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Abstract. We propose an improved restart strategy for randomizedtizaatk
search, and evaluate its performance by comparing to otheistic and stochas-
tic search techniques for solving random problems and arégi-world resource
allocation problem. The restart strategy proposed by Ganals [1] requires the
specification of a cutoff value determined from an overatifie of the cost of
search for solving the problem. When no such profile is knava cutoff value
is chosen by trial-and-error. The Randomization and GelomBestart (RGR)
proposed by Walsh does not rely on a cost profile but detesnireecutoff value
as a function of a constant parameter and the number of Vesiabthe problem
[2]. Unlike these strategies, which have fixed restart salesd our technique
(RDGR) dynamically adapts the value of the cutoff parameténe results of the
search process. Our experiments investigate the behdvioese techniques us-
ing the cumulative distribution of the solutions, over dint run-time durations,
values of the cutoff, and problem types. We show that disisigng between
solvable and over-constrained problem instances yieldsimgghts on the rela-
tive performance of the search techniques tested. We pedpasse this charac-
terization as a basis for building new strategies of codperahybrid search.

1 Introduction

We have developed a system for modeling and solving a resa@lliacation problem,
which is the assignment of Graduate Teaching Assistant&@Tcourses in our de-
partment [3]. We exploit this system as a platform for dep&ig and characterizing
new problem-solving strategies. The research we desaritieéd paper was motivated
and enabled by this project. However, our results are heendrd beyond this partic-
ular application.

The Graduate Teaching Assistants Assignment Problem (®&)A#\a critical and
arduous task that the department’s administration hasugdrthrough every semester.
By focusing our investigations on this particular real-ldapplication, we have been
able to identify and compare the advantages and shortcenaihthe various search
strategies we have implemented to solve this problem. Sudahséght is unlikely to be
gained from testing toy problems, and surely difficult froesting random problems.
We show that the identified behaviors apply beyond our agfitin. The contributions
of this paper are as follows: (1) The development of a new dyoaestart strategy for



randomized backtrack search, and (2) an empirical evaluafithe performance of this
new strategy and a comparison with other heuristic and agiithsearch techniques on
a real-world problem and on randomly generated binary CSPs.

This paper is structured as follows. Section 2 describe&the assignment prob-
lem (GTAAP) and our implementations of a backtrack searclocal search, and a
multi-agent search technique for solving it. Section 3ddtrces our new proposed
dynamic restart strategy for randomized backtrack seamdhoar implementation of
Walsh’s restart strategy [2]. Section 4 presents our erparts and our observations.
Finally, Section 5 concludes the paper and provides doastior future research.

2 GTA Assignment Problem

Given a set of Graduate Teaching Assistants (GTAs), a sebuifses, and a set of
constraints that specify allowable assignments of GTAsourses, the goal is to find
a consistent and satisfactory assignment [4—6]. Hard angs (e.g., a GTA's com-
petence, availability, and employment capacity) must bg aved GTA's preferences
for courses (expressed on a scale from 0 to 5) must be maxdmizically, every
semester, the department has about 70 different acadeskix aad can hire between
25 and 40 GTAs. Instances of this problem, collected sinan§R001, are consis-
tently tight and often over-constrained. The objectiveoi®hsure GTA support to as
many courses as possible by findingraximal consistent partial-assignmeBecause
the hard constraints cannot be violated, the problem cammotodeled as a MAX-CSP
[7]. Our constraint-model represents the courses as Vasgitie GTAs as domain val-
ues, and the assignment rules as a number of unary, binarpcmbinary constraints.
We define the problem as the task of finding the longest assighras a primary crite-
rion, and maximizing GTAs’ preferences, as a secondargrait. (We model the latter
as the value of the geometric mean of GTAs’ preferences irssigmament.) We imple-
mented a number of search strategies for solving this pnofdemmarized below). We
tested these search techniques on the real-world dataksets in Table 1. Each course

Table 1. Characteristics of the data sets.

Data set Spring2001b~all2001bFall2002Fall2002-NH SpringZOOl&SpringZOOS-N P
Reference 1 2 3 4 5 6
Solvable? X vV X X Vv Vv
#Variables 69 65 31 59 54 64

Max domain size 26 34 28 28 34 34

Total capacity 26 30 115 27 275 31

Total load 29.6 29.3 13 29.5 27.4 30.2
Ratio = TofalCapacity | () gg 1.02 | 0.88 0.91 1.00 1.02

has a load that indicates the weight of the course. For exaraphlue of 0.5 means this
course needs one-half of a GTA. Ttetal load of a semester is the cumulative load of
the individual courses. Each GTA has a capacity factor whidicates the maximum



course weight he/she can be assigned during the semestesuirhof the capacities of
all GTAs represents thtal capacity

We compare our new dynamic restart strategy (RDGR) with aistizibacktrack
search (BT) with various ordering heuristics, a greedyllsearch (LS), a multi-agent-
based search (ERA), and a randomized backtrack searchesitirr (RGR). All strate-
gies implement the above two optimization criteria, exdeRtA, which models the
GTAAP as a satisfaction problem. These search techniques separately imple-
mented on the same model and data structures by studentetogim produce the
best results. Below, we summarize the design of BT, LS, andl.ER

2.1 Heuristic backtrack search

Our heuristic backtrack (BT) search is a depth-first searith ferward checking [8].
Because the problem may be over-constrained, we modifieblable¢rack mechanism
to allow null assignments and proceed toward the longesitisal in a branch-and-
bound manner (i.e., backtracking is not performed when aaiioia wiped-out as long
as there are future variables with no empty domains). THigtisa is equivalent to
adding a dummy value in the variables’ domains. Our implesat@n is described in
detail in [5]. We have implemented several ordering heiggso improve the perfor-
mance of search (see [9]). Our experiments showed that dgnaamable ordering is
consistently superior to static ordering, but that the &rilce of the other factors is not
significant in the context of our application.

All these strategies exhibited a serious vulnerability toashing (i.e., searching
unpromising parts of the search space), which seriouslhewumished their ability to
explore wider areas of the search space. Indeed, althoughtB&oretically sound and
completethe size of the search space makes such guarantees measimgjgactice
Figure 1 illustrates the gravity of thrashing for a problenthw69 variables and 26
values. We define the ‘shallowest level’ as the shallowest e a search tree attained
by the backtracking mechanism along any given path. Theepéaige denotes the ratio

Data| # BT running for..
set |Vars 5 min I 6 hours
Max [Shallowest Max [Shallowest
depthlevel % ||depthlevel %
Shal level 1 | 69| 57 | 53 23%|| 57 | 51 26 %
reached by BT after.. 2 | 65| 63|55 15%| 63 | 54 16 %
24 hr: 51 (26%) 3 |31 28|13 58%| 28 | 3 90 %
n1/| ;ﬂxira:e%St h(ZS;/e)* 4 | 59| 49 | 48 18%|| 50 | 45 23 %
Number of 5 | 54| 52| 44 18%| 54 | 41 24 %
variables: 69" 6 | 64| 62 | 54 15%]|| 62 | 47 26 %
Fig.1. BT thrashing in large search
spaces. Fig. 2. BT search thrashing.

number of variables — shallowest level |ndeed, the shallowest level of backtrack achieved

number of variables



after 24 hours (26%) is not significantly better than thathea after 1 minute (20%)
of search, never revising the initial assignment of 74% efhriables. Figure 2 shows,
for each data set, the number of variables, the longestisolgihax depth), and the
shallowest BT levels in terms of the level and the percentddeacktracking in the
search tree attained after 5 minutes and 6 hours.

As the problem size increases, the effects of thrashingrbecnore important. Ta-
ble 2 shows the performance of BT on data set 1 for variousmast Even after letting

Table 2. Performance of BT for various running times.

Data set 1(69 variables, over-constrained)

Running time | 30se¢ 5minl 30min 1houf 6hourg 24 hours
Shallowest BT level 54 53 52 52 51 51
Longest solution 57| 57| 57| 57| 57| 57|

Geometric mean of 2.15 2.17 2.17 2.21 2.27 2.27
preference values
# Backtracks 1835 47951 261536 532787 327476713070031
# Nodes visited 3526 89788 486462 989136 605963824146133
# Constraint checks|8.50E+073.17E+081.81E+093.58E+092.16E+108.70E+1(

our best heuristic backtrack search run for over 24 houesgtfality of the solution, in
terms of solution length, is not improved. The improvemdrthe assignment quality,
in terms of the geometric mean of the preference valuessignificant. Finally, we
notice that the assignment of the first 51 variables in thermd was never undone.
Consequently, in practice, completeness is a purely thiealéeature.

2.2 Local search

Zou and Choueiry designed and implemented a greedy, loaadts€LS) technique for
the GTAAP system [10-12]. It is a hill-climbing search usthg min-conflict heuristic
for value selection [13]. It begins with a complete, rand@rignment (not necessar-
ily consistent), and tries to improve it by changing inceteit assignments in order
to reduce the number of constraint violations. In order tal @fectively with global
constraints (e.g., capacity constraints), we identify aha time and in random order, a
variable that satisfies all remaining constraints as ctarsisand propagate the effects
of this consistent assignment by filtering the domains ofréflmeaining variables. This
design decision effectively handles non-binary constsa@ur local search is greedy in
the sense that consistent assignments are not undone.\Waracdandom-walk strat-
egy is applied to escape from local optima [14]. With a pralitgth(1 — p), the value of

a variable is chosen using the min-conflict heuristic, artt wrobabilityp this value is
chosen randomly. Following the indications of [14] and afésting,p = 0.02 is used.
Finally, random restarts are used to break out of local cgtim



2.3 Multi-agent search

Liu et al. proposed the ERA algorithm (Environment, Reactivies, and Agents) as a
multi-agent-based search for solving CSPs [15]. Zou andu€ing implemented and
tested ERA for solving GTAAP [10-12]. In ERA, each agent esgnts a variable. The
positions of an agent in the environment correspond to theegan the domain of the
variable. Starting from a random positioning of the agentshie environment, each
agent evaluates the quality of its positions given the pmwtof the remaining agents
and decides to move to what seems to be the best positiorhtieedeing determined
stochastically by the reactive rules. The agents keep rgawitil they all reach a satis-
fying position (i.e., a full, consistent solution) or a @rttime period has elapsed. This
algorithm acts as an ‘extremely’ decentralized local deashere any agent can move
to any position, likelyforcing other agents to seek other positiodsu and Choueiry
showed that the extreme mobility of agents in the envirortmiethe reason behind
ERA's amazing immunity to local optima [10-12]. They foumét ERA is indeed the
only search technique to solve GTAAP instances that rentaolued by all other tech-
nigues tested. They uncovered the weakness of ERA on owstrained problems and
characterized it as a livelock phenomenon (where some si§gerp forcing each oth-
ers out of chosen positions thus causing cycles and undiggthre stability of search).
Finally, they showed how this phenomenon can be advantageased to isolate, iden-
tify, and represent conflicts in a compact manner.

3 Randomized BT search with restarts

Unlike ERA and local search, general backtrack (BT) seaschni principle, com-
plete and sound. However, the performance of heuristic Beifously undermined
by thrashing. Thrashing can be explained by incorrect Bgargchoices made early in
the search process. We explore randomization in BT as a wayeix@ome this short-
coming of systematic search. First we review the main caiscépen we describe the
two strategies that we tested.

Gomes et al. demonstrated that randomization of heuribticces combined with
restart mechanisms is effective in overcoming the effetthrashing and in reducing
the total execution time of systematic BT search [1]. Thirsgin BT search indicates
that search is stuck exploring an unpromising part of theckespace, and thus inca-
pable of improving the quality of the current solution. Itbenes apparent that there is
a need to interrupt search and to explore other areas of #hetsgpace. It is important
to restart search from a different portion of the search spaiherwise it will end up
traversing the same paths. Randomization of branchingdsegarch is used to this end.
Randomness can be introduced in the variable and/or vatlexring heuristics, either
for tie-breaking or for variable and/or value selectiontekfchoosing a randomization
method, the algorithm designer must decide on the type ¢anteechanism. This
restart mechanism determines when to abandon a partieuland restart the search.
Here the tradeoff is that reducing the cutoff time reducesptobability of reaching a
solution at a particular run. Several restart strategige baen proposed with different
cutoff schedules. Some of the better known ones are the @intaft strategy and Luby
et al’s universal strategy [16], the randomization anddapstart (RRR) of Gomes



et al. [1], and the randomization and geometric restartsRR& Walsh [2]. Among
the above listed restart strategies, RRR and RGR have bediedtand empirically
tested in the context of CSPs. All of these restart strasegie static in nature, i.e. the
cutoff value for each restart is independent of the progmesde during search. Some
restart strategies (e.g., fixed-cutoff strategy of [16] &RR [1]) employ an optimal
cutoff value that is fixed foall the restarts of a particular problem instance. The esti-
mation of the optimal cutoff value requires a priori knowdedf the cost distribution of
that problem instance, which is not known in most settingsranst be determined by
trial-and-error. This is clearly not practical for realshbapplications. There are other
restart strategies that do not need any a priori knowledgg, (euby et al.’s universal
strategy [16] and Walsh’s RGR [2]). They utilize the idea pfiacreasing cutoff value
in order to ensure the completeness of search. Howeverskthestart strategies do
not find a solution after the initial few restarts, then ther@asing cutoff value leads to
fewer restarts, which may yield thrashing and diminishesonefits of restart. We pro-
pose a restart strategy that dynamically adapts the cuabfévfor each restart based on
the performance of previous restarts. Our strategy loseguhrantee of completeness,
which, anyway, is not achievable on large problems.

3.1 Randomization and Geometric Restarts

Walsh proposed the Randomization and Geometric RestaBR)Rtrategy to automate
the choice of the cutoff value [2]. According to RGR, searchogeds until it reaches
a cutoff value for the number of nodes visited. The cutofiueafor each restart is a
constant factor;, larger than the previous run. The initial cutoff is equatite number
of variablesn. This fixes the cutoff value of thé" restart atr.r* nodes. The geometri-
cally increasing cutoff value ensures completeness wéthtpe of solving the problem
before the cutoff value increases to a large value. We dlwieous values of and
report them in Section 4.2. We combined this restart styatéth the backtrack search
of Section 2.1, randomizing the selection of variable-ggiairs.

3.2 Randomization and Dynamic Geometric Restarts

We now introduce a simple but effective improvement to RGRs#tatic restart strate-
gies suffer from the problem of increasing cutoff valuegrétach restart. While this
ensures completeness of the search, it results in fewartgghus increasing the like-
lihood of thrashing and diminishing the probability of findia solution. Our proposed
strategy, Randomization a?ynamicGeometric Restarts (RDGR), aims to attenuate
this effect. It operates by not increasing the cutoff vatluetiie following restantvhen-
ever the quality of the current best solution is not improugdn When the current
restart improves on the current best solution, then theffoeatue is increased geomet-
rically, similar to RGR. Because the cutoff value does natessarily increase, com-
pleteness is no longer guaranteed. This situation is aakepin application domains
(like ours) with large problem size where completenessngpay, infeasible in prac-
tice. Smaller cutoff values result in a larger number ofagsttaking place in RDGR
than RGR, which increases the probability of finding a solutiAll other implementa-
tion details are similar to RGR.



Let C; be cutoff value for thé'” restart and: be the ratio used to increase the cutoff
value. In RGR the cutoff value is updated according to theadqn:C; 1 = r.C;. We
use the following equation in RDGR:

i r.C; when the solution has improved at té restart (1)
*+1 7\ ¢, otherwise

In RGR, the cutoff value for each restart is determimetkpendentlpf how search per-
formed at the previous step. However, this is not the casBRBR. Each time search
begins with a different random seed, it traverses diffeseatch paths. Some paths may
be more fruitful than others. RGR and RDGR increase the tusdies in the same
way on search paths that improve solutions. When the saligioot being improved,
RGR keeps increasing the cutoff values, thus making RGR wioaerandomized BT
search than a randomized BT search with restarts. In conREXSR maintains the
cutoff value. Figure 3 shows that RGR increases the cutdfiesaacross iterations sig-
nificantly more rapidly than RDGR does, fex1.1 and 2 on random binary CSPs. This

200
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Fig. 3. Increase of the cutoff value (3 minutes).

explains the dynamic nature of RDGR. For problems that atdiglt, solutions are
found within a few restarts, and RGR and RDGR exhibit similahaviors. For tight
and over-constrained problems, RDGR seems to dominate RGReashow in our
experiments (Section 4).

4 Experiments and results

We tested and compared the above listed 5 search strategiasly: BT (Section 2.1),
LS (Section 2.2), ERA (Section 2.3), RGR (Section 3.1), abf5R (Section 3.2). BT
is deterministic and the other 4 search techniques (i.e. HFA, RGR, and RDGR)
are stochastic. In the terminology introduced by Hoos aridzt&t in [17], these are
optimization Las Vegas algorithms, RGR is probabilisticapproximately complete



(PAC), and LS, ERA, and RDGR are essentially incomplete. welacted the follow-
ing three sets of experiments:

1. Effect of running time on RGR and RDGR.
2. The influence of the choice of the ratimsed in RGR and RDGR.
3. Relative performance of BT, LS, ERA, RGR, and RDGR.

We compare the performance of the algorithms using theviatig criteria:

1. Solution quality distributionéSQD) taking as reference the longest known solution
for each data set, as recommended by Hoos and Stitzle in§Q0)'’s are cumu-
lative distributions of the solution quality, similar togtcumulative distributions
of run-time in run-time distributions. The horizontal axépresents in percent the
relative deviation of the solution sizefrom the longest known solutio#,,,:, com-
puted as(s‘”);;%. Thus, the point 0% on the-axis denotes the longest solution
and, the point 20% denotes a solution that is 20% shortethldbngest solution.
The vertical axis represents the percentage of test runs.

2. Descriptive statisticef all the solutions found, for all search techniques. This i
cludes the measures: mean, median, mode, standard deyiatomum, and max-
imum of the solution.

3. 95% confidence intervadf the mean improvement. The confidence interval was
computed using the Mann-Whitney test. Table 3 reports tipeorements of RDGR
over RGR and ERA.

Table 3. Improvements of RDGR with 95% confidence level.

Data seffImprovements over RGRmprovements over ER]A
Lower limit| Upper limit||Lower limit| Upper limit

1 1.16 1.61 45.16 46.77
2 1.53 1.61 -6.15 -6.15
3 3.44 3.44 27.58 31.03
4 1.85 1.85 24.07 27.77
5 0 1.85 -3.7 -3.7

6 1.56 1.56 -6.25 -6.25

We tested these search techniques on the 6 real-world dstafthe GTAAP of Table 1

and 4 sets of randomly generated problems. For the GTAAPsd#asawe repeated our
experiments 500 times for all stochastic search techniguasirally, a single run is

sufficient for BT because it is deterministic. We found the &verage run-time for all

stochastic algorithms stabilizes after 300 runs on all tid&P data sets, as shown
in Figure 4 for data set 1, which justifies our decision. Weoréephe results for the

following data sets (the same qualitative observationd hotoss all data sets):

— Data set 1 as a representative of an over-constrained pnoble
— Data set 5 as a representative of a tight but solvable prablem
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Fig. 4. Moving average for CPU run-times for data set 1.

For randomly generated problems, we used the model-B-typergtor of Hemert [18].
We generated three types of randomly generated problerok, aataining 100 in-
stances and each instance run for 3 minutes:

— Under-constrained instance$he first type of randomly generated problems are
under-constrained binary CSPs with 40 variables, unifoomain size of 20 val-
ues, 0.5 proportion of constraints, and 0.2 constraintiigés.

— Over-constrained instancehe second type of randomly generated problems are
over-constrainedbinary CSPs with 40 variables, uniform domain size of 20 @aju
0.5 proportion of constraints, and 0.5 constraint tighénes

— Instances at the phase transitiofihe third type of randomly generated problems
are from thephase transitiorarea. These are binary CSPs with 25 variables, uni-
form domain size of 15 values, 0.5 proportion of constraiatsl 0.36 constraint
tightness. We split these instance into two sets, each ofrif3@nces, separating
solvable instances and unsolvable instances.

4.1 Effect of the running time on RGR and RDGR

To compare the performance of RGR and RDGR, we tested thenarmug running
times for the GTAAP data sets. The results are shown in Fgbrand 6. In both
these figures, RDGR consistently outperforms RGR overrdifferun-times. Further,
increasing the running time has no affect on the relativeidante of algorithms.

4.2 Influence of the ratior

We tested RGR and RDGR with different ratios, with 5 minut@sning time. For the
GTAAP problem we tested the values: 1, 21, 22, 2, and 4. For the random CSPs we
tested the values: 1, 1.27, 22, 2, 3, and 4. Figures 7, 8, 9, and 10 show the influence
of the ratior used to increase the cutoff value in RGR and RDGR. In accaslan
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with [2], Figures 7 and 9 show that a valuerefl.1 is the best among the values tested
for RGR. This While, for RGR, this optimal ratio does not charwith the problem
type (i.e., GTAAP vs. random problem), it does for RDGR. Far GTAAP, it isr=1.1
(Figure 8). For randomly generated problems, it#2 (Figure 10). Our experiments
indicate that the curves remains flat around these ‘optima.’

4.3 Relative performance of BT, LS, ERA, RGR, and RDGR

In this section we compare the relative performance of allstharch techniques devel-
oped for the GTAAP system. Each stochastic algorithm wasbAfhtimes of 10 min
each on the GTAAP data-set, and on 100 instances of randors &SFmin each. Fig-
ures 11 and 12 show the relative performance of the searkhitpees on GTAAP data.
Figures 13, 14, 15, and 16 show the relative performancééorandom problems. We
do not show LS and ERA in Figure 14 because they go off the scale

Improvement of RDGR over BTable 4 shows that the maximum value of the solution
sizes produced by RDGR is clearly greater than that of thetisol sizes produced by
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BT. However, due to its stochastic nature, RDGR suffers ftogh instability in its
solution quality.

Superiority of RDGR over LSThe performance of RDGR is clearly superior to that of
LS (see Table 4 and Figures 11, 12, 13, 15, and 16). Althouglsdtution quality is
highly variable for both RDGR and LS, the low mean value ofgbkition quality of
LS ensures that RDGR remains superior to LS.

Superiority of RDGR over ERA on over-constrained probler@st over-constrained
problems (Figure 11 and Table 3), the deadlock phenomerevepts ERA from find-
ing solutions of quality comparable to those found by theeptiechniques [10-12].
BT, LS, RDGR, and RGR do not exhibit such a dichotomy of betravetween over-
constrained cases and solvable instances.

Performance of ERAOn solvable problem instances (Figures 12 and 13), ERA dom-
inates all techniques. It is the only algorithm that finds ptate solutions for nearly
all the runs. ERA completely dominates LS. However, on @@rstrained problem in-
stances (Figure 11), RDGR, RGR, BT and LS are superior to EfRAd the deadlock



{Under-constrained

100 -

90 +

80 4

Over-constrained

E 609 -~ RGR E 609 fﬁgﬁR
S 504 —~BT Ly —~ BT
S LS -3
£ 404 £ 40
@ @
g 301 S 304
o o
20 20 4
10 10
0 f T T T T T d 0 F T T T 1
0 2 4 6 8 10 12 14 5 10 15 20 25
Deviation from best known solution [%] Deviation from best known solution [%]
Fig.13. SQDs: under-constrained, randdtig. 14.SQDs: over-constrained, random CSPs.
CSPs.
100 4 e 100 4 P R N P e
Phase transition, solvable Phase transition, unsolvable |
90 + 90 + I
80 80
2 2
2 1 [—Rper] = | 5 704
5 o RDGR % | | RDGR
% -RGR % ~RGR
HE BT e 07 |~—BT
£ 40 ERA £ 404 ERA
g LS 8 LS
E e E 30
204 Yo 20 4
104 10 +
0 ¥ T T T T T 1 0 ¥ i i T T T 1
2 4 6 8 10 12 14 2 4 6 8 10 12 14

Deviation from best known solution [%]

Deviation from best known solution [%]
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phase transition.

phenomenon. At the phase transition (Figures 15 and 16pehavior of ERA is in-
dependent of the solvability of the problem. ERA performbydietter than LS, while
RDGR, RGR and BT perform better than ERA. This differencedrfgrmance of ERA
may have to do with the structure of the randomly generatetllpms and the GTA
problem. More tests are needed to understand this pheneameno

RDGR is more stable than RGRrable 5 shows the standard deviation of RGR and
RDGR on the GTAAP data sets. Due to their stochastic natUub& R and RGR tech-
nigues show variation in their solution quality. Howevhe smaller standard deviations
of RDGR compared to RGR in Table 5 show that RDGR is relatinetye stable than

RGR.

Sensitivity of LS to local optimal.S sensitivity to local optima makes it particularly
unattractive in our context. Even BT outperforms LS.



Table 4. Statistics of solution size (500 runs, 10 min each).

| [Data set 1(69 variables, over-constraing{f)ata set 5(54 variables, tight but solvable)

Search|MeanMedianMode StandargMiin. | Max. || MeanMediariMode Standar¢Min.| Max.
deviat. deviat.
BT 57 57 57 0 57 | 57 52 52 52 0 52| 52
LS 47.12 48 49 | 444 | 30| 55 ||[42.88 44 46 394 | 29| 50
ERA ||30.99 31 32 | 437 | 18| 45 ||53.99 54 54 | 0.04 | 53| 54
RDGR|59.66 60 60 | 0.77 | 58| 62 ||52.17 52 52 0.78 | 50| 54
RGR ||58.27 58 58 283 | 23| 62 ||51.70 52 52 1.04 | 49| 54

Table 5. Standard deviation in solution Table 6. Average number of restarts on
quality on GTAAP data. GTAAP data.

[Datase[ 1[2[3[4]5]6] 78] ([Paase] 1[2] 3 [4][5][6] 78 |
RGR 2.81.1/0.7|1.011.01.2/0.590.73 RGR 16.717.4 22.5(14.722.419.5 27.8| 30.4
RDGR |(0.7/0.80.6/0.9/0.7/1.1)0.430.47 RDGR ||74.5959.9167.439.139.146.2826.2272.0

Larger number of restarts in RDGRTable 6 shows the average number of restarts
occurring in RGR and RDGR. This confirms our expectationedta Section 3.2 that
RDGR performs more restarts than RGR.

Summary:The following five statements, wheredenotes dominance of an algorithm
over another, summarize the behavior of the 5 search sieatedso shown in Table 7:

— Onunsolvable instances:
e Beyond the phase transitioRDGR >~ RGR > BT > LS > ERA.
e Around the phase transitioRDGR >~ RGR > BT > ERA > LS.
— On solvable instances:
e Beyond the phase transition: ERARDGR >~ RGR - BT > LS.
e Around the phase transition: two cases must be distingdiéee Figure 15).
If we focus on the percentage of problems solved (i.e., loxakres of SQDs),
ERA remains the dominant technique: ERARDGR >~ RGR - BT > LS.
However, if we accept larger values of the deviation from blest solution,
then RDGR statistically dominateRDGR >~ RGR >~ BT >~ ERA > LS.

5 Conclusions and future work

By addressing a real-world application, we are able to ifigrharacterize, and com-
pare the behavior of various search techniques. BT is skalblsuffers from thrashing.
LS is vulnerable to local optima. ERA shows difference infpenance with different



Table 7. Comparing the behaviors of search strategies.

| | Characteristics |

General: Stochastic and incomplete
ERA |Tight but solvable problems: Immune to local optima
Over-constrained problems:Deadlock causes instability and yields shorter solufions

General: Stochastic, incomplete, and quickly stabilizes

LS |Tight but solvable problems: Liable to local optima, and fails to solve tight
CSPs even with random-walk and restart strategies

Over-constrained problems:Finds longer solutions than ERA

General: Stochastic, incomplete, immune to thrashing,

produces longer solutions than BT, immune to deadlock,

RDGRreliable on unknown instances, and

immune to local optima, but less than ERA

General: Stochastic, Approximately complete,

RGR |less immune to thrashing than RDGR, and

yields shorter solutions than RDGR in general.

General: Systematic, complete (theoretically, rarely in practice)

BT |[liable to thrashing, yields shorter solutions than RDGR B@&R,

stable behavior, and more stable solutions than stochasticods in general

problem types: while it has an amazing ability to solve unzt@rstrained problems, its
performance degrades on over-constrained problems dbe fos¢lock phenomenon.
Restart strategies effectively prevent thrashing, but swdution quality is highly vari-
able. RGR operates by increasing cutoff values at everanesthich increases its
vulnerability to thrashing. RDGR attenuates this effectigking the cutoff value de-
pend upon the result obtained at the previous restart, whimteases the number of
restarts in comparison to RGR. Consequently, RDGR exhébiteore stable behavior
than RGR while yielding at least as good solutions. In tharkitwe plan to study the
following directions:

1. Validate our findings on other real-world case-studies.

2. Design ‘progress-aware’ restart strategies, thatristegiies that can decidauring
a given restart, whether to continue or abandon this paatiexecution.

3. Use our current application as a ‘platform’ to study andrelsterize the perfor-
mance of other deterministic and stochastic search teabsiq

4. Design new search hybrids where a solution from a giveimigce such as ERA
is fed as a seed to another one such as heuristic backtrack sea
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