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ABSTRACT
In this paper, we propose visualizations that track the progress
and behavior of backtrack search when solving an instance
of a Constraint Satisfaction Problem. The goal of our visual-
izations is to provide insight in the difficulty of the particular
instance at hand as well as in the effectiveness of various
strategies for enforcing consistency during search. To this
end, our visualizations track the number of backtracks and
the number of calls to a consistency algorithm per depth of
the search tree and superimpose the two measures while dis-
tinguishing effective and wasteful consistency calls. Using
these numbers, we automatically derive qualitative regimes
summarizing the evolution of the search process over time.
We show that these instruments provide new insights into the
performance of search on a particular instance and into the
effectiveness of the various strategies for enforcing consis-
tency during search. We present WORMHOLE, an extendable,
solver-agnostic visualization tool that we built as a platform
to implement these mechanisms. Currently WORMHOLE pro-
vides a ‘post-mortem’ analysis of search, but our ultimate
goal is to provide an ‘in-vivo’ analysis and allow the user to
intervene and guide the search process.

ACM Classification Keywords
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faces; I.2.8 Artificial Intelligence: Problem Solving, Control
Methods, and Search
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INTRODUCTION
In this paper, we propose a new perspective and visualization
tools to understand and analyze the behavior of the backtrack-
search procedure for solving Constraint Satisfaction Problems
(CSPs). Backtrack search is currently the only sound and com-
plete algorithm for solving CSPs. However, its performance is
unpredictable and can differ widely on similar instances. Fur-
ther, maintaining a given consistency property during search
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has become a common practice and new strategies for dynam-
ically switching between consistency algorithms are being
investigated [2, 3, 4, 8, 12, 13, 15, 19, 23, 24, 33, 35, 36, 41].
While consistency algorithms can dramatically reduce the size
of the search space, their impact on the CPU cost of search can
vary widely. This cost is currently poorly understood, hard to
predict, and difficult to control.

In this paper, we propose three tools and their visualizations
as a first step towards graphically summarizing and explaining
the performance of search:

1. We track the number of backtracks per depth (BpD) at each
level of the search process to understand where and how
search struggles and where it smoothly proceeds.

2. To understand the impact of enforcing a given consistency
property, we track the number of calls to the consistency al-
gorithm per depth (CpD) in the search tree. Further, we split
these calls into three categories: those that yield domain
wipeout (i.e., detect inconsistency), those that effectively
filter domains without detecting a dead-end, and those that
yield no filtering (i.e., constitute a wasted effort).

3. To summarize the behavior of search over time, we structure
the the temporal evolution of the above two measurements
into a history of qualitatively equivalent regimes by using
three criteria that characterize growth rate and shape evolu-
tion.

We implement the above mechanisms in a visualization system
called WORMHOLE that allows users to interactively exam-
ine the performance of search and graphically compare the
performance of various consistency algorithms on the same
instance. WORMHOLE is a first step towards building a library
of visualization tools aimed at providing an insight into the
strengths and weaknesses of current algorithms for solving
CSPs.

While our system does not generate verbal explanations, we
claim that the graphical tools that it provides directly ‘speak’
to a user’s intuitions. Our long-term goal is to allow users to
actively intervene in the search process itself, trying alterna-
tives and mixing strategies while observing their effects on the
effectiveness of problem solving.

This paper is structured as follows. We first review background
information and the relevant literature. Then, we describe our
two core contributions, namely, the visualizations and the
structuring of the evolution of search into regimes of equiva-
lent behaviors. We illustrate the usefulness of each of these

http://dx.doi.org/10.475/123_4


Und
er

Rev
iew

two contributions with a case study. Finally, we describe the
architecture of WORMHOLE and conclude this paper.

BACKGROUND
Constraint Satisfaction Problems (CSPs) are used to model
many combinatorial decision problems of practical importance
in Computer Science, Engineering, and Management. A CSP
is defined by a tuple (X ,D,C), where X is a set of variables, D
is the set of the variables’ domains, and C a set of constraints
that restrict the combinations of values that the variables can
take at the same time. A solution to a CSP is an assignment of
values to variables such that all constraints are simultaneously
satisfied. Determining whether or not a given CSP has a
solution is known to be NP-complete. The constraint network
of a CSP instance is a graph where the vertices represents the
variables in the CSP and the edges represent the constraints
and connect the variables in their scope.

Backtrack (BT) search is currently the only sound and com-
plete algorithm for solving CSPs. In order to reduce thrashing,
which is the main malady of search, it is common practice to
enforce a given consistency property after every variable in-
stantiation. This procedure reduces the size of the search space
by deleting, from the variables’ domains, values that cannot
appear in a consistent solution given the current search path
(i.e., conditioning). In recent years, the research community
has investigated higher-level consistencies (HLC) as inference
techniques to prune larger portions of the search space at the
cost of increased processing effort [6, 11, 14, 26], leading to a
trade-off between the search effort and the time for enforcing
consistency. We claim that our visualizations are insightful
tools for understanding such a trade-off.

Prior research on search visualization has appeared in the Con-
straint Programming literature. The DiSCiPl project provides
extensive visual functionalities to develop, test, and debug
constraint logic programs such as displaying variables’ states,
effect of constraints and global constraints, and event propa-
gation at each node of the search tree [10, 30]. Many useful
methodologies from the DiSCiPl project are implemented in
CP-Viz [31] and other works [29]. The OZ Explorer displays
the search tree allowing the user to access detailed informa-
tion about the node at each tree node and to collapse and
expand failing trees for closer examination [27]. This work
is currently incorporated into Gecode’s Gist [28]. The above
approaches focus on exploring the search tree (as well as a
problem’s components) while our work proposes particular
projections (i.e., views, summaries) of the data reflecting (i.e.,
compiling) the cost and the effectiveness of both search and
enforcing consistency. We believe that these visualizations are
orthogonal and complementary.

Tracking the search effort by depth of the search tree was first
proposed by Epstein et al. [13] for the number of constraint
checks and values removed per search level and by Helmut et
al. [31] for the number of nodes visited in CP-Viz (also used
for solving a packing problem [32]). We claim that the number
of constraint checks, values removed, and nodes visited are not
accurate measures of the thrashing effort. Indeed, the number
of constraint checks varies with the degree of the variables.
The number of values removed and nodes visited vary with

the size of the domain. In contrast, we claim that the number
of backtracks per search depth (BpD) provides a more faithful
representation of the thrashing effort, which is exactly the
aspect of search that we aim to characterize.

Recently, techniques have appeared in Constraint Process-
ing for dynamically choosing between a set of consistency
properties based on the CPU time spent on exploring a given
subtree [4]. We claim that we better track the effectiveness
of such decisions by following the number of backtracks per
depth (BpD) and the number of consistency calls per depth
(CpD) rather than the CPU time of searching a given subtree.

In the SAT community, inprocessing (in the form of the appli-
cation of the resolution rule) interleaves search and inference
steps [17, 42]. Resolution is allocated a fixed percentage of
the CPU time (e.g., 10%) and sometimes its effectiveness is
monitored for early termination. We believe that inference
should be targeted at the ‘areas’ where search is struggling
rather than following a predetermined and fixed effort alloca-
tion. We claim that the visualization provided by WORMHOLE
can be used to identify where inference is best invested.

VISUALIZATIONS: SEARCH EFFECTIVENESS
In this section, we introduce three visualizations based on BpD
and CpD to analyze the performance of search.

Number of Backtracks per Depth (BpD)
The BpD chart reflects various aspects of search effec-
tiveness as we illustrate with an example. We consider
4-insertions-3-3 an instance of a coloring problem.1 We
use a backtrack search to find a first solution to this instance
using the dom/wdeg variable ordering heuristic [9]. In one
experiment, we enforce at each variable instantiation the most
commonly used consistency property GAC [20]. In the second
experiment, we enforce a stronger consistency property known
as POAC [5]. The definitions of the consistency properties
GAC and POAC are beyond the scope of this paper: it suffices
to say that an algorithm that enforces GAC is generally quick
but does little filtering while a POAC algorithm is typically
(very) costly but can prune larger subtrees of the search space.
In fact, enforcing POAC during search is so costly that, in
practice, we use an adaptive version called APOAC [2]. GAC
fails to solve this instance within the two-hours time threshold,
while APOAC successfully terminates with a solution.

Figures 1 and 2 display the BpD charts of GAC and APOAC,
respectively. Comparing these two BpD charts, we see that
GAC thrashes around depth 50 with maxBpD = 15,863,603
backtrack at depth 52. APOAC, which enforces a strictly
stronger consistency throughout search, limits the severity of
thrashing to only maxBpD = 693,829 backtracks at depth 42.
Comparing the magnitude of the peaks and their depth, we
realize APOAC is able to detect and prune inconsistencies at
the shallower levels of the search space. Thus, the investment
in a stronger consistency property payed off: the APOAC
solves the problem while GAC fails to terminate.

1Benchmark graphColoring-k-insertions from www.cril.
univ-artois.fr/~lecoutre/benchmarks.html.

www.cril.univ-artois.fr/~lecoutre/benchmarks.html
www.cril.univ-artois.fr/~lecoutre/benchmarks.html
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Figure 2. BpD for APOAC on 4-insertions-3-3.

Table 1 reports the cost of the two search algorithms in terms of
their CPU time, the number of nodes visited by search, and the
total number of backtracks. The sign ’>’ indicates that the time
threshold was reached before the algorithm could terminate.
WORMHOLE displays in a panel these values. Table 1 also
reports and the maximum value reached by the respective BpD
curves.

GAC APOAC
CPU Time (sec) > 8,099.9 2,981.9
# Nodes Visited 348,276,252 17,078,644
# Backtracks 252,570,526 13,416,093
maxBpD 15,863,603 693,829

Table 1. Cost of GAC and APOAC on 4-insertions-3-3

As we can see from Table 1, it is clear that the ‘investment’ in a
stronger consistency algorithm is worthwhile because APOAC
solves the instance in about 50 minutes while GAC does not
terminate.

Number of consistency Calls per Depth (CpD)
Naturally, investing in a high-level consistency (HLC) is not
always worthwhile. On easy instances, the cost of APOAC can
be an overkill. To examine the effectiveness of enforcing an
HLC, we propose another visualization, which superimposes,

to the BpD chart, the chart reporting the number of calls to
POAC per depth (CpD).

Figure 3 shows that the BpD (black) and the CpD (purple)
charts of APOAC, as can be expected, largely overlap in shape
(modulo their respective ranges shown on both sides of the
chart), which is explained by the fact that APOAC is called at
every variable instantiation during search.

Figure 3. APOAC: Superimposing BpD and CpD on 4-insertions-3-3

In other hybrid strategies that enforce two or more levels of
consistency in the same search, the CpD would allow us to
differentiate between the impact of each consistency algorithm,
which would be shown in a different color.

Splitting the CpD
We propose a third visualization that more finely splits the
CpD into three categories depending on whether calls to POAC
resulted in:

1. a domain wipeout: indicating that the subtree rooted at the
instantiated variable is inconsistent and can be pruned.

2. filtering but no wipeout: indicating that the consistency
algorithm removed some paths or subtrees rooted at the
instantiated variable but other paths and subtrees remain and
need to explored before ruling out the current instantiation.

3. no filtering: indicating that the consistency algorithm could
not remove any path rooted at the current instantiation and,
thus, the effort of enforcing the consistency property was
entirely wasted.

In Figure 4, these three CpDs are shown in:

1. green: the most effective POAC calls, which prune the
subtree

2. blue: POAC calls that prune inconsistent subtrees and re-
duce the size of the search space, but cannot detect incon-
sistencies

3. red: POAC calls that result in no filtering and thus are
wasteful



Und
er

Rev
iewFigure 4. BpD (black) and the CpD split into wipeout (green), filtering

(blue), no filtering (red)

In the case of our particular example, we can see that, at deeper
levels of search, the wasteful calls (red) to POAC are fewer
than than the most effective ones (green). Consequently, not
as much time is wasted at deeper levels. This realization ex-
plains the ability of APOAC to prevent search from thrashing
at deeper search levels and its effectiveness in solving this
difficult instance.

REGIMES: SEARCH EVOLUTION
The visualizations discussed above provide interesting infor-
mation at particular snapshots in time and at the end of search.
However, in practice, search can last from a few milliseconds
in duration to hours (before timeout). Thus, it is not practi-
cal, sometimes impossible, to examine the evolution of search
from beginning to end. In order to help the user build an under-
standing of the evolution of search over time, gain insight in
the difficulty of the problem at hand, perhaps even detect criti-
cal transitions in search behavior, we propose to automatically
and dynamically organize the evolution of search over time in
terms of a history of successive episodes that are qualitatively
meaningful,2 where each episode is a time interval where the
behavior remains qualitatively unchanged.

We propose a two-step procedure to build such histories. First,
we partition the time duration of the entire search into time
intervals based on some criterion of equivalent behavior. We
call these time intervals regimes [18]. Next, we provide a
mechanism to dilate the time duration (i.e., by compressing
or stretching it) of each regime, then concatenate the dilated
regimes into a continuous animation of the history of the
search.

DEFINITION 1 (REGIME, HISTORY). Given a search
procedure of total duration T , a given behavior function B and
an equivalence relation∼, a regime Ri is a contiguous interval
of time [si,ei]⊆ T during which the search features defining
the behavior are qualitatively equivalent by some metric. The

2Our use of the term ‘history’ is in compliance with its initial meaning
as proposed by Hayes [16].

search history is a sequence of such regimes.

H =〈R1, . . . ,Rn〉
Ri =〈Bi, [si,ei]〉 where [si,ei]⊆ T,
∀ti, t j ∈ [si,ee]→ B(ti)∼ B(t j)

T =
n⋃

i=1

[si,ei]

While the set of desirable and useful behaviors and search
features may be limitless, we integrate in WORMHOLE the
following three:

1. BASIC: Using the maximum value of BpD, maxBpD, we
partition the duration of search into a number of k regimes
(k determined by the user), where the largest BpD value
exceeds another kth fraction of the value of maxBpD.

2. GROWTH: From the beginning of search, we generate a new
regime each time the largest BpD value increases by 10%.

3. SHAPE: From the start of search, we compute the Shannon
Entropy of the derivatives over depth of the BpD to represent
the relative shape of BpD curve [25]. We start a new regime
when this value changes by 20%.

Of the above three regimes, SHAPE can recognize the most in-
teresting changes in the BpD because it recognizes the change
of the depth where thrashing occurs. Figures 5 and 6 show two
regime progressions of GAC on the pseudo-aim-200-1-6-4
instance.3 Figure 5 emphasizes the growth over time of the
BpD. Figure 6 highlights three shapes of the BpD within the
regime shown at the left of Figure 5.

We generate animations (of a user-specified duration) by ap-
plying time dilation on the histories generated with any of the
three above behaviors.

Currently, WORMHOLE implements two time-dilation meth-
ods, namely, EQUAL and PROPORTIONAL. EQUAL assigns to
each regime an equal amount of time, while PROPORTIONAL
assigns to each regime an animation time that is proportional
to the regime’s duration in search. In addition, WORMHOLE
allows the user to directly modify the percentage of time that
each regime takes independently of the above two dilation
methods.

CASE STUDY: EFFECTIVENESS OF INFERENCE
In this section, we discuss a case that demonstrates the useful-
ness of the visualizations in analyzing search effectiveness. In
particular, we use WORMHOLE to understand and compare the
behavior of PREPEAK+, a new reactive strategy for enforcing
high level consistency during search [39].

To this end, we solve the CSP instance
pseudo-aim-200-1-6-4 studied in Section on “Regimes:
Search Evolution” with backtrack search under three settings:
(1) maintaining GAC, (2) maintaining POAC, and (3) using
PREPEAK+. PREPEAK+ is a hybrid, reactive strategy that
mixes calls to GAC and POAC. It is conservative in that
3Instance pseudo-aim-200-1-6-4 of the benchmark pseudo-aim
from www.cril.univ-artois.fr/~lecoutre/benchmarks.html.

www.cril.univ-artois.fr/~lecoutre/benchmarks.html
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Figure 6. SHAPE regime of GAC on pseudo-aim-200-1-6-4 (cropped right-edges for space)

it primarily enforces GAC. However, it triggers an HLC,
such as POAC, when the number of backtracks per depth
(BpD) reaches a given threshold value θ but only when
search backtracks to levels shallower than the depth where
the threshold is met. PREPEAK+ keeps firing the HLC as
long as the BpD at the considered depth is smaller than θ .
Furthermore, every time it backtracks, PREPEAK+ updates
the values of θ by reducing it or increasing it according to
three geometric laws depending on whether the HLC yields
wipeout (i.e., it is effective), filters the search space, or yields
no filtering (i.e., the HLC calls are wasteful). WORMHOLE
reports the costs of three search algorithms as shown in
Table 2.

GAC APOAC PREPEAK+

CPU time (sec) 185,045 66,816 17,836
#NV 3,978,074 47,457 284,289
maxBpD 34,023 407 2,421
#HLC calls NA 7,739 228

Table 2. Cost of GAC, APOAC, PREPEAK+ on pseudo-aim-200-1-6-4

Figure 7 shows the BpD for GAC at the end of search. This
curve exhibits a peak around depth 100 with maxBpD = 34,023
showing that GAC is too weak to filter out bad values: it spends
much of its time thrashing around this depth level.

Figure 8 shows the BpD (black) and CpD (colored) curves for
APOAC. Examining the BpD curve, we realize that APOAC so
effectively prunes the ‘bad subtrees’ from the search space that
it dramatically reduces maxBpD down to 407 and the location
of peak to around depth 75. We see that this instance benefits

Figure 7. BpD of GAC on pseudo-aim-200-1-6-4

from enforcing an HLC such as POAC with a clear benefit on
the CPU time (which is reduced by one order of magnitude
from GAC). However, by observing the colored curves in
Figure 8, we notice that the number of calls to POAC that are
ineffective (red curve) are of the same order as those that yield
wipeout (green curve). The detailed CpD curves hint to some
savings that could be further obtained could one cancel the
wasteful calls to POAC.

Figure 9 shows the BpD (black) and CpD (colored) curves
for PREPEAK+. PREPEAK+ is conservative in that it calls
an HLC only when search thrashes, justifying the cost of a
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Figure 9. BpD (black) and CpDs (colored) of PREPEAK+ on
pseudo-aim-200-1-6-4

stronger but more costly consistency algorithm. Indeed, we
observe that the peak value of BpD is smaller than for GAC
but greater than for APOAC (2,421 versus 34,023 and 407,
respectively). However, examining the detailed CpD curves
shows that advantage of PREPEAK+: Indeed, the wasteful
calls to POAC (red) are almost eliminated and the total calls to
POAC are reduced down to 228 for PREPEAK+ from 7,739 for
APOAC. This economy in the calls to POAC is immediately
translated by the reduction of the CPU time (see Table 2).
Thus, despite the fact that PREPEAK+ explores a larger search
tree than APOAC (see number of nodes visited) because it does
not call the HLC at each variable instantiation, it effectively
reacts to thrashing, calling the HLC only when it is needed,
but spontaneously reverting to GAC otherwise.

This example illustrates the pertinence of the tools provided
by WORMHOLE in visually explaining the behavior of search
and the benefits of PREPEAK+.

CASE STUDY: REGIME VISUALIZATION
In this section, we show how the identification and visualiza-
tion of the regimes that summarize the evolution of search
provide insight into the structure of a problem instance and
guide the choice of the appropriate type of consistency for
solving it.

We consider the CSP instance mug100-25-3 with 100 vari-
ables of a graph-coloring benchmark.4 We try to solve this
instance with the most popular search technique, namely, by
enforcing the consistency property GAC at each variable in-
stantiation and using the dom/wdeg for dynamic variable order-
ing. Search fails to terminate within two hours. The inspection
of the BpD chart (Figure 10) reveals the presence of a ‘dra-
matic’ peak of the number of backtracks at depth 83.

Figure 10. BpD of GAC on mug100-25-3 after two hours

This behavior hints that search may have made a bad decision
at a shallow level of search from which it was never able to
recover. In order to gain more insight into the situation at hand,
we choose to inspect the various qualitatively distinct regimes
that summarize the search ‘history.’ The setting SHAPE for au-
tomatic regime identification uncovers three revealing regimes
illustrated with the snapshots at the following time instants:
1 second, 3 seconds, and 10 seconds shown in Figure 11.

The first regime shown in Figure 11 (left) reveals a peak of
magnitude 1,595 backtracks at depth 35, which corresponds
to instantiating about one third of the variables in the problem.
The regime displayed in the middle shows that search has
overcome the initial bottleneck in the instance occurring at
depth 32 with a magnitude of 4,556 backtracks but is strug-
gling again with a second bottleneck at depth 86 with a mag-
nitude of 1,854 backtracks. The third regime displayed in
Figure 11 (right) shows that the severity of the first bottleneck
is dwarfed by a dramatic increase in magnitude of the second
bottleneck, which reaches 25,637 backtracks at depth 86. As
time progresses, the shape of the BpD quickly conforms to
the one shown in Figure 10, thus confirming that search never
really recovers from the bad decisions done at shallower lev-
els: indeed, search disproportionality invests more efforts in
deeper levels (around depth 86) than in shallower ones.
4Benchmark mug from www.cril.univ-artois.fr/~lecoutre/
benchmarks.html

www.cril.univ-artois.fr/~lecoutre/benchmarks.html
www.cril.univ-artois.fr/~lecoutre/benchmarks.html
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Figure 11. Three regimes of the BpD, qualitatively characterizing the evolution of GAC on instance mug100-25-3

Given the time scale of these regimes with respect to the
two-hour duration of the experiment (which is typical), it is
extremely unlikely that a human user could autonomously
have spotted these critical transitions happening so early in
the search (at a time scale of seconds). The identification and
observation of the two distinct bottlenecks and their evolution
entice us to examine the constraint network of this specific
instance shown in Figure 12.

Figure 12. Constraint network of mug100-25-3

The examination of this graph unveils the existence of large
cycles and many cycles of size three. Previous work has ar-
gued that the presence of cycles can be detrimental to the
effectiveness of constraint propagation and has shown how
triangulation of the constraint network allows us to remedy the
situation [36, 37, 40]. With this insight, we choose to enforce
the consistency property known as Partial Path Consistency
(PPC), during search, instead of GAC because the algorithm
for PPC operates on existing triangles and triangulated cycles
of the constraint network [7]. Because PPC is too expensive to
enforce during search, Woodward proposed a computationally
competitive algorithm to enforce a relaxed version of Direc-
tional Partial Path Consistency (DPPC+) [38]. By enforcing
a strong consistency along cycles, search is now able to de-

tect the insolvability of mug100-25-3 and terminates in less
than 17 seconds.

Figure 13 shows the number of backtracks per depth of search
on mug100-25-3 while enforcing DPPC+. This chart shows
a peak of 13,536 backtracks at depth 34.

Figure 13. BpD of DPPC+ on mug100-25-3

Table 3, which is also displayed by WORMHOLE, allows us to
compare the cost of search with GAC and with DPPC+.

GAC DPPC+

CPU time (sec) > 8,099.9 16.9
#Nodes visited 683,428,413 288,976
# Backtracks 559,624,248 236,356
maxBpD 20,417,698 13,536
maxBpD depth 86 34

Table 3. Cost of GAC and DPPC+ on mug100-25-3

Above, we showed how the visualizations and regimes gener-
ated by WORMHOLE of the search behavior allows us to form a
hypothesis about the issues encountered by search and attempt
an alternative technique that is usually avoided because of its
cost, culminating in successfully solving a difficult benchmark
instance. Further, we have circumscribed one source of in-
solvability to a subproblem of the original CSP, which calls
for new visualizations for analyzing and elucidating the bot-
tleneck. The entire experience illustrates how visualizations
empower the user to effectively intervene in problem solving.
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Without this functionality of WORMHOLE, the exact cause
of massive, deep thrashing in this instance would have been
difficult to identify and characterize. In solving this instance,
WORMHOLE saves us precious time and effort and presents a
meaningful story to a human user.

ARCHITECTURE
In this section, we review the architecture of WORMHOLE and
explore various optimizations necessary to visualize the inves-
tigated features of search through our benchmark problems,
due to the magnitude of the data collected.

Figure 14 presents the architecture of WORMHOLE through
its various components and their interactions. A generic con-
straint solver (1) exports data to a JSON-based log file (2) that
records the differences in tracked features over time. A user
loads a log file into WORMHOLE which parses the data (3) and
splits it into various feature-dependent data structures. The
Data Store (4) caches these structures and provides access to
them during animation generation. In addition, the Data Store
sends the final BpD and CpD curves to be displayed in the Per-
Depth Chart (5). The user may create new animations, select
specific time information, control animation playback, or edit
animation parameters through an animation control-panel (6).
Upon editing the parameters of an animation the animation is
regenerated from the data store (7).

WORMHOLE

Solver

Log File

Data Parser

1

2

3

4

5

6

Data Store

BpD CpD Further Data

Interface & Controllers

Per-Depth Chart Further Visualizations

7

Figure 14. Architecture of WORMHOLE

We have designed WORMHOLE to be portable, using the web
technologies HTML, JavaScript, and CSS based on the React-
Redux model [1, 34]. In this framework, React manages
view rendering and user interaction while Redux governs the
application state. While the standard Redux paradigm works
adequately well for log files with a limited magnitude of data
(10’s of MB), a majority of our benchmarks require far larger
log files (100’s of MB), which create an intolerably slow user
experience on such systems. In addition, JavaScript’s single-
threaded, event-loop paradigm may prevent user interaction
during periods of heavy computation, a phenomenon known
as blocking.

To address these performance bottlenecks, we enhance the
system as follows. In WORMHOLE we mitigate blocking by
incorporating web workers [21], a modern feature of the web
browser; web workers offload a majority of CPU-intensive
processing to a separate process. In this process, which we

refer to as the data process, we perform initial parsing, anima-
tion pre-fetching, and specific-time frame loading, which all
demand analyzing whole feature data sets.

To accelerate frame loading during animation, we pre-fetch
all animation data in the data process and transfer it using
JavaScript Transferables: data structures for rapidly transfer-
ring large data sets between web workers and the main thread
[22]. Further, when parsing the log file, we perform regular
sampling on the BpD and CpD data in order to reduce the work
needed to calculate specific-time frames. When users request
BpD and CpD data for a specific time, we perform nearest
neighbor interpolation on these samples before incorporating
supplemental difference data.

By leveraging our optimization techniques, in practice our
system enables users to interactively explore the evolution of
BpD and CpD curves in a web browser.

CONCLUSION
WORMHOLE offers a number of new visualization and anima-
tion techniques that allow the user to explore and understand
the behavior of backtrack search and compare the performance
of different algorithms. We are currently applying our tech-
niques to Choco, a popular constraint solver that uses binary
search (2-way branching) and will expand this effort to other
public-domain constraint solvers to allow users to compare
the performance of such solvers.
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