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Abstract. We propose four new structural decomposition techniques
for Constraint Satisfaction Problems. We compare these four techniques
both theoretically and experimentally with hinge decomposition and hy-
pertree decomposition. Our experiments show that one of our techniques
offers the best trade-off between the computational cost of the decom-
position and the width of the resulting decomposition tree.

1 Introduction

Many important practical problems such as scheduling, resource allocation, and
product configuration can be modeled as a Constraint Satisfaction Problem
(CSP), which consists of a set of variables, the domains of these variables, and
a set of constraints over these variables restricting allowed combinations of val-
ues for variables. Although CSPs are in NP-complete in general, decomposition
techniques borrowed from the area of databases have been used to characterize
tractable classes of CSPs [1–4]. The basic principle is to decompose the CSP
into sub-problems that are organized in a tree structure. The subproblems are
then solved independently, and the solutions are propagated in a backtrack-free
manner along the tree [5] to yield a solution to the initial CSP, as described
by Dechter and Pearl [1]. We propose new decomposition techniques and posi-
tion them in the context of the hierarchy specified by Gottlob et al. [4], which
unifies main decomposition strategies and compares them in terms of general-
ity. The main techniques are biconnected decomposition (BICOMP) [6], hinge
decomposition (HINGE) [2, 3], tree clustering (TCLUSTER) [1], hinge decom-
position combined with tree clustering (HINGETCLUSTER) [2], and hypertree
decomposition (HYPERTREE) [7]. These techniques can be further character-
ized by their computational complexity and the width of the tree they generate
(which is the size of the largest sub-problem in the tree). Among the above
methods, HYPERTREE is the most general and yields trees with the smallest
possible width. However, it remains costly in practice even though its complexity
is polynomial [8] (see experiments in Section 8). HINGE is a more efficient but
less general strategy than HYPERTREE. In this paper, we generalize HINGE
into HINGE+, and introduce CUT as a variation of HINGE. Further, we pro-
pose a new technique, TRAVERSE, which we combine with CUT to yield a



new technique CaT. In summary, HINGE+ generalizes HINGE, and CaT gen-
eralizes CUT. We evaluate our new techniques theoretically and empirically on
randomly generated hypergraphs. Our experiments show that CaT provides the
best trade-off between the width of the generated tree and the computational
cost of the decomposition.

This paper is organized as follows. Section 2 reviews the preliminaries of
CSPs. Section 3 introduces HINGE+. Section 4 describes CUT, which is a vari-
ation of HINGE+. Section 5 introduces a new technique called TRAVERSE.
Section 6 combines CUT and TRAVERSE into CaT. Section 7 establishes the
formal relationships among these techniques, and also with respect to HINGE
and HYPERTREE. Section 8 demonstrates the effectiveness of CaT on randomly
generated problems. Finally, Section 9 concludes the paper.

2 Background

A CSP is defined as a tuple P = (V ,D, C), where V is a set of variables, D is a
set of value domains for the variables, and C is a set of constraints that restrict
the acceptable combination of values to variables. Every constraint Ci ∈ C is a
relation over a set Si ⊆ V of variables, and specifies the set of allowed tuples
as a subset of the Cartesian product of the domains of Si. We denote the set of
variables involved in constraint Ci by Scope(Ci), and the union of the scopes of
a set of constraints {Ci} by Var({Ci}). A solution to the CSP is an assignment
of values to all variables such that all the constraints are simultaneously satis-
fied. The CSP can be represented by its associated constraint hypergraph. The
constraint hypergraph of a CSP P = (V ,D, C) is given by H = (V ,S), where
S is a set of hyperedges corresponding to the scopes of the constraints in the
CSP. Figure 1 shows the hypergraph Hcg of a CSP with 22 variables and 16
constraints. The primal graph of a constraint hypergraph H = (V ,S) is a graph
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Fig. 1. A constraint hypergraph Hcg.
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Fig. 2. The primal graph of Hcg .

G = (V , E), where E is a set of edges relating any 2 variables that appear in
the scope of a constraint in the CSP. Figure 2 shows the primal graph of Hcg.
Further, we say that a hypergraph is connected when its corresponding primal
graph is connected. Each connected component of the primal graph defines a
connected component of the hypergraph.

Acyclic CSPs are those CSPs whose associated constraint hypergraph is
acyclic. A constraint hypergraph H is acyclic iff its primal graph G is chordal
(i.e., every cycle of length at least 4 has an edge connecting 2 non-adjacent ver-
tices) and conformal (i.e., there is a one-to-one mapping between each maximal



clique of the primal graph and the scope of the constraints) [9]. The constraint
hypergraph Hcg shown in Figure 1 is not acyclic.

Following [10], a join tree JT (H) for a constraint hypergraph H is a tree
whose nodes are the edges of H such that whenever the same vertex X ∈ V
appears in 2 hyperedges s1 and s2 ∈ S, then s1 and s2 are connected, and X

appears in each node on the unique path linking s1 and s2 in JT (H). In other
words, the set of nodes in which X appears includes a (connected) subtree of
JT (H). The width d of a join tree is the maximum number of hyperedges in all
the nodes of the join tree. Figure 3 shows a join tree of Hcg of width d=2. The
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Fig. 3. A join tree of Hcg.

principle of structural decomposition techniques is to compute an equivalent join
tree for a given constraint hypergraph. Each node in this tree is a sub-problem
for which we find all solutions, then, while applying directional arc-consistency
to the join tree, we can solve the CSP in a backtrack-free manner [1, 2]. The
complexity of solving the sub-problems is O(|S|ldd log l), where l is the maximum
size of a constraint in S and d the width of the join tree [2]. Gottlob et al. [4]
defined a set of criteria for comparing decomposition methods, where C(Di, k)
is a class of CSPs for which there exists a decomposition of width ≤ k by the
decomposition method Di that can be solved in polynomial time. These criteria
are as follows (taken verbatim from [4]):

1. Generalization. D2 generalizes D1 if there exists a constant δ ≥ 0 such that,
for each level k, C(D1, k) ⊆ C(D2, k+δ) holds. In practical terms, this means
that whenever a class C of constraints is tractable according to method D1,
it is also tractable according to D2.

2. Beating. D2 beats D1 if there exists an integer k such that C(D2, k) 6⊆
C(D1, m) for any m. Intuitively, this means that some classes of problems
are tractable according to D2 but not according to D1.

3. Strong generalization. D2 strongly generalizes D1 if D2 generalizes D1 and
D2 beats D1. This means that D2 is really the more powerful method given
that, whenever D1 guarantees polynomial runtime for constraint solving,
then D2 also guarantees tractable constraint solving. However, there are
classes of constraints that can be solved in polynomial time by using D2 but
are not tractable according to D1.

4. Strongly incomparable. D1 and D2 are strongly incomparable if both D1

beats D2 and D2 beats D1.

Figure 4 shows the hierarchy developed by Gottlob et al. [4] based on the above
comparision criteria. Whenever two decomposition methods are not related by
a directed path, they are strongly incomparable.
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Fig. 4. The hierarchy of constraint tractability of [4].

3 Hinge+ decomposition (HINGE+)

In this section, we introduce HINGE+ as an improvement of HINGE. As speci-
fied by Gyssens et al. [2], HINGE decomposes the constraint hypergraph into a
join tree where each node (called 1-hinge) is a set of hyperedges and 2 nodes that
are adjacent in the tree share exactly one hyperedge. Figure 5 shows a decompo-
sition of Hcg of Figure 1 by HINGE where d = 12. The resulting decomposition
guarantees a set of properties (i.e., inheritance, decomposition, and insepara-
bility) that they define. They also attempted to generalize their approach to
k-hinges, where a k-hinge is a node in the join tree connected to other nodes
with at most k hyperedges. However, they showed that their algorithm for 1-
hinge cannot be generalized to achieve a correct result. The width of the join
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Fig. 5. Applying HINGE to Hcg.
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tree of Figure 5 is particularly high. We noticed that by allowing the nodes of
the tree to connect through more than 1 hyperedge (as suggested by k-hinge of
Jeavons et al. [3]), we can obtain a finer decomposition such as the one shown
in Figure 6. We introduce 3 important definitions, which we will use to define
HINGE+, our improvment on HINGE:

Definition 1. Remain-hg(F,S). Given a connected constraint hypergraph H =
(V ,S) and a set of hyperedges F ⊆ S, we define Hr = (Vr,Sr), denoted Remain-

hg(F,S), as the remaining constraint hypergraph obtained after removing F from
S. More formally: Vr = V \ Var(F ) and Sr =

⋃
h∈S h \ Var(F ).



Definition 2. i-cut. Given a connected constraint hypergraph H = (V ,S) where
|S| ≥ i + 1, an i-cut of H is a set of hyperedges F such that:

1. F ⊂ S and |F | = i; and

2. Remain-hg(F , S) has at least 2 components.

Definition 3. Max-Size(F , H). Given an i-cut F of a constraint hypergraph
H = (V ,S), Max-Size(F , H) is the largest number of hyperedges in a connected
component in Remain-hg(F,H).

Given a constraint hypergraph H, HINGE continuously finds 1-cuts (connecting
1-hinges). We improve HINGE by finding 1-cuts through k-cuts, where k is a
specified maximum cut-size. The difficulty here is to choose among the i-cuts for
a given i (1< i ≤ k), as there may be more than one possible choice. We solve
this problem by choosing the i-cut that yields the minimum value of Max-Size.
Now we define the join tree resulting from HINGE+:

Definition 4. k-hinge+-tree. Given a constraint hypergraph H = (V ,S), a k-
hinge+-tree of H is a tree, T = (N, A), with nodes N and labeled arcs A, such
that:

1. For each tree node, p ⊆ S;

2. For each hyperedge h ∈ S, there exists a tree node p such that h ∈ p;

3. For 2 adjacent tree nodes p1 and p2, there exists an i-cut C (1≤ i ≤ k) such
that Var(p1) ∩ Var(p2) = Var(C); and

4. For each variable Y ∈ V, the set {p ∈ N | Y ∈ Var(p)} induces a connected
subtree of T .

Given a constraint hypergraph H and a constant number k, which is the max-
imum cut size, HINGE+ (see Algorithm 1) returns a k-hinge+-tree by finding
1-cuts through k-cuts. The worst case of the algorithm occurs when there are
no i-cuts 1≤ i ≤ (k − 1). In this case, line 11 loops at most |S|k times, and
each loop can be performed in O(|V||S|) time. Therefore, the worst-case time
complexity of HINGE+ is O(|V||S|k+1). Since k is used to limit the cut size,
Algorithm 1 remains polynomial. Figure 7 shows a 2-hinge+-tree for Hcg.
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Fig. 7. Applying HINGE+ to Hcg with k = 2.



Input: A hypergraph H = (V,S) and a maximum cut-size k.

Output: An k-hinge+-tree T for (V,S).

1 i← 1;
2 Scuts ← ∅;
3 Ni ← {S};
4 Mark every hyperedge in S as ‘unchosen’;
5 foreach j from 1 to k step by 1 do
6 Mark the nodes in Ni as j-non-minimal;
7 while not all nodes of Ni are marked j-minimal do
8 Choose a j-non-minimal node F in Ni;
9 j-combinations ← all combinations of j ‘unchosen’ hyperedges in F ;

10 j-cuts ← ∅;
11 foreach j-combination X ∈ j-combinations do
12 Γ ← {G ∪X | G is a connected component in Remain-hg(X,F )};
13 if (|Γ | > 1) and (∀Cq ∈ {Scut | (Scut ∈ Scuts) and (Scut ⊆ F )},

∃Γp ∈ Γ such that Cq ⊆ Γp) then
14 j-cuts ← j-cuts ∪ {X};

end
end

15 if j-cuts 6= ∅ then
16 choose a j-cut C with smallest Max-Size(j-cut, F );
17 Mark the hyperedges in C as ‘chosen’;
18 Scuts ← Scuts ∪ {C};
19 Γ ← {G ∪ C | G is a connected component in Remain-hg(C,F )};
20 Ni+1 ← (Ni \ {F}) ∪ Γ ;
21 Mark C as a j-cut of every element in Γ ;
22 Let γ: {FN1, . . . , FNq} → Γ such that ∀FNi ∩ γ(FNi) 6= ∅;
23 Ai+1 ← (Ai \ {({F, F ′}, C) | ({F, F ′}, C) ∈ Ai})

∪{({γ(FN), FN}, C) | ({F, FN}, C) ∈ Ai}
∪{({Γ0, Γy}, C) | Γ0 is an arbitrary chosen element from Γ ,

Γy ∈ Γ and Γy 6= Γ0};
24 Mark all the new nodes added to Ni+1 as j-non-minimal;

else
25 Mark F as j-minimal;

end
26 i← i + 1;

end
end

27 T ← (Ni, Ai);

Algorithm 1: HINGE+.



4 Cut decomposition (CUT)

In this section, we introduce CUT as a variation of HINGE+. The arcs incident
to every node in the equivalent join tree of a constraint hypergraph obtained by
CUT are labeled by at most 2 distinct cuts. For HINGE+, the arcs incident to
a given node in an equivalent join tree of a constraint hypergraph obtained by
HINGE+ can be labeled by more than 2 distinct cuts. For example, in the join
tree of Figure 7, the arcs incident to the node {s4, s5, s6, s11, s12} are labeled
with three different cuts, namely {s4, s5}, {s6, s12}, and {s11}. The algorithm of
CUT is obtained by replacing the conditions in line 13 with the following ones:

1. |Γ | > 1;
2. For ∀Cq ∈ {Scut | (Scut ∈ Scuts) and (Scut ⊆ F )}, there exists Γp ∈ Γ such

that Cq ⊆ Γp; and
3. For every 2 sets of hyperedges Ci and Cj ∈ Scuts, if Ci 6= Cj , and Ci ⊆

Γi, Cj ⊆ Γj , then Γi 6= Γj .

The above conditions guarantee that no more than 2 cuts label the arcs incident
to a node in the join tree obtained by CUT. (This feature allows us to further
traverse each tree node from one cut to another cut and is exploited in Section 5.)
The complexity of CUT is the same as that of HINGE+. Figure 8 shows the result
of applying CUT (the maximum cut size k is 2) to the constraint hypergraph
Hcg shown in Figure 1.
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Fig. 8. Applying CUT to Hcg.

5 Traverse decomposition (TRAVERSE)

In this section, we introduce a simple sweep-like decomposition technique called
TRAVERSE. We describe two variations of TRAVERSE: TRAVERSE-I and
TRAVERSE-II. TRAVERSE-I takes a constraint hypergraph and one set of hy-
peredges in it, and ‘sweeps’ through the hypergraph from the set of hyperedges
to generate an equivalent join tree of the constraint hypergraph. TRAVERSE-II
takes a constraint hypergraph and 2 sets of hyperedges from the hypergraph and
‘sweeps’ through the constraint hypergraph from the first set of hyperedges to the
second set of hyperedges to generate an equivalent join tree of the constraint hy-
pergraph. For convenience, we first introduce the definition of Neighbors(F,S)
that will be used in Algorithm 2 and Algorithm 3.

Definition 5. Neighboring hyperedges. The neighboring hyperedges of a set of
hyperedges F in a constraint hypergraph H = (V ,S) with F ⊆ S, denoted
Neighbors(F,S), is a set given by:

{e | e ∈ F, e 6⊆ F, and Var({e}) ∩ Var(F ) 6= ∅}. (1)



Given a constraint hypergraph H = (V ,S) and a set of hyperedges F ⊆ S,
TRAVERSE-I returns a unique join tree obtained by Algorithm 2 via ‘sweep-
ing’ through the constraint hypergraph starting from the hyperedges in F . We
denote Traverse-I(H, F ) the result obtained by applying Algorithm 2 with F

on H. The loop in line 7 of Algorithm 2 executes at most |S| times, and each

Input: a constraint hypergraph H = (V,S) and a set of hyperedges F ⊆ S .

Output: an equivalent join tree T for H.

1 N ← ∅; A← ∅;
2 Mark any hyperedge e ∈ S as ‘unvisited’;
3 Fv ← {e | Var({e}) ⊆ Var(F )};
4 N ← N ∪ {Fv};
5 Fjv ← Fv;
6 Mark any hyperedge in Fjv as ‘visited’;
7 while not all hyperedges in S are ‘visited’ do
8 F ′ ← Neighbors(Fjv, the set of all ‘unvisited’ hyperedges);
9 Fv ← {e | Var(e) ⊆ Var(F ′) };

10 N ← N ∪ {Fv};
11 A ← A ∪ {(Fjv , Fv)};
12 Fjv ← Fv;
13 Mark every hyperedge in Fjv as ‘visited’;

end
T ← (N, A);

Algorithm 2: TRAVERSE-I.

execution can be performed in O(|V||S|) time. Therefore, the worst-case time
complexity of TRAVERSE-I is O(|V||S|2). Figure 9 shows the join tree com-
puted by TRAVERSE-I starting from {s1} in Hcg. Because it ‘sweeps’ through
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Fig. 9. Applying TRAVERSE-I to Hcg

from {s1}.
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Fig. 10. Applying TRAVERSE-II to
Hcg from {s1} to {s9, s16}.

the constraint hypergraph, TRAVERSE always computes a join tree that is a
connected chain, provided the constraint hypergraph is connected. The result of
the decomposition depends on F , the starting set of hyperedges. If we traverse
Hcg of Figure 1 starting from {s6, s9, s12}, Algorithm 2 would yield a join tree
of width d = 10. Starting from {s1}, the width is d = 3 (see Figure 9).

Our goal is to combine CUT with TRAVERSE to improve the k-hinge+-tree
computed by CUT (Section 6). To this end, we introduce TRAVERSE-II (Al-
gorithm 3), which allows us to sweep the constraint hypergraph between 2 cuts.
TRAVERSE-II takes a constraint hypergraph and 2 sets of hyperedges, and

then sweeps through the constraint hypergraph from the first set of hyperedges
to the second set of hyperedges to generate an equivalent join tree of this con-
straint hypergraph. We denote Traverse-II(H, C1, C2) the result of applying



Input: a constraint hypergraph H = (V,S), a set of hyperedges C1 and another
set of hyperedges C2.

Output: an equivalent join tree T for H.

1 N ← ∅; A← ∅;
2 Mark any hyperedge e ∈ S as ‘unvisited’;
3 Fd ← {e | Var(e) ⊆ Var(C2)};
4 Fv ← {e | Var(e) ⊆ Var(C1)};
5 N ← N ∪ {Fv};
6 Mark any hyperedge in Fjv as ‘visited’;
7 while (Fv 6= Fd) and (not all hyperedges in S are ‘visited’) do
8 F ′ ← Neighbors(Fjv \ Fd, the set of all ‘unvisited’ hyperedges ∪Fd );
9 Fv ← {e | Var(e) ⊆ Var(F ′)};

10 N ← N ∪ {Fv};
11 A ← A ∪ {(Fjv , Fv)};
12 Fjv ← Fv;
13 Mark every hyperedge in Fjv as ‘visited’;

end
T ← (N, A);

Algorithm 3: TRAVERSE-II.

TRAVERSE-II to H from C1 to C2. Figure 10 shows the join tree obtained by
applying TRAVERSE-II to Hcg from {s1} to {s9, s16}. The loop in line 7 of
Algorithm 3 executes at most |S| times, and each iteration can be performed in
O(|V||S|) time. Therefore, the complexity of TRAVERSE-II is O(|V||S|2).

6 Cut-and-Traverse decomposition (CaT)

In this section, we introduce CaT, which combines CUT with TRAVERSE. The
algorithm of CaT is given in Algorithm 4. Given a constraint hypergraph
H = (V ,S) and a maximum cut size k, Algorithm 4 first applies CUT to H
and generates a k-hinge+-tree in which the arcs incident to any tree node are
labeled with at most 2 cuts. This step can be implemented in O(|V||S|k+1)
time. Then, Algorithm 4 applies either TRAVERSE-I or TRAVERSE-II to ev-
ery tree node in the k-hinge+-tree and generates a set of sub-join trees. Finally,
the algorithm combines these sub-join trees into 1 join tree. The traverse pro-
cess can be performed in O(|V ||S|2) time. Therefore, the complexity of CaT is
O(|V||S|k+1 + |V ||S|2). Since k ≥ 1, the complexity of CaT is O(|V||S|k+1).

Note that the HYPERTREE algorithm computes an optimal hypertree of H
that has a width within a given bound d; the algorithm returns failure if no such
decomposition exists [10]. In CaT, the constant k restricts the maximum cut size
but does not restrict the width of the generated join tree. Figure 11 and Figure 12
show the equivalent join trees of Hcg computed by CaT and HYPERTREE. In
this case, the widths of the join trees obtained by CaT and HYPERTREE are
both equal to 2.



Input: A hypergraph H = (V,S) and a maximum cut-size k.

Output: An equivalent join tree T for H.

Cut H into a tree with tree nodes P1, . . ., Pm by CUT;
N ← ∅; A← ∅;
foreach i from 1 to m do

switch the number of cuts labeling the arcs incident to Pi;
do

case 0
(Ni, Ai)← Traverse-I(Pi, any hyperedge in Pi)

case 1
/* C is the only cut labeling the arc incident to Pi */
(Ni, Ai)← Traverse-I(Pi, C)

case 2
/* C1 and C2 are the cuts labeling the arcs incident to Pi */
if the width of Traverse-II(Pi, C1, C2) ≤ the width of
Traverse-II(Pi, C2, C1) then

(Ni, Ai)← Traverse-II(Pi, C1, C2)

else
(Ni, Ai)← Traverse-II(Pi, C2, C1)

end

end
N ← N ∪ {Ni};
A← A ∪ {Ai};

end
T ← (N, A);

Algorithm 4: CaT.

7 Characterization

In this section, we compare our 4 techniques with HINGE and HYPERTREE in
terms of the criteria proposed by Gottlob et al. [4]. Then, we integrate our results
into their hierarchy shown in Figure 4. Finally, we summarize the complexity of
all six techniques.

First, we introduce two special classes of constraint hypergraphs borrowed
from [4]: Circle(n) (see Figure 13) and book(n) (see Figure 14). These graphs are
defined as follows. For any n ≥ 3, Circle(n) is a constraint hypergraph having
n hyperedges {h1, . . . , hn} such that: hi = {Xi, Xi+1} for ∀1 ≤ i ≤ n − 1 and
hn = {Xn, X1}. For any n > 0, book(n) is a constraint hypergraph with 2n + 2
vertices and 3n + 1 hyperedges that form n squares (pages of the book) with
exactly one common edge {X, Y }. The hyperedges are defined as follows:

– b0 = {X, Y };
– b3i+1 = {X, Xi} for ∀1 ≤ i ≤ n;
– b3i+2 = {Xi, Yi} for ∀1 ≤ i ≤ n; and
– b3i+3 = {Yi, Y } for ∀1 ≤ i ≤ n.
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Theorem 1. HINGE+ strongly generalizes HINGE.

Proof. (HINGE+ beats HINGE.) Consider the graph Circle(n) for some n ≥ 3.
It is easy to see that the HINGE width of Circle(n) is n, while its HINGE+ width
(with a maximum cut size of 2) is no greater than 4. Hence,

⋃
n≥3

{Circle(n)}

⊆ C(HINGE+, 4), while
⋃

n≥3
{Circle(n)} 6⊆ C(HINGE, k) holds for every k > 0.

Therefore, HINGE+ beats HINGE. (HINGE+ generalizes HINGE.) It is easy to
see that HINGE is a special case of HINGE+ when the maximum cut size is 1.
Thus, for ∀I ⊆ C(HINGE, k), I ⊆ C(HINGE+, k) holds. 2

Theorem 2. HYPERTREE generalizes HINGE+.

Proof. It is obvious that ∀I ⊆ C(HINGE+, k), I ⊆ C(HYPERTREE, k) holds.
2

Theorem 3. CaT generalizes CUT.

Proof. The first phase of CaT is CUT. The second phase of CaT further decom-
poses each tree node of the join tree obtained by CUT. It is easy to see that
∀I ⊆ C(CUT, k), I ⊆ C(CaT, k) holds. 2

Theorem 4. HYPERTREE generalizes CaT.

Proof. It is obvious that ∀I ⊆ C(CaT, k), I ⊆ C(HYPERTREE, k) holds. 2

Theorem 5. HYPERTREE strongly generalizes TRAVERSE.



Proof. (HYPERTREE generalizes TRAVERSE.) It is obvious that ∀ I ⊆ C(TRAVERSE,
k), I ⊆ C(HYPERTREE, k) holds. (HYPERTREE beats TRAVERSE.) Con-
sider the graph book(n) for some n ≥ 1, it is easy to see that the TRAVERSE
width of book(n) is greater than dn

2
e, while its HYPERTREE width is 2. Hence,⋃

n≥1
{book(n)} ⊆ C(HYPERTREE, 2), while

⋃
n≥1

{book(n)} 6⊆ C(TRAVERSE,
k) for every k > 0. 2

Theorem 6. HINGE and TRAVERSE are strongly incomparable.

Proof. (HINGE beats TRAVERSE.) Consider the graph book(n) for some n ≥
1, it is easy to see that the TRAVERSE width of book(n) is greater than
dn

2
e, while its HINGE width is 4. Hence,

⋃
n≥1

{book(n)} ⊆ C(HINGE+, 4),
while

⋃
n≥1

{book(n)} 6⊆ C(HINGE, k) for every k > 0. (TRAVERSE beats
HINGE.) Consider the graph Circle(n) for some n ≥ 3. It is easy to see that
the HINGE width of Circle(n) is n while its TRAVERSE width (from an ar-
bitrary chosen hyperedge) is 2. Hence,

⋃
n≥3

{Circle(n)} ⊆ C(TRAVERSE, 2),
while

⋃
n≥3

{Circle(n)} 6⊆ C(HINGE, k) holds for every k > 0. Therefore, TRA-
VERSE beats HINGE. 2

Theorem 7. CUT beats TRAVERSE.

Proof. Consider the graph book(n) for some n ≥ 1, it is easy to see that the
TRAVERSE width of book(n) is greater than dn

2
e, while its CUT width is 4.

Hence,
⋃

n≥1
{book(n)} ⊆ C(CUT, 4), while

⋃
n≥1

{book(n)} 6⊆ C(TRAVERSE,
k) for every k > 0. 2

Theorem 8. CaT beats TRAVERSE.

Proof. Consider the graph book(n) for some n ≥ 1, It is easy to see that the
TRAVERSE width of book(n) is greater than dn

2
e while its CaT width (with

the maximum cut size being 2) is 2. Hence,
⋃

n≥1
{book(n)} ⊆ C(CaT, 2), while⋃

n≥1
{book(n)} 6⊆ C(TRAVERSE, k) for every k > 0. 2

Theorem 9. HINGE+ beats TRAVERSE.

Proof. Consider the graph book(n) for some n ≥ 1, it is easy to see that the
TRAVERSE width of book(n) is greater than dn

2
e, while its HINGE+ width is 4.

Hence,
⋃

n≥1
{book(n)} ⊆ C(HINGE+, 4), while

⋃
n≥1

{book(n)} 6⊆ C(TRAVERSE,
k) for every k > 0. 2

Theorem 10. CUT beats HINGE.

Proof. Consider the graph Circle(n) for some n ≥ 3. It is easy to see that the
HINGE width of Circle(n) is n, while its CUT width (with maximum cut size
being 2) is 2. Hence,

⋃
n≥3

{Circle(n)} ⊆ C(CUT, 2), while
⋃

n≥3
{Circle(n)}

6⊆ C(HINGE, k) holds for every k > 0. Therefore, CUT beats HINGE. 2



The above theorems implied that CaT beats HINGE and HYPERTREE general-
izes CUT. The relationships between HINGE+ and CUT and between HINGE+

and CaT are still need to be investigated. Figure 15 summarizes the main rela-
tionships studied above. The solid directed edge from D1 to D2 indicates that
D2 strongly generalizes D1. The dotted directed edge from D1 to D2 indicates
D2 generalizes D1. Note that the picture is incomplete. Table 1 summarizes the
complexity of the techniques shown in Figure 15.

HYPERTREE
[Gottlob et al., 2002]

+HINGE

HINGE
[Gyssens et al., 1994]

CaT

CUT

TRAVERSE
D2 indicates thatD1

D2 is more general than D

D2 is strongly more general than D 1

D2 indicates thatD1

1

Fig. 15. Illustrating the relationships between the various studied techniques.

Table 1. Complexity of decomposition methods.
Technique Complexity

HYPERTREE
Normal form: opt-d-decomp [7] O(|S|2d|V|2)
Reduced normal form [8] Best case: O(|S|d|V|+ |S|2|V|)

HINGE O(|V||S|2)

HINGE+ O(|V||S|k+1)

CUT O(|V||S|k+1)

TRAVERSE O(|V||S|2)

CaT O(|V||S|k+1)

Solving the CSP after decomposition O(|S|ldd log l)

|V|: number of variables (i.e., vertices) .
|S|: number of constraints (i.e., hyperedges) .
d: width of the join tree resulting from a decomposition .
k: maximum cut-size .
l: maximum size of a constraint in S .

8 Preliminary experiments

In order to assess empirically the above techniques, we compared their perfor-
mance on randomly generated hypergraphs in terms of two criteria: the CPU
time for computing the decompositions and the width of the resulting join tree.
For HYPERTREE, we used the algorithm of Harvey and Ghose [8], which im-
proves on the opt-k-decomp algorithm of Gottlob et al. [10]. By starting with
k=1 and incrementing its value by 1 until it finds decomposition, the algorithm
we used guarantees an optimal decomposition. We generated random hyper-
graphs setting the number of constraints to 10, 11, 12, and 13. In each instance,
we chose the arity of the constraints randomly in {2, 3, 4}. Table 2 summarizes
the constraint hypergraphs used in the experiments. We set the maximum cut
size k=2 for HINGE+, CUT, and CaT. Figure 16 and Figure 17 show, for a



fixed number of constraints, the average CPU times and average widths of the
generated join trees. Figure 16 and Figure 17 show the average CPU times and
average widths of different decomposition techniques. Table 3 averages these
results over all 4000 instances generated.

Table 2. Constraint hypergraphs used in the experiments.

# constraints # variables # instances

10 {16, 17, . . ., 25} 1000 (100 instances for each fixed number of variables)

11 {18, 19, . . ., 27} 1000 (100 instances for each fixed number of variables)

12 {20, 21, . . ., 29} 1000 (100 instances for each fixed number of variables)

13 {22, 23, . . ., 31} 1000 (100 instances for each fixed number of variables)
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Table 3. Average results over all 4000 instances.

Comparison criteria HINGE HINGE+ CUT TRAVERSE CaT HYPERTREE
Average

CPU time [msec] 0.400 2.786 2.428 0.130 2.640 400.900

Width 2.425 2.332 2.367 4.547 1.273 1.225

From these experiments, we have the following observations:

For CPU time,

TRAVERSE < HINGE < CUT ≈ CaT ≈ HINGE+ � HYPERTREE.
TRAVERSE is the quickest technique followed by HINGE then CaT, HINGE+,
and CUT, which have comparable values for the CPU time. All techniques
are significantly quicker than HYPERTREE. Indeed, the computationally
cost of HYPERTREE is prohibitively high although its worst-case time com-
plexity is polynomial.

For width,

HYPERTREE ≈ CaT< HINGE+ ≈ CUT ≈ HINGE < TRAVERSE.
The join tree obtained with TRAVERSE has the largest width. The average
widths of the join tree generated by HINGE+ and CUT are smaller than
that of the join tree generated by HINGE. However, the differences of these
values are within 4%. The widths of the join trees generated by CaT and HY-
PERTREE differ by only 4%, which is negligible. Also, they are significantly
smaller than those generated by the remaining techniques.



In summary, CaT offers the best trade-off between the CPU time and the width
of the computed join tree among the decomposition methods tested.

9 Conclusion

In this paper, we proposed two main new structural decompositions: HINGE+

and CaT. HINGE+ strongly generalizes HINGE of Gyssens et al. [2]. CaT is built
by combining CUT (a variation of HINGE+) and TRAVERSE (a sweep-like
decomposition techniques). We compared these techniques among themselves
and with HINGE and HYPERTREE both theoretically and experimentally. Our
experiments showed that the CaT offers the best trade-off between cost and
quality of the resulting decomposition.

In the future, we plan to address the following issues: (1) Compare our tech-
niques with the remaining techniques shown in Figure 4; and (2) Perform exper-
iments on special types of graphs (e.g., small-world graphs and clustered graphs)
and real-world problems (e.g., the ones used in [11]).
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