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Abstract

Variable ordering is critical for the performance of backtrack search for
solving Constraint Satisfaction Problems (CSPs). While many variable or-
dering heuristics are proposed in the literature, the question remains an ac-
tive research topic. The heuristic dwd (and variations thereof) is currently
acknowledged to provide the best results in general. This heuristic divides
the domain size of a variable by its degree (i.e., number of constraints that
apply to the variable) weighted by the number of conflicts in which the vari-
able has appeared during search. We identify situations where the behavior
of dwd degenerates and prevents search from terminating within an accept-
able time limit. We design visualizations to illustrate the operation of dwd
and reveal how it affects search performance. Then, we propose a new order-
ing heuristic (mxC1q) that exploits the structure of the constraint network
of the CSP, to guide dwd during search, and a criterion (Cluster Indepen-
dence Ratio, CIR) to determine the applicability of mxC1qg. We empirically
validate the effectiveness of our approach on benchmark problemsﬂ
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1 Introduction

We claim that visualizations that summarize the behavior of the algorithms used to
solve Constraint Satisfaction Problems (CSPs) provide useful explanations about
the behavior of the algorithms and can effectively include the human user in the
decision loop and in the problem-solving process. In this report, we provide evi-
dence of our claim in the context of ordering the variables of a CSP for instantia-
tion during backtrack search.

The performance of search depends heavily on the ordering of the variable dur-
ing search. The variable ordering heuristic known as Dom/WDeg (dwd) [Bousse-
mart et al., 2004] is known to be most effective in practice. However, Howell et
al.| reported CSP instances on which dwd degenerates and is significantly out-
performed by the usually less effective Dom/Deg (dd) [2020]. They introduced a
heat-map based visualization to reflect the erratic behavior of dwd with respect to
that of dd. Building on their observations, we introduce the following contribu-
tions:

1. A new visualization, Instantiation per Variable (IpV), relating the search
behavior to the CSP’s graphical structure.

2. A new variable ordering heuristic, MaxClique (mxC1q), that exploits the
structure of the constraint network.

3. A metric, Cluster Independence Ratio (CIR), to detect when a mxC1qg could
be beneficial.

4. A preliminary empirical validation of our approach on benchmark prob-
lems.

This document is structured as follows. Section [2] reviews background informa-
tion. Section [3| introduces the IpV visualization. Section |4| motivates and de-
scribes our new ordering heuristic, mxC1q. Section [5|discusses the selection of
the appropriate variable ordering heuristics to reduce runtime. Section[6]concludes
with the current state of our research and future work.

2 Background and Related Work

Below we review background information.



2.1 Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSPs) are used to model combinatorial decision
problems. They are NP-complete by reduction from Boolean Satisfiability (SAT).
The advantage of the CSP formulation is that it maintains the structure of the
original problem and reflects the user understanding of the problem. A CSP is
defined as follows:

1. Given a constraint network, which is:

o AsetV = {Vi, V5, ..., V,} variables, to be assigned values from their
respective domain D; = dom(V}).

e Aset C = {C},Cs,...,Cp} of constraints that restrict the combina-
tions of values that can be assigned to the variables at the same time.
Each constraint C; : (scope(C;), rel(C;)) is defined by its scope(C;) C
(V) and rel(C;) C [l cseope(c;) (dom(z)). When the cardinality of the
constraints scopes is no more than two, the CSP is called a binary
CSP; otherwise, it is nonbinary.

2. The question is to determine whether there exists a solution to the CSP that
assigns a value to each variable such that all constraints are simultaneously
satisfied.

The graphical representation of a CSP, in which the vertices represent the vari-
ables and the edges represent the constraints and connect the variables in their
scope, is called a constraint (hyper) graph. When the cardinality of a constraint
scope is larger than two, replacing the hyperedges by cliques over the relevant ver-
tices yields a graph called the primal graph. For a binary CSP, the primal graph
and constraint graph are the same.

Other graphical representations of a CSP exist. We mention the dual graph
and a tree decomposition of the primal graph. In the dual graph of a CSP, the
vertices represent the constraints of the CSP and the edges link two vertices
when the scopes of the corresponding constraints overlap. These edges denote
equality constraints indicating that the variables in the scope intersection must
be given the same values. A tree decomposition of a CSP is a tree embedding
of the constraint network where the nodes of the tree are clusters of CSP vari-
ables and constraints with the following two conditions: (1) every constraint
appears along with the variables in its scope in at least one node of the tree,
and (2) all the nodes where a given variable appears form a connected subtree



(i.e., the connectedness property). A common tree decomposition is obtained
by triangulating the primal graph using the MinFill heuristic [Kjerulff, 1990;
Dechter, 2003all, identifying the maximal cliques of the triangulated graph us-
ing the Maximal Cliques algorithm [Bron and Kerbosch, 1973, and building the
tree decomposition using the Join Tree algorithm [Dechter, 2003bl.

2.2 Variable Ordering Heuristics

Backtrack search is the only sound and complete algorithm for solving CSPs. The
performance of search heavily depends on the instantiation order of the variables
[Freuder, 1982; Purdom, 1983} Stone and Stone, 1987].

Let us consider the ideal case for a variable ordering with respect to a real-
world single-thread computation model. For a satisfiable CSP with n variables,
an ideal variable and value ordering makes exactly n assignments. In this pa-
per, we only discuss variable ordering, and order values lexicographically. Thus,
the ideal variable ordering is one that minimizes backtracks. For an unsatisfiable
CSP instance, the ideal ordering selects variables from an unsatisfiable subprob-
lem (ideally, a minimal conflict), and the size of the search tree is bounded by
the product of the domain sizes of the variables in the conflict. The prevailing
wisdom is to instantiate the most constrained variable first.

Some variable ordering heuristics exploit a structural property of the constraint
graph, such as the width [Freuder, 1982]], the maximal cardinality ordering [Tarjan
and Yannakakis, 1984], the induced width or treewidth [Bertele and Brioschi,
1972}, the bandwidth [Zabih, 1990], or a tree decomposition [Jégou and Terrioux,
2003]]. Such orderings aim at reducing backtracking effort. They are typically
computed before search and maintained static throughout search.

However, dynamic variable ordering yields superior results. Indeed, after
search instantiates a variable, the impact of this decision is propagated, by looka-
head, on the remaining ‘future’ (i.e., unassigned) variables. Dynamic variable-
ordering, combined with lookahead, is recognized to be essential for good search
performance [Bessiere and Régin, 1996]l.

Variable ordering remains the topic of active research investigations [[Geelen,
1992; Michel and Van Hentenryck, 2012; |Paparrizou and Wattez, 2020; Koriche
et al., 2022]. However, the heuristic known as Dom/WDeg (dwd) [Boussemart et
al., 2004] remains the basis of the most effective variations [Wattez et al., 2019;
Audemard et al., 2023]. The following are some common variable ordering
heuristics:



1. Lexicographic (1ex) order, a static ordering, is usually used to break ties.

2. Least domain (dom), also called the least domain or minimum remaining
values heuristic, orders variables based on their smallest remaining domain
[Haralick and Elliott, 1980].

3. Degree (deg) chooses the variable connected to the largest number of future
variables.

4. Dom/Deg (dd) chooses the variable with the smallest ratio of the domain
size and degree, as defined above.

5. WDeg (wdeg), Dom/WDeg (dwd) increment the weights of the constraints
that cause conflicts, which increases the weights of the degrees of the vari-
ables that appear in the scope of these constraints [Boussemart ez al., 2004].

2.3 Visualizations and Erratic Behavior of dwd

Our work builds on visualizations proposed by |Woodward et al. where backtrack
and lookahead effort are tracked and summarized per depth of the search tree
[2018]l, and the ones proposed by Howell et al.| where those metrics are sampled
throughout the search and automatically organized into regimes of a history quali-
tatively describing the evolution of search over time [2020]. In particular, Howell
et al. reported that solving some unsatisfiable graph-coloring instances of the mug
benchmar do not terminate within two hours when using dwd but terminate
within minutes when using dd [2020]. To visualize the behavior of search, they
proposed to display, as a heatmap, of the number of variable instantiations per
depth VIpD of the search tree.

We choose the instance mug88—1—3, which is unsatisfiable, has 88 variables,
146 binary constraints, and all domains have size 3. Figure [I] shows our own
rendering of their VIpD when solving mug88-1-3, with PREPEAK™ (POAC)
as lookahead and using dd and dwd. In the VIpD, the variables are ordered on
the vertical axis by the weighted value of their instantiation depths [Howell et al.,
2020]E] Variables instantiated at shallow search levels appear to the left of the

2Benchmark Library XCSP2.1 https://www.cril.univ-artois.fr/~lecoutre/
#/benchmarks), accessed: 2025-04-11.

“Note that a variable whose domain is a singleton value is immediately instantiated, which
is called the domino effect in lookahead. As a result, in dynamic ordering, such variables are
instantiated before any other variables regardless of the ordering heuristic used.
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Figure 1: VIpD of search on mug88-1-3, using PREPEAK™ (POAC) for lookahead,
with dd (left) and dwd (right). These graphs use the same logarithmic color scale.

VIpD. Variables not instantiated by search are placed at the bottom of the vertical
axis. Notice that a static variable ordering would produce a VIpD with dots (i.e.,
variable instantiations) along the diagonal. Values not on the diagonal display
some change in the ordering of the variables. Dynamic variable orderings that are
somehow stable would display most of the instantiations near the diagonal of the
VIpD. However, when search is erratic (e.g., left of Figure |I[), the VIpD reveals
the variables are repeatedly instantiated at wide ranges of depths.

The VIpD of dd (Figure[l] left) shows no coloring in the bottom-right corner,
which corresponds to deep levels of the search tree, indicating that no variable
is instantiated at these depths. Thus, search terminates early, determining the in-
stance to be unsatisfiable. In contrast, the VIpD of dwd (Figure[I} right) shows
that search reached much deeper levels of the search tree and search made very
many instantiations (notice the logarithmic vertical scale of the vertical axis). The
VIpD reveals that dwd is unfocused and erratic, which explains the large CPU
time difference between the two algorithms: dwd (right) takes more than 2,637
seconds to determine unsatisfiability whereas dd (left) terminates within 33 sec-
onds. The analysis of this behavior was beyond the scope of the original paper
[Howell et al., 2020].




3 A New Visualization, IpV

We set out to study the erratic behavior of dwd. To this end, we display the
number of instantiations per variable (IpV) directly on the primal graph of the
CSP: This visualization shows us where search is active and relates its operations
to the structure of the graph. Figure 2] shows the number of instantiations per
variable IpV for the experiment of Figure[I]
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Figure 2: Instantiations per variable TpV for mug88-1-3, using PREPEAK™ (POAC)
with dd (left) and dwd (right). The color scales are linear and are different to emphasize
the colors in dd.

Comparison of IpV for dwd and dd in Figure [2] clearly shows that dwd is
‘blindly jumping around’ and whereas dd is focused on a small number of vari-
ables. By restricting search to relatively a small number of variables, we conjec-
ture that dd is able to exhaustively explore all combinations of values for these
variables to determine that the instance is unsatisfiable.

4 A New Variable Ordering Heuristic

Examining the IpV of dd (Figure 2] left) reveals that search focuses on ‘key” ver-
tices that seem to connect the various components of the graph. This fact inspired
us to prioritize the instantiation of variables that appear in the largest number of



maximal cliques in a triangulation of the primal graph, which correspond to the
largest number of clusters in the corresponding tree decomposition, computed as
described in Section 2.1l

4.1 Maximal Cliques Ordering, mxClq

Our new ordering heuristic, Maximal Cliques (mxC1q), chooses to instantiate first
the variable that appears in the largest number of maximal cliques given some
triangulation of the primal graph of the CSP (Section [2.1)). Ties are broken using
another heuristic (e.g., lex or dwd) to be specified. The number of maximal
cliques in which a variable appears is computed before the search starts and is not
updated during the search.

We do not advocate replacing dwd with mxClq. In fact, dwd, and its varia-
tions, is the current de facto standard. Furthermore, mxC1q gives a static ordering
whereas dwd gives a dynamic ordering, which is known to be essential for good
search performance [Bessiere and Régin, 1996]. Because dwd can sometimes
lose focus and become erratic, as in the case of unsatisfiable mug instances, we
propose to use mxC1lqg to force dwd to focus its operations on the variables ap-
pearing in the largest number of cliques. Consequently, we first apply mxC1q to
identify the potentially critical variables, and then apply dwd to this restricted set,
breaking ties lexicographically. As a result, mxC1q forces dwd to prioritize the
instantiation of critical variables.

4.2 Applying mxClqg to mug88-1-3

Figure [3] shows how mxC1q is able to focus search on mug88-1-3 and signifi-
cantly improves search performance. Indeed, mxC1q determined unsatisfiability
in less 10 seconds, in contrast to about 33 seconds for dd, and more than 43 min-
utes for dwd. We clearly see that mxC1q:

1. terminates search at earlier depth levels than dwd;
2. focuses search more ‘sharply’ than dd and dwd; and
3. requires much fewer instantiations than dd and dwd.

Thus, on this particular instance, mxC1lqg seems to benefit from exploiting the
structure of the constraint network (via the maximal cliques) and also from the
ability of dwd to prioritize bottlenecks.
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Figure 3: VIpD of search on mug88-1-3, using PREPEAK™ (POAC) for lookahead,
with dwd (left) and mxC1q (right). These graphs use the same logarithmic color scale as

Figure[l]

Our IpV visualization, Figure 4] clearly shows how mxC1lq (right) focuses
the search on select nodes in comparison to dwd (left).
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Figure 4: Instantiations per variable (IpV) for mug88-1-3 with PREPEAK™ (POAC),
using dwd (left), mxClqg (right). The linear color scales are different to emphasize the
colors in mxC1q.



4.3 Forced Static Ordering on mug88-1-3

One natural question is to analyze the variables on which the heuristics dd, dwd
(the current standard), and mxC1qg are ‘chalking.” To this end, we sort the vari-
ables of mug88-1-3 in the decreasing value of their number of instantiations
by each of dd, dwd, and mxC1qg. The top ranking variables appear as the most
critical for each of the three heuristics. Then, we force each resulting ordering
as a forced static ordering for search in order to assess the ‘discriminating’ ef-
fectiveness of each heuristic. The corresponding VIpD are shown in Figure

Figure 5: VIpD of forced static ordering on mug88-1-3, using PREPEAK™ (POAC) for
lookahead, with dd (left), dwd (middle) and mxC1q (right) in the same logarithmic-color
scale.

Table [T] reports the performance of search in dynamic and forced static order-
ings in terms of CPU time, number of backtracks (#BT), number of nodes visited
(#NV), and the deepest level reached to determine unsatisfiability.

Comparing the results in Table[I] and the VIpD in Figures [ and [3| (dynamic
ordering) with the corresponding plots in Figure [5] (forced static ordering), we
notice that:

1. The forced static ordering deteriorates the search performance for both dd
and mxC1lqg, which hints to the difficulty of isolating the conflicts in this
instance.

2. It improves the search performance for dwd, which shows how misguided
dwd can be.

4The vertical-axis scales in Figures [3|and|5|are different.
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Table 1: Comparing performance of dynamic and forced static variable ordering on
mug88-1-3 (88 variables) using PREPEAK ™ (POAC).

Dynamic ordering Forced static ordering
dd dwd mxClg dd dwd mxClg
CPU [sec] 3541 2,833.28 10.56 53.13 410.35 49.61

Total #BT 246,781 102,846,409 75,947 635,373 5,055,471 413,776
Total #NV 409,796 130,713,508 120,194 853,576 7,203,069 581,470
Max depth 61 85 60 61 83 61

This study raises new questions:
1. Can mxC1lqg ‘uncover’ a good variable ordering on a satisfiable instance?

2. How does mxC1q perform on other benchmark classes, particularly those
whose primal graph may not be structured?

3. Can we predict when mxC1qg would be advantageous?

4. Can we use the static ordering corresponding to mxClqg to characterize
the minimal conflicts of unsatisfiable instances, which is a known NP-hard
problem?

In Section4.4] we repeat the study above on a satisfiable problem instance, namely,
fpga-10-9. In Sectiond.5] we report benchmark on which mxC1q outperforms
dwd and dd. In Section E], we propose a criterion, CIR, based on the structure of
a tree decomposition of the primal graph in order to predict the appropriateness of
mxC1q. The last question is beyond the scope of this report.

4.4 Forced Static Ordering on fpga-10-9

fpga—-10-9 is a satisfiable CSP with 135 variables, domain of size 2, 118 non-
binary constraints (with arity varying from 5 to 10) whose primal graph has a
density of about 15%. Table [2| shows the search performance using PREPEAK™
(POAC), with dd, dwd, and mxC1q for dynamic variable ordering and the corre-
sponding forced static ordering. The corresponding VIpD are shown in Figure [0

We note that, unlike mug88—-1-3, dd fails to terminate within 2 hours. dwd
finds a solution after more than 283 seconds, but mxC1qg terminates successfully

11



Table 2: Comparing performance of dynamic and forced static variable ordering on
fpga-10-9 (135 variables) using PREPEAK ™ (POAC).

Dynamic ordering Forced static ordering

dd dwd mxClg dd dwd mxClg
CPU [sec] >7,200.00 283.80 0.24  >7,200.00 1,985.09 0.07
Total #BT >515,850,836 6,209,526 2,366 >261,621,797 6,980,745 0
Total #NV >634,219,575 8,135,467 3,058 >342,221,921 10,554,376 135
Max depth 128 135 135 120 135 135

nnnnnn

=

Figure 6: Variable instantiations per depth (VIpD) on fpga—10-9, using PREPEAK™
(POAC) for lookahead with dd (left), dwd (center), and mxC1lq (right). The top row
shows the graphs for dynamic variable ordering and the bottow row shows the correspond-
ing forced static orderings. All graphs have the same logarithmic color scale. Notice the
forced static ordering found by mxC1q solves the instance in a backtrack-free manner.

in 0.24 seconds. The VIpD’s in Figure [6] show how dd and dwd both lack fo-
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cus whereas mxC1lqg seems to proceed towards the solution with relatively little
hesitation.

Most notably, with the forced variable ordering, the search performance of
dd and dwd deteriorates, whereas mxC1qg proceeds in a backtrack-free manner,
thus hinting to its ability to find a ‘perfect’ variable ordering. An interesting open
question is how to exploit such a behavior for solving CSPs.

4.5 Validating mxC1lqg on Difficult Problems

Preliminary experiments on benchmark problems showed that mxC1lqg outper-
forms dd and dwd on difficult ‘structured’ problems. What constitutes a ‘struc-
tured’ instance remains to be defined; CIR is our first attempt to this end.

Table @ summarizes these results per benchmark, with the details of the results
per instance reported in Table [3]in Appendix

Table 3: Summary on select benchmark with positive results. Detailed results are in-
cluded as an appendix.

#Solved CPU Time [sec]
STR2
Benchmark #Instances dd dwd mxClg dd dwd mxClg
graphColoring-mug 8 4 4 4 >28,800.09  >28,800.09 >28,800.10
jobShop-e0ddr1 10 4 5 6 >43,230.58  >37,858.63 >28,845.27
jobShop-e0ddr2 10 4 5 8 >43,240.88  >43,240.89 >14,478.76
jobShop-enddr2 6 3 3 5 >21,633.93  >21,633.93 >7,254.14
pseudo-fpga 21 0 3 20 >151,200.00 >135,651.56 >7,851.66
APOAC
graphColoring-mug 8 7 6 8 >0,424.86  >16,402.89 5,879.48
jobShop-e0ddr1 10 4 4 7 >47,398.80 >47,399.02 >28,850.98
jobShop-e0ddr2 10 4 4 8 >49,887.98  >49,888.22 >25,401.54
jobShop-enddr2 6 3 3 6 >27,238.25  >27,23845  12,294.97
pseudo-fpga 21 0 3 20 >151,200.00 >13,9962.53 >8,147.67
PREPEAK™ with POAC
graphColoring-mug 8 8 7 8 465.14  >17,715.27 65.90
jobShop-e0ddrl 10 4 5 7 >43,226.69  >38,435.73 >21,886.81
jobShop-e0ddr2 10 4 4 8 >43,263.27  >43,263.27 >14,521.47
jobShop-enddr2 6 3 3 6 >21,653.32  >21,653.33 282.68
pseudo-fpga 21 0 3 20 >151,200.00 >135,977.42 >7,471.40

The discussed benchmark include both satisfiable and unsatisfiable instances,
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binary and nonbinary CSPs, with domain sizes small and large. In Appendix [A]
we include one representative primal graph of each benchmark. We also include
the corresponding dual graph, for additional clarity.

Each row in Table @ gives the name of the benchmark, the total number of
instances in the benchmark, and summarizes the performance of three lookahead
schemas, namely, STR2 [Lecoutre, 2011], APOAC [Balafrej er al., 2014], and
PREPEAK™ (POAC) [Woodward et al., 2018]) for each of dd, dwd, and mxC1q.
The table shows the number of instances solved by each algorithm within two
hours, and the cumulated CPU time in seconds, where the character > indicates
that the time reported is a lower bound. For a given lookahead schema, the best
result of the three ordering heuristics is formatted in boldface. The results in
Tables [3] and [3] validate the promise of mxC1q.

5 Predicting Appropriateness of mxClqg

We designed mxC1lqg to ‘guide’ dwd by exploiting the structure of the primal
graph. There is no reason to believe that mxC1qg will perform well on all CSPs.
Clearly, when the clusters of a tree decomposition of the primal graph overlap on
most of their variables and the same variables appear in most clusters, mxClqg
would hardly seem appropriate. We hypothesize that a metric that measures
the ‘independence’ of non-adjacent clusters of a tree decomposition may iden-
tify the instances where mxC1q is beneficial. By independence, we mean that
non-adjacent clusters share no variables. The Cluster Independence Ratio (CIR)
is computed from a tree decomposition of a CSP. A variable typically appears in
many clusters of a tree decomposition because of the connectedness property. By
construction, two adjacent clusters share one or more variables, which form the
separator between the two clusters. Non-adjacent clusters may or may not have
variables in common. We define the Cluster Independence Ratio (CIR) as the ra-
tio of the number of pairs of non-adjacent clusters with no common variables to
the total number of pairs of non-adjacent clusters, it ranges in [0,1]

__ # non-adjacent cluster pairs with no variables in common
CIR= # non-adjacent cluster pairs
When CIR =0, every pair of non-adjacent clusters has a variable in common; when
CIR =1, all non-adjacent clusters have no variables in common. The CIR is applicable
only to trees with more than two clusters: trees with two clusters have no non-adjacent
clusters.
Based on the observation that mug instances have a high CIR, we expected that
mxC1q to perform well on problems with high CIR values, e.g., larger than 0.5. However,
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TableE] shows that, while mug is included by this threshold, all the other listed benchmark
are not, yet they benefit from mxC1qg. Clearly, we need more problem features as ‘indica-
tors’ of the appropriateness of mxC1q in order to eventually automate the selection of an
ordering heuristic.

Towards identifying useful metrics, we classified, using decision trees of limited
depth, about 2,000 instances on which search with both dwd and mxC1 g completed within
two hours. As training data, we used the runtime performance of dwd and mxC1q, a large
set of CSP features [[Geschwender et al., 2016[, our new metrics (CIR), and the number
of clusters per variable. We limited the depth of the decision trees to prevent overfitting
and maintain the ‘interpretability’ of the trees by humans.

To train decision trees, we labeled instances as class 1 when mxClq is at least a
minute faster than dwd, class -1 when dwd is at least a minute faster than mxC1lq, and
class 0 otherwise. Ignoring the class 0 instances focuses the training of the decision tree
on the extreme cases where a lot of time can be saved or lost, thus providing a buffer
where the decision tree could select either variable ordering and not be penalized. We
then trained, with subsets of the selected features, several decision tree on all instances of
classes 1 and -1.

We recognize, from the outset, that using graph-structure metrics is not sufficient. In-
deed, mug88—-1-3 is a member of class 1, whereas mug88—-1-4 is a member of class 0.
However, these two instances differ only by the size of their domain, namely, three instead
of four, see Table [3] This pair of instances illustrates the limit of using graph structures
as metrics for runtime classification. Indeed, two instances with almost identical metrics
may have significantly different run times, which is problematic for training classifiers.
Other approaches, orthogonal to static classifiers, such as probing and restarting search
are worth considering [Habet and Terrioux, 2019; |Paparrizou and Wattez, 2020]].

Our preliminary study identified the following features as salient for favoring mxC1qg
over dwd: covariance of degree of the primal graph, number of cliques of a tree decompo-
sition of the primal graph, number of interacting cluster pairs of this tree decomposition
(where we define interacting pairs as non-adjacent cluster pairs with at least one com-
mon variable), number of constraints in the CSP, CIR, density of the primal graph, and
clustering coefficient of the primal graph.

The other metrics relate to the structure of the primal and tree decomposition. Degree
covariance seems reasonable for determining when to use mxClqg. A graph where the
degree covariance is low means that the degrees for all variables are similar values. This
fact, in combination with a low covariance in domain size, could cause dwd to similarly
weigh all of the variables.

Our current results show that, while the aforementioned metrics are relevant for iden-
tifying the applicability of mxC1q, this classification task is difficult due to small differ-
ences in graph structure and also in the CSP itself, which have significant impact on the
performance of search. Further work is needed to assess the benefits of using a classifier
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to select an ordering heuristics before search.

6 Conclusions

In this report, we show how visualization supports the understanding of search behavior
and the design of new techniques in the context of solving CSPs with search. While
the VIpD allowed the detection of the erratic behavior of search on the over-constrained
mug instances, our IpV inspired the design of a new ordering heuristic (mxClq) and a
new graph-structure metric (CIR) towards the development of structure-based selection
strategies of ordering heuristics.

One should not ignore the additional cost incurred for computing the various metrics
(e.g., building a tree decomposition of a graph), which may be non-negligible. However,
given the significant impact on the performance of search (whose cost is exponential in
the number of variables), such additional effort (whose cost is polynomial) would ideally
still save time, overall. Our current ability to assess the benefits of a given heuristic is
limited by the currently identified metrics, the tested variable ordering heuristics, and the
inherent complexity of NP-hard problems.

We envision two main directions for future work. The first direction is concerned
with the design of new visualizations such as enriching the IpV with information about
how lookahead affects domain wipe-outs and constraint and variable weights.The second
direction is to extend our study to include more diverse ordering heuristics, such as the
ones listed in Section 2.2
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A Appendix - Graph Structure Visualizations

The following figures are examples of the network visualizations we implemented. The
primal graphs were constructed using Python 3.12 and the NetworkX library. This setup
was also used to produce the earlier IpV and the VIpD figures. The dual graphs were con-
structed using JavaScript and D3.js library. This setup allows for more user interactivity
such as moving nodes and changing colors of the graphs in the browser.

Each figure is a representative instance of their benchmark. For the mug instances in
particular, the graphs for instance that only differ by the final number, (e.g mug88-1-3
and mug88—1-4) are identical except for the domain size. Figure|/[shows the primal and
dual graphs for mug88-1-3, and identical to the graphs for mug88-1-4, with 88 vari-
ables and 146 constraints. All jobShop instances have 50 variables and 265 constraints,
which produce similar graphs: e0ddr1-10-by-5-1 Figure[§| e0ddr2-10-by-5-1
Figure 9] enddr2-10-by-5-10 Figure[I0] The mug and jobShop instances are all
binary so every constraint is represented by a single edge. The visualization of fpga-10-8
Figure [T1]is more visually dense than the others because it has 120 variables the maxi-
mum arity is 10. With a non-binary graph each constraint requires an edge between every
pair of variables in the scope.

mug88-1-3 Primal Network

Figure 7: mug88-1-3 primal graph (left) and dual graph (right)
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e0ddr1-10-by-5-1 Primal Network
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Figure 9: e0ddr2-10-by-5-1 primal graph (left) and dual graph (right)
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enddr2-10-by-5-10 Primal Network

Figure 10: enddr2-10-by—-5-10 primal graph (left) and dual graph (right)
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fpga-10-8 Primal Network

Figure 11: fpga—-10-8 primal graph (left), dual graph (right)




B Appendix - Detailed Benchmark Performance

Each row in Table [3] contains: the name of the benchmark, name of the instance, struc-
tural metric about the CSP and the Tree Decomposition, and the Runtime in seconds. The
structural metrics are: number of constraints, number of variables, maximum arity of the
constraints, maximum domain size, number clique in the tree decomposition (#cl), num-
ber of non-adjacent pairs of cliques that have a variable in common (S), CIR, and the
average, standard deviation, and covariance of the number cliques a variable is a of mem-
ber in the tree decomposition. The satisfiability is noted with 0, 1, and - for unsatisfiable,
satisfiable, and no algorithm terminated respectively. The runtime performance is shown
in seconds for three lookahead schemas, namely, STR2 [Lecoutre, 2011], APOAC [Bal-
afrej et al., 2014], and PREPEAK" (POAC) [Woodward et al., 2018]) for each of dd,
dwd, and mxC1lqg. For instances where the algorithm did not terminate within 2 hours a
> 7,200 indicates that the time reported is a lower bound. For a given lookahead schema,
the best result of the three ordering heuristics is formatted in boldface. The total rows for
each benchmark report the cumulative time for all runs and are summarized in Table 3]
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Table 3: Detailed performance per instance in considered benchmark

Tree Decomposition

Runtime (seconds)

#1 S CIR #Clg/Var STR2 APOAC PREPEAK + (POAC)
o

. N 4

£ 5222, F

E 2 2 8§ 85 w

Benchmark Instance Z g f g 5 g g Avg StDev CoV dd dwd mxClq dd dwd mxClg dd dwd mxClq

S 2 & a 59 8

5 o= = % @ #* S

= =
graphColoring-mug ~ mug100-1-3 166 100 2 3 0 65 113 94% 2280 0.128 6% >7,200.00  >7,200.00 >7,200.00 2,009.75  >7,200.00 390.42 12778 >7,200.00 36.16
graphColoring-mug ~ mugl00-1-4 166 100 2 4 1 65 113 94% 2280 0.128 6% 0.02 0.02 0.03 0.08 0.08 0.08 0.03 0.03 0.03
graphColoring-mug ~ mugl100-25-3 166 100 2 3 0 65 118 94% 2280 0.128 6% >7,200.00  >7,200.00 >7,200.00  >7,200.00  >7,200.00 5,344.05 292.02  >7,200.00 9.26
graphColoring-mug ~ mugl100-25-4 166 100 2 4 1 65 118 94% 2280 0.128 6% 0.02 0.02 0.03 0.08 0.08 0.08 0.03 0.03 0.03
graphColoring-mug ~ mug88-1-3 146 88 2 3 0 57 93 94% 2271 0.291 13% >7,200.00  >7,200.00 >7,200.00 100.83 1,553.03 70.82 3541 2,833.28 10.56
graphColoring-mug ~ mug88-1-4 146 88 2 4 1 57 93 94% 2271 0291 13% 0.02 0.02 0.02 0.06 0.06 0.07 0.03 0.03 0.03
graphColoring-mug ~ mug88-25-3 146 88 2 3 0 57 103 93% 2271 0.136 6% >7,200.00  >7,200.00 >7,200.00 114.00 449.58 73.89 9.82 481.87 9.80
graphColoring-mug ~ mug88-25-4 146 88 2 4 1 57 103 93% 2271 0.136 6% 0.02 0.02 0.02 0.06 0.06 0.07 0.03 0.03 0.03
graphColoring-mug Total >28,800.09 >28,800.09 >28,800.10  >9,424.86 >16,402.89 5,879.48 465.14  >17,715.27 65.90
jobShop-e0ddrl e0ddr1-10-by-5-1 265 50 2 115 33 461 7% 8420 0.625 7% >7,200.00  >7,200.00 723 >7,200.00  >7,200.00 964.55 >7,200.00  >7,200.00 10.6
jobShop-e0ddrl e0ddr1-10-by-5-2 265 50 2 118 33 461 7% 8.420 0342 4% >7,200.00  >7,200.00 >7,200.00  >7,200.00  >7,200.00 1,144.91 >7,200.00  >7,200.00 181.01
jobShop-e0ddrl e0ddr1-10-by-5-3 265 50 2 114 - 32 432 7% 8240 0.600 7% >7,200.00  >7,200.00 >7,200.00  >7,200.00  >7,200.00 >7,200.00 >7,200.00  >7,200.00 >7,200.00
jobShop-e0ddr1 e0ddr1-10-by-5-4 265 50 2 116 1 34 482 9% 8540 0.501 6% >7,200.00 1,828.04 7.29 >7,200.00  >7,200.00 975.22 >7,200.00 1,951.06 10.66
jobShop-e0ddrl e0ddr1-10-by-5-5 265 50 2 120 1 33 451 9% 8420 0.625 7% 7.59 7.59 7.56 1,072.61 1,072.66 940.68 11.38 11.38 11.36
jobShop-e0ddrl e0ddr1-10-by-5-6 265 50 2 124 1 31 398 9% 7.960 0.560 7% 7.94 7.94 7.90 1,077.83 1,077.89 1,039.85 11.99 11.99 11.95
jobShop-e0ddrl e0ddr1-10-by-5-7 265 50 2 118 1 37 611 3% 9.100 0.580 6% 7.31 7.32 7.39 998.23 998.28 1,085.08 10.77 10.77 10.84
jobShop-e0ddrl e0ddr1-10-by-5-8 265 50 2 121 - 33 479 3% 8420 0.625 7% >7,200.00  >7,200.00 >7,200.00  >7,200.00  >7,200.00 >7,200.00 >7,200.00  >7,200.00 >7,200.00
jobShop-e0ddrl e0ddr1-10-by-5-9 265 50 2 122 1 33 460 7% 8420 0342 4% 7.73 7.73 7.89 1,050.13 1,050.18 1,100.7 11.67 11.67 11.83
jobShop-e0ddrl e0ddr1-10-by-5-10 265 50 2 119 - 34 470 11% 8.540 0.501 6% >7,200.00  >7,200.00 >7,200.00  >7,200.00  >7,200.00 >7,200.00 >7,200.00  >7,200.00 >7,200.00
jobShop-e0ddr1 Total >43,230.58 >37,858.63 >28,845.27 >47,398.8  >47,399.02 >28,850.98 >43,245.81 37,996.87 >21,848.25
jobShop-e0ddr2 e0ddr2-10-by-5-1 265 50 2 128 - 36 482 19% 8840 0260 3% >7,200.00  >7,200.00 >7,200.00  >7,200.00  >7,200.00 >7,200.00 >7,200.00  >7,200.00 >7,200.00
jobShop-e0ddr2 e0ddr2-10-by-5-2 265 50 2 127 - 36 469 21% 8840 0.164 2% >7,200.00  >7,200.00 >7,200.00  >7,200.00  >7,200.00 >7,200.00 >7,200.00  >7,200.00 >7,200.00
jobShop-e0ddr2 e0ddr2-10-by-5-3 265 50 2 133 1 31 399 8% 7.960 0843 11% >7,200.00  >7,200.00 9.58 >7,200.00  >7,200.00 1,310.77 >7,200.00  >7,200.00 14.68
jobShop-e0ddr2 e0ddr2-10-by-5-4 265 50 2 136 1 31 391 10% 7.960 0.701 9% 10.25 10.25 10.07 1,698.68 1,698.74 1,397.78 15.83 15.83 15.65
jobShop-e0ddr2 e0ddr2-10-by-5-5 265 50 2 138 1 37 479 24% 9.100 0297 3% 10.26 10.26 10.13 1,680.77 1,680.83 1,599.59 15.87 15.87 15.74
jobShop-e0ddr2 e0ddr2-10-by-5-6 265 50 2 135 1 32 428 8% 8240 0249 3% 10.13 10.13 10.07 1,597.09 1,597.15 1,301.30 15.72 15.72 15.66
jobShop-e0ddr2 e0ddr2-10-by-5-7 265 50 2 133 1 35 474 16% 8.800 0.396 4% >7,200.00  >7,200.00 9.66 >7,200.00  >7,200.00 1,353.48 >7,200.00  >7,200.00 14.82
jobShop-e0ddr2 e0ddr2-10-by-5-8 265 50 2 132 1 34 450 15% 8.540 0.206 2% >7,200.00  >7,200.00 9.65 >7,200.00  >7,200.00 1,320.88 >7,200.00  >7,200.00 14.70
jobShop-e0ddr2 e0ddr2-10-by-5-9 265 50 2 133 1 35 465 17% 8.800 0.396 4% >7,200.00  >7,200.00 9.58 >7,200.00  >7,200.00 1,390.34 >7,200.00  >7,200.00 14.59
jobShop-e0ddr2 e0ddr2-10-by-5-10 265 50 2 134 1 31 385 11% 7.960 0.560 7% 10.24 10.24 10.03 1,711.45 1,711.51 1,327.40 15.85 15.85 15.63
jobShop-e0ddr2 Total >43,240.88 >43,240.89 >14,478.76 >49,887.98 >49,888.22 >25401.54 >43,263.27 43,263.27 >14,521.47
jobShop-enddr2 enddr2-10-by-5-1 265 50 2 139 1 36 482 19% 8840 0260 3% >7,200.00  >7,200.00 >7,200.00  >7,200.00  >7,200.00 4,671.37 >7,200.00  >7,200.00 197.69
jobShop-enddr2 enddr2-10-by-5-2 265 50 2 139 1 36 469 21% 8840 0.164 2% >7,200.00  >7,200.00 10.18 >7,200.00  >7,200.00 1,427.11 >7,200.00  >7,200.00 15.57
jobShop-enddr2 enddr2-10-by-5-3 265 50 2 143 1 31 399 8% 7.960 0843 11% >7,200.00  >7,200.00 10.79 >7,200.00  >7,200.00 1,522.18 >7,200.00  >7,200.00 16.86
jobShop-enddr2 enddr2-10-by-5-4 265 50 2 142 1 31 391 10% 7.960 0.701 9% 11.28 11.28 10.99 1,865.66 1,865.72 1,485.88 17.69 17.69 17.40
jobShop-enddr2 enddr2-10-by-5-5 265 50 2 148 1 37 479 24% 9.100 0297 3% 11.39 11.38 11.17 1,882.08 1,882.15 1,734.97 17.94 17.94 17.73
jobShop-enddr2 enddr2-10-by-5-10 265 50 2 147 1 31 385 11% 7.960 0.560 7% 11.26 11.26 11.01 1,890.52 1,890.58 1,453.45 17.69 17.69 17.44
jobShop-enddr2 Total >21,633.93  >21,633.93 >7,254.14 >27,23825 >27,238.45 12,294.97 >21,653.32 >21,653.33 282.68
pseudo-fpga fpga-10-10 130 150 10 2 1 28 326 7% 6.173 0341 6% >7,200.00 4,124.71 020  >7,200.00  >7,200.00 0.47 >7,200.00 4,687.3 0.22
pseudo-fpga fpga-10-8 106 120 10 2 1 24 233 8% 5642 0.124 2% >7,200.00 1,277.64 0.12 >7,200.00 2,316.88 0.25 >7,200.00 1,406.33 0.14
pseudo-fpga fpga-10-9 118 135 10 2 1 26 280 7% 5.933 0.006 0% >7,200.00 649.21 020  >7,200.00 845.65 0.36 >7,200.00 283.8 0.24
pseudo-fpga fpga-11-10 141 165 11 2 1 29 353 7% 6206 0.062 1% >7,200.00  >7,200.00 0.27 >7,200.00  >7,200.00 0.65 >7,200.00  >7,200.00 0.31
pseudo-fpga fpga-11-11 154 182 11 2 1 31 405 7% 6412 0.179 3% >7,200.00  >7,200.00 034 >7,200.00  >7,200.00 0.90 >7,200.00  >7,200.00 0.38
pseudo-fpga fpga-11-9 128 149 11 2 1 27 301 7% 5966 0.167 3% >7,200.00  >7,200.00 0.37 >7,200.00  >7,200.00 0.50 >7,200.00  >7,200.00 0.44
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Table 3: Detailed performance per instance in considered benchmark

Tree Decomposition

Runtime (seconds)
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pseudo-fpga fpga-12-10 152 180 12 2 1 30 376 7% 6233 0057 1%  >7,200.00  >7,200.00 2.82  >7,200.00  >7,200.00 .02 >7,200.00  >7,200.00 1.57
pseudo-fpga fpga-12-11 166 198 12 2 1 32 435 6% 6429 0041 1%  >7,200.00  >7,200.00 461.60  >7,200.00  >7,200.00 5.71 >7,200.00  >7,200.00 4.59
pseudo-fpga fpga-12-12 180 216 12 2 1 34 492 7% 6.63 0025 0%  >7,200.00  >7,200.00 0.56  >7,200.00  >7,200.00 1.60  >7,200.00  >7,200.00 0.63
pseudo-fpga fpga-13-11 178 215 13 2 1 33 461 7% 6502 0034 1%  >7,200.00  >7,200.00 0.66  >7,200.00  >7,200.00 1.82  >7,200.00  >7,200.00 0.76
pseudo-fpga fpga-13-12 193 234 13 2 1 35 525 6% 6.679 0086 1%  >7,200.00  >7.200.00 0.78  >7,200.00  >7,200.00 234  >7,200.00  >7,200.00 0.90
pseudo-fpga fpga-13-13 208 254 13 2 1 37 588 7% 6.878 0.07 1%  >7,200.00  >7,200.00 0.94  >7,200.00  >7,200.00 3.07  >7,200.00  >7,200.00 1.08
pseudo-fpga fpga-14-12 206 252 14 2 1 36 553 7% 6722 0017 0%  >7,200.00  >7,200.00 14.21 >7,200.00  >7,200.00 1424 >7200.00  >7.200.00 14.55
pseudo-fpga fpga-14-13 222 273 14 2 1 38 624 6% 6956 0.063 1%  >7,200.00  >7,200.00 138 >7,200.00  >7,200.00 459  >7,200.00  >7,200.00 1.63
pseudo-fpga fpga-14-14 238 294 14 2 1 40 692 7% 7.122 0.007 0%  >7,200.00  >7,200.00 .62 >7,200.00  >7,200.00 5.83  >7,200.00  >7,200.00 1.89
pseudo-fpga fpga-15-13 236 293 15 2 1 39 655 7% 6939 0.004 0%  >7,200.00  >7,200.00 2.17  >7,200.00  >7,200.00 7.58  >7,200.00  >7,200.00 2.64
pseudo-fpga fpga-15-14 253 315 15 2 1 41 731 6% 7.108 0.062 1%  >7,200.00  >7,200.00 248  >7,200.00  >7,200.00 9.30  >7,200.00  >7,200.00 2.99
pseudo-fpga fpga-15-15 270 338 15 2 1 43 805 7% 7263 0.069 1% = >7,200.00  >7,200.00 2.84  >7,200.00  >7,200.00 1178 >7,200.00  >7,200.00 341
pseudo-fpga fpga-20-18 416 540 20 2 - 54 1288 7% 7.852 0.123 2%  >7,200.00  >7,200.00 >7,200.00  >7,200.00  >7,200.00 >7,200.00  >7,200.00  >7,200.00 >7,200.00
pseudo-fpga fpga-20-19 438 570 20 2 1 56 1395 6% 8.032 0.001 0%  >7,200.00  >7,200.00 83.64  >7,200.00  >7,200.00 44932 >7,200.00  >7,200.00 109.39
pseudo-fpga fpga-20-20 460 600 20 2 1 58 1496 6% 8.093 0.249 3%  >7,200.00  >7,200.00 74.45  >7,200.00  >7,200.00 42632 >7,200.00  >7,200.00 123.63
pseudo-fpga Total >151,200.00 >135,651.56 >7,851.66 >151,200.00 >13,9962.53 >8,147.67 >151,200.00 >135,977.42 >7.471.40
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