Consistency Methods for Temporal Reasoning

Berthe Y. Choueiry Constraint Systems Laboratory Department of Computer Science & Engineering University of Nebraska-Lincoln

Joint work with Lin Xu (currently Ph.D. student at UBC), Shi Yang, and Anagh Lal

Supported by

- a NASA-Nebraska grant,
- CAREER Award #0133568, and
- a gift from Honeywell Laboratories

Outline

- Background and motivation
- Contributions
- Future work

One-slide introduction to CSPs

Problem definition

- Given $\mathcal{P} = (\mathcal{V}, \mathcal{D}, C)$
 - \mathcal{V} : set of variables
 - \mathcal{D} : set of their domains

- *C* : set of constraints (relations) restricting the acceptable combination of values for variables
- Solution is a consistent assignment of values to variables
- Query: find 1 solution, all solutions, etc.

Solution techniques

- Constraint propagation (inference)
- Search (enumeration)
- Topic today: temporal networks

Reasoning about time

- Tom wants to serve tea
 - Cleaning the teapot: 2 min
 - Cleaning the tea cups: 5 min
 - Boiling the water:
 - Preparing tea:

8 min

10 to 15 min

- Useful for..
 - Executing plans, understanding stories, solving crimes...

Temporal reasoning in Al

- Philosophies of time
- Temporal logic
- Temporal constraint networks: events and time points
 - Qualitative relations: Before, after, during, etc.
 - Quantitative (metric) relations: 10 min before, 15 min duration, etc.

✓ Simple Temporal Problem (STP)

- Temporal Constraint Satisfaction Problem (TCSP)
- Disjunctive Temporal Problem (DTP)

Simple example

Tom has class at 8:00 a.m. Today, he gets up between 7:30 and 7:40 a.m. He prepares his breakfast (10-15 min). After breakfast (5-10 min), he drives to school (20-30 min). Will he be on time to class?

Simple Temporal Problem (STP)

- Variable: Time point for an event
- **Domain**: A set of real numbers
- **Constraint**: distance between time points [5, 10] $\Leftrightarrow 5 \le P_b - P_a \le 10$
- Algorithm: Floyd-Warshall, polynomial time

Constraint Systems Laboratory

Incoln

More complex example

Tom has class at 8:00 a.m. Today, he gets up between 7:30 and 7:40 a.m. He either makes his breakfast himself (10-15 min), or gets something from a local store (less than 5 min). After breakfast (5-10 min), he drives to school (20-30 min) or takes the bus (at least 45 min).

Possible questions

- Can Tom arrive school in time for class?
- Is it possible for Tom to take the bus?
- If Tom wanted to save money by making breakfast for himself and taking the bus, when should he get up?

Temporal CSP (TCSP)

- Variable, domain: same as STP
- **Constraint**: a disjunction of intervals $[0, 5] \cup [10, 15]$
- Algorithm: Backtrack search

Constraint Systems Laboratory

2/23/2007

Temporal networks: STP \subseteq TCSP \subseteq DTP

Simple Temporal Problem (STP)

• Each edge has a unique (convex) interval

Temporal CSP (TCSP)

- Each edge has a disjunction of intervals
- STP \subseteq TCSP [Dechter+, 91]

Disjunctive Temporal Problem (DTP)

- Each constraint is a disjunction of edges
- TCSP \subseteq DTP [Stergiou & Koubarakis, 00]

Solving the TCSP/DTP

- TCSP and DTP are NP-hard
- They are solved with backtrack search
- Every node in the search tree is an STP to be solved
- An exponential number of STPs to be solved ☺

Exploit the structure..

Simple Temporal Problem (STP)

- Floyd-Warshall, Bellman-Ford, DPC
- ΛSTP [Time 03]

Temporal CSP (TCSP)

- Search + ULT [Schwalb & Dechter 97]
- ∆AC, NewCyc, EdgeOrd
- [CP 03, AI Comm. 04]

Disjunctive Temporal Problem (DTP)

- Search + heuristics [S&K 00, O&C 00, Tsa&P 03]
- Some of our results are applicable

Algorithms for solving the STP

	Graph	Complexity	Consistency	Minimality
F-W	Complete	$\Theta(n^3)$	Yes	Yes
DPC [Dechter+, 91]	Triangulated	O (<i>nW</i> (<i>d</i>)²) very cheap	Yes	No
PPC [Bliek & S-H 99]	Triangulated	<i>O</i> (<i>n</i> ³) Usually cheaper than F-W/PC	Yes	Yes
∆STP	Triangulated	Always cheaper than PPC	Yes	Yes
BF/incBF [Cesta & Oddi, 96]	Source point is added	0 (<i>en</i>)	Yes	No

Consistency: Determine whether a solution exists
Minimal network: Make intervals as tight as possible

Constraint Systems Laboratory

Lincoln

Partial Path Consistency (PPC)

Known features of PPC

[Bliek & Sam-Haroud, 99]

- Applicable to general CSPs
- Triangulates the constraint graph
- In general, resulting network is not minimal
- For convex constraints, guarantees minimality
- Adaptation of PPC to STP
 - Constraints in STP are bounded difference, thus convex, PPC results in the minimal network

- Δ STP is a refinement of PPC
 - Simultaneously update all edges in a triangle
 - Propagate updates through adjacent triangles

Advantages of ΔSTP

- Cheaper than PPC and F-W
- Guarantees the minimal network
- Automatically decomposes the graph into its biconnected components
 - binds effort in size of largest component
 - allows parallellization
- Sweep through forth and back
 - Observed empirically, 2003
 - Explained by Nic Wilson @ 4C, 2005
 - Proved by Neil Yorke-Smith @ SRI, 2006

Finding the minimal STP

2/23/2007

Determining consistency of the STP

Solving the TCSP

[Dechter+, 00]

- Formulate TCSP as a meta-CSP
- Find all the solutions to the meta-CSP
- Use \triangle STP to solve the individual STPs efficiently
- But first, can we use some constraint propagation on the meta-CSP?

Preprocessing the TCSP

- Arc consistency
 - Single *n*-ary constraint
 - GAC is NP-hard

 ΛAC

- Works on existing triangles
- Poly # of poly constraints

AAC filters domains of TCSP

 ΔAC removes values that are not supported by the ternary constraint

For every interval in the domain of an edge, there must exist intervals in the domains of the 2 other edges such that the 3 intervals verify the triangle inequality rule

> 1,3 in e_3 has no support in e_1 and e_2 , ΔAC removes [1,3] from domain of e_3

Reduction of meta-CSP's size

Advantages of $\triangle AC$

- Powerful, especially for dense TCSPs
- Sound and cheap $O(n | E| k^3)$
- It may be optimal
 - Uses polynomial-size data-structures: Supports, Supported-by as in AC-4

Improving search for the TCSP

Constraint Systems Laboratory

2/23/2007

Checking new cycles: NewCyc

As a new edge is added at each step in search:

- Check the formation of new cycles O(|E|)
- Run Δ STP only when a new cycle is formed

Advantages of NewCyc

- Fewer calls to \triangle STP
- Operations restricted to new bi-connected component

Does not affect # of nodes visited in search

Edge ordering during search

- Order edges using triangle adjacency
- Priority list is a by product of triangulation

Advantages of EdgeOrd

- Localized backtracking
- Automatic decomposition of the constraint graph \rightarrow no need for explicit detection of articulation points e_1

Experimental evaluations

- New random generator for TCSPs
- Guarantees 80% existence of a solution
- Averages over 100 samples
- Networks are not triangulated

Constraint Systems Laboratory

2/23/2007

Expected (direct) effects

- Number of nodes visited (#NV)
 - $\Delta {\rm AC}$ reduces the size of TCSP
 - EdgeOrd localizes BT
- Consistency checking effort (#CC)
 - AP, $\Delta \text{STP},$ NewCyc reduce number of consistency checking at each node

Effect of $\triangle AC$ on #nodes visited

Constraint Systems Laboratory

2/23/2007

Cumulative improvement

Conclusions

- Contributions
 - $-\Delta {\rm STP},$ an (optimal?) algorithm for finding the minimal STP
 - $-\Delta$ AC, an (optimal?) algorithm for filtering the TCSP
 - NewCyc, EdgeOrd heuristics for improving search on the TCSP
- Lesson... as usual
 - Exploiting the structure of the network and the properties of the constraints allow us to introduce new efficient techniques

Algorithm	Performance Ranking		
	STP	TCSP	
$FW + AP$ $DPC + AP$ $BF + AP$ ΔSTP	worse better OK best	worse OK - -	
incBF + AP $\Delta STP + EdgeOrd + NewCyc$ incBF + AP + EdgeOrd + NewCyc	good - -	good better best	

- Use ΔAC as a look-ahead during search
- Investigate dynamic triangulation for dynamic edge ordering
- Investigate why IncBF of [Cesta and Oddi, 96] works so well with our heuristics NewCyc and EdgeOrd
- Test the results on the DTP

Pointers

• ΔSTP

[TIME 03]

- ΔAC [AI Communications 04]
- Solving the TCSP [CP 03]
 (ΔSTP, ΔAC, NewCyc, EdgeOrd)
- Δ STP vs. IncBF [Stdt ppr AAAI 04]
- All available from consystlab.unl.edu

Thank you for your attention

Time left for questions?

Constraint Systems Laboratory

2/23/2007

Al Seminar @ ISI

Additional slides

Constraint Systems Laboratory

2/23/2007

IncBF benefits from our work

2/23/2007

Computational problems

- **Solution:** Find a value for each variable satisfying all temporal constraints
- Minimal network: Make labels of binary constraints as tight as possible
- Consistency: Determine whether a solution exists

	STP	TCSP	DTP
Minimal network	Ρ	NP-hard	NP-hard
Consistency	Р	NP-complete	NP-complete

Algorithms for solving the STP

$(\mathbf{P_0})$	[90, 100] P ₁ [10, 15] [5, 10] P ₂				
Z	(P3) [20, 30] (120, 120]	Graph	Complexity	Consistency	Minimality
	F-W	Complete	Θ(n ³)	Yes	Yes
	DPC	Triangulated	O (nW (d) ²)	Yes	No
	[Dechter+, 91]		very cheap		
	PPC	Triangulated	O (<i>n</i> ³)	Yes	Yes
	[Bliek & S-H 99]		Usually cheaper than F-W/PC		
	∆STP	Triangulated	Always cheaper than PPC	Yes	Yes
	BF/incBF	Source point	O (en)	Yes	No
	[Cesta & Oddi, 96]	is added			
_	Constraint Systems Labo	VEDIASKA			

2/23/2007

Summary of contributions

- Δ STP, an algorithm for solving the STP
- △AC, a propagation algorithm for the TCSP
- Integration of the above with 2 new heuristics to improve search for solving the TCSP
 - New cycle check (NewCyc)
 - Edge ordering (EdgeOrd)
- Evaluations

An incremental version of BF (incBF)

When adding a constraint, incBF visits only nodes whose distance to origin is modified:

- Allows dynamic updates for both constraint posting & retraction.
- Localizes effects of change.
- Determines consistency of STP by does not yield the minimal network.
- Can detect inconsistency much earlier than BF by detecting negative cycles (*d0i* + *dio* < 0).
- Is useful for TCSP: incrementality is useful for checking the consistency of STPs in the search tree of the meta-CSP.

Point 0 is the source added to the constraint graph. incBF updates only affected distances, and detects inconsistency when revisiting a node

