Constraint Satisfaction: Modeling and Reformulation with Application to Geospatial Reasoning

Berthe Y. Choueiry

Constraint Systems Laboratory
Department of Computer Science & Engineering
University of Nebraska-Lincoln

Joint work with Ken Bayer, Martin Michalowski and Craig A. Knoblock

Supported by NSF CAREER Award #0133568 and AFOSR grants FA9550-04-1-0105 and FA9550-07-1-0416

Outline

Background

- Constraint Satisfaction Problem (CSP): definition, propagation algorithms, search
- Reformulation

II. Building Identification Problem

[Michalowski & Knoblock, 05]

- Constraint model
- Custom solver

III. Reformulation techniques

- Query reformulation, domain reformulation, constraint relaxation, symmetry detection
- Application to CSP, BID & evaluation on real-world BID data
- Conclusions & future work

Constraint Satisfaction Problem (CSP)

- Given $\mathcal{P} = (\mathcal{V}, \mathcal{D}, \mathcal{C})$
 - $-\mathcal{V}$: set of variables
 - $-\mathcal{D}$: set of their domains

- C : set of constraints (relations) restricting the acceptable combination of values for variables
- Solution is a consistent assignment of values to variables
- Query: find 1 solution, all solutions, etc.
- Deciding satisfiability is NP-complete in general

Examples

- Industrial applications: scheduling, resource allocation, product configuration, etc.
- Al: Logic inference, temporal reasoning, NLP, etc.
- Puzzles: Sudoku & Minesweeper

Sudoku as a CSP

Each cell is a variable with the domain {1,2,...,9}

Two models: Binary, 810 AllDiff binary constraints

Non-binary, 27 AllDiff constraints of arity 9

Minesweeper as a CSP

- Variables are the cells
- Domains are {0,1} (i.e., safe or mined)
- One constraint for each cell with a number (arity 1...8)

Solving CSPs

1. Constraint propagation

Look-ahead: propagate while searching

2. Search

- Islands of tractability
 - Special constraint types (e.g., linear inequalities)
 - Special graph structures (e.g., bounded width)

Constraint propagation

 Removes from the problem values (or combinations of values) that are inconsistent with the constraints

Does not eliminate any solution

Consistency algorithms: examples

Arc Consistency (AC)
 Generalized AC (GAC)

GAC on AllDiff [Régin, 94]

- Arcs that do not appear in any matching that saturates the variables correspond to variablevalue pairs that cannot
 - appear in any solution
- GAC on AllDiff is poly time

Constraint Systems Laboratory

Levels of consistency

- Properties & algorithms for achieving them
 - In general, efficient (polynomial time)
 - Applicable to arbitrary constraints
 - Dedicated to specific constraint types
 - Basis for Constraint Programming (e.g., AllDiff)
- Examples on the Sudoku Solver
 - sudoku.unl.edu/Solver

[with Reeson, 07]

 Conjecture: SGAC solves every 9x9 wellformed Sudoku

Search

Backtrack search

- Constructive
- Complete (in theory) and sound
- Note:
 - Variable ordering (backdoor)
 - Look-ahead

2. Iterative repair (i.e., local search)

- Repairs a complete but inconsistent assignment of values to variables by doing local repairs
- In general, neither sound nor complete

Abstraction & Reformulation

Original problem

Original formulation
Original query

Reformulation
technique

Reformulated problem

Reformulated problem

Reformulated problem

Reformulated problem

Reformulated problem

Reformulated problem

The reformulation may be an approximation

Constraint Systems Laboratory

Lincoln

Outline

- Background
- BID: CSP model & custom solver
- Reformulation techniques
- Conclusions & future work

Issue: finding Ken's house

Building Identification (BID) problem

Layout: streets and buildings

= Building
= Corner building
Si = Street

- Phone book
 - Complete/incomplete
 - Assumption: all addresses in phone book correspond to a building in the layout

S1#1, S1#4, S1#8, S2#7, S2#8, S3#1, S3#2, S3#3, S3#15, ...

Basic (address numbering) rules

- No two buildings can have the same address
- Ordering
 - Numbers increase/decrease along a street
- Parity
 - Numbers on a given side of a street are odd/even

Additional information

Landmarks

1600 Pennsylvania Avenue

B2

Gridlines

17

Query

- 1. Given an address, what buildings could it be?
- 2. Given a building, what addresses could it have?

CSP model

- Parity constraints
- Ordering constraints
- Corner constraints

- Phone-book constraints
- Optional: grid constraints

Example constraint network

Nebraska Lincoln

Special configurations

- 1. Orientations vary per street (e.g., Belgrade)
- 2. Non-corner building on two streets
- 3. Corner building on more than two streets
- → All gracefully handled by the model

Custom solver

- Backtrack search
- Forward checking (nFC3)
- Conflict-directed backtracking
- Domains implemented as intervals (box consistency)
- Variable ordering
 - 1. Orientation variables
 - 2. Corner variables
 - 3. Building variables
- Backdoor variables
 - Orientation + corner variables

Backdoor variables

We instantiate only orientation & corner variables

 We guarantee solvability without instantiating building variables

Nebraska Lincoln

Features of new model & solver

Improvement over previous work

[Michalowski +, 05]

- Model
 - Reduces number of variables and constraints arity
 - Reflects topology: Constraints can be declared locally & in restricted 'contexts,' important feature for Michalowski's work

Solver

- Exploits structure of problem (backdoor variables)
- Implements domains as (possibly infinite) intervals
- Incorporates all reformulations (to be introduced)

Nebraska Lincoln

Outline

- Background
- BID model & custom solver
- Reformulation techniques
 - Query reformulation
 - AllDiff-Atmost & domain reformulation
 - Constraint relaxation
 - Reformulation via symmetry detection
- Conclusions & future work

Query in the Building Identification Problem

Problem: BID instances have many solutions

Phone book: {4,8}

B1	B2	В3	B 4
2	4	6	8
2	4	8	10
2	4	8	12
4	8	10	12
4	6	8	10
4	6	8	12

We **only** need to know which values (address) appear in **at least one** solution for a variable (building)

Query reformulation

Original BID

Query:

Find **all** solutions, Collect values for variables Query reformulation

Reformulated BID

Query:

For each variable-value pair (vvp), determine **satisfiability**

Original query	For every Refinition to the state of the sta
Single enumeration problem	OManideat@@Dilityppoblems
All solutions	OFrieds od national and a state of the control of t
Exhaustive search	One path
Impractical when there are many solutions	Costly when there are few solutions

Evaluations: real-world data from El Segundo

[Shewale]

Case study	Phone book		Number of		
	Completeness	Buildings	Corner buildings	Blocks	
NSeg125-c	100.0%	105 17		4	
NSeg125-i	45.6%	125	17	4	
NSeg206-c	100.0%	206	28	7	
NSeg206-I	50.5%	200			
SSeg131-c	100.0%	131	131 36	8	
SSeg131-i	60.3%	131	30	0	
SSeg178-c	100.0%	178 46	12		
SSeg178-i	65.6%	170	40	1∠	

Previous work did not scale up beyond 34 7

Evaluation: query reformulation

Incomplete phone book → many solutions → better performance

Case study	Original query	New query [s]	
NSeg125-i	>1 week	744.7	
NSeg206-i	>1 week	14,818.9	
SSeg131-i	>1 week	66,901.1	
SSeg178-i	>1 week	119,002.4	

Complete phone book → few solutions → worse performance

Case study	Original query [s]	New query [s]
NSeg125-c	1.5	139.2
NSeg206-c	20.2	4,971.2
SSeg131-c	1123.4	38,618.4
SSeg178-c	3291.2	117,279.1

Generalizing query reformulation

- Relational (i,m)-consistency, algorithm R(i,m)C
 - For every *m* constraints
 - Compute all solutions of length s
 - To generate tuples of length i
 - Space: O(d^s)

- Query reformulation for Relational (i,m)-consistency
 - For each combination of values for i variables
 - Try to extend to one solution of length s
 - Space: $O(\binom{s}{i}d^i)$, i < s
- Reformulated BID query is R(1,|C|)C

Application to Minesweeper

- Current implementation [with Bayer & Snyder, 06]
 of Minesweeper achieves
 - $-R(1,1)C \equiv GAC$
 - R(1,2)C
 - R(1,3)C
 - By generates all solutions of length s
- On-going

[with Woodward]

Use query reformulation to compute R(1,x)C for x>3

Outline

- Background
- BID model & custom solver
- Reformulation techniques
 - Query reformulation
 - AllDiff-Atmost & domain reformulation
 - Constraint relaxation
 - Reformulation via symmetry detection
- Conclusions & future work

AllDiff-Atmost in the BID

Even side

Phone book: {12,48}

Original domain = {2, 4, ..., 998, 1000}

```
30
       32
          34
14 16 38 48
```

- Can use at most
 - 3 addresses in [2,12)
 - 3 addresses in (12,48)
 - **3** addresses in (48,1000]

AllDiff-Atmost({B1,B2,..,B5},3,[2,12))

AllDiff-Atmost({B1,B2,..,B5},3,(12,48))

AllDiff-Atmost({B1,B2,..,B5},3,(48,1000))

Reformulated domain

eformulated domain
$$\{.s_1, s_2, s_3, 12, s_4, s_5, s_6, 48, s_7, s_8, s_9.\}$$

Original domain $\{2, 4, ..., 10, 12, 14, ..., 46, 48, 30, ..., 998, 1000\}$

Constraint Systems Laboratory

AllDiff-Atmost reformulation

- Given AllDiff-Atmost(A, k, d)
 - The variables in \mathcal{A} can be assigned at most k values from the set d
- Replace
 - interval d of values (potentially infinite)
 - with k symbolic values

Nebraska Lincoln

AllDiff-Atmost constraint

- AllDiff-Atmost(A, k, d)
 - The variables in \mathcal{A} can be assigned at most k values from the set d

Three expansion slots

Nebraska Lincoln

Evaluation: domain reformulation

Reduced domain size → improved search performance

Case study	Phone-book completeness	Average domain size		Runtime [s]	
		Original	Reformulated	Original	Reformulated
NSeg125-i	45.6%	1103.1	236.1	2943.7	744.7
NSeg206-i	50.5%	1102.0	438.8	14,818.9	5533.8
SSeg131-i	60.3%	792.9	192.9	67,910.1	66,901.1
SSeg178-i	65.6%	785.5	186.3	119,002.4	117,826.7

Outline

- Background
- BID model & custom solver
- Reformulation techniques
 - Query reformulation
 - AllDiff-Atmost & domain reformulation
 - Constraint relaxation
 - Reformulation via symmetry detection
- Conclusions & future work

BID as a matching problem

Assume we have no grid constraints

Original BID is in P

BID w/o grid constraints

 BID instances without grid constraints can be solved in *polynomial time*

Case study	Runtime [s]				
	BT search	Matching			
NSeg125-c	139.2	4.8			
NSeg206-c	4971.2	16.3			
SSeg131-c	38618.3	7.3			
SSeg178-c	117279.1	22.5			
NSeg125-i	744.7	2.5			
NSeg206-i	5533.8	8.5			
SSeg131-i	38618.3	7.3			
SSeg178-i	117826.7	4.9			

BID w/ grid constraints

Matching reformulation exploited in two ways:

- 1. Domain filtering

 à la GAC of [Régin, 94]

 Edges that do not appear in any maximal matching indicate the values that can be filtered out from the domains
- Constraint-model relaxation
 Ignoring the grid constraint yields a necessary approximation of the BID

Filtering the CSP

Remove variable-value pairs that do not appear in any maximum matching

Before search: Preprocessing 1

During search: Look-ahead

Approximating the BID

Relaxed CSP is a *necessary approximation* of the BID Preprocessing 2

Matching reformulation in Solver

Filter CSP..

Preproc1

For every variable-value pair

Consider CSP + variable-value pair

If relaxed CSP is solvable

Preproc2

Find one solution using BT search At each instantiation, filter CSP

Lookahead

Evaluation: matching reformulation

Generally, improves performance

Case Study	ВТ	Preproc2 +BT	% (from BT)	Lkhd +BT	% (from BT)	Lkhd +Preproc1&2 + BT	% (from Lkhd+BT)
NSeg125-i	1232.5	1159.1	6.0%	726.6	41.0%	701.1	3.5%
NSeg206-c	2277.5	614.2	73.0%	1559.2	31.5%	443.8	71.5%
SSeg178-i	138404.2	103244.7	25.4%	121492.4	12.2%	85185.9	29.9%

Rarely, the overhead exceeds the gains

Case Study	ВТ	Preproc2 +BT	% (from BT)	Lkhd +BT	% (from BT)	Lkhd +Preproc1&2 + BT	% (from Lkhd+BT)
NSeg125-c	100.8	33.2	67.1%	140.2	-39.0%	29.8	78.7%
NSeg131-i	114405.9	114141.3	0.2%	107896.3	5.7%	108646.6	-0.7%

Outline

- Background
- BID model & custom solver
- Reformulation techniques
 - Query reformulation
 - AllDiff-Atmost & domain reformulation
 - Constraint relaxation
 - Reformulation via symmetry detection
- Conclusions & future work

Symmetric solutions in BID

Exploring symmetric solutions is time consuming

Goal: break symmetries to improve scalability

Symmetric maximum matchings

- All matchings can be produced from the symmetric difference of
 - a single matching and
 - a set of disjoint alternating cycles
 & paths starting @ free vertex

- Some symmetric solutions do not break grid constraints
 - Ignore symmetric solutions during search
- Some do, we do not know how to use them...

Conclusions

- We showed that the original BID problem is in P
- We proposed four reformulation techniques
- We described their usefulness for general CSPs
- We demonstrated their effectiveness on the BID

Lesson:

Reformulation is an effective approach to improve the scalability of complex combinatorial systems

Future work

- Empirically evaluate our new algorithm for relational (i,m)-consistency
- Exploit the symmetries we identified
- Enhance the model by incorporating new constraints

Questions?

