strate-
gies, while looking for all solutions. We examined the following ordering heuris-



Ordering

Num. of Nodes Visited Satic Dynamic variable Dynamic variable-value
FC—~ NIC —> DNPI FC-SLD[9]  FC-DLD[9]  FC-promise[§]
Num. of Constraint Checks | o, None

NIC £ NIC-SLD[10] NIC-DLD[2 3] NIC-promise[2, 3]
FC —2 DNPI T saic
A =}

Num. of Solution Bundles | 0 " I5NPI-SLD[4] DNPI-DLD[2,3] DNPI-promise[2, 3]

FC > NIC —>_DNPI

Fig. 2. Left: Comparison of search strategies assuming the same variable orderings for
all strategies and while looking for all solutions. Right: Interleaving dynamic bundling
with dynamic ordering.

tics: (1) static least-domain (SLD), (2) dynamic least-domain (DLD) and (3) dy-
namic variable-value ordering (promise of Geelen [9]). The search algorithms
generated fell into the nine categories shown in Fig. 2 (right). Since the variable
and value orderings can no longer be maintained across strategies, strong, theo-
retical results similar to the ones of Fig. 2 (left) cannot be made. We instead make
empirical evaluations. Our experiments on these nine search strategies showed
that dynamic least-domain ordering combined with dynamic bundling (DNPI-
DLD) almost always yields the most effective search and the most compact
solution space. Further, we noted that although promise reduces significantly
the number of nodes visited in the search tree, it is harmful in the context of
searching for all solutions because the number of constraint checks it requires is
prohibitively large!.

Finally, in [4], we addressed the task of finding a first solution. In addition to
the ordering heuristics listed above (i.e., SLD, DLD, and promise), we proposed
and tested two other ordering heuristics, specific to bundling: (1) Least-Domain-
Max-Bundle (LD-MB) chooses the variable of smallest domain and, for this vari-
able, the largest bundle in its domain; and (2) Max-Bundle (Max-Bundle) chooses
the largest available bundle among all bundles of all variables. We found that
the promise heuristic of Geelen [9] performs particularly well for finding one
solution, consistently finding the largest first bundle with loosest bottlenecks?,
and nearly always yielding a backtrack-free search. This must be contrasted to
its bad performance for finding all solutions in [2]. Further, dynamic bundling
again proved to outperform static bundling, especially when used in combina-
tion with promise. Finally, we noted that LD-MD, our proposed new heuristic,
is competitive with relatively few constraint checks, low CPU time, and good
bundling.

The above summarized research established the utility of discovering and
exploiting interchangeability relationships in general. In all of our past work,
algorithms were tested on CSPs created with the random generator of Bacchus
and van Run [1], which did not intentionally embed any structure in the prob-
lems. This paper furthers our investigation of interchangeability and adds the
following contributions:

! The promise heuristic is by design best suited for finding one solution [9].
2 The bottleneck of a solution bundle is the size of the smallest domain in the bundle.



1. We introduce a generator of random CSPs that allows us to control the level
of interchangeability embedded in a problem in addition to controlling the
size of the CSP, and the density and tightness of the constraints.

2. Using this generator, we conduct experiments that test the previously listed
search strategies® across various levels of interchangeability. See Table 1:

[Problem Bundling Ordering |
FC
Finding all solutions X Nl¢ X iig
DNPI
e ﬁig
Finding first solution X NI¢c X
LD-MB [4]
DNPI
promlse [9]

Table 1. Search strategies tested.

3. We show that: (a) Both static and dynamic bundling search strategies do
indeed detect and benefit from interchangeability embedded in a problem
instance. (b) the performance of dynamic bundling is significantly superior to
that of static bundling when looking for a first solution bundle. (¢) Problems
with embedded interchangeability are not easier, or more difficult, to solve
for the naive FC algorithm. And (d) Most algorithms are affected by the
variance of interchangeability. However, DLD-ordered search is less sensitive
and performs surprisingly well in all situations.

3 A generator that controls interchangeability

Typically, a generator of random binary CSPs takes as input the following pa-
rameters (n, a, p, t). The first two parameters, n and a relate to the variables—n
gives the number of variables, and a the domain size of each variable. The second
two parameters, p and ¢ control the constraints—p gives the probability that a
constraint exists between any two variables (which also determines the number
of constraints in the problem C' = pM) and ¢ gives the constraint tightness
(defined as the ratio of the number of tuples disallowed by the constraint over
all possible tuples between the two variables).

In order to investigate the effects of interchangeability on the performance
of search for solving CSPs, we must guarantee from the outset that each CSP
instance contains a specific, controlled amount of interchangeability. Interchange-
ability within the problem instance is determined by the constraints. Indeed each
constraint fragments the domain of the variable to which it applies into equiv-
alence classes (as discussed below, Fig. 3) that can be exploited for bundling.
Therefore, the main difficulty in generating a CSP for testing bundling algo-
rithms resides in the generation of the constraints. We introduce an additional
parameter to our random generator [14] that controls the number of equivalence

3 LD-MB for finding all solutions collapses to DLD. Because of their poor behavior [2,
4], we exclude from our current experiments: (1) Max-Bundle for finding a first so-
lution and (2) all dynamic strategies for variable-value orderings (e.g., promise and
Max-Bundle) for finding all solutions.



classes induced by a constraint. This parameter, IDF, provides a measure of the
interchangeability in a problem: a higher IDF means less interchangeability. In
compliance with common practices, our generator adopts the following standard
design decisions: (1) All variables have the same domain size and, without loss
of generality, the same values. (2) Any particular pair of variables has only one
constraint. (3) All constraints have the same degree of induced domain fragmen-
tation. (4) All constraints have the same tightness. And, (5) any two variables
are equally likely to be connected by a constraint.

3.1 Constraint representation and implementation

A constraint that applies to two variables is represented by a binary matriz
whose rows and columns denote the domains of the variables to which it applies.
The ‘1’ entries in the matrix specify the tuples that are allowed and the ‘0’
entries the tuples that are disallowed. Fig. 3 shows a constraint ¢, with a = 5
and t = 0.32. This constraint applies to V4 and V5 with domains {1, 2, 3, 4, 5}.
The matrix is implemented as a list of row-vectors. Each row corresponds to a
value in the domain of V3. Each constraint partitions the domains of the variables

V2
12345
111 0 0 1] <— rowl[11001] \Val c V2 )
201001 1|~ row2[10011]
V1 31100 1< rowa[11001] [{ }}/\({1,2,3,4,5} j
41100 1| rows[11001] \ / \
511111 1| < rows[11111]

Fig. 3. Constraint representation as a binary matriz. Left: Encoding as row vectors.
Right: Domain of Vi partitioned by interchangeability.

to which it applies into equivalence classes. The values in a given equivalence
class of a variables are consistent with the same set of values in the domain of
the other variable. Indeed, ¢ fragments the domain of V; into three equivalence
classes corresponding to rows {1, 3, 4}, {2} and {5} as shown in Fig. 3.

We define the degree of induced domain fragmentation (IDF) of a constraint
as the number of equivalence classes it induces on the domain of the variable
whose values index the rows of the matriz. Thus the degree of induced domain
fragmentation of ¢ for V7 is IDF = 3. Since we control the IDF for only one of the
variables (the one represented in the rows), our constraints are not a priori sym-
metrical. The domain fragmentation induced on the remaining variable is not
controlled. Our generator constitutes an improvement of the random generator
with interchangeability of Freuder and Sabin [8], which inspired us. The latter
creates each constraint from the conjunction of two components: one component
controlling interchangeability and the other controlling tightness. The compo-
nent controlling interchangeability is both symmetrical and non-reflexive (i.e.,
all diagonal entries in the matrix are 0). Therefore, both variables in a binary
constraint have the same degree of induced domain fragmentation. This sym-
metry may affect the generality of the resulting constraint. Indeed, Freuder and
Sabin introduce the second component of their constraint in order to achieve
more generality and to control constraint tightness. This second component is a



random constraint with a specified tightness ¢. The resulting constraint obtained
by making the conjunction of the two components is likely to be tighter than
specified and also contain less interchangeability than specified. To avoid this
problem, our generator first generates a constraint with a specified tightness,
imposes the degree of IDF requested, then checks the resulting tightness. Thus,
in the CSPs generated, we guarantee that both ¢t and IDF meet the specifications
without sacrificing generality.

3.2 Constraint generation
Constraint generation is done according to the following five-step process:

Step 1: Matriz initialization. Create an a X a matrix with every entry set to 1.

Step 2: Tightness. Set random elements of the matrix to 0 until specified tight-
ness is achieved.

Step 3: Interchangeability. Modify the matrix to comply with the specified de-
gree of induced domain fragmentation, see below.

Step 4. Tightness check. Test the matrix. If tightness meets the specification,
continue. Otherwise, throw this matrix away and go to Step 1.

Step 5. Permutation: Randomly permute the rows of the generated matrix.
When C constraints have been successfully generated (C' = p@), each

constraint is assigned to a distinct random pair of variables. Note that we do not

impose any structure on the generated CSP other than controlling the IDF in the

definition of the constraints. We also do not guarantee that the CSP returned is

connected. However, when C' > n — 1 extensive and random checks detected no

unconnected CSPs among the ones generated. Obviously, when C' > W

connectedness is guaranteed. Below, we describe in further detail Steps 3 and 5

of the above process. Steps 1, 2, and 4 are straightforward.

Step 3: Achieving the degree of induced domain fragmentation (IDF).
After generating a matrix with a specific tightness, we compute its IDF by count-
ing the number of distinct row vectors. Each vector is assigned to belong to a
particular induced equivalence class. In the matrix of Fig. 3, rowl, row3 and
row4 would be assigned to the equivalence class 1, row2 assigned to equiva-
lence class 2, and row5 assigned to equivalence class 3. When the value of IDF
requested different from that of the current matrix, we modify the matrix to
increase or decrease its IDF by one as discussed below until meeting the spec-
ification. To increase IDF, we select any row from any equivalence class that
has more than one element and make it the only element of a new equivalence
class. This is done by randomly swapping distinct bits in the vector selected
until obtaining a vector distinct from all other rows. Note this operation does
not modify the tightness of the constraint. To decrease IDF, we select a row that
is the only element of an equivalence class and set it equal to any another row.
For example in Fig 3, setting row2 « rowd decreases IDF from 3 to 2. This
operation may affect tightness. When this is complete, Step 4 verifies that the



tightness of the constraint has not changed. If it has, we start over again, gen-
erating a new constraint. If the tightness is correct, we proceed to the following
step, row permutation.

Step 5: Row permutation. In order to increase our chances of generating
random constraints and avoid that the fragmentation determined by one con-
straint on the domain of a variable coincidences with that induced by another
constraint, the rows of each successfully generated constraint are permuted. The
permutation process chooses and swaps random rows a random number of times.
The input and output matrices of this process obviously have the same tightness
and interchangeability as this process does not change these characteristics.

3.3 Constraint generation in action

An example of this 5-step process is shown in Figure 4, where we generate a
constraint for a = 5, IDF = 3 and t = 0.32. Note that Step 3 and Step 4, which

rowd[11111]—[1 1 1 1 1|t 1 0 0 T 1100111001
row2[11111] |1 1 1 1 1f[|1 1 00 1 11001|[|/10011
rowa[11110—=|1 1 1 1 1||[|2 0 0 1 1| Setrowd=—row2i1 9 0 1 1([[|1 10 0 1
rowd[11111] {1 1 1 1 1||[[2 0 1 0 1 11001||||[11111
rows[11111]—{1 1 1 1 1|1 11 1 1 11111fj11001

Sepl Step 2 Step 3 Sep 4 Sep5

Fig. 4. Constraint generation process.

control the interchangeability and tightness of a matrix may fail to terminate
successfully. This happens when: (1) No solution exists for the combination of
the input parameters. It is easy to check that when a = 5,¢ = 0.04, there exists
only solutions with IDF = 2, due to the presence of only one 0 in the matrix. And
(2) although a solution may exist, the process of modifying interchangeability
in the matrix continuously changes tightness. To avoid entering an infinite loop
in either of these situations, we use a counter at the beginning of the process of
constraint generation. After 50 attempts to generate a constraint, it times out,
and the generation of the current CSP is interrupted. Our current implementa-
tion of the generator exhibits a failure rate below 5%, and guarantees constraints
with both the specified tightness and degree of induced domain fragmentation.

4 Tests and Results

We generated two pools of test problems using our random generator, each with a
full range of values for IDF, ¢, and p and 20 instances per measurement point. The
first pool has the following input parameters: n = 10, a = 5, p = [.1,1.0] with a
step of 0.1, IDF = 2,3, 4,5, and ¢t = [.04, .92], with a step of 0.08. The second pool
has the input parameters: n = 10, a = 7, p = [.1,0.9] with a step of 0.2, IDF =
2,3,...,7,and t = [0.04,0.92], with a step of 0.16. Recall that when p is small,
the CSP is not likely to be connected, and when p = 1, the CSP is a complete
graph. Note that instances with IDF = a have no embedded interchangeability



100000 100000000 ——— -

Constraint Checks to find Size of First Solution Bundle  ~— 5.2

One Solution 10000000 B
—+—SLD-ONP!

i - j-- -t

1000000 R f\ - - -PROMISE-DNPI
| \

100000 !

b
b

10000

7

o |
- =

——

10000

e
[
[ ——

1000

T

100 100

L
——NIC-DLD —+#—NIC-LD-MB —4—NIC-PROMISE 0 Y SRy X S
i el VY Y LR

L o e L LA e o o f = T ¥

TOORG TAONEG TAOND COONG —OORE ~AONG CABRD SO0RO ARG TOOND —OOND —OONG
00000 CCOO0O0 00000 0OO00DO0 0QCCO Q00000 00000 00000 CO000D0 CO000 O0O00C 0O00CO
00000 40000 00000 00000 QOOQOQ QAQQQQD o000 40000 00000 Q0000 000040 QOQAO0

Fig. 5. Comparing performance of search for finding one solution, t = 0.28.

and thus provide the most adverse conditions for bundling algorithms. We tested
the strategies of Table 1 on each of these two pools, and took the averages and
the median values of the number of nodes visited (NV), constraint checks (CC),
size of the bundled solution (when finding the first bundle), number of solution
bundles (when finding all solutions), and CPU time. We report here only the
average values since the median are qualitatively equivalent.

Constraint tightness has a large effect on the solvability of a random problem.
Problems with loose constraints are likely to have many solutions. As tightness
grows, the values of all measured parameters (CC, NV, CPU time, and bundle size)
quickly die to zero because almost all problems become unsolvable (especially for
t > 0.5). The behavior of the various algorithms is best visible at relatively low
values for tightness. In Fig. 5 and Fig. 6 we display charts for tightness values of
t = 0.28 with the second problem pool, where each variable has a domain size of
7 (a = 7). The patterns observed on this data set shown are consistent across all
values for tightnesses for both problem pools and are not reported here for lack
of space. Both figures show that the algorithms are affected by the increasing
IDF. This effect is more visible in Fig. 6. This demonstrates that our generator
indeed allows us to control of the level of interchangeability.

4.1 Finding the first bundle

In our experiments for finding the first solution bundle, we report in Fig. 5 the
charts for CC (left) and bundle size (right). Note the logarithmic scale of both
charts. The the chart for CPU time is similar to that of CC and is not shown.
Three of the four DNPI-based searches (DNPI-promise is the exception)
reside toward the bottom of Fig. 5 proving DNPI performs better than NI¢s in
terms of the search effort measured as CC (left), CPU time (not shown), and
size of the first bundle (right). DNPI seems also more resistant than NI to an



increasing IDF. Even in the absence of embedded interchangeability (large IDF)
and when density is high (large p), DNPI-based strategies still perform some
bundling performed (bundle size > 1).

At the left Fig. 5, FC is shown slightly below DNPI at the bottom of the
chart. One is tempted to think that FC outperforms all the bundling algorithms.
However, recall that FC finds only one solution, while DNPI finds from 5 up to
one million solutions per bundle for a cost of at most 5 times that of FC. Fur-
thermore, DNPI is finding not only a multitude of solutions, but the similarity
of these solutions makes particularly desirable in practical applications for up-
dating solutions.

4.2 Finding all solutions

The effects of increasing IDF are more striking when finding all solutions and are
shown in Fig. 6. It is easy to see in all four charts of Fig. 6 that both static (NI¢)
and dynamic (DNPI) bundling searches naturally perform better where there is
interchangeability (low values of IDF) than when there is not (IDF approaches a).
However, this behavior is much less drastic for DLD-based searches, which are less
sensitive to the increase of IDF than SLD-based searches. Indeed the curves for
DLD (both NI and DNPI) rise significantly slower than its SLD counterparts as
the value of IDF increases. Additionally, we see here more clearly than reported
in [2], that search with DLD outperforms search with SLD for all evaluation criteria
and for all values of p and IDF.

From this data, one is tempted to think that the problems with high inter-
changeability (e.g., IDF = 2) are easier to solve in general than those with higher
values of IDF. This is by no means the case. Our experiments have shown that
non-bundling FC is not only insensitive to interchangeability, but also performs
consistently several orders of magnitude worse than DNPI and NI¢. This data is
not shown because it is 3 to 7 orders of magnitude larger than the other values.

Even when interchangeability was specifically not included in a problem
(IDF = a), all bundling strategies, more significantly dynamic bundling, were
able to bundle the solution space. This is due to the fact that as search pro-
gresses, some values are eliminated from domains, and thus more interchange-
ability may become present. This establishes again the superiority of dynamic
bundling even in the absence of explicit interchangeability: its runtime is far
faster than FC, and its bundling capabilities are clear.

5 Conclusions and directions for future research

In this paper we describe a generator of random binary CSPs that allows us
to embed and control the structure, in terms of interchangeability, of a CSP
instance. We then investigate the effects of the level of interchangeability on the
performance of forward-checking search strategies that are perform no bundling
(FC) and that exploit static (NI¢) and dynamic (DNPI) bundling. These strate-
gies are combined with the most common or best performing ordering heuristics.



1200000 700000

Constraint Checks to find . Nodes Visited to find
i . =6
1000000 —— Al Solutions ] soe —— All Solutions
Fe h
SN | \ s00000 {——— SLBAIC
0 +— o b -« - DLDNIC
- - DIDNC et | — —SLDONP)
= —SLDONP! h 400000 ——— ——DLD-DNPI
DDDN e K } \
i

AN e
0o hoRn R

F=3
200000 : ; |
’ / ; [ T 10000 T A ) o =
=2 ;//\\ b Py | oF=2 =) N |y i
thha‘Lhmha‘LEQEE‘LHQEE‘;HQEE‘;HQEE mOUNG COOND SOOND SO0RO SOOND =OONO
32963 29692 399999 22999 2993% 98329 222828 2232282 28228 23822 22382 23822
250000 100000 - ) ]
Number of Sclution Bundles CPU Time to find DF=
—ame - e All solutions e
o L/
200000 DLD-NIC M —— __one h ’ \
— — LNl
DLE-DNP! 7000 —— "7 "DLBAC
— = SLD-ONPI \ \
150000 - 60000 —— —— DLD-DNPI |
et DF=£ l\\ p \
5000 I i
I\ [F =4 h l\ I \ \
100000 - 40000 1 )
[L7=4 | AR
i A [\\ |\ /I‘ 1\
| 30000 4 | L/
' ok L
50000 - '\\* 00 ; A
=3 f \ f' \ Fe3 r\ [‘ "\ | \\ ) lj
DF=2 -\ t 10000 s /\ Y Y 1
A ) o A SN} \ N !
A L] NP AN EATA

]

RN TOONG TAOND TOONG TOOND mROND TOONS
00000 00000 000G30 00000 00000 0000G 00UGQO0
anaaa anafoa L0o00A 0dGOQ G0DAQ 2ARRAD QOdQd

caune oone ronn
o0goQo ooogo oocoQ
acaooan agooQa aooQa

Fig. 6. Comparing performance of search for finding all solutions, t = 0.28.

We demonstrate that dynamic bundling strategies remain effective across all
levels of interchangeability, even under particularly adverse conditions (i.e., IDF
= domain size). While search with either static or dynamic ordering is able to
detect and exploit the structure embedded in a problem, DLD-ordered search is
less sensitive to the absence of interchangeability, performing quite well in all
situations. In particular, we see that DNPI-DLD reacts slowly to the presence
or absence of interchangeability while performing consistently well for finding
either one or all solutions.

We intend to extend these investigations to non-binary CSPs and also to
demonstrate that dynamic bundling may benefit from maintaining arc-consistency
(MAC) of Sabin and Freuder [13]. Additionally, the flatness of the curves for



DNPI in Fig. 5 (left) makes us wonder how search strategies based on bundling
may be affected by the famous phase-transition phenomenon.

References

10.

11.

12.

13.

14.

. Fahiem Bacchus and P. van Run. Dynamic Variable Ordering in CSPs. In Prin-

ciples and Practice of Constraint Programming, CP’95. Lecture Notes in Artificial
Intelligence 976, pages 258-275. Springer Verlag, 1995.

Amy M. Beckwith and Berthe Y. Choueiry. Effects of Dynamic Ordering and
Bundling on the Solution Space of Finite Constraint Satisfaction Problems. Tech-
nical Report CSL-01-03. http://consystlab.unl.edu/CSL-01-03.ps, University
of Nebraska-Lincoln, 2001.

Cynthia A. Brown, Larry Finkelstein, and Paul W. Purdom, Jr. Backtrack Search-
ing in the Presence of Symmetry. In T. Mora, editor, Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, pages 99-110. Springer-Verlag, 1988.
Berthe Y. Choueiry and Amy M. Beckwith. On Finding the First Solution
Bundle in Finite Constraint Satisfaction Problems. Technical Report CSL-01-
03. http://consystlab.unl.edu/CSL-01-04.ps, University of Nebraska-Lincoln,
2001.

. Berthe Y. Choueiry and Amy M. Beckwith. Techniques for Bundling the Solu-

tion Space of Finite Constraint Satisfaction Problems. Technical Report CSL-01-
02. http://consystlab.unl.edu/CSL-01-02.ps, University of Nebraska-Lincoln,
2001.

Berthe Y. Choueiry and Guevara Noubir. On the Computation of Local Inter-
changeability in Discrete Constraint Satisfaction Problems. In Proc. of AAAI-
98, pages 326-333, Madison, Wisconsin, 1998. Revised version KSL-98-24,
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-98-24.html.

Eugene C. Freuder. Eliminating Interchangeable Values in Constraint Satisfaction
Problems. In Proc. of AAAI-91, pages 227-233, Anaheim, CA, 1991.

Eugene C. Freuder and Daniel Sabin. Interchangeability Supports Abstraction and
Reformulation for Multi-Dimensional Constraint Satisfaction. In Proc. of AAAI-
97, pages 191-196, Providence, Rhode Island, 1997.

Pieter Andreas Geelen. Dual Viewpoint Heuristics for Binary Constraint Satisfac-
tion Problems. In Proc. of the 10 ** ECAI, pages 31-35, Vienna, Austria, 1992.
Robert M. Haralick and Gordon L. Elliott. Increasing Tree Search Efficiency for
Constraint Satisfaction Problems. Artificial Intelligence, 14:263-313, 1980.

Alois Haselbock. Exploiting Interchangeabilities in Constraint Satisfaction Prob-
lems. In Proc. of the 13 t" IJCAI, pages 282-287, Chambéry, France, 1993.

Alan K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
8:99-118, 1977.

Daniel Sabin and Eugene C. Freuder. Contradicting Conventional Wisdom in
Constraint Satisfaction. In Proc. of the 11 " ECAI, pages 125-129, Amsterdam,
The Netherlands, 1994.

Hui Zou, Amy M. Beckwith, and Berthe Y. Choueiry. A Generator
of Random Instances of Binary Finite Constraint Satisfaction Problems
with Controllable Levels of Interchangeability. = Technical Report CSL-01-
01. http://consystlab.unl.edu/CSL-01-01.doc, University of Nebraska-Lincoln,
2001.



