
Comparison of Several Path-Consistency

Algorithms

Christopher Thiel

August 19, 2008

1 Introduction

This paper compares several path-consistency algorithms experimentally on uni-
formly distributed random constraint satisfaction problems (CSPs). Like other
consistency methods, path-consistency algorithms use inference to make con-
straint networks more explicit. CSPs are made more explicit by adding con-
straints that are unstated in the original problem. In general, this reduces the
search space of partial solutions [Dechter(2003)]. Furthermore, we can some-
times detect inconsistent problems using consistency methods.

We will show some of the tradeoff between completeness and resource usage.
We will also compare the efficiency of different implementations of the same idea.
The algorithms we compare are Path-Consistency-2 (PC-2), Directional-
Path-Consistency (DPC), Partial-Path-Consistency (PPC), Triangle-
Partial-Path-Consistency (4PPC), and a proposed modification of 4PPC
called 4PPC-2.

We begin by presenting the algorithms in Section 2. Then we discuss our ex-
periments, including problem generation and performance metrics, in Section 3.
The results of the experiments are presented in Section 4. Finally, we present
some conclusions in Section 5.

2 Algorithms

This section presents each of the path-consistency algorithms compared in this
paper. The Revise-3 function [Dechter(2003)] is used in all of the path-
consistency algorithms. Revise-3((x, y), z) is equivalent to the composition

Rxy ← Rxy ∩ πxy(Rxy ./ Dz ./ Rzy)

where πxy(R) is the projection of R onto {x, y} and where ./ is the join opera-
tor, except that Revise-3 additionally returns true when Rxy is modified. We
abstract this composition into a function since we use the number of times it
is called as a performance metric when comparing the various path-consistency
algorithms. The Revise-3 procedure is given in Algorithm 1.

1

Algorithm 1: Revise-3((x, y),z)
Input: A three-variable subnetwork over (x, y, z), Rxy, Ryz, Rxz.
Output: Revised Rxy path-consistent with z. Returns true if and only if

Rxy was modified.
changed← false1

foreach pair (a, b) ∈ Rxy do2

if no value c ∈ Dz exists such that (a, c) ∈ Rxz and (b, c) ∈ Ryz then3

remove (a, b) from Rxy4

changed← true5

end6

end7

return changed8

All of our algorithms try to detect inconsistent problems. If a problem is
determined inconsistent, then the consistency procedures return immediately.
Thus, inconsistent problems may not be path-consistent when a consistency
procedure terminates.

2.1 Path-Consistency-2

Path-Consistency-2 (PC-2) [Mackworth(1977)] is a classical algorithm for achiev-
ing path-consistency. PC-2 is shown in Algorithm 2. Our version of PC-2
returns false if a binary network R is detected as inconsistent; otherwise it re-
turns true. Note that failure to detect an inconsistent problems does not imply
that the problem is consistent. Inconsistent problems are revealed by an empty
constraint, that is, a constraint in which all tuples have been filtered out.

2.2 Directional Path-Consistency

We next look at Directional Path-Consistency (DPC) [Dechter(2003)]. Unlike
Dechter’s DPC, the definition given here does not produce a strong directional
path-consistent network. We do without arc-consistency here since the other
path-consistency algorithms we present also perform no arc-consistency. The
DPC procedure is shown in Algorithm 3. DPC does not complete the constraint
graph as PC-2 does. Instead DPC considers only one specific variable order to
make path-consistent. Achieving path-consistency relative to one ordering may
be done more efficiently than when considering any ordering as PC-2 does, but if
arbitrary ordering are to be considered, there is no guarantee of path-consistency
for other orderings. Furthermore, DPC cannot detect inconsistent problems as
well as PC-2. This is shown later in Section 4.

2

Algorithm 2: PC-2(R)

Input: A binary network R = (X,D,C).
Output: A path-consistent network R′ equivalent to R when possible.

Returns false if R is determined inconsistent.
Q← {(i, j, k) | 1 ≤ i < j ≤ n, 1 ≤ k ≤ n, k 6= i, k 6= j}1

while Q is not empty do2

select and delete a triple (i, j, k) from Q3

changed← Revise-3((i, j), k)4

if Rij is empty then5

return false6

end7

if changed then8

Q← Q ∪ {(l, i, j), (l, j, i) | 1 ≤ l ≤ n, l 6= i, l 6= j}9

end10

end11

return true12

Algorithm 3: DPC(R)

Input: A binary network R = (X,D,C), its constraint graph
G = (V,E), and variable ordering d = (x1, . . . , xn).

Output: A directional path-consistent network R′ and its graph
G′ = (V,E′). Returns false if R is determined inconsistent.

E′ ← E1

for k = n to 1 by −1 do2

foreach i, j < k such that (xi, xk), (xj , xk) ∈ E′ do3

Revise-3((xi, xj), xk)4

if Rij is empty then5

return false6

end7

E′ ← E′ ∪ (xi, xj)8

end9

end10

return true11

3

2.3 Partial Path-Consistency

Partial-Path-Consistency (PPC) is an algorithm to make triangulated graphs
path-consistent [Bliek and Sam-Haroud(1999)]. PPC is shown in Algorithm 4.

There exist several methods to triangulate an arbitrary constraint graph.
We use the Min-Fill algorithm to triangulate all graphs when a consistency
algorithm requires it.

Algorithm 4: PPC(R)

Input: A binary network R = (X,D,C) and its constraint graph
G = (V,E).

Output: A partial path-consistent network network R′ and its graph
G′ = (V,E′). Returns false if R is determined inconsistent.

Q← E1

while Q is not empty do2

q ← Front(Q)3

foreach (i, k, j) ∈ Related-Triplets(q) do4

changed← Revise-3((i, j), k)5

if Rij is empty then6

return false7

end8

if changed then9

Push((i, j), Q)10

end11

end12

Pop(Q)13

end14

return true15

2.3.1 Min-Fill

Min-Fill is a graph triangulation heuristic. The Min-Fill procedure given in
Algorithm 5 is based on that given in [Dechter(2003)], but the variable ordering
proceeds forward rather than backward. The ordering produced is a perfect
elimination order [Gogate and Dechter(2004)]. Also, we use the triangulated
graph produced by the Min-Fill procedure, not just the variable ordering.

Note that the triangulated graph produced by Algorithm 5 is G′ = (V,E′);
the variable V ′ is used only locally to track eliminated nodes.

2.4 Triangle-Partial-Path-Consistency

Triangle-Partial-Path-Consistency (4PPC) [Xu(2003)] is the proposed
generalization of the4STP algorithm given in [Xu(2003)]. As its name suggests,
4PPC intends to perform the same filtering as PPC, and in our experiments

4

Algorithm 5: Min-Fill(G)

Input: A graph G = (V,E).
Output: A triangulated graph G′ = (V,E′) and a perfect elimination

order σ.
V ′ ← V1

E′ ← E2

for j = 1 to n do3

r ← a node in V with the smallest number of fill edges for its parents4

put r is position j of σ5

E′ ← E′ ∪ {(vi, vj) | (vi, r), (vj , r) ∈ E′}6

V ′ ← V ′ \ {r}7

end8

4PPC and PPC do perform the same filtering for problems that are not detected
as inconsistent. Unlike the edge queue used by PPC, 4PPC uses a queue of
triangles. The main difference between PPC and 4PPC is that when 4PPC
revises a constraint, it places all triangles onto the triangle queue that contain
the revised edge.

2.5 Triangle-Partial-Path-Consistency-2

The Triangle-Partial-Path-Consistency-2 (4PPC-2) algorithm requires
that we find a join-tree. This in turn requires us to find the maximal cliques
in a constraint graph. Algorithm 7 finds the maximal cliques given a perfect
elimination order σ, which we get from Min-Fill. The presentation of Cliques
is based on [Golumbic(2004)]. We use the notation σ(i) to denote the element
at position i of σ, and we use the notation σ−1(x) to denote the position of
element x in σ.

The Join-Tree procedure [Dechter(2003)] given in Algorithm 8 finds a join-
tree from the vector of maximal cliques given by Cliques.
4PPC-2 differs from 4PPC by considering one clique at a time. After

finding a join-tree, 4PPC-2 first looks at the cliques from the leaves to the root
using a depth-first search postordering of the join-tree’s cliques. 4PPC-2 calls
the 4PPC procedure once for each clique using a constraint graph containing
only the variables within the current clique. After processing the root node of
a join-tree, 4PPC-2 then processes the cliques in the reverse order. Since we
are working with a tree (the join-tree), this is a preorder of the cliques. This
processing from the root to the leaves happens in an identical manner.

The idea behind this approach is to consider local triangles as a group. The
triangles of a clique are necessarily connected to each other.

5

Algorithm 6: Triangle-Partial-Path-Consistency(R, G)

Input: A binary network R = (X,D,C) and its constraint graph
G = (V,E)

Output: A partially path consistent network and its constraint graph
G′ = (V,E′)

QT ← all triangles in G1

while QT is not empty do2

QE ← ∅3

{i, j, k} ← Front(Q)4

changed← Revise-3((i, j),k)5

if Ci,j is empty then return false6

if changed then7

Push((i, j),QE)8

end9

changed← Revise-3((i, k),j)10

if Ci,k is empty then return false11

if changed then12

Push((i, k),QE)13

end14

changed← Revise-3((j, k),i)15

if Cj,k is empty then return false16

if changed then17

Push((j, k),QE)18

end19

foreach (m,n) ∈ QE do20

Tm,n ← all triangles containing (m,n)21

foreach {l,m, n} ∈ Tm,n such that {l,m, n} 6∈ QT do22

Push({l,m, n}, QT)23

end24

end25

Pop(QT)26

end27

return true28

6

Algorithm 7: Cliques(G, σ)

Input: A triangulated graph G = (V,E) and a perfect elimination order
σ.

Output: A vector of cliques C.
j ← 01

foreach v ∈ V do S(v)← 02

for i← 1 to n do3

v ← σ(i)4

X ← {x ∈ Adj(v) | σ−1(v) < σ−1(x)}5

if Adj(v) = ∅ then6

C(j)← v7

j ← j + 18

end9

if X = ∅ then return C10

u← σ(min{σ−1(x) | x ∈ X})11

S(u)← max{S(u), |X| − 1}12

if S(v) < |X| then13

C(j)← {v} ∪X14

j ← j + 115

end16

end17

return C18

Algorithm 8: Join-Tree(C)
Input: A vector of cliques C = (C1, . . . , Cr).
Output: A join-tree T .
foreach Ci ∈ C do1

Connect Ci to a Cj (j < i) with whom it shares the largest subset of2

variables.
end3

return Join-tree T such that the cliques in C are its nodes and the edges4

created above are its edges.

7

Algorithm 9: Triangle-Partial-Path-Consistency-2(R, G, T)

Input: A binary network R = (X,D,C), its constraint graph
G = (V,E), and a join-tree T .

Output:
Opost ← a postorder of the cliques (nodes) of T1

foreach ordered clique K in Opost do2

V ′ ← the set of variables in K3

4PPC(R, (V ′, E))4

end5

Opre ← a preorder of the cliques (nodes) of T6

foreach ordered clique K in Opre do7

V ′ ← the set of variables in K8

4PPC(R, (V ′, E))9

end10

3 Experiments

This section discusses our problem generation method and our performance
metrics.

3.1 Random Problem Generation

The problems used to compare the algorithms are uniformly distributed CSPs.
The generated problems are in the XCSP 2.1 format [XCSP()] using conflict re-
lations for all constraints; thus, all constraints are given in extension. Problems
with disconnected constraint graphs were discarded. The CSP parameters are
similar to those used in [Chmeiss and Jegou(1998)] for path-consistency. The
parameters are specified as a 4-tuple (n, a, t, p) where n is the number of vari-
ables, a is the domain size of each variable, t is the constraint tightness, and p is
the constraint density. Constraint tightness is the ratio of conflict (disallowed)
tuples in a given constraint out of all possible tuples:

t =
|conflict tuples|
|all tuples|

=
|conflict tuples|

a2
.

Constraint density describes the ratio of constraints in a given problem out of
the maximum number of constraints possible. It is defined as

p =
e

n(n− 1)/2

where e is the number of constraints in a problem. This assumes that between
any two variables, there is at most a single constraint. Our generated problems
follow this assumption.

All generated problems use n = 32 and a = 8 with tightness varying from
t = 0.1 to t = 0.9 in 0.1 increments. We then compare the path-consistency

8

algorithms at p = 0.2 and p = 0.5. For each (n, a, t, p) tuple, we generate 100
problems and present the average results. In some cases the values of t and
p are only approximate. For example, with n = 32, an exact tightness of 0.2
requires 99.2 constraints. Since the number of constraints must be an integer,
we round e to 99. This results is an actual tightness of approximately 0.1996.

3.2 Performance Metrics

We compare the path-consistency algorithms by four metrics:

1. the number of calls to Revise-3,

2. the number of tuples eliminated,

3. the CPU time, and

4. the number of inconsistent problems detected.

The number of times an algorithm calls Revise-3 is simply a tally of such
calls. These calls appear only in the path-consistency algorithms themselves,
and not in any dependent algorithms, such as graph triangulation. Similarly,
the count of eliminated tuples is incremented only in the path-consistency al-
gorithms themselves. The count is comprised of the tuples filtered by a path-
consistency algorithm. The CPU time, however, includes the time taken to
perform any preprocessing of the problem by dependent algorithms. PC-2 and
DPC require no preprocessing. PPC, 4PPC, and 4PPC-2 each require tri-
angulation, so the CPU time of Min-Fill is included. Furthermore, 4PPC-2
uses the Cliques and the Join-Tree procedures, so the CPU time of these
procedures are included as well.

Since detecting inconsistent problems is important when one wants to actu-
ally solve a CSP, we keep track of the number of inconsistent problems detected.
These numbers are compared to those determined inconsistent by PC-2 since
no other pure path-consistency algorithm can detect more inconsistencies than
it can. By pure path-consistency, we mean consistency algorithms that are
concerned solely with determining 3-consistency.

4 Results

Figure 1 shows the revision results for each path-consistency algorithm with
varying tightness and n = 32, a = 8, and p = 0.2. We group the calls to Revise-
3 and the number of eliminated tuples together since all filtering (elimination
of tuples) occurs by way of Revise-3. Given this, it is interesting to note that
the number of eliminated tuples does not correspond closely with the number of
calls to Revise-3. From Figure 1a, we see that the phase transition occurs at
around t = 0.4 — each algorithm makes more calls to Revise-3 at t = 0.4 than
at any other tightness. However, the number of eliminated tuples (Figure 1b)
is maximum at t = 0.5 for all algorithms except DPC.

9

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
al

ls
to

R
e
v
is

e
-3

Tightness

PC-2

3 3
3

3

3

3 3 3 3

3
DPC

+ + + + + + + + +

+
PPC

2 2 2

2

2
2 2 2 2

2
4PPC

× × × × × × × × ×

×
4PPC-2

4 4 4 4 4
4 4 4 4

4

(a) Number of calls to Revise-3.

0

2000

4000

6000

8000

10000

12000

14000

16000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
lim

in
at

ed
tu

pl
es

Tightness

PC-2

3 3 3

3

3

3

3 3 3

3
DPC

+ + + +
+

+ +

+

+

+
PPC

2 2 2
2

2

2

2
2

2

2
4PPC

× × ×
×

×

×

×
× ×

×
4PPC-2

4 4 4
4

4

4
4

4 4

4

(b) Number of eliminated tuples.

Figure 1: Average revision results for n = 32, a = 8, and p = 0.2.

10

tightness PC-2 DPC PPC 4PPC 4PPC-2
0.1–0.4 0/0 0/0 0/0 0/0 0/0
0.5 100/100 0/100 100/100 100/100 100/100
0.6–0.9 100/100 100/100 100/100 100/100 100/100

Table 1: Ratio of problems detected as inconsistent for n = 32, a = 8, and
p = 0.2.

Table 1 shows the ratios of problems detected inconsistent by each algorithm
compared to what PC-2 detected with n = 32, a = 8, and p = 0.2. We see
that all problems with a tightness of 0.5 and greater are inconsistent, and that
no problems with tightness less than 0.5 were detected as inconsistent. All
algorithms performed similarly in this regard except for DPC. DPC failed to
detect any of the 100 inconsistent problems when t = 0.5.

In Figure 1b, we see that before the phase transition (t = 0.1 to 0.3), all
algorithms perform a relatively small number revisions. At the phase transi-
tion and after, the PPC-based algorithms perform roughly the same number
of revisions. Interestingly, at t = 0.5, PC-2 does the most filtering by far, but
at t = 0.6 and beyond it does the least, yet in both cases, all problems are
inconsistent. DPC has a unique curve, peaking later than the others. Its peak
is also broader than the others. This is not entirely surprising, however, since it
is fundamentally different from the other algorithms. In any case, the increase
in eliminated tuples does not cause a corresponding increase in the number of
calls to Revise-3. Thus, DPC filters many more tuples per call to Revise-3
than the other algorithms on the tighter problems.

The average CPU times are shown in Figure 2. The CPU times for each
algorithm and the calls to Revise-3 (Figure 1a) are very similar in relative
terms.

Overall, DPC runs the fastest but does the least filtering on the set of prob-
lems not detected as inconsistent. Of the PPC-based algorithms, 4PPC is the
most efficient. It is faster than PPC and 4PPC-2 in all cases while performing
the same filtering for the problems not detected as inconsistent.

We now compare how the consistency algorithms perform when the density
is increased to p = 0.5. By looking at Figure 3a we see that the phase transition
occurs at t = 0.3, earlier than when p = 0.2. Again, the CPU times (Figure 4)
correspond closely with the number of calls to Revise-3.

From Table 2, we can see that for t = 0.4 to 0.9 all problems are inconsistent,
and that for t = 0.1 to 0.2 no problems were detected as inconsistent. Unlike
when p = 0.2, we have a data point where the PPC-based algorithms detect less
inconsistent problems than PC-2. This occurs at t = 0.3, the phase transition.
PPC and 4PPC find the same number of problems inconsistent (16/21) as
expected, while 4PPC-2 finds still fewer (7/21). This demonstrates that the
PPC-based algorithms can fail to detect inconsistent problems as well as PC-2.
It also shows that 4PPC-2 is deficient in this regard against PPC and 4PPC.

As with p = 0.2 4PPC is more efficient than PPC for the same filtering on

11

0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
P

U
ti

m
e

(s
ec

)

Tightness

PC-2

3 3
3

3

3

3 3 3 3

3
DPC

+ + + + + + + + +

+
PPC

2 2 2

2

2
2 2 2 2

2
4PPC

× × ×
× × × × × ×

×
4PPC-2

4 4 4
4 4

4 4 4 4

4

Figure 2: Average CPU time for n = 32, a = 8, and p = 0.2.

tightness PC-2 DPC PPC 4PPC 4PPC-2
0.1–0.2 0/0 0/0 0/0 0/0 0/0
0.3 21/21 0/21 16/21 16/21 7/21
0.4 100/100 69/100 100/100 100/100 100/100
0.5–0.9 100/100 100/100 100/100 100/100 100/100

Table 2: Ratio of problems detected as inconsistent for n = 32, a = 8, and
p = 0.5.

the possibly consistent problems. The results for p = 0.5 also expose a weakness
of4PPC-2 — it does not detect inconsistent problems as well as PPC or4PPC.
Moreover, we see that PPC can be more resource intensive than even PC-2 (at
t = 0.3).

In an effort to make PPC and 4PPC detect inconsistent problems as well as
PC-2, we added an additional preprocessing step to the PPC-based algorithms.
This step involves completing all paths of length two in the triangulated con-
straint graph by adding explicit universal constraints. The reasoning can be
seen in the following example CSP:

12

0

20000

40000

60000

80000

100000

120000

140000

160000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
al

ls
to

R
e
v
is

e
-3

Tightness

PC-2

3 3

3

3 3 3 3 3 3

3
DPC

+ + + + + + + + +

+
PPC

2 2

2

2 2 2 2 2 2

2
4PPC

× ×

×

× × × × × ×

×
4PPC-2

4 4

4

4 4 4 4 4 4

4

(a) Number of calls to Revise-3.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
lim

in
at

ed
tu

pl
es

Tightness

PC-2

3 3

3

3

3
3 3 3 3

3
DPC

+ + +

+

+ +

+

+

+

+
PPC

2 2

2

2

2

2

2
2 2

2
4PPC

× ×

×

×

×

×
×

× ×

×
4PPC-2

4 4

4

4

4

4
4

4 4

4

(b) Number of eliminated tuples.

Figure 3: Average revision results for n = 32, a = 8, and p = 0.5.

13

0

5

10

15

20

25

30

35

40

45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
P

U
ti

m
e

(s
ec

)

Tightness

PC-2

3 3

3

3
3 3 3 3 3

3
DPC

+ + + + + + + + +

+
PPC

2 2

2

2 2 2 2 2 2

2
4PPC

× ×

×

× × × × × ×

×
4PPC-2

4
4

4

4 4 4 4 4 4

4

Figure 4: Average CPU time for n = 32, a = 8, and p = 0.5.

i

{1, 2}

j

{1, 2}

k

{1, 2}

Cij = {(1, 1)} Cjk = {(2, 1)}

The supported tuples are given by the two constraints Cij and Cjk. PC-2 will
detect this problem as inconsistent. For example, it will notice that the only
consistent assignments to i and j (i = 1, j = 1) cannot be extended to k. This
will result in an empty constraint on the edge (i, j). The PPC-based algorithms
operate on triangles, so this inconsistency will not be detected. Actually, these
algorithms will do no filtering on this problem since there are no triangles. But
completing the path (i, j, k) results in an explicit universal constraint between i
and k. The PPC-based algorithms will now detect the inconsistency. Note that
completing all paths of length two does not necessarily result in completing the
entire constraint graph. In some cases, such as when the problems consists of a
single path, much fewer additional edges are needed.

Results for the modified PPC-based algorithms are shown in figures 5 and
6. These results are for p = 0.5. PC-2 and DPC were not modified but are
presented for comparison. The modification produced the desired results — all
of the PPC-based algorithms now detected the same 21 inconsistent problems
as PC-2 for t = 0.3 (compare with Table 2). The modification did increase the

14

number of calls to Revise-3 (and CPU time) for these algorithms, most notably
for PPC at t = 0.3.

5 Conclusions

Since PPC and 4PPC do the same filtering on problems not determined in-
consistent, they can be compared easily on such problems by looking at the
average calls to Revise-3 (or CPU time). On the possibly consistent problems,
4PPC outperformed PPC on average. Again, PPC and 4PPC detect the same
problems as inconsistent. On these problems, PPC is sometimes more efficient
but not considerably.

As expected,4PPC-2 cannot detect as many inconsistent problems as4PPC.
Furthermore, 4PPC-2 is more resource intensive than 4PPC in most cases,
making it a poor replacement for 4PPC (or PPC).

When we modify the PPC-based algorithms to work on triangulated graphs
with paths of length two completed, 4PPC-2 outperformed PPC, but it is
still slower than 4PPC. With further bookkeeping, 4PPC-2 could be made to
perform the same filtering as 4PPC and PPC, but this would slow it down even
more. It still may be possible to exploit the connectedness of the variables of
the cliques and the relationships of the cliques in a join-tree to speedup 4PPC-
based algorithms.

Further work is needed to determine if completing paths of length two results
in the PPC-based algorithms finding all of the inconsistent problems as PC-
2. Given this, it is difficult to compare 4PPC to PC-2 when this is desired.
Looking solely at the filtering done by PC-2 and 4PPC, PC-2has the advantage
at the expense of increased resource usage.

Even though 4PPC runs faster than PC-2, it is still considerably slower
than DPC, whose Revise-3 and CPU time curves remain effectively flat. This
is not a fair comparison, however, since DPC does the least filtering by far.

References

[Bliek and Sam-Haroud(1999)] C. Bliek and D. Sam-Haroud. Path consistency
for triangulated constraint graphs. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence, pages 456–461, Stockholm, Swe-
den, 1999.

[Chmeiss and Jegou(1998)] A. Chmeiss and P. Jegou. Efficient path-consistency
propagation. International Journal on Artificial Intelligence Tools, 7(2):121–
142, 1998.

[Dechter(2003)] R. Dechter. Constraint Processing. Morgan Kaufmann, San
Francisco, CA, USA, 2003.

15

0

50000

100000

150000

200000

250000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
al

ls
to

R
e
v
is

e
-3

Tightness

PC-2

3 3

3

3 3 3 3 3 3

3
DPC

+ + + + + + + + +

+
PPC

2 2

2

2 2 2 2 2 2

2
4PPC

× ×

×

× × × × × ×

×
4PPC-2

4 4

4

4 4 4 4 4 4

4

(a) Number of calls to Revise-3.

0

2000

4000

6000

8000

10000

12000

14000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
lim

in
at

ed
tu

pl
es

Tightness

PC-2

3 3

3

3

3
3 3 3 3

3
DPC

+ + +

+

+ +

+

+

+

+
PPC

2 2

2

2

2

2

2
2 2

2
4PPC

× ×

×

×

×

×
×

× ×

×
4PPC-2

4 4

4

4

4

4
4

4 4

4

(b) Number of eliminated tuples.

Figure 5: Average revision results for n = 32, a = 8, and p = 0.5 after complet-
ing paths of length two.

16

0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
P

U
ti

m
e

(s
ec

)

Tightness

PC-2

3 3

3

3 3 3 3 3 3

3
DPC

+ + + + + + + + +

+
PPC

2 2

2

2 2 2 2 2 2

2
4PPC

× ×

×

× × × × × ×

×
4PPC-2

4 4

4

4 4 4 4 4 4

4

Figure 6: Average CPU time for n = 32, a = 8, and p = 0.5 after completing
paths of length two.

[Gogate and Dechter(2004)] V. Gogate and R. Dechter. A complete anytime
algorithm for treewidth. In Proceedings of the 20th conference on Uncertainty
in Artificial Intelligence, pages 201–208, Banff, AB, Canada, July 2004.

[Golumbic(2004)] M. C. Golumbic. Algorithmic Graph Theory and Perfect
Graphs, volume 57 of Annals of Discrete Mathematics, chapter 4, pages
98–99. ELSEVIER, Amsterdam, The Netherlands, second edition, 2004.

[Mackworth(1977)] A. K. Mackworth. Consistency in networks of relations.
Artificial Intelligence, 8(1):99–118, 1977.

[XCSP()] XCSP. XML Representation of Constraint Networks Format XCSP
2.1. Organising Committee of the Third International Competition of CSP
Solvers, Jan. 2008.

[Xu(2003)] L. Xu. Consistency methods for temporal reasoning. Master’s thesis,
University of Nebraska-Lincoln, Lincoln, NE, USA, May 2003.

17

