1. Propositional Satisfiability (SAT)

SAT Problem

Given: A propositional Satisfiability (SAT) sentence, e.g.,

\[(a \lor c) \land (b \land d) \land (a \lor b) \land (c \lor d) \land (a \land c) \land (b \land d) \land (a \land b) \land (b \land c) \]

Question: Find an assignment for the Boolean variables such that the sentence holds, e.g., \(a = 0, b = 1, c = 1, d = 0 \)

Solving SAT

- SAT is NP-complete, solved with search
- MiniSat\(^1\) is a SAT solver based on the Davis-Putnam-Loveman-Loveland (DPLL) backtracking algorithm.
- DPLL explores combinations of values for the Boolean variables in a depth-first manner by expanding partial assignments that are consistent with the clauses of the sentence.
- When a partial solution cannot be expanded without violating one of the clauses, a conflict is detected and backtracking is occurs.

MiniSat uses heuristics & inference techniques to enhance the performance of DPLL, including
- Boolean Constraint Propagation (BCP).
- Conflict clause learning.
- Conflict-directed backtracking.

2. Our Project

Motivation & Goal

- SAT and Constraint Processing (CP) are fundamental areas of Computer Science that address the same computational questions.
- Compare SAT & CP: formalisms, search, and inference mechanisms.

Approach

Constraint Processing

- Studied formalism, modeling, algorithms for search, backtracking, and constraint propagation.
- Built, from scratch, a CP solver with main fundamental mechanisms & conducted extensive empirical performance studies.

SAT Solving

- Studied Tseitzen's encoding, propagation, conflict graph, clause learning, simplification at pre-processing, etc.
- Instrumented MiniSat to capture and animate its main operations.
- Built a visualization tool of MiniSat using Flash and FlashBuilder.

Outcomes

- A comparative synthesis of terminology, mechanisms in CP & SAT.
- A visualization tool of MiniSat as an instructional aid to teach Computer Science students about SAT & its fundamentals.

3. Visualization: The Search Tree

The search tree traces the assignments of decision variables. Each tree node

- Represents a MiniSat decision (assumption).
- Is labeled by the decision:
 - "20" indicates that the literal \(l_{20} \) is set to false \(l_{20} \leftarrow 0 \)
 - "13" indicates that the literal \(l_{13} \) is set to true \(l_{13} \leftarrow 1 \)
- Is colored based on its status: a dead-end (pink), part of the solution (green), or not part of the solution (grey).

Users visually identify solution paths & inconsistent paths.

They can also collapse subtrees and expand them.

4. Visualization: The Chart

Chart selectively displays search statistics using check boxes

1. Open Original Clauses is the number of clauses given as input but not yet satisfied.
2. Open Learnt Clauses is the number clauses learned during search but not yet satisfied.
3. Instantiated Literals is the number of literals instantiated by decision or by propagation.
4. Learnt Clauses is the total number of clauses learnt during search.

5. Visualization: The Explanation Box

The user can examine in the Explanation Box the details of any of four metrics summarized in the chart

- The latest information is displayed first & in green to facilitate understanding
- Clauses are shown in CNF: \[-4, 18, -9 \equiv l_4 \lor l_{18} \lor l_9 \]
- When the user hovers over a node in the tree, the details of the corresponding metrics are listed in the Explanation Box.
- The contents of the Explanation Box change as the tree is being built to reflect the metrics details of the latest node generated in the tree.

6. Driving the Visualization

A problem instance is selected from a drop-down menu. The prefixes "uf"/"uf" indicate that the instance is satisfiable/unsatisfiable.

- The user can build the tree by:
 - Activating the Play/Pause buttons.
 - Pressing the right/left arrow keys.
 - Clicking on a point on the Chart.
- As the tree is being built, the Chart & Explanation Box are updated to reflect the state of the latest node.
- The user can zoom in the tree using the mouse scroll-wheel or the CTRL+Click shortcut.
- Hovering over a node in the tree updates the Explanation Box. The corresponding node on the Chart blinks to indicate a relationship between the Chart and the tree.
- If the user hovers over a node the actual value is shown.
- When more than one metrics are selected, the chart’s y-axis is shown as a percentage of the max values of each metric. When only one metric is selected the y-axis shows the true scale.

This research was supported by CREU-W of the CRA, Undergraduate Creative Activities and Research Experiences Program of the University of Nebraska-Lincoln, and National Science Foundation REU supplements for Grant #CNS-0720654 and Grant #RI-111795.