EXPLOITING LOCAL INTERACTIONS TO BUILD GLOBAL STRATEGIES

IN HONOR OF EUGENE C. FREUDER
JONATHAN LIVINGSTON SEAGULL OF CP

Berthe Y. Choueiry
Constraint Systems Laboratory
University of Nebraska-Lincoln
OUTLINE

- Local consistency [Freuder+ 78,82,85,96]
 - k-consistency, (i,j)-consistency, inverse consistency
- Decomposition strategies [Freuder+ 93,95]
 - Factoring Out Failure, Inferred Disjunctive Constraints
 - A general schema: disjunctive/conjunctive, properties
- Interchangeability [Freuder+ 91,95,97,05,10]
 - A theory of interchangeability: Core concepts & variations (local, weak, generalizations)
 - In multi-dimensional CSPs
Higher Consistency Levels

- k-consistency, (i,j)-consistency
 - Enforcing it may require adding constraints 😞
- Neighborhood Inverse Consistency, a $(1,j)$-consistency
 - No added constraints, no additional space needed 😊
 - Adapts to structure of constraint graph 😊
 - Expensive on dense graphs, useless on sparse graphs (same pruning as arc consistency) 😕

- Idea: Use the dual graph [2010,2011]
 - Filtering relations
 - Dense: remove redundant edges [Jégou 1989]
 - Large loops: triangulate dual graph
 - Higher levels consistency become possible!
 - Algorithm’s complexity bounded by degree of dual graph
OUTLINE

- Local consistency [Freuder+ 78,82,85,96]
- Decomposition strategies [Freuder+ 93,95]
- Interchangeability [Freuder+ 91,95,97,05,10]
COMPLETE NOGOOD SETS [1993—1997]

- Consider a clique in the co-microstructure of a CSP

- Related decompositions
 - VAD: cliques efficiently computed
 - Microstructure-based decomposition
 - Inferred Disjunctive Constraints (IDC)
 - Factoring Out Failure (FOF)

- General Decomposition Schema
OUTLINE

- Local consistency [Freuder+ 78,82,85,96]
- Decomposition strategies [Freuder+ 93,95]
- Interchangeability [Freuder+ 91,95,97,05,10]
INTERCHANGEABILITY

- Basic: Equivalence of 2 values for a variable
- Local form: Neighborhood Interchangeability

Dynamic Bundling [2001,2002]
- For non-binary CSPs [2003—Freuder 2005]
- For join query computation in Relational DB [2004]
Dynamic Bundling: Advantages

- Same operations as Forward Checking
- Bundling no-goods is amazingly effective

Diagram:

- **No-good bundle:**
 - $\{1, 2\}$
 - $\{1, 3\}$
 - $\{2\}$
 - $\{3, 4\}$

- **Solution bundle:**
 - $\{1\}$
 - $\{2\}$
 - $\{1\}$

- V_1: $\{1\}$
- V_2: $\{1\}$
- V_3: $\{1\}$
- V_4: $\{1\}$
CONCEPTS IN ORIGINAL PAPER

- Local vs Global
 - Neighborhood Interchangeability (NI)
 - Inverse k Interchangeability (IKI)
 - Full Interchangeability (FI)

- Weakening
 - Substitutability (ref. dominance)
 - Partial interchangeability
 - Subproblem interchangeability

- Generalization
 - Dynamic interchangeability (ref. SBDS & SBDD)
 - Meta interchangeability
 - Functional/isomorphic interchangeability: mapping values between different variables (ref. symmetry)
Original paper inspired many researchers
In Multi-Dimensional CSPs

Meta-interchangeability on each domain dimension

<table>
<thead>
<tr>
<th>Attribute/dom</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_5</th>
<th>c_6</th>
<th>c_7</th>
<th>c_8</th>
<th>c_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Color</td>
<td>r</td>
<td>r</td>
<td>g</td>
<td>p</td>
<td>g</td>
<td>r</td>
<td>p</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Filling</td>
<td>f</td>
<td>e</td>
<td>e</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>Shape</td>
<td>o</td>
<td>d</td>
<td>s</td>
<td>d</td>
<td>d</td>
<td>s</td>
<td>d</td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute/dom</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_5</th>
<th>c_6</th>
<th>c_7</th>
<th>c_8</th>
<th>c_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Color</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>g</td>
<td>g</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Attribute/dom</td>
<td>c_1</td>
<td>c_4</td>
<td>c_5</td>
<td>c_6</td>
<td>c_7</td>
<td>c_2</td>
<td>c_3</td>
<td>c_8</td>
<td>c_9</td>
</tr>
<tr>
<td>Filling</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>Attribute/dom</td>
<td>c_1</td>
<td>c_7</td>
<td>c_8</td>
<td>c_9</td>
<td>c_2</td>
<td>c_4</td>
<td>c_5</td>
<td>c_3</td>
<td>c_6</td>
</tr>
<tr>
<td>Shape</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>
Reformulation Strategy

P_o: Original CSP
Uni-dimensional constraints: $\{C_1, C_2, C_3, \ldots, C_n\}$

Exploit approximate symmetries to enforce C_1

P_1: A set of reformulated CSPs
Uni-dimensional constraints: $\{C_2, C_3, \ldots, C_n\}$

Exploit approximate symmetries to enforce C_1

P_2: A set of reformulated CSPs
Uni-dimensional constraints: $\{C_3, \ldots, C_n\}$

Exploit approximate symmetries to enforce C_1

P_n: A set of reformulated CSPs
Uni-dimensional constraints: \emptyset

Enforce remaining constraints using some Constraint Solver
ENFORCING A CONSTRAINT

\[
N^= \oplus N^= \quad N^= \oplus S^= \\
\text{id}^= \\
S^= \oplus S^= \\
\]

\[
N^= \oplus N^= \\
V_1 \\
V_2 \\
V_3 \\
\]

\[
N^= \oplus S^= \quad S^= \oplus S^= \\
V_1 \\
V_2 \\
V_3 \\
\]

\[
N^= \oplus N^= \\
V_1 \\
V_2 \\
V_3 \\
\]

\[
N^= \oplus N^= \\
V_1 \\
V_2 \\
V_3 \\
\]
Dispensability

- Removing values, instantiations (a set of vvps)
 - Inconsistent, enforcing consistency
 - Consistent, because satisfiability is preserved
- Dispensable values, instantiations
 - Inconsistent \Rightarrow Interchangeable \Rightarrow Substitutable \Rightarrow Removable [Bordeaux+ 08] \Rightarrow Dispensable
- Ties
 - Consistency, Interchangeability, Decomposition
- That’s is all reformulation, folks!
ON A PERSONAL NOTE...

- My first presentation in grad school (1990)
 - Backtrack-free search & backtrack-bounded search
- Reason for SARA’s archival proceedings
- Hosted & mentored my students during Summer 2010
 - Lived my own dream through them
- ... A visionary, a builder, a talent ‘gatherer’
 - A single day visiting with him, Steven Prestwich, Rick Wallace, Nick Wilson, etc. is worth months of solitary study in my office
 - 4C is the largest academic group in CP, entrusted in the good hands of Barry
- My wishes to Gene
 - Lots of fun, that is, more time for research... in the US
SUMMARY

- Local consistency [Freuder+ 78,82,85,96]
 - k-consistency, (i,j)-consistency, inverse consistency
- Decomposition strategies [Freuder+ 93,95]
 - Factoring Out Failure, Inferred Disjunctive Constraints
 - A general schema: disjunctive/conjunctive, properties
- Interchangeability [Freuder+ 91,95,97,05,10]
 - A theory of interchangeability: Core concepts & variations (local, weak, generalizations)
 - In multi-dimensional CSPs
SUMMER 2010 @ 4C