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Abstract. Minimality, a highly desirable consistency property of Con-
straint Satisfaction Problems (CSPs), is in general too expensive to en-
force. Previous work has shown the practical benefits of restricting mini-
mality to the clusters of a tree decomposition, allowing us to solve many
difficult problems in a backtrack-free manner. We explore two alternative
algorithms for enforcing minimality whose performance widely vary from
one instance to another. We advocate a fine-grain portfolio approach to
dynamically choose, during lookahead, the most appropriate algorithm
for a cluster. Our strategy operates by selecting among two algorithms for
enforcing minimality and an algorithm that enforces the lowest-level of
consistency, which, in our setting, is Generalized Arc Consistency. Empir-
ical evaluation on benchmark problems shows a significant improvement
both in terms of the number of instances solved and CPU time.

1 Introduction

Local consistency techniques are at the heart of Constraint Programming and
constitute an invaluable tool for solving Constraint Satisfaction Problems (CSPs).
On many problems, enforcing simple consistency properties, such as Generalized
Arc Consistency (GAC) [27], during backtrack search can be sufficient to reduce
the problem to a manageable state. However, some problems are more resilient
and require stronger consistency properties to effectively filter them.

In this paper, we focus on constraint minimality as one such consistency
property. A constraint is considered minimal if every tuple of the constraint can
be extended to a complete solution to the CSP. Enforcing constraint minimality
is prohibitively expensive because it involves enumerating many, if not all, of
the solutions to the problem. However, it can be applied locally (that is, to a
given subproblem) with some success [13, 23]. Following Karakashian et al. [23],
we consider enforcing the property on clusters of the tree decomposition of the
problem. This restriction (or localization) to the clusters of a tree decomposition
can result in a strong filtering power at a manageable cost.

* Experiments were conducted at the Holland Computing Center facility of the University of
Nebraska. This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship under Grant No. 1041000 and NSF Grant No. RI-111795.
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Previous work has proposed two algorithms for enforcing minimality: PER-
TUPLE [24] and ALLSOL [22]. Our contribution is the development of a portfolio
approach for choosing between these two algorithms, as well as identifying when
to forego both algorithms and instead use an algorithm for GAC [27,7]. Our
empirical evaluation shows that such a portfolio can solve significantly more
problem instances than GAC, ALLSOL, or PERTUPLE alone, and in less run-
time on average.

The paper is organized as follows. Section 2 reviews some necessary back-
ground material. Section 3 discusses enforcing minimality on the clusters of a tree
decomposition. Section 4 discusses the construction of the portfolio. Section 5
describes experimental evaluations of the portfolio on benchmark problems. Fi-
nally, Section 6 presents our conclusions.

2 Background

The Constraint Satisfaction Problem (CSP) is denoted by P = (X,D,C). X =
{z1,...,z,} is a set of n variables, each associated with a finite domain from
D ={Ds,..,D,}.C={C,...,C.} is the set of constraints restricting how values
may be assigned to variables. Each constraint covers some subset of the variables,
known as the scope of the constraint. A solution to a CSP is an assignment to
each variable a value from its domain such that all constraints are satisfied.
Deciding the existence of a solution is an NP-complete problem.

A constraint C; is defined by relation R; over the scope(C;). In this paper,
we consider relations expressed as a set of allowed tuples. Each relation R; is a
subset of the Cartesian product of the domains of the variables in the scope(C;).
Each tuple in the relations represent an assignment of values to the respective
variables that is consistent with the constraint.

Several graphical representations of a CSP exist. The constraint network of
a binary CSP is a graph where the vertices represent the variables and the edges
the binary constraints. The constraint network of a non-binary CSP is a hyper-
graph. In the hypergraph, the vertices represent the variables and the hyperedges
the scopes of the constraints. In the primal graph, the vertices represent the vari-
ables, and the edges connect every two variables that appear in the scope of some
constraint. In the dual graph, the vertices represent the constraints of the CSP,
and the edges connect vertices corresponding to constraints whose scopes over-
lap. Finally, the incidence graph of a CSP is a bipartite graph where one set
contains all the variables and the other all the constraints. An edge connects a
variable and constraint if the variable appears in the scope of the constraint. The
incidence graph is the same graph used in the hidden-variable encoding [33].

A tree decomposition of a CSP is a tree embedding of its constraint network.
The tree nodes are clusters of variables and constraints from the CSP. A tree
decomposition must satisfy two conditions: a) each constraint appears in at least
one cluster and the variables in its scope must appear in this cluster; and b) for
every variable, the clusters where the variable appears induce a connected sub-
tree. Many techniques for generating a tree decomposition of a CSP exist [11,
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21,17]. We use an adaption for non-binary CSPs of the tree-clustering technique
[11]. First, we triangulate the primal graph of the CSP using the min-fill heuris-
tic [26]. Then, we identify the maximal cliques in the resulting chordal graph
using the MAXCLIQUES algorithm [14], and use the identified maximal cliques
to form the clusters of the tree decomposition. We build the tree by connecting
the clusters using the JOINTREE algorithm [9]. In order to enhance constraint
propagation between adjacent clusters, we use the projection schema described
by Karakashian et al. [23].

A CSP is arc consistent (AC) if every value has a supporting value in all
neighboring variables. A similar property for non-binary constraints is general-
ized arc consistency (GAC) [27]. Our experiments use the GAC-2001 algorithm
[7]. Minimality requires that any tuple that satisfies a constraint appears in at
least one solution to the CSP [29].

The two algorithms, ALLSOL and PERTUPLE, proposed by Karakashian [22],
both compute the minimal relations. PERTUPLE performs a backtrack search
on every tuple in every relation, trying to consistently extend it a tuple in each
other relation in the CSP. If the search fails, the tuple is removed. Otherwise,
the search stops after finding the first solution. Further, the solution is used as a
support structure for all the tuples that appear in the solution, which are marked
as ‘minimal.’ In contrast, ALLSOL conducts a single backtrack search over the
tuples of the relations, finding all the solutions and marking as ‘minimal’ every
tuple that appears in any solution. If PERTUPLE is interrupted at any point, any
deleted tuple is guaranteed to be inconsistent. However, when interrupted, the
effort invested by ALLSOL is lost. Whereas the space used for storing support
structures in PERTUPLE constitutes a tradeoff between time and space, ALLSOL
does not incur such an overhead.

Related work on computing minimality includes: [5, 6, 16]; portfolio approaches:
[32,15, 37,30, 20, 2]; adaptive consistency: [10, 12,28, 34, 31, 3, 36, 4, 35].

3 Enforcing Minimality in a Tree Decomposition

Karakashian never compared the performance of PERTUPLE and ALLSOL dur-
ing search, but only on individual clusters [22] collected from tree decompo-
sitions of CSP instances. When exploiting a tree decomposition for lookahead,
Karakashian et al. exclusively used PERTUPLE [23]. We consider three variations
of their basic process:

1. During lookahead, we include the option of whether or not to enforce GAC
over the entire CSP after processing any given cluster.

2. Every time a cluster is considered for consistency, we can consistently call
a specific consistency algorithm, or use a classifier to determine whether to
call ALLSOL or PERTUPLE on the cluster or to do ‘Neither.’

3. Finally, we include an optional ‘timeout’ setting for processing individual
clusters. This timeout interrupts the consistency algorithm currently oper-
ating on the cluster when the set threshold is reached. In the case of PER-
TUPLE, the filtering done so far is preserved. For ALLSOL, it is lost.
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FILTERCLUSTERS (Algorithm 1) implements the above strategies and controls
how consistency is enforced and propagated. In addition to the clusters, FILTER-
CLUSTERS takes three parameters that implement the above described variations
of the process. Table 1 lists the parameter settings that yield six algorithms.

Algorithm 1: FILTERCLUSTERS(clusterOrder, classi fier, interleaveGAC, timeout)

Input: clusterOrder,classifier, interleaveGAC, timeout
Output: Entire problem is GAC with potentially minimal clusters
didFiltering < true
passDidFiltering < true
consistent < true
(consistent, didFiltering) < GAC()
if consistent = false then return false
while passDidFiltering do
passDidFiltering < false
foreach cluster € clusterOrder do
algo < CLASSIFY (cluster, classi fier)
if algo =‘AllSol’ then

| (consistent, didFiltering) <—ALLSOL(cluster, timeout)
else if algo =‘PerTuple’ then

| (consistent, didFiltering) <~ PERTUPLE(cluster, timeout)
else didF'iltering < false
if consistent = false then return false
if didFiltering then passDidFiltering < true
if interleaveGAC and didFiltering then

(consistent, didFiltering) < GAC()
if consistent = false then return false
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20 | clusterOrder +~REVERSE(clusterOrder)

21 if interleaveGAC = false then
22 (consistent, didFiltering) <—GAC()
23 if consistent = false then return false

24 return true

Table 1. Parameter variations of FILTERCLUSTERS

[Algorithm] classifier [inte'rleaveGAC[ timeoutl
ALLSoL Always select ‘AllSol’ false )
PERTUPLE |Always select ‘PerTuple’ false 0
ALLSoLT Always select ‘AllSol’ true 1 (s)
PERTUPLET [Always select ‘PerTuple’ true 1 (s)
RANDOM Randomly select ‘AllSol’, ‘PerTuple’, or ‘Neither’ true 1 (s)
DECTREE Decision tree selects ‘AllSol’, ‘PerTuple’, or ‘Neither’ true 1 (s)

FILTERCLUSTERS filters both the domains of the variables and the tuples of
the relations. It may be applied as a preprocessing step as well as a look-ahead
procedure during search. The foreach loop (line 8) processes clusters from the
specified clusterOrder. In our setting, this ordering corresponds to the MAX-
CLIQUES ordering of the clusters, but we will investigate other priority orderings
in the future. The outer while-loop (line 6) iterates until no further filtering can
be achieved. At each pass, the direction of the cluster ordering is reversed to
facilitate propagation (line 20). The classifier allows the selection of the most
appropriate algorithm on a cluster by cluster basis (line 9). The option to run
GAC (ie., interleaveGAC = true) allows ‘easy and quick’ filtering, which may
trigger rapid and effective propagation throughout the problem. The timeout
option, which specifies a time limit in seconds, ensures that excessive time is not
wasted on a single cluster, allowing us to recover from classification errors.
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4 Building a Portfolio

Our algorithm portfolio must decide which of the two minimality algorithms
to enforce on a cluster given that the performance of the two algorithms vary
widely. Because both algorithms enforce the same consistency, the portfolio must
select the fastest algorithm based on features extracted from the cluster being
processed or, when both algorithms are too costly, it must choose to run neither.

Inspired by features that appeared in the literature [25,1], we identified a
selection of 73 features that attempt to capture the constraint-network structure
and the relation properties of a problem instance. The majority of the features
that we collect are aggregations of many data points. In general, we aggregate
using the mean, coefficient of variation, minimum, maximum, and entropy (*).
For some features, we report total sum (7) or log;, of mean ().

— CSP parameters: number of variables; number of relations; number of tu-
ples per relation’; domain size!™; arity of relations*; tightness of relations*;
relational linkage*.

— Dual-graph parameters: density; vertex degree*; vertex eccentricity*; vertex-
clustering coefficient*.

— Incidence-graph parameters: density; vertex degree*; vertex eccentricity™.

— Primal-graph parameters: density; vertex degree*; vertex eccentricity™; vertex-
clustering coefficient*.

In order to train a classifier for the portfolio, we collected a large data set
of runtimes for both algorithms. We took instances from 175 benchmarks and
broke them down into clusters of a tree decomposition. We then sampled 9362
individual instances from these clusters, either randomly selecting 70 clusters
from each of the 175 benchmarks or taking all the clusters of a benchmark when it
has less than 70 clusters. We ran both ALLSOL and PERTUPLE on every cluster,
while recording (for each cluster) a set of features as well as the runtimes of the
algorithms. Figure 1 shows the runtime distribution of the training instances.
Although there are substantially more instances favoring PERTUPLE, ALLSOL
does have its niche of instances on which it completes in up to two orders of
magnitude faster.

After collecting data from 9362 individual clusters, we trained a decision tree
using the J48 algorithm of the Weka machine learning software suite [18]. Using
the 9362 clusters as a training set, we labeled each cluster ‘AllSol” when ALL-
SoL was the fastest, ‘PerTuple’ when PERTUPLE was fastest, and ‘Neither’ when
neither algorithm completed within ten minutes. We weighted our instances to
increase the importance of instances with a large difference in runtimes, comput-
ing the weight of an instance i using Equation (1) where allSol (i), perTuple(i)
are the CPU time on ¢ of ALLSOL and PERTUPLE, respectively.

log,, (M> | - [logyo (lallSol(i) — perTuple(s)| + 0.01)|—‘ (1)

oht(i) —
weight(i) ’V perTuple(i)

We designed this weighting scheme to emphasize instances where the execution
times differ greatly, both in the ratio and in the difference of their values. We
assigned a weight of 20 to the ‘Neither’ instances after empirical testing.



6 D.J. Geschwender, R.J. Woodward, B.Y. Choueiry, S.D. Scott

Runtime of All Instances
1x10° — o

100000
10000 |

1000 |

PerTuple Time (msec)

=)

1000 10000 100000 1x10°

10’ 10(;
AllSol Time (msec)

Fig. 1. Distribution of algorithm runtimes on single clusters

As a preliminary evaluation, we performed ten-fold cross validation using the
collected instances. Our classifier achieved an unweighted accuracy of 80.1% and
a weighted accuracy of 90.8%, which indicates the classifier is correctly handling
the more heavily weighted instances.

5 Experimental Evaluation

In our evaluation, we use the six algorithms obtained by setting the parameters
of FILTERCLUSTERS alongside GAC for real-full lookahead [19] in a backtrack
search on a set of 1055 instances taken from 42 benchmarks from the XCSP
library.! Our search procedure terminates after finding the first solution and uses
the dom/deg dynamic ordering heuristic. Although dom/wdeg [8] can improve
performance across the board, FILTERCLUSTERS is not yet equipped to take
advantage of this heuristic. Our experiments run on a cluster computer with
Intel Xeon E5-2650 v3 2.30GHz processors. Search is allowed to run for two
hours (7200 sec) and given 12 GB of memory. To account for load variations on
the cluster computer, we measure instruction count and convert it to runtime
using a standardized measure of instructions per cycle and clock speed. We use a
timeout of 1 second per-cluster because, based on the data from the 9362 clusters
shown in Figure 1, this value strikes a good balance between completing clusters
and not spending excessive time on any one cluster.

Table 2 summarizes the results (top) and provides detailed results per bench-
mark (bottom). We place the solvers into two categories. On one hand, the basic
solvers, which include GAC, ALLSoL, and PERTUPLE. On the other hand, hy-
brid solvers, which include ALLSOL™, PERTUPLE", RANDOM, and DECTREE.
We compute the average CPU time only over instances completed by at least
one of the solvers. Both timeouts and memouts (memory out) are considered
7200 seconds. Due to the randomness of RANDOM, we perform ten runs for each
instance and report the median.

! nttp://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
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Table 2. Experimental results of the seven solvers run on 1055 benchmark instances.
We consider only instances where at least one solver completes. The number of instances
per benchmark is denoted by ‘solved by one/total’. ‘DATA SUMMARY’ gives the number
of completions, average, and total CPU time. The lower sections give the number of
completions and average CPU time per benchmark. ‘>’ indicates that at least one
instance did not complete. ‘*” indicates that at least one instance caused a memout.
The ‘>’ and ‘X’ are omitted from ‘DATA SUMMARY’ for readability. Columns ‘A%, ‘P%,’
and ‘N%’ indicate DECTREE’s average percentage of selecting ‘AllSol,” ‘PerTuple,” and
‘Neither,” respectively. The columns do not always sum to 100 due to rounding.

[ GAC [ AuSor [ PerTurLE || ArcSoLT [PerTupLe’ | RaANDOM | DECTREE
DATA SUMMARY

#Completed 770/1055 550 472 567 514 633 643 685
Average CPU time 2,471.6 3,075.3| 2,081.9| 2,789.4 1,622.7 1,427.4 1,121.3
Sum of CPU time 1,900,653.4| 2,364,878.9| 1,601,010.4|| 2,145,062.1| 1,247,840.7| 1,097,633.8 862,259.9

Benchmark Hybrid solvers are best A%P%N%
aim-100 21/2417 >1,857.1[11 >3,984.0|20 >631.0[[11 >3,741.4|21 559.3| 16 >1,754.1| 21 512.4/ 0 99 1
aim-200 17/24| 8 >3,942.3| 2 >6,494.0 8 >3,815.9|| 6 >5,208.7|10 >3,166.8) 3 >5,990.8| 14 >1,647.3| 0 92 8
cmpsd-25-1-25  10/10[ 0 >7,200.0| 9 >720.1/10 11.7((10 53.7|110 18.4] 10 0.1 10 0.1 0100 O
cmpsd-25-1-40 10/10| 0 >7,200.0| 8 >1,440.1|10 36.4{[10 121.6[10 50.0 10 0.1 10 0.1f 0100 O
cmpsd-25-1-80  10/10| 4 >4,445.6| 6 >3,046.1|10 24.2||10 205.2(10 33.8] 10 2.2| 10 6.7 0100 O
cmpsd-25-10-20 10/10 6 >2,892.7| 0 >7,200.0 9 >2,208.1]| 0 >7,200.0/10 2,821.4| 10 404.8 9 >2,202.6/ 0 96 4
cmpsd-75-1-25 10/10 0 >7,200.0{ 8 >1,440.4| 8 >1,440.5/|10 212.8(10 217.5| 10 3.1 10 11.9] 0 92 8
cmpsd-75-1-40 10/10| 0 >7,200.0| 6 >2,880.4| 6 >2,880.4/[10 611.510 454.0] 10 5.6| 10 64.4] 0 93 7
cmpsd-75-1-80  10/10| 3 >5,040.0] 1 >6,480.1] 2 >5,761.1|| 9 >2,241.4|10 1,176.6| 10 15.9| 10 123.5) 0 99 1
cril 6/8| 3 >3,968.4| 3 >3,605.2| 3%>3,604.8|| 3 >3,606.0| 4x>2,459.2| 4x>2,999.9] 3 %x>3,604.9] 2 66 32
chi-90 100/100[84 >2,372.2/43 >4,456.8|72 >2,103.5|[28 >5,259.4|81 >1,484.3|100 61.2/100 136.5 0 98 2
GC-hos 10/14| 6 >2,882.3| 0%>7,200.0] 3%>5,129.9|| 2%>6,360.4| 7 x>3,401.4] 8%>2,693.5| 8x>2,309.2| 0 98 2
GC-full-ins 24/4117 >2,105.7| 4%>6,004.0{17*>2,440.0/| 8x>5,266.7|18 *>2,146.5| 15+x>3,008.7| 22%>1,010.9 0 99 1
GC-mug 8/8| 4 >3,600.0| 6 >2,182.2| 6 >2,156.0(| 8 47.8| 8 41.5| 4 >3,600.0f 8 102.6f 0 97 3
pseudo-aim 42/48|25 >2,917.5(120 >3,867.328 >2,406.8|[24 >3,676.8/37 >1,054.0| 28 >2,515.5| 42 265.4 0 94 6
QCP-15 15/15|10 >3,023.7| 2 >6,241.1| 2 >6,241.4]| 2 >6,250.4| 3 >6,041.4] 8 >3,973.8| 15 533.3] 0 80 20
rand-8-20-5 20/20(19 >1,532.7| 3 >6,551.8| 0 >7,200.0|18 >2,333.3| 3 >6,811.0| 20 587.8| 20 605.2| 35 59 7|
rlifapGraphsMod 11/12| 5 >3,975.5| 4 >4,582.2| 5 >4,180.5|| 7 >4,015.7] 9 >1,878.8| 11 843.3| 8 >2,043.00 0 88 12
lfapScensl 1 7/12| 0 >7,200.0| 3 >4,199.1 4 >3,373.2|| 5 >3,528.1| 7 1,016.4] 6 >1,371.2] 1 >6,183.0 15 60 25
rlfapScensMod  13/13| 7 >3,323.4) 8 >3,103.4] 9 >2.316.1|| 8 >3,227.5[10 >2,008.9| 12 >1,249.1| 10 >2,227.1] 7 81 12

No clear winner
aim-50 24/24[24 0.6|24 6.2(24 2.3|]24 53.9/24 0.7 24 4.7 24 0.6/ 0100 O
cmpsd-25-1-2 10/10| 0 >7,200.0(10 0.110 0.1/|10 0.1{10 0.1 10 0.1 9 >720.1 0 94 6
cmpsd-75-1-2 10/10 0 >7,200.0(10 0.5[10 0.6|[10 0.5|10 0.6| 10 0.6| 10 0.6/ 0 86 14
hanoi 5/5| 5 1.8/ 5 2.5 5 2.5|| 5 2.5/ 5 2.5/ 5 2.5 5 2.5/ 0100 O
knights 11/19/10>1,098.3| 7 >2,716.0] 8 >2,485.4/|10 >1,144.4{10 >1,138.0| 10 >1,128.6/ 10 >1,131.3| 0 64 36
modRenault 50/50[27 >3,439.2/50 2.1/50 3.1/|50 2.4/50 3.2 50 2.6| 48 >290.7 12 84 3
rand-10-20-10 20/20[20 3.7|120 1.0|20 1.1{20 1.0|20 1.1 20 1.1 20 1.3 0100 O
ssa 7/8 6>1,029.3| 6 >1,058.6| 6 >1,058.8|| 6 >1,052.3| 6 >1,052.5| 5 >2,058.1 6 >1,065.3] 0 96 4
Basic solvers are best

dag-rand 25/2525  2,467.6[25 21.0|25 21.7||25 45.2(25 38.2| 25 24.70 24 >1,423.5] 3 96 1
dubois 7/13| 7 1,959.6| 6 >2,191.7| 7 2,099.1|| 6 >2,175.1| 6 >2,085.8] 5 >3,388.8] 6 >2,457.6/ 0100 O
GC-reg-fpsol 8/37| 6>1,814.4 4%>4,237.4] 4%>4,238.9|| 2%>5,407.9| 2 x>5,408.1] 2%>5,408.1] 2 *>5,408.2] 0 99 1
GC-reg-inithx  7/32| 5>2,129.3 4%>3,915.8 2%>5,160.2|| 2%>5,159.6| 2 «>5,160.1| 2%>5,160.2] 2 x>5,160.1 0100 0
GC-reg-mulsol  13/49| 9>2,218.0| 9 >2,928.4| 9x>2,928.9|| 5 >4,440.2| 5 %x>4,440.5| 5x>4,440.5| 5 x>4,440.5| 0 99 1
GC-reg-zeroin  8/31| 6>1,801.6) 5 >3,240.9| 5x>3,251.2| 3 >4,519.0] 3 %>4,519.5 3%>4,519.5| 3 x>4,519.6| 0 90 10
GC-sgb-book 23/26[18 >1,818.3|19 >1,657.5|23 256.2|/16 >3,106.7|22 >737.5 20 >1,321.6] 22 >657.4 0 94 6
GC-sgb-games  4/4] 2 >3,600.2 2 >3,600.2| 4 26.0|| 2 >3,600.2| 4 46.4] 3 >1,999.1 4 46.4] 099 1
GC-sgb-miles 13/42|11>1,411.7| 9%>2,749.8| 8%>3,109.3|| 6%>3,902.3| 6 x>3,883.6] T7%>3,488.3| 7 x>3,652.3| 0 87 13
GC-sgb-queen  14/50[10>2,619.2| 6 >4,676.4] Tx>3,874.8| 3 >5,852.4) 6 x>4,421.7| 6%>4,315.4] 9 x>3,415.8 0 76 24
haystacks 8/51| 5 >2,786.7| 7 >1,055.8| 8 228.6|| 5 >2,700.9 7 >1,043.3] 5 >2,716.0 7 >934.3] 0100 O
marc 10/10|10 16.8(10 253.6| 0x>7,200.0[|10 1,321.7) 0 *>7,200.0f 0%x>7,200.0f 0 x>7,200.00 - - -
os-taillard-4 29/30127 >887.8| 2 >6,704.7| 2 >6,704.7||21 >2,427.0]24 >2,967.6| 23 >1,876.7| 23 >2,681.4| 15 83 1
tightness0.9 99/100|99 352.6|85 >1,946.3|98 >489.7|184 >1,950.5/98 >561.8| 98 >741.6| 98 >549.51 0 99 O
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Overall, it is clear that DECTREE outperforms all solvers both in terms of
the number of completed instances, and average and sum CPU time. It solves
instances 2.2x faster than GAC on average, and completes 135 more instances
than GAC out of the 1055 tested.

RANDOM is surprisingly competitive with DECTREE. This fact is largely due
to the stabilizing effect of the per-cluster timeout, which minimizes the time loss
from poor classification decisions. We ran an experiment to assess the extent of
this effect. We compared the performance of RANDOM and DECTREE with no
per-cluster timeout. RANDOM completes only 484 instances whereas DECTREE
completes 649, with an average CPU time across all instances completed by
at least one solver of 2,955.9 seconds and 1,413.9 seconds, respectively. Thus,
DECTREE makes substantially better decisions than a random choice.

The lower sections of Table 2 break down the performance of the seven
solvers by benchmark. We identify three categories: benchmarks where the hy-
brid solvers outperform all others (top), those where hybrid and basic solvers
perform equally well (middle), and finally those on which the basic solvers per-
form best (bottom). For each benchmark, we format in bold the smallest average
runtime and all runtimes within 1 second or 5% of the best time.

In the top category, DECTREE and RANDOM are generally the best, but
are outperformed by PERTUPLET on two benchmarks. The benchmarks in the
middle category seem to be solvable relatively fast by most solvers and have
few timeouts (except GAC). The basic solvers outperform the others on the
benchmarks in the bottom-most category. Those benchmarks tend to be memory
intensive: indeed PERTUPLE, PERTUPLE", and DECTREE have many memouts.

6 Conclusions

We advocate a portfolio method for enforcing constraint minimality on the clus-
ters of a tree decomposition, making minimality even more beneficial in practice
by selectively applying it during problem solving. We provide three improve-
ments in the application of constraint minimality: a classifier for choosing when
to run ALLSOL, PERTUPLE, or neither, the use of GAC prior to every cluster
being processed, and a timeout mechanism to prevent getting stuck on a single
cluster. Our approach yields more problem completions and faster runtimes than
lookahead with a simple GAC, PERTUPLE, or ALLSOL.

As a continuation of our approach, we plan to use a classifier that estimates
the runtime of a consistency algorithm and the amount of filtering it could
achieve in order to dynamically set-up the timeout threshold. Such a classifier
would allow us to allocate more time for running the algorithm when significant
filtering can be expected and less time when there is little prospect for filtering.
We also want to extend our approach to estimating the memory overhead for
running a given consistency algorithm and for selecting the most appropriate
bolstering schema at the separators [23].
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