
CONSISTENCY METHODS FOR TEMPORAL REASONING

by

Lin Xu

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

May, 2003

CONSISTENCY METHODS FOR TEMPORAL REASONING

Lin Xu, M.S.

University of Nebraska, 2003

Adviser: Berthe Y. Choueiry

Reasoning about time is important in real-life situations and in engineered systems. In

this research, we develop new algorithms for solving the Simple Temporal Problems (STP)

and the more general Temporal Constraint Satisfaction Problem (TCSP).

First, we propose a new efficient algorithm, the
�

STP-solver, for computing the min-

imal network of an STP. This algorithm achieves high performance by exploiting a topo-

logical property of the constraint graph (i.e., triangulation) and a semantic property of the

constraints (i.e., convexity). Importantly,
�

STP-solver implicitly guarantees the decompo-

sition of the constraint graph according to its articulation points. We show empirically that

this new algorithm outperforms previously reported algorithms such as the Floyd-Warshall

algorithm (F-W), Directed-Path Consistency (DPC), and Partial Path-Consistency (PPC).

Second, we report the integration of three approaches to improve the performance of

the exponential-time backtrack search (BT-TCSP) for solving TCSPs. The first approach

consists of using our new efficient algorithm (
�

STP) for solving the STP. The second

approach exploits the topology of the temporal network. This is accomplished in three

ways: finding and exploiting articulation points (AP), checking the graph for new cycles

(NewCyc), and using a new heuristic for edge ordering (EdgeOrd). The third approach is

a filtering algorithm
�

AC, which is used as a preprocessing step to BT-TCSP and which

significantly reduces the size of the TCSP.

Our experiments on randomly generated problems demonstrate significant improve-

ments in the number of nodes visited, constraint checks, andCPU time.

ACKNOWLEDGEMENTS

I would like to thank all those who supported me while I was working on this thesis,

especially my academic adviser Dr. Choueiry whose help has been crucial for my

progress. Her knowledge and personality always helped me out of the obstacles I

encountered in my research.

I am honored to have Dr. Peter Revesz, Dr. Sharad Seth and Dr. Vinodchandran Variyam

on my thesis committee. Their feedback has me helped refine this thesis.

I am indebted to Mark Boddy, Paul Morris, Nicola Muscettola and Ioannis Tsamardinos

for sharing data and information on the STP. I am grateful to Eddie Schwalb and Rina

Dechter for various pointers to TCSPs, and to Deb Derrick foreditorial help on various

parts of this document.

I would like also to thank everyone in our group, the Constraint Systems Laboratory,

especially Daniel Buettner, Eric Moss, Amy Davis, and Hui Zou. I feel really lucky that I

am in this group. Everyone is available to offer help when youhave any problem, no

matter when you need it, no matter how hard it is. You can always count on them. Thank

you, my buddies.

At last, I would like to thank my wife. She always stands beside me, helps me, and

encourages me. She is my angel and always protects me. I love you, Ping.

This work is supported by NASA-Nebraska grant, NSF CAREER Award #0133568 from

the National Science Foundation, and a gift from Honeywell Laboratories.

Lincoln, NE

Lin Xu

4

Contents

1 Introduction 1
1.1 Qualitative temporal networks 2

1.1.1 Interval Algebra . 3
1.1.2 Point Algebra . 7

1.2 Quantitative temporal networks 9
1.2.1 The temporal constraint satisfaction problem (TCSP). 10
1.2.2 Solving the Simple Temporal Problem (STP) 13
1.2.3 Solving the TCSP . 16

1.3 Questions addressed .19
1.4 Summary of contributions .20
1.5 Guide to thesis . 22

2 Random temporal network generators 23
2.1 STP generators . 24

2.1.1 GenSTP-0 . 24
2.1.2 GenSTP-1 . 24
2.1.3 More STP generators . 25

2.2 TCSP generators . 26
2.2.1 GenTCSP-0 . 26
2.2.2 GenTCSP-1 . 27

3 Solving STP 29
3.1 Introduction . 30
3.2 Background . 31

3.2.1 Main CSP properties . 31
3.2.2 Properties of the STP . 33

3.3 STP algorithms . 35
3.3.1 F-W andDPC exploiting articulation points 35
3.3.2 PPC algorithm for STPs . 36
3.3.3

�
STP algorithm . 37

3.3.4 Features of
�
STP . 39

3.4 Empirical evaluations .. 41
3.4.1 Experiments conducted . 42

3.4.2 Observations . 50
3.4.3 Significance of our results . 52

4 Solving TCSP 53
4.1 Background and motivation .. 54
4.2 Algorithms for solving the STP .. . 57

4.2.1 Solving the STP using Directional Path Consistency (DPC) 57
4.2.2 Solving the STP using Partial Path Consistency (PPC) 58
4.2.3

�
STP algorithm used with TCSP algorithm 60

4.3 Exploiting the topology of the constraint network 60
4.3.1 Decomposition using articulation points 61
4.3.2 New cycle check (NewCyc) . 61
4.3.3 Ordering heuristic for the meta-CSP 64

4.4 The label filtering algorithm .. . 66
4.4.1

�
arc-consistency . 69

4.4.2
�

AC algorithm . 70
4.5 Experimental results .72

4.5.1 Power of
�

AC . 78
4.5.2 Solutions to the TCSP . 80
4.5.3 Effects on the size of the search tree 80
4.5.4 Effects on the number of constraints checks (same as CPU time) . . 82

5 Conclusions and future work 94
5.1 Conclusions for the STP . 94
5.2 Conclusions for the TCSP . 96
5.3 Directions for future research 98

Bibliography 100

6

List of Figures

1.1 Simple relations in the interval algebra.. 4
1.2 An example of interval algebra.. 5
1.3 Addition and multiplication in the point algebra.. 8
1.4 The relation between Interval Algebra and Point Algebra.. 9
1.5 An example directed constraint graph for TCSP.. 12
1.6 The addition and multiplication operations of TCSP.. 14
1.7 The distance graph of Figure 1.5.. 15
1.8 Floyd-Warshall’s algorithm.. 15
1.9 DPC algorithm.. 16
1.10 The search tree for solving the meta-CSP.. 17
1.11 The backtrack algorithm for solving TCSP.. 18

3.1 Left: STP.Right: TCSP. 33
3.2 ThePPC algorithm, slightly improved to consider simultaneously all three edges

in a triangle. 36
3.3 An example of updating edges. The label of edge BC then that ofAC are updated.. 37
3.4 The temporal graph as a graph of triangles.. 38
3.5 The�STP algorithm. 39
3.6 Constraint Checks for�STP-front,�STP-back and�STP-random. . . . 42
3.7 Constraint Checks (top) and CPU time (bottom) forF-W,F-W+AP,PPC, and�STP. 46
3.8 Constraint Checks (top) and CPU time (bottom) forDPC, DPC+AP, and�STP. . . 47
3.9 Constraint Checks (top) and CPU time (bottom) for STP solvers, problems gener-

ated byGenSTP-2. 48
3.10 Constraint Checks (top) and CPU time (bottom) for STP solvers, problems gener-

ated bySPRAND. 49

4.1 A TCSP example (left) and formulate it as meta-CSP (right). 54
4.2 The search tree for the example of Figure 4.1.. 55
4.3 Left: List of triangulated subgraphs given an ordering.Right: Inducing a subgraph

from the triangulated original graph.. 59
4.4 Simple constraint graph. 62
4.5 Comparison of STP checks using different the new-cycle check heuristic. 62
4.6 Only check the consistency of the newly formed biconnected component. 63
4.7 Edge ordering heuristic.. 65

4.8 Illustrating the exploration of the edges of a graph by the edge ordering heuristic.. 65
4.9 EdgeOrd localize backtracking.. 66
4.10 Replacing the global constraint with a polynomial number ofternary constraints.. 67
4.11 A consistent triangle.. 69
4.12 First-support. 70
4.13 Initialize-support. 71
4.14 �AC. 72
4.15 TCSP solvers tested.. 72
4.16 Reduction of problem size of TCSP I.. 78
4.17 Constraint checks for solving TCSP.. 79
4.18 CPU time for solving TCSP I.. 79
4.19 The number of solution of TCSP.. 80
4.20 Nodes visited by BT-TCSP.. 81
4.21 Constraint checks and CPU time forDPC-TCSPwithout�AC (Top: Constraint

Checks; Bottom: CPU time [s]). 83
4.22 Constraint checks and CPU time forDPC-TCSPafter �AC (Top: Constraint

Checks; Bottom: CPU time [s]). 84
4.23 Constraint checks and CPU time forPPC-TCSPusing Plan A without�AC (Top:

Constraint Checks; Bottom: CPU time [s]). 85
4.24 Constraint checks and CPU time forPPC-TCSPusing Plan A after�AC (Top:

Constraint Checks; Bottom: CPU time [s]). 86
4.25 Constraint checks and CPU time forPPC-TCSPusing Plan B without�AC (Top:

Constraint Checks; Bottom: CPU time [s]). 87
4.26 Constraint checks and CPU time forPPC-TCSPusing Plan B after�AC (Top:

Constraint Checks; Bottom: CPU time [s]). 88
4.27 Constraint checks and CPU time for�STP-TCSP without�AC (Top: Constraint

Checks; Bottom: CPU time [s]). 89
4.28 Constraint checks and CPU time for�STP-TCSP after�AC(Top: Constraint

Checks; Bottom: CPU time [s]). 90

List of Tables

3.1 Parameters of generated problems.. 41
3.2 Experimental results for STP solvers on random STP generated byGenSTP-1. . . 44
3.3 Experimental results for STP solvers on random STP generated bySPRAND. . . . 45

4.1 Performance of�AC . 74
4.2 The number of constraint checks for different TCSP solvers.. 75
4.3 CPU time [s] for different TCSP solvers.. 76
4.4 The number of nodes visited for different TCSP solvers.. 77

1

Chapter 1

Introduction

Space and time have always been important subjects in Science. Thousands years ago,

people estimated the time to arrange their schedule by checking the length of the shadow

of a pole. With the advent of more modern technologies, people care even more about

time. Almost everyone has a watch, so he/she can easily checkthe time. While people are

increasingly about time, time limit remains one of the biggest problems. We have exactly

24 hours per day and constantly worry about using these 24 hours more efficiently. For

example: Tom wants to serve some tea to his friends. There area few things he needs to

do: clean the pot (5 minutes), clean the tea cups (10 minutes)and boil water (15 minutes).

If Tom cleans the pot and tea cups first then boils the water, then he needs 30 minutes to

get the tea ready. It is actually easy to find a better schedule. Tom can wash the pot first,

and then start to boil water since the pot is clean. While boiling water (15 minutes), Tom

can clear the tea cups (10 minutes). After the water is ready,Tom can serve the tea. This

takes only 20 minutes. A little reasoning about time can savelot of time.

The study of time is addressed in almost every area of Scienceand also in Artificial In-

telligence (AI). Reasoning about time is used in almost every area of AI: planning, schedul-

ing, natural language understanding [2], and common-sensereasoning [30]. A typical

2

temporal reasoning system may include some components, such as a temporal knowledge

base, an algorithm to check its consistency, a query-answering mechanism, and an infer-

ence mechanism, which yields new information from the one provided [13]. The goal of a

temporal reasoning system is that based on the temporal information given in the temporal

knowledge base, the system can answer user’s questions. Theinformation stored in the

temporal database is in the form of propositions, such as “I am watching TV,” “Jim has

dinner with Jack,” with some information corresponding with the temporal intervals rep-

resenting the duration of these events. The information could be relative (I was watching

TV after dinner) or metric (Tom arrived home at least 1 hour earlier than his wife). The

information also can be disjunctive, such as “I go to school by bus (30 -45 minutes) or by

car (10 -15 minutes).” Using the information stored in the database, the temporal reasoning

system may have to answer questions such as “Is it possible that I take the bus to school?”

or “If I do not want to be late, When should I get up?”.

In this chapter, we will introduce two different types of temporal networks: qualitative

temporal networks and quantitative temporal networks. This thesis focuses on solving the

quantitative temporal networks.

1.1 Qualitative temporal networks

There are two types of temporal algebra for qualitative temporal networks: Point Algebra

(PA) [34] and Interval Algebra (IA) [1]. In Point Algebra, the primary objects are time

points, indicating when events occurred or ended. In this algebra, temporal information

is expressed by a relation between two time points. For example: I get up earlier than

Jack. Suppose�� is the time point I get up and� � is the time point Jack gets up, then

this information is expressed as�� � � � in the time point algebra. In Interval Algebra,

the primary objects are time periods, during which events occur or propositions hold. For

3

example: I meet Rob during lunch (lunch time is 15 min), which means my lunch time

(time interval�) overlaps with Rob’s lunch time (time interval�). This information can

also be represented in Point Algebra but it looks more complex: Suppose�� and� � are the

beginning and ending points of� ; � � and� � are the beginning and ending points of� .

Interval � and interval� overlap is expressed as [(� � � � �) � (� � � ��)] � [(�� � � �) �
(�� � � �)] in the time point algebra.

1.1.1 Interval Algebra

Interval Algebra was first introduced by Allen. It expressestemporal knowledge as qual-

itative statements relating the positions of two intervals. If we have two intervals� and
�

, the possible relationships between� and
�

are: before, meets, overlaps, starts, dur-

ing, finishes, equal and their inverse (�� 	
 	 � 	 � 	 	 � 	 �� 	
 � 	 �� 	 �� 	 � 	 � � 	 � �). There are

13 simple relations between two intervals.

The simple relations are formally defined in Figure 1.1. WithAllen’s 13 relations, we

can express almost every qualitative temporal network. Therelation between two inter-

vals can be expressed by one or more (the disjunction of) simple relations. There are� ��

possible relations between two intervals.

For example:I watch TV AFTER my dinnerandI finish my dinner BEFORE watching

TV have the same meaning. It means the ending point of my dinner is strictly before the

starting point of watching TV.Tom comes to my house when I am watching TVmeans the

relation between the interval
�

(I am watching TV) and interval� (Tom is at my home) is

the vector�� 	 � � 	 ��. Note that the only information we have is the starting time point of

interval� is during the time interval
�

, we do not know any information about when Tom

leaves my house, Figure 1.2.

All relations in interval algebra are defined by vectors. In order to propagate knowledge

and constraints, two mathematical operations, addition and multiplication, are defined over

4

A � � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �
� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

B

A

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

B

� � � � � � �� � � � � � �� � � � � � �� � � � � � �
� � � � � � �� � � � � � �� � � � � � �� � � � � � �

BA

A

� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �

B

A

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �
	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	

B

A

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �

B

A

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �

B

Relation Symbol Inverse Example

A before B

A starts B

A equal B

A meets B

A overlaps B

A during B

A finishes B

b bi

= =

m mi

o oi

d di

s si

f fi

Figure 1.1:Simple relations in the interval algebra.

vectors of relations.

The operation addition is used in two different vectors describing the same relation of

two intervals. The addition intersects these two vectors toprovide the relation, which two

vectors all allows. For example:Prof. A tells me I need to read a given paper�� 	
 	 �� my

lunch time, Prof. B tells me I need to read the same paper�� 	 � 	 � my lunch time. If I want to

follow their recommendations, I need to read the paper��� my lunch time. Algorithmically,

the sum of two vectors is computed by finding their common constituent simple relations.

� � � �� � 	 �� 	 � � � 	 �� � (1.1)

�� � �� � 	 �� 	 � � � 	 �� � (1.2)

� � � � � � �� � 	 �� 	 � � � 	 �� � � �� � 	 �� 	 � � � 	 �� � (1.3)

For example:

� � � � � � �� 	
 	 �� � �� 	 � 	 � � ��� (1.4)

5

A B

C

C

C

?

?

?

A: I am eatting my dinner
B: I am watching TV
C: Tom is visitting me

A (b) B B (o, fi, di) C

Figure 1.2:An example of interval algebra.

The operation multiplication is defined when we know the vectors of relations between

intervals� and
�

and between intervals
�

and� , and we want know the vector of relations

of between the intervals� and� . For example: we have vector of relations
� � between

intervals� and
�

, vector of relations
� � between intervals

�
and� .

� � � �� gives the

vector of relations between intervals� and� by
� � and

��.

� � � �� � 	 �� 	 � � � 	 �� � (1.5)

�� � �� � 	 �� 	 � � � 	 �� � (1.6)

� � � � � � �� � 	 �� 	 � � � 	 �� � � �� � 	 �� 	 � � � 	 �� � (1.7)

� �� � � � �� � �� � � �� � � � � � ��� � � ��� � � � � ��� � �� � (1.8)

For example:

� � � � � � �� 	
 	 �� � �� 	
 � (1.9)

� �� � �� � �
 � �� � �� � �� � �� �
 � � �
 �
 � � �� �
 � (1.10)

� ��� � ��� � ��� � ��� � ��� � ��� � ��� (1.11)

6

The multiplication operation for vectors is the union of multiplication on simple rela-

tions. For the example above, the result of multiplication is:
�
��

�� � �� 	
 	 ��� �� 	
 � �
���.

In some cases, computing multiplication can be really complex. For example:I begin

my dinner before I turn on the TV, and Tom comes to my house whenI am watching TV. We

want know the relation that holds between my having dinner and Tom being in my home.

Suppose,
�
� is the vector of relations between my dinner and TV time, and

�
� is the vector

of relations between TV time and Tom is staying in my house. The vector of relations

between my dinner and Tom is staying in my house can be obtained as follows:

� � � �� 	
 	 � 	 � � 	 �� (1.12)

� � � �� 	 � � 	 �� (1.13)

� � � � � � �� � �� � �
 � �� � �� � �� � �� � � �� � �� � �� � �� � � ��

� �
 � � �� � �� � � �� � �� � � � �� � �� � � �� � �� � ��

� �
 � �� � �� � �� � �� � � �� � �� � �� (1.14)

� ��� � ��� � �� 	 � 	
 � � ��� � �� 	 � 	 � �� � ��� � ��� � �� 	 � 	
 � (1.15)

� �� �� � ��� � ��� � ��� � �� 	 � � 	 � 	 � 	
 � � ��� (1.16)

� �� 	 � 	
 	 � 	 � �� (1.17)

With these two operations, we can model a temporal problem with Interval Algebra,

and assert the temporal information in the database of the temporal reasoning system. The

system will compute those temporal relations that follow from the user’s assertions. This

task is executed by a polynomial-time algorithm proposed byAllen: constraint propagation

algorithm. This algorithm is sound, in the sense that it never infers an invalid assertion.

However, Allen also demonstrates that the algorithm is incomplete. Vilain and Kautz [34]

7

show that determining the satisfiability of a set of assertions in the interval algebra is an

NP-hard problem.

Even though Allen’s interval algebra is intractable, it still has some usages. First, it

can be used to solve some small problems. We can limit the sizeof our temporal database.

Since the size of problem is small, even exponential-time isstill acceptable. Unfortunately,

this condition does not hold for most real-world problems. Second, we can accept the con-

straint propagation algorithm’s incompleteness. Since the constraint propagation algorithm

is polynomial-time and sound, if the user’s question only needs very few inferences, then

the algorithm may be able to satisfy the user. Of course, for applications that need more

temporal reasoning, this option may not find a solution.

1.1.2 Point Algebra

Because no sound and complete polynomial-time algorithm exists for the interval algebra,

an alternative approach is to choose a temporal representation other than the full interval

algebra. This new representation can be either a fragment ofthe Allen’s interval algebra or

a new, less expensive algebra: the point algebra.

In Point Algebra, temporal information is expressed by means of constraints on time

points. Obviously, there are only three basic relations between two time points� and� :

before (� � �), after (� � �) and equal (� � �). Hence the number of possible re-

lations between two points is�� � �, which is less than that for interval algebra (� ��).
Reasoning in Point Algebra is a polynomial-time process. Inthis algebra, temporal net-

works are represented as variables�� � 	� � 	 � � � 	� � �, where each variable is a time point.

The domain of each variable is a set of real numbers, which arethe time points the variable

may assume. The constraints are one or more relations in���� �� � 	 �� ��� 	 ���� 	�. For ex-

ample,I began my dinner before I turned on the TVcan be expressed in Point Algebra as

� ��

�� � � � �� � �.

8

As we discussed for the case of Interval Algebra, we can definethe addition operation

and multiplication operation for Point Algebra. The definitions of these two operations

are the same as the definitions for Interval Algebra. Since there are very limited possible

relations between two time points, we can easily build the table for all possible additions

and multiplications, Figure 1.3:

Addition:

<

< =

>

> =

=

< >

< < = > > = = < >

?

?

< < < <F F F

F

F F F

F

F F F

?

F

< < = = = < < =

> > > >

= > >> = > => = =

= = = =

< < > > < > < >

< < = > > = = < >

<

< =

>

> =

=

< >

< < = > > = = < >

?

?

< <

?

< < =

> >

> = > =

=

< >

Multiplication:

? ? < ? ?

? ? < = ? ?

> ? ?? ?

? ? > > = ? ?

? ? ? ? ? ?

? ? ? ? ? ?

< < = > > = < > ?

? is (<, >, =)
F is (), the null vector

Figure 1.3:Addition and multiplication in the point algebra.

Any temporal network in Point Algebra also can be expressed in Interval Algebra.

However, problems expressed by Interval Algebra may not be expressible by Point Al-

gebra. For example, suppose we are given the interval algebra vectors between� �
: � (�,

)
�

which means time interval� starts or is during
�

. Let � and� are the starting and

ending points of� ,
 and
 are the starting and ending points of
�

. We can express the

same information as� � � ,
 �
,
 (�, �) �, � �
 in Point Algebra. However,� (�,
��) � in Interval Algebra cannot be expressed in Point Algebra, Figure 1.4.

The constraint propagation algorithm is complete for PointAlgebra. The algorithm

runs to completion in� �
 � � time. There even exists an algorithm with time complexity

� �
 � � for deciding the consistency and for finding a consistent scenario [33]. The minimal

9

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

A
B

A

B

Point algebra: x < y, m < n, x(> =) m, y < n

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � �
� � � � � �
� � � � � �

	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	

� � � � � �
� � � � � �
� � � � � �

Interval algrbra: A (s, d) B

x y

x y

m n

m n

Interval algrbra: A (b, a) B Point algebra: ???

A B

B A

Figure 1.4:The relation between Interval Algebra and Point Algebra.

network of a problem in Point Algebra can be obtained using 4-consistency in� �
� � steps.

If we exclude the����, the constraints are taken from�� 	 � 	 � 	 ��� �	 �����, then this

subset of Point Algebra is called Convex Point Algebra. The minimal network of a network

modeled in Convex Point Algebra can be obtained by path-consistency algorithm in� �
 � �
[13].

1.2 Quantitative temporal networks

In qualitative temporal network, all temporal relations are represented as ‘before’ or ‘after’

relations. In the real-world, this kind of information may not be precise enough. For

example,Tom needs to go to school to attend the first class at 8:00 a.m. He needs to have

some breakfast first. Then he either takes a bus or drives himself to school. Only mention

that the breakfast is after he gets up, and driving or taking abus is after the breakfast

obviously are not enough. We need the information such as “when does he get up?”, “How

long does it take him to get from home to school by bus?”. To model this information, we

10

need to enhance the representation with metric information, and model the problem with

quantitative temporal networks. Consider the following example:

Tom has class at 8:00 a.m. He can either make breakfast for himself (10–15

minutes), or get something in a local store (less than 5 minutes). After breakfast

(5–10 minutes), he goes to school either by car (20–30 minutes) or by bus (at

least 45 minutes). Today, Tom gets up between 7:30 and 7:40.

In a quantitative temporal network, the variables are states, which represent snapshots of

events. In the example above, let variable� � represents the snapshot of Tom getting up,

let variable� � represents the snapshot of Tom getting his breakfast. The constraints are

disjunction of quantitative intervals, such as� �� � 	 � � � is � �� 	 �� 	 ��� 	 ����. Based on this

temporal information database, we can expect the temporal reasoning system to answer

questions such as: “Is it possible that Tom is not late for school?”, “Is it possible for Tom

to take the bus?”, “If Tom wants to save money by making breakfast for himself and taking

the bus, when should he get up?”, and so on.

There are two kinds of quantitative temporal problems. The first one is temporal con-

straint satisfaction problem (TCSP), which is general temporal problem and isNP-hard.

The second one is a restricted, simpler version of TCSP (simple temporal problem STP),

which we can solve in polynomial time.

1.2.1 The temporal constraint satisfaction problem (TCSP)

The TCSP problem can be described similarly to the general CSP. A temporal constraint

satisfaction problem (TCSP) is composed by a set of variables, each variable has a contin-

uous domain and binary constraints describe the relation between two variables or unary

constraints for one variable.

In TCSP model, variables represent time points (snapshot, state). The domain of the

11

variable is any real number (continuous domain). Each constraint is represented by a set of

intervals:

�� � 	 �� 	 � � � 	 �� � � � �
� � 	 � �� 	 ��� 	 �� � 	 � � � 	 ��� 	 �� �� (1.18)

There are unary constraints,� �. They restrict the domain of variable� � to a disjunction of

intervals:

�� � � � � � � �� � � � � � ��� � � � � �� � (1.19)

The most popular constraints are binary constraints,� � �� , define the allowed values for the

distance�� � � � � �. It also allows the disjunction of intervals:

�� � � � � � � � � � �� � � � � � ��� � � � � � � � �� � (1.20)

In fact, we can easily transfer the unary constraints to binary constraints by adding a refer-

ence time point� �. Every unary constraint� � can be transferred to a binary constraint� � ��.

For example:Tom gets up between 7:30 a.m and 7:40 a.mcan be expressed as unary con-

straint 7:30
� � � � 7:40. If we add the initial time point� � = 6:00, then this information

also can be expressed as binary constraint�� � � � � � � � ���
.

A binary TCSP is a temporal network that consists of a set of variables,� � 	� � 	 � � � 	� �

and a set of binary and unary constraints. This network also can be represented as a directed

constraint graph, nodes represent variables and the edge� � � indicates a constraint be-

tween variable� and variable� . The label of edge� � � shows the intervals set of the

constraint. Figure 1.5 is an example of a directed constraint graph.

Similarly to general CSP, a solution of a TCSP is a set of real values�� � 	 � � 	 � � � 	 �� �,
�� � � � � 	� � � � � 	 � � � 	� � � �� � that satisfies all the temporal constraints. We need

12

P0

P1

P2

P3

P4

[0, 120]

[90, 100]

[5, 10]

[10, 15] [0, 5]

[45,] [20, 30]

Figure 1.5:An example directed constraint graph for TCSP.

to mention that since the TCSP has continuous domain, the number of solutions usually

is infinity. If value � in the domain of� � appears in a solution of TCSP then this value

is a feasible value for variable� �. The set of all feasible values of variable is called the

minimal domain. Obviously, if any minimal domain is empty, then there is no solution for

the TCSP and we call this TCSP is inconsistent.

As we defined addition and multiplication for the interval algebra and the point al-

gebra, we can similarly define the addition operation (interval intersection) and multi-

plication operation (interval composition) for TCSP. Suppose we have constraints� �
�� � 	 �� 	 � � � 	 �� �, � � ��� 	 �� 	 � � � 	 �� �.

The addition (intersection) of two temporal constraints� and
�

is the values that are

allowed by both� and
�

.

� � � � �� � 	 �� 	 � � � 	 �� � � ��� 	 �� 	 � � � 	 �� � (1.21)

� �� � � �� 	 � � � �� 	 � � � 	 �� � �� 	 � � � �� � �� � (1.22)

� �� � 	� � 	 � � � 	�� � �� �
 �
 � (1.23)

Where�� = �� � ��
for some� and� . � and

�
are different sets of intervals for the same

constraint and� is the new constraint proposed by� and
�

. For example, the constraint

between� and� is� � � �� 	 	 � 	 �
 	 ���. For some reason we need add a constraint between

13

� and � :
� � � �� 	 �� 	 �� 	 ���. Since these two constraints apply to the same pair of

variables, the allowed values for the new constraint shouldsatisfy both constraints� and
�

. Hence, the new constraint� is � � � � � �� 	 �� 	 �� 	 	 � 	 �
 	 ���, see Figure 1.6. The

number of intervals in� is up to the sum of the number of intervals in� and
�

.

The multiplication (composition) of two temporal constraints� and
�

defines a new

constraint� . If constraint� allows value�, there must exist a value� � � and a value

� � �
, such that� � � � �.

� �
� � �� � 	 �� 	 � � � 	 �� � � ��� 	 �� 	 � � � 	 �� � (1.24)

� �� � � �� 	 � � � �� 	 � � � 	 �� � �� 	 � � � �� �
�� � (1.25)

� �� � 	� � 	 � � � 	�� � �� �
 �
 � (1.26)

Where�� =
�
� � � 	 � � � for some�� � �

� 	 �� and
�� � �

� 	 �. If � is a constraint between

variables� and� ,
�

is a constraint between variables� and� , then the multiplication

will propose a new constraint between� and� . For example:� � � �� 	 �� 	 �	 	
��, � �
� �� 	 �� 	 �
 	 ���, the new constraint� � � �� 	 �� 	 �
 	 �� 	 ��� 	 ����, see Figure 1.6. The number

of intervals in� is up to the product of the number of intervals in� and
�

.

1.2.2 Solving the Simple Temporal Problem (STP)

The simple temporal problem (STP) is a simple version of TCSP. We notice that the two

operations, addition and multiplication, can make the number of intervals per constraint

exponentially large. But if there is only one interval per constraint, then the addition and

multiplication always output a new constraint with only oneinterval, which make the STP

easy to solve. In an STP, there is only one interval per constraint:

� � �� � � � � � � � �� �� (1.27)

14

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � � � � � � �� � � � � �� � � � � �� � � � � �

� � � � � � � � � � � �� � � � � � � � � � �� � � �� � � �

� � � �	 	 	

� � ��

1 4 6 8

0 1 3 7

1 3 4 6 7

A

B

BA

� � �� � � � � � � � � �� � � � � � �

� � �� � �� � �� � � � � �� � �� � �� � �

� � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � �

1 6

7

A

B

BA

2 4

62 3

3 965 10 13

Figure 1.6:The addition and multiplication operations of TCSP.

We also can express this inequality as two inequalities:

� � � � � � �� �� (1.28)

� � � � � � �� � �� (1.29)

Solving an STP amounts then to finding the set of solutions of asystem of linear inequali-

ties. We can solve STP by using an all pairs shortest paths algorithm such as Floyd-Warshall

algorithm. We reformulate the STP as a distance graph1, a directed edge-weighted graph
� � � �� 	 � � �. The difference between a constraint graph and a distance graph is that

instead of having a directed edge� � � with label of interval
�
� � �� 	 �� �� � in a constraint

graph, a distance graph labels the edge� � � with �� �� and edge� � � with �� � �� . Fig-

ure 1.7 gives the distance graph of the example described in Figure 1.5 (we choose only

one interval per edge). Since the multiplication works on two single intervals for STP,
1Also called a gap-graph [27].

15

p

p

p

p

p

3

4

2

0

1

120

0

100

-90

5

0

10

-5

30

-20

Figure 1.7:The distance graph of Figure 1.5.

we can easily get the constraint between� and � with path ��=�, � �, � � �, ��=� in
� �

is

[(�� �� � � � ��� . . .�� �� � �� ��),(�� �� � � � ��� . . .� � �� � �� ��)]. If there are more than one path from

� to � then�� � � � � � �� , � �� is the length of the shortest path from� to � .

An STP is consistent if and only if its distance graph has no negative cycles [31]. Any

consistent STP is decomposable relative to the constraintsin its distance graph.

The complete minimal distance graph can be obtained by usingFloyd-Warshall’s all

pairs shortest paths algorithm. The algorithm finds the minimal network with� �
 � � time.

Since this minimal network is decomposable, finding a solution only needs� �
 � � time

because decomposability promises backtrack-free.

All -pairs-shortest-paths algorithm (� � �):
for i = 1 to ndo � �� � �

;
for i, j = 1 to ndo � �� � � � �� ;
for k = 1 to ndo

for i, j = 1 to n do
 � �� �
�
 � � �� 	 � �� � � �� �;

Figure 1.8:Floyd-Warshall’s algorithm.

If we are only interested in the consistency of an STP, we can use directional path

consistency algorithm (DPC) [15] instead of Floyd-Warshall’s algorithm.DPC is a simple

16

version ofPC-1, the difference betweenDPC andPC-1 is thatDPC is a single pass algo-

rithm. From Figure 1.9 , we can find that the set of edges is increasing while the algorithm

is executing. At the end of execution of theDPC algorithm, an induced graph is obtained.

The number of edges in the induced graph is larger than in the original constraint graph but

less than in the complete graph.

DPC (� � �):
for k = n down to 1 by -1do

for all i, j ¡ k such that (i, k), (j, k)� E do
� � �� � � � �� � � � �� � � � �� , and
� � � � �� 	 � �, and
if � � �� �
 �	 then exit (the network is inconsistent);

Figure 1.9:DPC algorithm.

Dechter shows that, given an STP, the algorithmDPC terminates at the final step in

Figure 1.9 if and only if the STP network is inconsistent.DPC can be achieved more

efficiently than full path consistency. UnlikeF-W, which needs� �
 � �, DPC can be finished

in � �
� � ��� � time for telling the consistency of an STP, where� � �� is the maximum

number of parents that a node possesses in the induced graph.Notice that� � �� is always

less than
, if we only want to know the consistency of an STP, we should useDPC instead

of F-W due to its lower cost.

There are several methods to solve STPs, we introduce two that guarantee the minimal

network with lower cost thanF-W, as we discuss in detail in Chapter 3.

1.2.3 Solving the TCSP

The general TCSP has more than one interval per constraint. With the addition and multi-

plication operation, the number of intervals per constraint can become exponentially large.

Davis showed that determining consistency of a general TCSPis NP-hard [13].

17

The general TCSP is modeled as a meta-CSP. The variables are the edges and the do-

main of variable is the possible intervals. Hence we map a TCSP into a discrete CSP with

variables� �, � �, � � �, � � , where
 � �� �, and� � with domain of intervals� �, ��, � � �, ��
correspond to the label of�� in constraint graph. Not like other CSPs, the consistency for

an assignment,�� � � � �� , � � � ���, � � �, � � � ��� � is decided by the consistency of

corresponding STP (Figure 1.10).

e2

.. ..
.

..

.
..
.

..

..

e3

e1

..
..

STP

STP

STPSTP STP

STP

STP

STP

Figure 1.10:The search tree for solving the meta-CSP.

A general TCSP problem can be decomposed into�� � �� ��� ��� � �� ��� �STPs. By solving

all STP and combining the solutions together, we can get the minimal network for TCSP.

The complexity of solving TCSP is the total cost of solving�� � � � ��� � � � � � � ��� � STPs

(� �
 �� �� �� [15], � is the maximum number of intervals per edge and�� � is the number

of edges). We also can use backtracking search to find all the consistent STPs. With this

approach, we can use all techniques to improve the performance of search and find all the

solutions.

Figure 1.11 is the backtrack algorithm (BT-TCSP) for solving TCSP [15]. The back-

track algorithm expands a meta-CSP one edge at a time. It has two procedures:Forward

andGo-back. At each step,Forward expands one more edge. It assigns a new interval

(value) for this edge (variable), extending the current STP. If we can find an interval from

the label of the new edge can make the resulting STP consistent, then callForward again.

If there is no interval that can make the corresponding STP consistent, then we need to

18

BT (� �� �):
For ward(� �, ��, � � �, � �)

if i = m then� � � � � � 	� � � �� � �� � 	 �� 	. . . 	 �� �, and
Go-back(� �, ��, 	���, ��);

� �� � �
 �	;
for every�� in � �� � do

if Consistent-STP�� � 	 �� 	. . . 	 � � 	 �� � then
� �� � � � �� � � ��� �;

if � �� � ��
 �	 then
��� � � first element in� �� �, and
remove��� � from � �� �, and
Forward�� � 	 �� 	. . . 	 � � 	 �� �

else
Go-back(� �, ��, � � �, ��);

Go-back(� �, ��, � � �, � �)
if i=0 then exit
if � � ��
 �	 then
�� � first element in� �, and
remove�� from � �, and
Forward�� � 	 �� 	. . . 	 � � �

else
Go-back(� �, ��, � � �, ��� �);

Figure 1.11:The backtrack algorithm for solving TCSP.

Go-back. A consistency-check procedure for the STP could be the all-pairs-Shortest-Paths

algorithm. The only requirement is that the algorithm be able to determine the consis-

tency of the STP, even if it cannot output the minimal network. Go-back goes back to the

previous assignment, changes the value of the previous variable, and then callsForward .

Although the worst-case complexity of using search is also� �
 �� �� ��, it allows us to apply

some new techniques into search such as back-jumping, variable ordering, value ordering.

They can reduce the complexity much lower than the worst-case complexity.

We already know that the general TCSP isNP-hard. There is no way to find a poly-

nomial time algorithm to solve general TCSP. But people may ask questions such as “Is

19

it possible that there are some TCSPs that are easy to solve?”, “What do those TCSPs

looks like?”. The answer is positive; some TCSPs are not so hard. If the TCSP is sparse,

then there is a good chance we can find articulation points. With articulation points, we

can decompose the constraint graph into some non-separablecomponents. Each of these

components can be solved independently. For other TCSPs, wemay find out most of the

intervals in the domain of edges never become a part of a solution. Hence, we can eliminate

them first before starting search, which reduces the size of meta-CSP.

1.3 Questions addressed

In this thesis, we address the following questions:

1. Is there a better algorithm thatF-W to solve STP?

Answer: We propose two other algorithms to solve STP:PPC and
�

STP. They al-

ways perform better thanF-W.

2. Can we use the topology of the network to improve the performance of solving STP?

Answer:We show that the exploitation of articulation points helps reducing the num-

ber of constraint checks when density is low.

3. Is there an arc-consistency-like algorithm to reduce thesize of meta-CSP (TCSP)?

Answer:We propose the
�

AC algorithm for this purpose. We show that dramatically

reduces the size of meta-CSP especially when density is high.

4. Can we improve the performance of search by combining better STP solver with BT-

TCSP?

Answer: Yes! We provide experimental results, which show significant improve-

ments by applying those better STP solvers.

20

5. Do we need to check consistency of STP at every node of search tree?

Answer:No. We only need to check the consistency of STP when there exists a new

cycle, otherwise a consistent STP necessarily yields another consistent STP at the

following level. Further, only the consistency of the newlyformed by biconnected

component needs to be checked. We use a new cycle check mechanism to detect the

existence of new cycle.

6. Does the variable ordering help to improve the performance of search?

Answer: Yes, we propose a new variable ordering heuristic (edge in the TCSP)

that reduces the number of nodes visited and the number of constraint checks when

searching the meta-CSP.

7. Can we observe the phase transition in solving TCSP?

Answer: The existence of phase transition is uncovered when we apply
�

AC as a

preprocessing step for solving TCSP.

1.4 Summary of contributions

Our contributions can be organized into the following categories:

1. Solving STP:

� We applyPPC to solve the STP, and develop a new STP solver,
�

STP, which

is always better thanPPC.

� We show that the articulation points help to improve the performance of solving

STP by decomposing the temporal graph.

� The experimental results shows that althoughDPC may need fewer number

of constraint checks than
�

STP when density is high, the performance of the

21

�
STP remains superior because it outputs the minimal network, which cannot

be obtained by usingDPC.

2. Solving TCSP:

� We combine different STP solvers with BT-TCSP. The results show that using

PPC as STP consistency check algorithm always get better performance than

usingDPC as STP consistency check algorithm.

� We use articulation points to improve the performance of search.

� A new cycle check mechanism is used to avoid unnecessary consistency check.

It reduces the number of constraint checks without change the number of back-

tracks.

� We find a good variable ordering, which reduces the number of constraint

checks and the number of nodes visited.

� A sound and efficient filtering algorithm,
�

AC, is developed to help to solve

TCSP by reduce the size of meta-CSP.

3. Evaluation conditions:

� We design and implement a few random STP and TCSP generators.Some of

them are used to generate random temporal problems for testing our temporal

problem solvers.

� A few generators developed by other researchers are also used to testify our

STP solvers.

4. Finally, we identify new directions for future research.

22

1.5 Guide to thesis

This document is structured as follows. Chapter 2 introduces the random temporal problem

generators that we designed and used to the generate random problems for testing our

algorithms. Chapter 3 introduces a number of STP solvers. Wecompare their performance

in terms of the number of constraint checks and CPU time. In Chapter 4, those STP solvers

are used as STP consistency check algorithm in BT-TCSP. Someother heuristics are used

to improve the performance of search. A special filtering algorithm also introduced in

this chapter to reduce the size of meta-CSP. Chapter 5 gives aconclusion reviewing our

contributions and stating our directions for future research.

23

Chapter 2

Random temporal network generators

A temporal constraint network is a constraint graph
� � �� 	 � �, where nodes are vari-

ables and represent time points, edges are constraints of bounded difference labeled by a

disjunction of continuous intervals and represent temporal information. To test our algo-

rithms and heuristics for solving STP and TCSP, some random STP and TCSP generators

are developed.

All generators take as input
 (= �� �), the number of nodes in the temporal constraint

graph (TCG) and, the constraint density. The number of edges in TCG is thus:

� � �� � � �
 � �� �
 � ��
� � �
 � �� � (2.1)

Another input parameter is an interval of integer values� � �� 	 � �, which is used for value

selections as discussed below.

This chapter is organized as follow. In Section 2.1, we statetwo random STP generators

(GenSTP-0, GenSTP-1) developed by us, and two random STP generators (GenSTP-

2, SPRAND) from Ioannis Tsamardinos [32] andSPLIB [9]. Based on our STP gener-

ators, we also introduce two random TCSP generators (GenTCSP-0, GenTCSP-1) in

Section 2.2. A brief summary is given at the end of this chapter.

24

2.1 STP generators

STP has only one interval per constraint. To generate STP problems, we develop two

generators.GenSTP-0 does not guarantee that the generated networks are consistent, and

GenSTP-1 guarantees that a user specified percentage (� �) of the generated problems are

consistent (the consistency of the remaining ones is not guaranteed).

2.1.1 GenSTP-0

GenSTP-0 randomly selects�� �edges from all possible edges list, and labels them by one

randomly selected intervals within� , given as input. The resulting network is tested for

connectivity (an� � �� � � �� �� process) and only connected networks are kept. Since the

interval labels of edges are randomly selected, most of generated problems have negative

cycles and are thus inconsistent. More formally:

1. Start with a list� of all possible edges (there are
� ��� ��

� edges in�).

2. Select a random edge� � � and remove it from�.

3. Label� with
�	� 	 � � �, where	� and� � are randomly selected in� (with 	� � � �).

4. Repeat (2)–(3) until�� � edges have been selected.

5. If the graph is not connected, go to step (1), otherwise save the problem to a file.

2.1.2 GenSTP-1

GenSTP-1 randomly selects�
 � �� distinct points within� � �� 	 � �. These nodes along

with the endpoints of� (i.e., 1 and�) constitute the
 nodes of the temporal constraint graph

(TCG). Edges for TCG are chosen randomly from all possible edges list as in GnSTP-0.

However, the lower	� and upper� � values of the label of a given edge� between two nodes

25

� and� (with � � �) are chosen such that	� � �� � �� and� � � �� � ��. Thus, this process

is guaranteed to generate a consistent network.

In order to include some inconsistent instances in a given pool of problems generated

using this process, we swap, in a given instance, the labels of two random edges with a

probability of �� � � ��. More formally:

1. Randomly select�
 � �� distinct points within a given interval� � �� 	 � �. Each point

corresponds to the ‘position’ of a node in the graph. The firstnode of the graph has

position 1, and the last node in the graph has position�.

2. Start with a list� of all possible edges (there are
� ��� ��

� edges in�).

3. Select a random edge� � �� 	 �� from � and remove it from�.

4. Let � be the distance between the two points� and � of edge�. Choose two values
� � � 	 � � �, and set the label of the edge� to be

�� � � 	 � � � �.

5. Repeat (3)–(4) until�� � edges have been processed.

6. With probability�� � � � �, swap the labels of two random edges in the graph.

7. If the graph is not connected, go to step (1), otherwise save the problem to a file.

2.1.3 More STP generators

In order to test our algorithms with different types of temporal problems, we introduce two

other random STP generators.

The first one (GenSTP-2) is developed by Ioannis Tsamardinos. Similar toGenSTP-

1, the randomly generated STPs byGenSTP-2 have no structure constraints. The bound

of each edge was chosen randomly from a given interval.

26

The second random STP generator isSPLIB. SPLIB is developed by Cherkassky et al.

to evaluate shortest path algorithms. It includes several different families of randomly prob-

lem generators. We use one of them:SPRAND. All random STPs generated bySPRAND

have a big cycle, which connects all the nodes. It is impossible to find an articulation point

in the TCG generated bySPRAND, which may makes the STPs harder to solve by some

STP solvers.

2.2 TCSP generators

In a TCSP, an edge (representing a constraint) is labeled by adisjunction of non-overlapping

intervals. Similar toGenSTP-0 and GenSTP-1, we propose two generators of ran-

dom TCSP instances. As for the case of the STP, the first generator (GenTCSP-0) does

not guarantee that its instances are consistent (have a solution), whereas the second one

(GenTCSP-1) does with probability� �.
In addition to the inputs specified for the STP generators, TCSP generators take as input

�, the maximum number of non-overlapping intervals in the label of an edge.

2.2.1 GenTCSP-0

Similar toGenSTP-0, GenTCSP-0 randomly selects�� � edges from all possible edges

list (size of
� ��� ��

�). For each edge, the generator randomly selects up to� intervals within

� , given as input. The resulting network is tested for connectivity. Since the interval labels

of edges are randomly selected, most of those problems are inconsistent. More formally:

1. Start with a list� of all possible edges.

2. Select a random edge� � � and remove it from�.

3. Randomly select a number� (number of intervals for an edge)
� �

27

4. Randomly select�� numbers and sort them.� � � � � � � � � � ��� � � � �� (� � � �).

Label � with ��� � 	� � � 	 �� � 	� � � 	 � � � 	 �� ��� � 	� �� ��.

5. Repeat (2)–(4) until�� � edges have been selected.

6. If the graph is not connected, go to step (1), otherwise save the problem to a file.

2.2.2 GenTCSP-1

Like GenSTP-1, GenTCSP-1 randomly selects�
 � �� distinct points within� � �� 	 � �.
These nodes along with the endpoints of� (i.e., 1 and�) constitute the
 nodes of the tem-

poral constraint graph (TCG). Edges for TCG are chosen randomly from all possible edges

list as in GnSTP-0. However, to guarantee the resulting TCSPhas at least one solution, the

lower 	� and upper� � values of one of the interval in the label of a given edge� between

two nodes� and� (with � � �) are chosen such that	� � �� � � � and� � � �� � ��. To add

more labels per edge, the generator also adds up to��� labels before interval
�	� 	 � � �, and

up to��� labels after interval
�	� 	 � � � (the total number of intervals per label is up to� � �

).

We also add a parameter� to define the range of all labels. This process is guaranteed to

generate a consistent network.

In order to include some inconsistent instances in a given pool of problems generated

using this process,we swap the labels of two random edges in the graph with probability of
� � � �. More formally:

1. Randomly select�
 � �� distinct points within a given interval� � �� 	 � �. Each point

corresponds to the ‘position’ of a node in the graph. The firstnode of the graph has

position 1, and the last node in the graph has position�.

2. Start with a list� of all possible edges.

3. Select a random edge� � �� 	 �� from � and remove it from�.

28

4. Let � be the distance between the two points� and � of edge�. Choose two values
� � � 	 � � �, and set the label of the edge� to be

�	� 	 � � �, 	� � � � � and� � � � � � �.

5. Randomly select number� � ���. Randomly select�� numbers and sort them.

� � � � � � � � � � �� � � � � �� (� � � � ��) Push ��	� � � � 	 	� � � � � 	 �	� � � � 	 	� �

� � � 	 	��� 	 �	� � � �� � � 	 	� � � �� �� into label�.

6. Randomly select number� � ���. Randomly select�� numbers and sort them.

� � � �� � � � � ���� � � ��� (� � � ���) Append label� with ��� � � � � 	 � � � �� � 	 �� � �
�� 	 � � � �� � 	 � � � 	 �� � � ���� � 	 � � � ��� ��.

7. Repeat (3)–(6) until�� � edges have been processed.

8. With probability�� � � � �, swap the labels of two random edges in the graph.

9. If the graph is not connected, go to step (1), otherwise save the problem to a file.

Summary

We state four random STP generators and two random TCSP generators in this chapter.

Since we want compare the performance of STP solvers for finding the consistency of

STP or finding the minimal network of STP, we only usingGenSTP-1, GenSTP-2 and

SPRAND to test our STP solvers. To compare the performance of TCSP solvers for finding

all solution of TCSP, we useGenTCSP-1 to generate random TCSPs.

29

Chapter 3

Solving STP

In this chapter, we propose a new efficient algorithm, the
�
STP-solver, for computing

the minimal network of the Simple Temporal Problem (STP). This algorithm achieves high

performance by exploiting a topological property of the constraint graph (i.e., triangulation)

and a semantic property of the constraints (i.e., convexity) in light of the results reported by

Bliek and Sam-Haroud [6], which were presented for general CSPs and have not yet been

applied to temporal networks. Importantly, we design the constraint propagation in
�
STP-

solver to operate on triangles instead of operating on edgesand implicitly guarantee the

decomposition of the constraint graph according to its articulation points. We also provide

extensive empirical evaluations of all known algorithms for solving the STP on sets of

randomly generated problems. Our experiments demonstratesignificant improvements of
�
STP-solver, in terms of number of constraint checks and CPU time, over previously

reported algorithms such as the Floyd-Warshall algorithm (F-W) [11, 15], Directed-Path

Consistency (DPC) [15], and Partial Path-Consistency (PPC) [6].

30

3.1 Introduction

Many critical applications in planning and scheduling relyon an efficient handling of tem-

poral information represented as a Simple Temporal Problem(STP) [12, 15, 8]. The effi-

ciency of the constraint propagation in such a network is particularly crucial in autonomous

space applications as demonstrated by the Deep Space 1 Remote Agent experiment [26].

Further, an efficient STP solver is a crucial component for solving the Temporal Constraint

Satisfaction Problem (TCSP) because the search process designed by Dechter et al. [15]

for solving the TCSP requires solving an STP ateachnode expansion. Thus, the perfor-

mance of the overall process depends heavily on the performance of solving an STP. In this

chapter, we propose a new algorithm,
�
STP-solver, for solving the STP and demonstrate

empirically that it constitutes a dramatic improvement over previously used algorithms.

We achieve this by first combining the results developed by Bliek and Sam-Haroud

[6] for general Constraint Satisfaction Problems (CSPs) with anewstrategy for constraint

propagation, which restricts the propagation effort to thetriangles of the triangulated con-

straint network instead of its edges. Then, we apply the resulting mechanism to solve the

STP. The triangulation of the graph and the convexity of the constraints in the STP guar-

antee that
�
STP-solver is complete and sound for proving the consistency ofthe STP and

for finding the minimal (and decomposable) network. This chapter is structured as follows.

Section 3.2 recalls the main properties of a CSP and shows howwe use them in our study.

Section 3.3 discusses the algorithms for solving the STP andexplains the advantages of

the
�
STP-solver. Section 3.4 describes our experiments and results, and summarizes our

observations. At the end of this chapter, a brief summary is given to conclude this chapter.

31

3.2 Background

A Constraint Satisfaction Problem (CSP) is defined as follows. Given a set of variables,

each with a set of possible values defining its domain, and a set of constraints that restrict

the combinations of values that the variables can be assigned at the same time, the task

is to assign a value to each variable such that all constraints are simultaneously satisfied.

Path consistency, as we discuss below, is an important property of a CSP. Recently Bliek

and Sam-Haroud [6] proposed the Partial Path Consistency (PPC) algorithm, which deter-

mines whether or not a network is path consistent. SincePPC operates on the triangulated

constraint graph1, it realizes significant computational savings over previously known al-

gorithms, especially for sparse networks. In this chapter,we first improve the propagation

mechanism of thePPC algorithm by making it operate on triangles instead of individual

edges. We then use the improved version to solve the STP. In the next section, we recall

the main properties of a CSP and discuss them in light of the STP.

3.2.1 Main CSP properties

The general properties of constraint graphs and the main algorithms for achieving them are

outlined below.

� Path consistency:This property ensures that given two values for any two variables

that satisfy the constraint between these variables, we canfind values for variables in

any path of any length (possibly infinite) that satisfy the constraintsalong the path

[25]. In general CSPs, path-consistency algorithmsPC (e.g.,PC-1 [25] andPC-2

[22]) are used to enforce path consistency by tightening thebinary constraints. (They

also tighten the domains, thus enforcing strong path-consistency.) Montanari estab-

lished that these algorithms, which consider only paths of length two, on acomplete
1A graph is triangulated if every cycle of length strictly greater than 3 possesses a chord.

32

graph2 guarantee a path-consistent network [25]. The DirectionalPath-Consistency

(DPC) algorithm, which achieves path consistencyalong a given ordering of the

variables in the search process, was proposed by Dechter [13] as an efficient approxi-

mation ofPC; it guarantees path consistency only in the direction that matters, which

is that of search. Recently Bliek and Sam-Haroud [6] proposed the Partial Path Con-

sistency (PPC) algorithm, which determines whether or not a network is path consis-

tent without necessarily producing as tight network as withPC. SincePPC operates

on the edges of the triangulated graph (fewer than those of the complete graph), it

realizes significant computational savings, especially insparse networks.

� Minimality: Minimality, the central problem in CSPs, is a property stronger than path

consistency. It guarantees that all the binary constraintsare as explicit (i.e., tight) as

possible [25].

� Decomposability:Decomposability is stronger than minimality and guarantees that a

solution to the CSP can be found backtrack-free. This is a highly desirable property

and guarantees the tractability of the CSP.

� Consistency:In contrast to the above, the consistency property guarantees only the

existence of a solution. Note that decomposability is a sufficient condition for con-

sistency.

� Decomposition into biconnected components:The decomposition of the constraint

graph into its biconnected components according to its articulation points3 is a known

technique for enhancing the performance of solving a CSP in general. It provides an

upper bound, in the size of the largest biconnected component, to the search effort

[19]. We establish that the new solver we introduce,
�
STP, implicitly decomposes

2If the graph is not complete, it is made so by adding universalconstraints between non-adjacent edges.
3An articulation point of a graph is a vertex whose removal disconnects the graph. A graph with an

articulation point is separable, otherwise it is biconnected.

33

the constraint graph into its biconnected components without using articulation point.

This important observation justifies its high performance.

3.2.2 Properties of the STP

A Simple Temporal Problem (STP) is defined by a graph
� � �� 	 � 	 � � where

�
is a set of

vertices� representing time points;� is a set of edges�� �� representing constraints between

two time points� and� ; and � is a set of constraint labels for the edges; see Figure 3.1

(left). A constraint label� �� of edge�� �� is a uniqueinterval
�
� 	 ��, � 	 � � �

, and denotes

a constraint of bounded difference� �
(� � �� � �. A Temporal Constraint Satisfaction

Problem (TCSP) is defined by a similar graph
�

= �� 	 � 	 � �, where each edge label� ��=
�	 ����� 	 	 ����� , � � �, 	 �� ��� � is a set of disjoint intervals denoting a disjunction of constraints of

bounded differences between� and� , see Figure 3.1 (right). We assume that the intervals

1,2e

= {[3, 5], [6, 9], ...}1,2I
1,2e

I = [3, 5]1,2

2

1

2

1

Figure 3.1:Left: STP.Right: TCSP.

in a label are ordered in a canonical way. In this section we focus on STPs, but we are

integrating our results into an algorithm for solving TCSPs. Below, we show how we

exploit the properties of Section 3.2.1 in the context of theSTP.

1. Triangulation of network and convexity constraints.In addition to proposingPPC,

Bliek and Sam-Haroud also showed that when the constraints are convex, thePC

algorithm (operating on the complete graph) and thePPC algorithm (operating on

the triangulated graph) yield the same labeling for the edges common to both graphs.

This important feature of thePPC algorithm has never been exploited before in the

context of STPs, in which the constraints, linear inequalities, are indeedconvex. Our

34

�
STP-solver exploits this result and yields significant savingsof the computational

efforts over previously available techniques for establishing path consistency of the

STP.

2. Distribution of composition over intersection.The two operators on binary con-

straints for establishing path consistency are constraintcomposition� and constraint

intersection� . Montanari showed that, when constraint composition is distributive

over constraint intersection,PC guarantees not only path consistency but also min-

imality and decomposabilility [25]. In the case of the STP, constraint composition

is interval addition, and constraint intersection is interval intersection, which verify

the distributivity as noted by Dechter et al. [15]. Therefore we can deduce that the

PPC algorithm and the
�
STP-solver, guarantee the minimality and decomposability

of the STP.DPC does not guarantee the path-consistency, minimality or decompos-

ability of the constraint network, however, and this is an important feature, it can be

used to determine the consistency of the STP.

3. Decomposition into biconnected components.In the special case of the TCSP, and a

fortiori the STP, Dechter et al. [15] showed that each biconnected component can be

solved independently. If all the components are found to be consistent, then the en-

tire network is consistent. If any of the components is not consistent, then the overall

temporal network is not consistent. The minimal network of the original problem is

obtained by the union of the minimal networks of the individual biconnected com-

ponents. When the constraint graph is sparse, this propertyis particularly attractive.

This allows us to process the components in parallel, by independent agents. Thus,

decomposition into biconnected components is particularly attractive in the case of

STPs, especially for large problems with low density. We show that this decomposi-

tion is implicit and automatic in our
�
STP-solver.

35

3.3 STP algorithms

Here we discuss four different algorithms to solve STPs. Thefirst two solvers,F-W and

DPC, have been extensively studied. However, their performance in combination with a

decomposition strategy according to articulation points has never been compared before.

The third STP solver we study isPPC, which has never before been used on temporal

reasoning problems. Finally, we introduce our new solver,
�
STP.

3.3.1 F-W and DPC exploiting articulation points

The Floyd-Warshall (F-W) algorithm for computing all-pairs shortest-paths is a special

case of thePC algorithm. F-W is applied to the distance graph of an STP to compute its

minimal network in� �
 � �. As discussed in Section 3.2,DPC is a single pass algorithm and

weaker thanPC. It does not necessarily yield a path consistent, minimal, or decomposable

network, but it determines if the STP is consistent.DPC is more efficient thanF-W; instead

of � �
 � �, DPC determines the consistency of STP in� �
� � ��� �, where� � �� is the

maximum number of parents that a node has in the induced graphalong the ordering,

which is substantially smaller than
.

We modify theF-W andDPC algorithms to exploit the existence of articulation pointsin

the temporal network. First, we identify the biconnected components [11], then we execute

a particular STP solver on each component, independently. This yields two algorithms,

F-W+AP andDPC+AP, respectively. It is easy to show thatF-W+AP andDPC+AP never

check more constraints thanF-W andDPC. In fact, for a sparse network, our experiments

show that they check substantially less. We also show empirically that, even in the absence

of articulation points,F-W+AP andDPC+AP almost never require more CPU time than the

original algorithms; when they do, the difference is insignificant due to the overhead for

finding the articulation points.

36

3.3.2 PPC algorithm for STPs

PPC was introduced for general CSPs by Bliek and Sam-Haroud [6] who showed that the

path-consistency property can be determined in constraintgraphs by triangulating them

instead of completing them. They showed a significant improvement in performance in

comparison toPC in sparse networks. They also established that, for convex constraints,

bothPPC andPC compute the same labeling for the edges common to both graphs. Since

the constraints in the STP (constraints of bounded difference) are convex, we apply for the

first timePPC to solve a continuous domain problem and compute the minimalnetwork of

the STP.

As specified in Figure 3.2, thePPC algorithm starts by triangulating the constraint graph
�

, then iterates over a queue�� of all edges, including those edges added to the temporal

graph by the triangulation process. It pops anarbitrary edge�� �� from the queue, recovers

PPC (�):
Begin
consistency � True� � Triangulate (�)
�� � edges in

�
While �� � consistency Do

�� �� � Dequeue(��)
Forall � such that�� 	 � 	 � � is a subgraph of

�
Do

� ��� � ��� � �� �� � ��� �
When � ��� �� ��� Then ��� � � ��� and Enqueue��� �� 	�� �
� ��� � � �� � ���� � �� � �
When � ��� �� � �� Then � �� � � ��� and Enqueue��� �� 	�� �
� �� � � �� � � ��� � � � �� �
When � �� � �� �� � Then �� � � � �� � and Enqueue��� �� 	�� �
When � �� , ��� or �� � is emptyThen consistency � False

Return consistency
End

Figure 3.2:ThePPC algorithm, slightly improved to consider simultaneously all three edges in a
triangle.

37

all triangles�� 	 � 	 � � in which �� �� participates, and updates its label� �� by composing the

intervals��� and��� and intersecting the result of this composition with the interval� �� . We

slightly modify the original algorithm to allow it to updateall three edges at once and to

terminate when the queue is empty or inconsistency is found.The distributivity property of

interval addition over interval intersection guarantees that runningPPC on an STP results

in the tightest possible labeling (i.e., minimal) of the existing edges.

3.3.3 �STP algorithm

The goal ofPPC is to make the labels of the edges of the triangulated constraint graph

as tight as possible. When the label of an edge in a triangle isnot as tight as it could be,

given the labels of the other edges in the triangle, the labelis tightened accordingly. This

process may require tightening the other edges in the triangle as shown in Figure 3.3. In

A

B

C

[6, 9]
[2, 7]

[2, 12]
A

B

C

[6, 9]
[2, 7]

[8, 12] A

B

C

[6, 9]

[8, 12]

[2, 6]

Figure 3.3:An example of updating edges. The label of edge BC then that ofAC are updated.

this example we can see that it is worth considering all threeedges of a given triangle

simultaneously and updating them sequentially. This observation is the basis of our first

improvement toPPC, and is already integrated in the algorithm of Figure 3.2.

When the label of an edge in a given triangle is updated,PPC triggers constraint prop-

agation overall the triangles in whichanyof the edges of the original triangle participate.

This is clearly an overkill since only the triangles in whichthe updated edges participate

need to considered. This observation was the motivation forour new algorithm.

While all existing methods consider the temporal network ascomposed of edges, our

new algorithm considers the STP as composed of triangles (see Figure 3.4). The graph of

38

D = <a, c, e>

E = <c, d, e>

C = <b, c, e>

f
e

d

cb

a

B = <a, b, e>

A = <a, b, c>

Figure 3.4:The temporal graph as a graph of triangles.

the temporal network is replaced by a graph of triangles. Each triangle is represented by a

node, and two nodes are connected if and only if the trianglesthey represent have a common

edge. Thus
�
STP appears as an AC3-like algorithm [22] on this graph of triangles. If an

edge of the original constraint graph is not a part of any triangle, it is omitted from the

graph of triangles. Indeed, an edge that does not appear in any triangle has no effect on

the constraint propagation in the STP and thus can be safely omitted from the graph of

triangles. Consequently:

Proposition 3.3.1. A tree-structured STP is decomposable and consistent, and its edge

labels are minimal.

We call our new algorithm
�
STP, although it is applicable to general CSPs and would

more correctly be called
�
PPC. The new algorithm is shown in Figure 3.5. First, we

triangulate the temporal network, using for example the algorithm devised in [28], which

may result in new edges. We add these edges to the original constraint graph as universal

constraints setting their label to��� 	� �. Then we put all the triangles into a queue,�� ,

of size� � �� � ������ �� ��). We check every triangle in the queue. If a given triangle�� 	 � 	 � �

is not minimal, then we update one or more of its edges. We thenretrieve all the adjacent

triangles that contain any of the updated edges and add them to � � if they are not already

there. Finally, we remove�� 	 � 	 � � from the queue, and repeat this process until�� is empty

or inconsistency is found.

39

�
STP (�):

Begin
consistency � True� � Triangulate the graph of�
� � � all triangles in

�
While � � � consistency Do

�� � empty list
�� 	 � 	 � � � First(��)
� ��� � � �� � ���� � ��� �
When � ��� �� � �� Then � �� � � ��� and Enqueue��� �� 	�� �
� ��� � � �� � �� �� � �� � �
When � ��� �� � �� Then ��� � � ��� and Enqueue��� �� 	�� �
� �� � � �� � � ��� � � ��� �
When � �� � �� �� � Then �� � � � �� � and Enqueue��� �� 	�� �
When � �� , � �� or �� � is emptyThen consistency � False
When consistency

For �� �� � �� Do
�� ��� all triangles containing�� ��
For �� 	 � 	 �� � �� �� Do Unless�� 	 � 	 �� � �� Then Enqueue(�� 	 � 	 ��, � �)

� � � Remove(�� 	 � 	 � � 	��)
Return consistency
End

Figure 3.5:The�STP algorithm.

3.3.4 Features of�STP

We summarize the features of
�
STP as follows:

�
�
STP has the same pruning power asF-W with less effort.

�
STP achieves min-

imality on the triangulated graph, without requiring the completion of the graph,

which is necessary forF-W. This yields dramatic gains in the computational effort.

�
�
STP automatically decomposes the graph into its biconnected components.The

decomposition of the graph into its biconnected componentsis an effective tech-

nique to bind the search effort and enhance the performance of solving a CSP. Our

experiments of Figure 3.7 and 3.8 and Table 3.2 and 3.3 show how such a strategy im-

40

proves the performance of theF-W algorithm, even when the articulation points must

be explicitly identified. Because constraints propagate through triangles,PPC and

consequently
�
STP implicitely exploit the decomposition into biconnected compo-

nents. Consider a triangulated temporal network composed of two sets of nodes�
= �� , � �, � �, � � �, �� � and� = �� , � �, ��, � � �, �� �, and� is the articulation point.

Suppose that edges exist only between nodes in either� or � . Since no edges con-

nect these two sets, there obviously are no triangles that connect them. All triangles

are either in set� or in set� . As shown in Figure 3.4, two triangles in the graph of

triangles can only be connected by a common edge. Therefore,no triangle in set�

is connected to a triangle in set� . WhenPPC and consequently
�
STP propagate

constraints through neighboring triangles, no updates in set� may affect triangles in

set� . As a result,PPC and
�
STP implicitly guarantee that articulation points in the

graph (if any), are expoited, as if the network was decomposed into its biconnected

components without actually decomposing it.

�
�
STP is cheaper thanPPC.

�
STP andPPC use the same idea of Bliek and Sam-

Haroud [6]; however,
�
STP is more careful about how updates are propagated and

thus exploits triangulation of the graph more effectively thanPPC. Although propa-

gation ofPPC occurs through triangles,PPC does not have a mechanism to record

which triangles really need to be checked. This inability causes some unnecessary

constraint checks and a waste of CPU time.

� Our improvement in solving the STP directly benefits the taskof solving the TCSP.

TCSP isNP-hard and is solved with backtrack search. Every node expansion in the

search tree needs to solve an STP. Thus a good STP solver is crucial for solving the

TCSP. We are currently demonstrating this idea and showing how the decomposition

into independent components is particularly useful in thiscontext.

41

Table 3.1:Parameters of generated problems.

Problem size
Generator #Nodes Density #Edges Samples Results

Range Step Range Step per point

GenSTP-1 50, 100 [0.01, 0.1] 0.01 100 Table 3.2 and
50, 100 [0.2, 0.9] 0.1 100 Figure 3.6, 3.7, 3.8

SPRAND 50 [200, 2000] 200 100 Table 3.3
100 [400, 1400] 200 100
100 [1600, 2800] 400 100
257 0.016 768 5 Figure 3.9
513 0.008 1536 5

GenSTP-2 256 0.016 3�256 = 768 5 Figure 3.9
512 0.008 3�512 = 1536 5

3.4 Empirical evaluations

We implemented the following six algorithms in Common Lisp.Floyd-Warshall (F-W),

Directed-Path Consistency (DPC), and in combination with a mechanism for detecting

and exploiting articulation points,F-W+AP andDPC+AP, Partial Path Consistency (PPC),

and our new triangle-based solver (
�
STP). We used three generators of random STPs:

GenSTP-1, SPRAND, andGenSTP-2. GenSTP-1 is our own generator. We designed it

to guarantee that graphs are connected and that at least 80% of the generated instances are

consistent.SPRAND is one class of STPs generated by the public domain librarySPLIB,

[9]. All the problems we generate withSPRAND have a cycle connecting all the nodes

(i.e., a structural constraint). This guarantees strong connectivity and the absence of any

articulation points. Finally,GenSTP-2 is a generator given to us by Ioannis Tsamardinos

and was used in [32].GenSTP-2 does not enforce the existence of a structural constraint.

The density of the temporal network is defined as� �
���� � �� �� ����� ������ �� ����� �. Table 3.4

summarizes the characteristics of the problems tested, including the size of the instances

and the number of samples generated for each measurement point. The results, measured

in terms of the number of constraint checks and CPU time, wereaveraged over the number

42

of instances and showed a precision of 5%. The detailed data of the above experiments on

the instances generated byGenSTP-1 andSPRAND are shown in Table 3.2 and 3.3. The

CPU time measurements are made in msec, with a clock resolution of 10 msec.

3.4.1 Experiments conducted

Using the 50-node problems generated byGenSTP-1, we conducted the following exper-

iments:

� Managing the queue in
�
STP. The manner in which triangles are inserted in the

queue affects the performance of
�
STP. We tested three heuristics for adding the

triangles to the queue: at the front of queue (
�
STP-front), at the end of queue

(
�
STP-back), and random insertion into the queue (

�
STP-random). All three

strategies resulted in the same output (i.e., the same labelof the edges). The re-

sults in terms of constraint checks are presented in Figure 3.6, The results show that
�
STP-back consistently performs the least number of constraint checks. This can

STP-front

STP-random

STP-back

GenSTP-1: 50 nodes

Figure 3.6:Constraint Checks for�STP-front,�STP-back and�STP-random.

43

be informally interpreted as follows. It is more effective to propagate the constraints

as early as possible across the network, in a ‘sweeping’ manner. Interestingly, we

noticed that quiescence was consistently reached in 7 or fewer iterations. We use
�
STP-back in the rest of our study.

� Computing the minimal network. F-W, F-W+AP, PPC and
�
STP (but notDPC)

result in the labels of the common edges, the minimal labels.Figure 3.7 shows that
�
STP clearly and sinificantly dominates all others, for all values of density.

� Saving on the constraint checks.

DPC does not necessarily yield the minimal network, but it can determine whether

or not the network is consistent in significantly fewer constraint checks thanF-W.

Figure 3.8 shows that
�
STP, which is more powerful in terms of pruning power and

yields the minimal network, dominatesDPC-like strategies when density is less than

50%.

� Effect of problem size.In order to compare the performance of these different solvers

on larger problems, we tested them on larger problems generated bySPRAND and

GenSTP-2. Figure 3.9 and 3.10 show the ratio of the number of constraint checks

and that of the CPU time needed for all six strategies tested in reference to the values

needed forF-W.

4
4

Tab
le

3
.2

:E
xp

e
rim

e
n
ta

lre
su

lts
fo

r
S

T
P

so
lve

rs
o
n

ra
n
d
o
m

S
T

P
ge

n
e
ra

te
d

b
y
G
e
n
S
T
P
-
1

.

Random STP generated byGenSTP-1 with 50 nodes

�

F-W F-W+AP DPC DPC+AP PPC

�

STP
Density CC CPU (s) CC CPU (s) CC CPU (s) CC CPU (s) CC CPU (s) CC CPU (s)

0.01 122200.5 0.822 29924.05 0.2091 1777.03 0.1168 744.44 0.0307 273.97 0.0039 125.75 0.0025
0.02 123001.5 0.8347 59091.93 0.4026 3572.7 0.1304 2364.62 0.0683 837.9 0.0109 409.64 0.0045
0.03 120339.99 0.8389 79195.61 0.5297 4769.95 0.1376 3833.36 0.0945 1532.55 0.02 761.71 0.0091
0.04 120044.01 0.8063 90934.63 0.6029 6411.11 0.1547 5525.58 0.1176 2529.68 0.03 1270.41 0.0115
0.05 117382.5 0.7935 99076.94 0.6591 8106.14 0.161 7510.24 0.1394 3766.13 0.0433 1910.97 0.0188
0.06 120075.49 0.8209 108975.06 0.7251 10204.46 0.1804 9746.2 0.1679 5207.57 0.0599 2622.19 0.0269
0.07 120940.51 0.8637 113426.05 0.756 11487.391 0.189 11175.431 0.1818 6679.19 0.0782 3445.79 0.0358
0.08 116800 0.7862 112267.63 0.7598 11715.94 0.1894 11447.12 0.181 7861.92 0.0879 4109 0.0424
0.09 115321.5 0.7778 112951.92 0.7525 13024.311 0.1976 12915.95 0.1986 9240.66 0.1031 4800.74 0.0531
0.1 116336.5 0.7947 114676.23 0.7617 14072.08 0.2115 13975.311 0.207 10857.08 0.1247 5705.62 0.0649
0.2 108926.5 0.7335 108852.99 0.7342 21203.27 0.2717 21203.262 0.2705 23677.2 0.2624 12631.6 0.1533
0.3 120195.99 0.8113 120195.99 0.8019 28912.988 0.347 28912.988 0.3442 41404.09 0.4637 22206.16 0.2676
0.4 106959.5 0.7213 106959.5 0.7147 27121.85 0.3313 27121.85 0.3252 43483.79 0.4958 23388.791 0.291
0.5 108896.5 0.7487 108896.5 0.732 29731.49 0.3506 29731.49 0.3514 53446.668 0.6162 28504.24 0.3553
0.6 109074.99 0.7376 109074.99 0.7314 31533.85 0.3732 31533.85 0.3692 57422.24 0.6662 30716.22 0.4083
0.7 109592 0.7502 109592 0.7294 32002.16 0.3795 32002.16 0.3725 62265.727 0.7224 33464.38 0.4269
0.8 107428.51 0.7298 107428.51 0.7116 32391.83 0.3816 32391.83 0.3719 64625.727 0.7439 34257.42 0.443
0.9 108566.5 0.741 108566.5 0.7207 33249.992 0.3925 33249.992 0.3796 67977.31 0.7931 36429.34 0.4616

Random STP generated byGenSTP-1 with 100 nodes
0.01 976155.06 8.3611 486223.66 4.088 21574.19 1.0156 14401.68 0.5275 4424.22 0.0586 2225.99 0.0108
0.02 955417 8.2284 737264.25 6.2037 45044.293 1.3432 39022.73 0.9329 14764.17 0.2035 7803.66 0.0772
0.03 944883 7.9927 855073.25 7.142 71363.34 1.3655 67750.06 1.2528 31849.158 0.3818 16698.209 0.1795
0.04 920881.06 7.8254 879589.9 7.3463 89384.945 1.4859 87387.805 1.4347 49463.91 0.5777 26350.969 0.3076
0.05 931483.06 7.8308 918906.56 7.71 115620.83 1.7429 114994.93 1.7121 72491.46 0.8411 38301.637 0.472
0.06 886372.94 7.5324 879934.7 7.3403 116526.336 1.6933 116144.984 1.6616 85443.125 1.0262 45141.34 0.5847
0.07 916842 7.7882 914465.9 7.6159 145073.03 1.9288 144846.11 1.9396 113607.77 1.3013 61303.09 0.8185
0.08 924955.94 7.907 924361.94 7.7039 148479.61 1.9416 148393.72 1.9335 129904.16 1.4633 70892.98 0.9267
0.09 935953 7.9439 935805.6 7.7978 167192.17 2.1092 167192.17 2.1225 161399.25 1.8614 86110.63 1.1857
0.1 895177 7.7186 894583 7.4615 165887.34 2.086 165803.48 2.0561 165634.69 1.9312 90790.92 1.2733
0.2 883597 7.5387 883597 7.3604 218225.31 2.4666 218225.31 2.4527 320976.06 3.7723 175113.86 2.6166
0.3 860400 7.4074 860400 7.1667 232372.25 2.5446 232372.25 2.5384 396075.3 4.7658 219178.31 3.3071
0.4 833850 7.1203 833850 6.9936 240254.4 2.6094 240254.4 2.5553 446748.47 5.4984 247012.77 3.805
0.5 879490.06 7.554 879490.06 7.3287 262964.03 2.8133 262964.03 2.7976 520176.78 6.4435 287163 4.4565
0.6 891914.06 7.6565 891914.06 7.4904 276184.53 2.9108 276184.53 2.8815 564749.56 6.734 309157.75 4.7986
0.7 866636 7.4485 866636 7.3051 267027.4 2.8092 267027.4 2.8233 554381.6 6.5875 303306.12 4.7356
0.8 847892 7.3271 847892 7.2994 258738.61 2.733 258738.61 2.6769 552344.1 6.4986 299997.22 4.8764
0.9 854969 7.3954 854969 7.3383 266861.47 2.8032 266861.47 2.7704 568128.25 6.7406 309514.87 4.9663

4
5

Tab
le

3
.3

:E
xp

e
rim

e
n
ta

lre
su

lts
fo

r
S

T
P

so
lve

rs
o
n

ra
n
d
o
m

S
T

P
ge

n
e
ra

te
d

b
y
S
P
R
A
N
D

.
Random STP generated bySPRAND with 50 nodes

Number

�

F-W F-W+AP DPC DPC+AP PPC

�

STP
of Edges CC CPU (s) CC CPU (s) CC CPU (s) CC CPU (s) CC CPU (s) CC CPU (s)

200 125000 0.8467 125000 0.8255 21824.031 0.2798 21824.031 0.2847 20247.77 0.236 12111.471 0.1595
400 125000 0.8492 125000 0.8301 30981.5 0.3677 30981.5 0.3732 42313.25 0.4893 25902.35 0.347
600 125000 0.8441 125000 0.8244 34524.73 0.4044 34524.73 0.4035 56231.418 0.6606 34142.043 0.4656
800 125000 0.8467 125000 0.8274 36254.89 0.4255 36254.89 0.4176 64894.547 0.7594 39436.86 0.5334
1000 125000 0.8457 125000 0.8281 37302.24 0.4369 37302.24 0.4318 69790.15 0.825 42623.07 0.5697
1200 125000 0.8521 125000 0.8242 38020.63 0.4473 38020.63 0.4382 73899.914 0.8671 44889.09 0.5796
1400 125000 0.8501 125000 0.8243 38502.508 0.4556 38502.508 0.4442 76743 0.9067 46354.59 0.608
1600 125000 0.8513 125000 0.8331 38902.95 0.4647 38902.95 0.4458 79116.336 0.927 47597.69 0.6287
1800 125000 0.8553 125000 0.8343 39166.152 0.4694 39166.152 0.4532 80540.03 0.9526 48321.05 0.6306
2000 125000 0.8621 125000 0.8363 39381.36 0.4577 39381.36 0.4519 81024.4 0.9536 48789.93 0.6291

Random STP generated bySPRAND with 100 nodes
400 1000000 8.5076 1000000 8.3707 167877.39 2.1703 167877.39 2.1947 144819.36 1.7659 85055.414 1.4427
600 1000000 8.5019 1000000 8.3572 218599.22 2.5686 218599.22 2.5723 241016.73 2.8585 146966.83 2.5927
800 1000000 8.5177 1000000 8.3523 245378.12 2.775 245378.12 2.7759 318725.3 3.7333 198716.12 3.441
1000 1000000 8.5218 1000000 8.3476 263177.97 2.9213 263177.97 2.9205 380805.94 4.4388 236103.58 4.1202
1200 1000000 8.6507 1000000 8.3242 275036.7 3.0351 275036.7 3.0053 434212.72 5.0349 268235.28 4.6083
1400 1000000 8.6643 1000000 8.3216 283548.44 3.0986 283548.44 3.0367 474789.12 5.4202 292905.87 4.886
1600 1000000 8.7028 1000000 8.3169 289520.4 3.1461 289520.4 3.082 512087.9 6.1406 313113.25 5.4773
2000 1000000 8.7978 1000000 8.3284 298104.53 3.2074 298104.53 3.148 565111.94 6.9515 343748.66 6.0293
2400 1000000 8.5296 1000000 8.3569 303608.8 3.2493 303608.8 3.2088 599295 6.7189 365377.84 5.9462
2800 1000000 8.8195 1000000 8.341 307894.12 3.2842 307894.12 3.2199 631238.44 7.3478 382691 6.1807

46

F-W

F-W+AP

PPC

STP

GenSTP-1: 50 nodes

STP

PPC
F-W+AP

F-W

GenSTP-1: 50 nodes

Figure 3.7:Constraint Checks (top) and CPU time (bottom) forF-W, F-W+AP, PPC, and�STP.

47

STP

DPC

DPC+AP

GenSTP-1: 50 nodes

DPC

DPC+AP

STP

GenSTP-1: 50 nodes

Figure 3.8:Constraint Checks (top) and CPU time (bottom) forDPC, DPC+AP, and�STP.

48

GenSTP-2: 256 nodes

 512 nodes

Constraint Checks

GenSTP-2: 256 nodes

 512 nodes

CPU time

Figure 3.9:Constraint Checks (top) and CPU time (bottom) for STP solvers, problems generated
by GenSTP-2.

49

SPRAND: 257 nodes

 513 nodes

Constraint Checks

SPRAND: 257 nodes

 513 nodes

CPU time

Figure 3.10:Constraint Checks (top) and CPU time (bottom) for STP solvers, problems generated
by SPRAND.

50

3.4.2 Observations

From the above experiments, we draw the following observations:

� Using articulation points.Dechter et al. [15] showed that decomposing the temporal

network into its biconnected components is particularly effective in enhancing the

performance of search. It is worth recalling that this decomposition does not affect

the quality of the solution: the same edge labels are found with and without decom-

position. Figure 3.7 and 3.8 show that onlyF-W realizes significant savings when

the density is low. In contrast, decompostion into biconnected components does not

benefit theDPC solver to the same extent. This can be explained by the fact that the

cost ofDPC is bounded by� �
� � ��� �, where� � �� is the maximum number of

parents that a node has in the induced graph. Decomposition does not significantly

change the induced width� � ��; the total cost of solving the subproblems is not

significantly smaller than that of solving the original problem. When density is high,

the network cannot be decomposed, andF-W+AP andDPC+AP perform almost the

same asF-W andDPC, respectively. The problems generated bySPRAND cannot be

decomposed because of the existence of a cycle that connectsall nodes (i.e., struc-

tural constraint). Indeed, Table 3.3 shows the same number of constraint checks for

the algorithms with and without articulation points. However, the required effort for

finding these articulation points is negligible, since CPU times are the same within

the resolution of the clock.

� Improvements due toPPC. Given the constraint semantics,PPC is guaranteed to yield

the same labels asF-W andF-W+AP on their common edges. SincePPC operates

on the triangulated graph it performs significantly better for low density values than

F-W, which operates on the complete graph, and evenF-W+AP, which exploits the

existence of articulation points. When the constraint density increases, the number

51

of triangles in the graph also increases and so does the cost of PPC. However, the

number of constraint checks and, to some extent, the CPU timefor PPC remain less

than those forF-W andF-W+AP, which quickly reach a stable value,� �
 � �. For

the larger problems generated bySPRAND andGenSTP-2), Figure 3.9 and 3.10

show thePPC outperformsDPC andDPC+AP, which in turn outperformF-W and

F-W+AP. Note, however, thatDPC andDPC+AP do not yield the tightest network.

A comparison of Figure 3.9 and 3.10 shows that the performance of PPC is better

on problems generated byGenSTP-2 than on those generated bySPRAND. This

is due to the existence of a cycle connecting all the nodes in problems generated by

SPRAND, which prevents decompositions and causes the triangulation process to add

relatively more edges.

� Improvements due to
�
STP. As a refinement ofPPC,

�
STP exploits the benefits

of triangulation to a greater degree thanPPC does. Experimental results show that
�
STP has always better performance thanPPC in all experiments we performed

(Figure3.7 and Table 3.2 and 3.3). For high density values,
�
STP can show a worse

performance thanDPC (Figure 3.8). However, this slight degradation is misleading

since it does not account for the output of these two algorithms. Indeed,
�
STP

guarantees the minimal network andDPC does not. Hence, the performance of the

former remains superior. The experiments on large problems, shown in Figure 3.9

and 3.10, demonstrate that
�
STP is the absolute winner over all algorithms. A

comparison of Figure 3.9 and 3.10 shows that
�
STP, like PPC, is sensitive to the

structure of the temporal graph (i.e., the existence of a cycle). It is more effective on

problems generated withGenSTP-2 than on those generated withSPRAND.

52

3.4.3 Significance of our results

In practice, mostreal-world applications exhibit typically STPs with large size and low

density [7]. The performance of an STP solver in these situations becomes extremely

important.
�
STP is perfect for this kind of job. Its outstanding performanceunder low

density is particularly advantageous and makes it the best algorithm developed to date.

Further, when solving a TCSP with search, the STP examined ateach node in the search

tree is a subgraph of the original TCSP and thus has a lower density than the TCSP. This

supports the importance of an efficient STP solver for low density networks. We expect

the combination of
�
STP with a TCSP solver to improve dramatically the performance of

current TCSP solvers.

Summary

We introduced
�
STP, a new efficient algorithm for solving the STP. Our algorithmad-

vantageously exploits previous results reported in the literature and binds them via a new

strategy for constraint propagation based on triangles. Wedemonstrated that this algorithm

outperforms all previous ones in terms of pruning power and performance. More impor-

tantly,
�
STP solver provides us with a new perspective on temporal problems as composed

by a set of triangles, where two triangles are connected if and only if they have one common

edge. Constraint propagation can be carried out according to this new graph of triangles.

53

Chapter 4

Solving TCSP

In this chapter1., we address the task of solving the general Temporal Constraint Satis-

faction Problem (TCSP). We report the integration of three approaches to improve the

performance of the exponential-time, backtrack search (BT-TCSP) proposed by Dechter

et al. [15] for this purpose. The first approach consists of using a new efficient algorithm

(
�

STP) [35] for solving the Simple Temporal Problem (STP), an operation that must be ex-

ecuted at each node expansion during BT-TCSP. The second approach improves BT-TCSP

itself by exploiting the topology of the temporal network. This is accomplished in three

ways: finding and exploiting articulation points (AP), checking the graph for new cycles

(NewCyc), and using a new heuristic for edge ordering (EdgeOrd). The third approach is

a filtering algorithm,
�

AC, which is used as a preprocessing step to BT-TCSP, and which

significantly reduces the size of the TCSP [36]. In addition to introducing two new tech-

niques, NewCyc and EdgeOrd, this chapter discusses an extensive evaluation of the merits

of the above three approaches. Our experiments on randomly generated problems demon-

strate significant improvements in the number of nodes visited, constraint checks, and CPU

time.
1This chapter is the topic of two papers currently submitted for publication [36, 37].

54

4.1 Background and motivation

A Temporal Constraint Satisfaction Problem (TCSP) is defined by a similar graph
�

=

�� 	 � 	 � � as STP, where each edge label� ��= �	 ����� 	 	 ����� , � � �, 	 �� ��� � is asetof disjoint intervals

denoting a disjunction of constraints of bounded differences between� and� . We assume

that the intervals in a label are disjoint and ordered in a canonical way. The following is a

typical example:

Tom has class at 8:00 a.m. He can either make breakfast for himself (10-15

minutes), or get something to eat from a local store (less than 5 minutes). After

breakfast (5-10 minutes), he goes to school either by car (20-30 minutes) or by

bus (at least 45 minutes). Today, Tom gets up between 7:30 and7:40.

We wish to answer queries such as: “Can Tom arrive at school intime for class?”, “Is it

possible for Tom to take the bus?”, “If Tom wanted to save money by making breakfast for

himself and taking the bus, when should he get up?”, and so on.This temporal problem

can be represented as a temporal graph.

Let � � be a reference time-point (e.g., 6:00 am),� � the time point Tom gets up,� � the

time point he starts his breakfast,� � the time point he finishes it, and�� the time point he

arrives at the school. Figure 4.1 shows the temporal graph ofthis TCSP.

P0

P1

P2

P3

P4

[0, 120]

[90, 100]

[5, 10]

[10, 15] [0, 5]

[45,] [20, 30]

{[5, 10]} [45,]}{[20, 30],

{[10, 15], [0, 5]}

{[90, 100]}

{[0, 120]}

1e

2e
5e

e3
4e

Cosistent STP

Figure 4.1:A TCSP example (left) and formulate it as meta-CSP (right)

55

Dechter [13] described a backtrack search procedure (BT-TCSP) for solving a TCSP,

which is anNP-hard problem. To this end, the TCSP is expressed as a ‘meta’ Constraint

Satisfaction Problem (meta-CSP). The variables of the meta-CSP are the edges�� �� of
�

.

Their number depends on the density of the temporal graph. The domain of a variable�� ��

is its label,� � ��= �	 ����� , 	 ����� , � � �, 	 �� ��� �. A partial solution is a set����� 	 	 �� ��� �� of variable-

value pairs (vvps) that form a consistent STP,which is a global constraint. A complete

solution is a consistent STP in which all the edges of
�

appear. The minimal network of

the TCSP is the union of the minimal networks ofall complete solutions, and solving the

TCSP requires finding all the solutions of the meta-CSP. Eachnode in the tree generated

by BT-TCSP is an STP� �
that has� �

edges, a subset of the edges of the original network

(� � � �), each labeled with a unique interval from its domain. When� �
is consistent, the

node is expanded by adding to� �
an edge from�� � � � � labeled with an interval from its

domain. This yields a new STP that is checked again for consistency. Figure 4.2 illustrates

the tree corresponding to the example of Figure 4.1, where edges are considered in their

lexicographical order.

P0

P1[90, 100]

P0

P1

P2

P3
P4[45,]

e1

e2

e4

e5 e5 e5

e4

P0

P1

P2

P0

P1

P2

P3

P1

P2

P3
P4

P0

P1

P2

P3
P4

P0

P1

P2

P0

P1

P2

P3

[90, 100] [10, 15]

[5, 10]

[90, 100] [10, 15]

[90, 100]
[10, 15]

[5, 10]

[90, 100]

[5, 10]

[0, 5]

[20, 30]

[10, 15]

[5, 10]

[20, 30]

e3

[90, 100] [0, 5]

[90, 100] [0, 5]

[5, 10]

P0

[90, 100]

Figure 4.2:The search tree for the example of Figure 4.1.

56

In this chapter, we combine the following techniques to improve the performance of

BT-TCSP, and demonstrate their effectiveness on randomly generated problems:

1. Every node in the tree is an STP that needs to be solved before the search can pro-

ceed. Hence, the performance of a TCSP solver depends critically on that of the STP

solver. We compare for the first time the performance of various known STP solvers,

including a new one,
�
STP, that we proposed in previous chapter. We show that it

outperforms all others. Note that the performance of the STPsolver does not affect

the number of nodes visited in BT-TCSP.

2. One well-known technique to improve the performance of a CSP is to decompose

it into sub-problems using its articulation points [17, 19,15], and to solve the sub-

problems independently. We provide for the first time an empirical evaluation of the

effectiveness of this technique.

3. Further exploiting the topology of the temporal network,we show how to avoid run-

ning an STP-solver by checking the existence of new cycles (NewCyc) in the net-

work as edges are added along a given path in the tree. For the example shown in

Figure 4.2, the first four consistency checks are unnecessary because there are no

cycles in the respective networks and the corresponding STPs are always consistent.

4. Another way to improve the performance of BT-TCSP is to finda good variable-

ordering heuristic for the search. This corresponds to a sequencing of� , the edges

of
�

, as they are added along a given path in the tree. A good sequence reduces

unnecessary backtracking and also the number of constraintchecks. We introduce a

new ordering heuristic (EdgeOrd) that exploits the adjacency of existing triangles in

the graph to determine the ordering of their edges in the tree.

5. We reduce the domains of the variables of the meta-CSP by using the efficient filter-

ing algorithm,
�

AC [36].

57

The contributions of this chapter can be summarized as follows:

1. A new technique for saving constraint checks (NewCyc) anda new ordering heuristic

(EdgeOrd).

2. The combination of the above listed techniques (i.e., an STP-solver, AP, NewCyc,

EdgeOrd, and
�

AC) to solve the TCSP.

3. Empirical evaluation and analysis of the effectiveness of these techniques and their

combinations to demonstrate their significance.

This chapter is structured as follows. Section 4.2 reviews the various STP-solvers we

used. Section 4.3 discusses the three improvements that exploit the topology of the tempo-

ral network. Section 4.4 addresses a filtering algorithm, which can siginificently reduce the

size of meta-CSP. Section 4.5 describes our experiments andobservations. Finally, a brief

summary concludes this chapter.

4.2 Algorithms for solving the STP

TCSP isNP-hard and is solved with backtrack search. Every node expansion in the search

tree needs to check the consistency of an STP. Thus a good STP solver is critical for solving

the TCSP. We test the following STP solvers: Directed Path ConsistencyDPC [16], Partial

Path ConsistencyDPC [6], and Triangle-STP
�
STP [35].

4.2.1 Solving the STP using Directional Path Consistency (DPC)

A basic algorithm to solve an STP is the Floyd-Warshall algorithm (F-W), which computes

all-pairs shortest-paths in a distance graph [11].F-W guarantees consistency, minimality,

and decomposability and has a worst-case complexity of� �
 � �. Montanari showed thatF-

W is a special case of the Path Consistency (PC) algorithm [25]. Dechter et al. propose the

58

Directed-Path Consistency (DPC) algorithm. This algorithm is never more costly thanF-W,

runs in� �
 � �, and can determine the consistency of an STP in� �
� � ��� �, where� � ��
is the induced width of the graph along a given ordering. DPC determines the consistency

of the STP, but does not necessarily yield the minimal and decomposable network. Due to

the fact that only the consistency of an STP matters during BT-TCSP, we useDPC instead

of F-W because of its lower cost.

4.2.2 Solving the STP using Partial Path Consistency (PPC)

Bliek and Sam-Haroud introduced Partial Path-Consistency(PPC), an algorithm applicable

to general CSPs (and not restricted to temporal networks) [6]. PPC works on a triangulated

graph, unlike thePC algorithm which requires a complete graph. Further, Bliek and Sam-

Haroud showed that when the constraints areconvex, thePC algorithm (operating on the

complete graph) and thePPC algorithm (operating on the triangulated graph) yield equiv-

alent results: the same labeling for the edges common to bothgraphs and the minimality

and decomposability of the STP.PPC never requires more constraint checks thanPC, which

is advantageous when the (triangulated) graph is sparse. This is particularly attractive in

BT-TCSP, which requires solving an STP at each node.

PPC requires that the graph be triangulated, which may result innew edges being added

to the graph. We triangulate the temporal network using the algorithm devised in [28]. We

represent the new edges as universal constraints in the original constraint graph and set

their label to��� 	� �.
In the tree generated by BT-TCSP, each node represents an STPwhose graph adds

exactly one edge to the graph of the parent of the node (and must be triangulated to be used

by PPC). Assuming a static ordering in the tree, the total number ofgraphs that appear

along any given complete path is exactly equal to the number of edges in the original

problem. Further, all nodes at a given level of the search tree have the same graph (only

59

the edge labelings may vary). Thus, under static ordering, the number of possible graphs

considered during the BT-TCSP process is exactly equal to the total number of edges in the

temporal network.

We devise two methods for accessing the triangulations of the STPs need in given a

static ordering, Figure 4.3. In the first method,Plan A, we pre-compute all the STPs needed

All-triangulated-subgraphs (
�
� ,)� � nil

TriSubGs� nil
� � � all edges in

�
� using ordering

For � � � � do
Push(�, �

)
Push(Triangulate(

�
), TriSubGs)

Return Reverse(TriSubGs)

Induced-subgraphs (
� �, � �)

� � � edges of
� �

� � � all nodes�
� �

� � � nil
Forall �� �� � � �

When � � � � and� � � �
Then Push(�� �� , � �)

Return � �

Figure 4.3:Left: List of triangulated subgraphs given an ordering.Right: Inducing a subgraph
from the triangulated original graph.

in search, triangulate them, and store their triangulations for use during search. In the

second method,Plan B, we triangulate the entire network only once. We, then induce,

from the triangulated graph, the subgraph whose vertices form the STP under consideration.

Since the original graph is triangulated, each induced subgraph is also triangulated.

� Plan A: Given a variable ordering, the list of the graphs considered during BT-TCSP

is generated as shown in Figure 4.3 (left).Push adds an item to a list,Reverse

reverses a list, andTriangulate triangulates a graph. We use the��� element of

TriSubGs list as the triangulated subgraph for the node at the��� level of the tree.

� Plan B: Here we compute the triangulated graph only once and induce from it the

subgraph needed at every step. Figure 4.3 (right) shows the algorithm where
� � is

the triangulated graph of the original network and
� � is the subgraph considered at

level
� � � � �� � in the search. Note that this technique may end up considering

denser graphs than necessary, which increases the cost of solving the STP.

60

Our experimental results show thatPlan A always outperformsPlan B in terms of the

number of constraint checks and CPU time. Note that neither of these two plans affects the

number of backtracks (the number of nodes visited) in BT-TCSP.

4.2.3 �STP algorithm used with TCSP algorithm

�
STP algorithm can output the same minimal network asF-W andPPC. It uses the idea of

triangulation and considers the temporal graph as composedof triangles instead of edges.

Constraint propagation is ‘triangle-based’ rather than ‘edge-based.’ As a finer version of

PPC,
�
STP can find the minimal network with less cost thanF-W andPPC. When density

is low,
�
STP is even cheaper thanDPC, which does not guarantee the minimal network.

Similar toPPC, the pre-requisite condition for
�
STP is to first triangulate the temporal

graph. We have introduced above two plans to obtain triangulated subgraphs in the previous

subsection. We will usePlan A for its lower cost in practice.

When solving a TCSP with search, the STP examined at each nodein the search tree

is a subgraph of the original TCSP. Thus the STPs we need to check always have lower

density than the original TCSP, Since Thus the outstanding performance of
�
STP under

low density makes it even more attractive to use for solving the TCSP.

4.3 Exploiting the topology of the constraint network

We propose three techniques topology-based techniques to enhance the performance of

search. While the first technique is appliedprior to search to decompose the problem into

independent components, the last two are intertwined with the search process.

61

4.3.1 Decomposition using articulation points

The existence of articulation points in the graph of the temporal network can be used to

decompose the network into its biconnected components, which can be solved indepen-

dently. Finding the articulation points can be done in� � �� �� [11]. This method provides

an upper bound to the search effort in the size of the largest biconnected component [19].

It can effectively reduce the number of constraint checks inBT-TCSP and the number of

nodes visited in its tree. A solution to the entire network isa combination of any of the

solutions of the biconnected components. The total number of solutions is:� � � ��� � ��,
where�� is the number of solutions for component�. This conjunctive decomposition of

the temporal network [20] allows us to solve the sub-problems in parallel, as in a multi-

agent system. Articulation points usually appear only whenthe density is low or when the

TCSP has a special topology. Note that even in the absence of articulation points, we could

‘induce’ such decompositions by removing some edges of the graph, in a manner similar to

the cycle-cutset method of Dechter and Pearl [14]. We have implemented the mechanism

for finding and using existing articulation points but not yet explored how to induce their

existence.

4.3.2 New cycle check (NewCyc)

The inconsistency of an STP is detected by the existence of a negative cycle in its distance

graph. When the graph of an STP has no cycles, the STP is necessarily consistent2.

Proposition 4.3.1.A tree-structured constraint network is necessarily globally consistent.

In BT-TCSP, nodes are expanded by adding one edge at a time. When the addition of

a new edge does not yield a new cycle in the graph, a consistentSTP remains consistent
2Note that is a stronger result than using the tree-structureof the constraint graph, which requires ensuring

2-consistency [18].

62

regardless of the labeling chosen for the new edge. We exploit this observation to save

unnecessary consistency checks.

Corollary 1. When the addition of an edge to a globally consistent STP yields no new

cycles, the resulting STP is globally consistent.

1

2

3

4

5

Figure 4.4:Simple constraint graph.

Consider the example of Figure 4.4. Suppose that search adopts the following ordering

of the edges:� � ��, �� ��, � � ��, �� �� , �� �� , and�� �� . Figure 4.5 shows the configurations of the

STPs checked for consistency at each level in the search.

Search level 1 2 3 4 5 6

STP 1

2

31

2

1

2

3 1

2

3

4

1

2

3

4

1

2

3

4

5

Checking strategy Total
Always

� � � � � �
6

NewCyc � �
�

�
�

� 2

Figure 4.5:Comparison of STP checks using different the new-cycle check heuristic.

Along a given path, as the tree generated by search is being explored in a depth-first

manner, two strategies can be adopted at a given level: (1) Always check the STP for

consistency, and (2) check the consistency of the STP only when a new cycle has been

added to the network. At levels 1 and 2, no cycles exist in the graph, and the STP is

necessarily consistent, Figure 4.5. At levels 4 and 6, no newcycles have been added to

the graph of levels 3 and 5 respectively, and the corresponding STPs remain necessarily

consistent regardless of their labeling. As illustrated above, checking for new cycles saves

us unnecessary operations.

63

Figure 4.6:Only check the consistency of the newly formed biconnected component.

Further, when the addition of a new edge yields a new cycle, two biconnected compo-

nents of the previous level are necessarily merged into a newbiconnected component at

the current level. We need to checkonly the consistency of the newly formed biconnected

component (Figure 4.6), and we can safely ignore the rest of the temporal network. This

allows us to localize the effort of consistency checking to the necessary part of the network.

Corollary 2. When the addition of an edge to a globally consistent STP yields a new

cycle, the resulting STP is globally consistent if and only if the newly formed biconnected

component is a consistent STP.

The application of this new heuristic, NewCyc, significantly enhances the performance

of solving the meta-CSP with search. To apply it, we need to identify, between two levels

of the search tree, (1) that a new cycle has been introduced and (2) the two biconnected

components that were merged as a result. This is done by running the� � �� �� algorithm

for finding articulation points at each level, checking whether the number of biconnected

components was reduced between two levels, and identifyingthe component to be checked

as that containing the new edge.

64

4.3.3 Ordering heuristic for the meta-CSP

Variable ordering is an effective heuristic for improving the performance of search. In

general, it is governed by the ‘fail first principle.’ The shallower the node pruned in the

tree, the larger the pruned subtree, and the larger the cost savings. For the meta-CSP, a

node is pruned when it corresponds to an inconsistent STP. Thus, the ordering of the edges

(which are the variables of the meta-CSP) affects how quickly an inconsistent STP is found

and also the effectiveness of constraint propagation in theSTP.

As stated in Corollary 1, along a given path, no inconsistency may occur between one

level and the next unless at least one new cycle is formed in the temporal graph. Conse-

quently, a reasonable ordering heuristic is to first consider those edges that form triangles

with edges existing in the STP. This may allow us to uncover inconsistencies as early as

possible. It also increases the effectiveness of backtracking, because it is more likely to

undo an inconsistency by changing the labeling of an edge in the same triangle as the one

that yielded the inconsistency than that of a random edge. Our new edge-ordering heuristic

orders the edges of the temporal graph in such a way that the network is expanded triangle

by triangle ‘around’ the existing edges. The algorithm, given in Figure 4.7, returns the list

of edges in the order to be used by the search. It uses basic operations on lists.Append

concatenates two lists in the order provided.Pop removes and returns the first item in

a list. It requires that each edge be associated with the number of triangles in which it

appears in
�

, which is bounded by�
 � ��, where
 in the number of nodes in
�

(i.e.,

the time points). We obtain these numbers as a by-product of the implementation of the

triangulation algorithm.

Based on the topology of the network, we choose the edge that participates in the largest

number of triangles and schedule the edges of those triangles for a priority instantiation

during the search. Figure 4.8 illustrates the first steps of the application of the algorithm

starting from edge I. First, the triangles in which edge I participates are explored. From

65

EdgeOrd (
�

)
� � � all edges of

�
� � nil
While � � do

�� �� � Edge of� � appearing in the largest number of triangles in� �
� � Append (� , ��� �� ��
� � nil
While �� �� do

Forall � such that�� � is a subgraph of
�

do
� � Append (� , ��� �� , �� �� �), � � Append (� , ��� �� , �� �� �)
� � � � �� ��� �� 	 �� �� , �� �� �, �� �� � Pop(�)

Return �

Figure 4.7:Edge ordering heuristic.

there, we reapply iteratively the same process to each of theedges explored, i.e. edges II, III,

and IV, gradually covering all the edges in the biconnected component. The modification

of the label of any these edges propagates through these triangles. Thus, inconsistencies

and deadends are likely to be more quickly detected during search, and backtrack remains

locally contained (Figure 4.9).

IV

III

I

II

Figure 4.8:Illustrating the exploration of the edges of a graph by the edge ordering heuristic.

We can show that this process stops when all the edges in the biconnected component

have been visited. Then EdgeOrd restarts from an unvisited edge from the original graph

and repeats the process until all edges of the original network have been visited. The

function returns a list in which the edges that are in a given biconnected component appear

in sequence.

As a result, this ordering heuristic implicitly enables search to examine the biconnected

66

e8

e7

e9e11

e10

e2 e4

e3 e5

e1

6e

e7

e8

e9

e1

e2
e3

e4

e5

6e

e10

e11

Figure 4.9:EdgeOrd localize backtracking.

components of the graph in isolation, and thus decompose thegraph automatically. The

advantages of this mechanism are:

1. Localized backtracking: This heuristic is based on the topology of the temporal

graph. Neighboring levels in the search tree are likely to bephysically related. When

it encounters a deadend, search will backtrack to an edge that is more likely the

culprit than another edge taken randomly from the graph.

2. Automatic decomposition of the graph into its biconnected components: The decom-

position of the graph into its biconnected components is an effective technique to

bind the search effort and enhance the performance of solving a TCSP. This ordering

heuristic implicitly guarantees that articulation pointsin the graph (if any), are ex-

ploited, as if the network was decomposed into its biconnected components without

using the special algorithm necessary for this purpose.

4.4 The label filtering algorithm

When solving a CSP, it is common to run a domain filtering mechanism (such as arc-

consistency, AC) as a preprocessing step to search, and to interleave search with a looka-

67

head strategy (such as forward-checking, FC [21]). The goalof an AC algorithm is to

reduce the domain of the variables, thus reducing the size ofthe CSP and that of the search

tree to be explored. Arc-consistency is usually easy to achieve in polynomial time. Quite

a few general arc-consistency algorithms exist, such as AC-3 [22], AC-4 [23], AC-6 [4],

AC-7 [3], AC-3.1 [38], and AC-2001 [5].

The backtrack search on the meta-CSP requires solving an STPat every node in the

search. Its complexity is thus� �
 �� �� �� [13]. Given the definition of the unique global

constraint, running a generalized arc-consistency algorithm [24] on the meta-CSP is pro-

hibitively expensive.

Proposition 4.4.1.Generalized arc-consistency on the meta-CSP isNP-hard.

Proof: The only constraint in the meta-CSP is a global constraint.Its allowed tuples are

all consistent STPs that are solutions to the meta-CSP. Finding its definition to enforce

generalized arc-consistency is thus equivalent to solvingthe meta-CSP, which isNP-hard

[13]. �

....

....

....

....

....

....

....

....

....

....

....

....

Consistent STP

Filtering is exponential Filtering is polynomial

One global,
exponentil size
constraint

Polynomial number of
polynomail-size ternary
constraint

Figure 4.10:Replacing the global constraint with a polynomial number ofternary constraints.

We propose to approximate this problem by replacing the exponential-size global con-

68

straint in the meta-CSP with a polynomial number of polynomial-size ternary constraints

Figure 4.10. We define an efficient generalized arc-consistency algorithm specialized for

these ternary constraints, which we call
�

AC. The complexity of
�

AC is � ������� �� �
� �� �� � � � � � �
 �� �� � �, resulting in an approximation of the generalized arc-consistency

of the meta-CSP. We report the performance improvement of the backtrack search for solv-

ing the meta-CSP with and without this preprocessing in terms of CPU time and number

of constraint checksCC.

To the best of our knowledge, the only other work reported in the literature on applying

consistency algorithms to the meta-CSP is a study by Schwalband Dechter [29, 13]. They

attempt to apply a path consistency algorithm (PC) to the labels of variables of the meta-

CSP. Given the disjunctive intervals, this closure algorithm causes a fragmentation problem,

which increases the number of intervals per label and makes the resulting meta-CSP even

harder to solve by a search algorithm. To avoid this fragmentation problem, Schwalb and

Dechter introduced the Upper-Lower Tightening algorithm (ULT) [29]. ULT computes

looser networks than those resulting from enforcing full path-consistency, but results in the

same upper and lower bounds asPC.

Our approach is neither like path-consistency nor likeULT. We consider each interval

as an independent value in the domain of a variable. Our goal is to remove inconsistent

individual intervals from the labels, not to tighten these intervals, which may not terminate

in the general case and is prohibitively expensive in the integral case.

We reformulate the meta-CSP by replacing its unique global constraint with a ternary

constraint
� ��� �� 	 �� �� 	 �� �� � among every variable�� �� , �� �� , and �� �� of the meta-CSP that

forms anexisting triangle in the temporal network
�

. Note that we do not triangulate

the temporal network, nor do we make it a complete graph. Below, we define the
�

arc-

consistency property as the generalized arc-consistency of this constraint and describe the
�

AC algorithm to achieve it.

69

4.4.1 �arc-consistency

For each triangle�� � in the original temporal network we define a ternary constraint in

the meta-CSP
� ��� �� 	 �� �� 	 �� �� �. Given three variable-value pairs��� �� 	 	�� �, ��� �� 	 	�� �, and

��� �� 	 	� � � of the meta-CSP, with� �� � �� �, we say that the labeled triangle
� ���� �� 	 	�� �,

��� �� 	 	�� �, ��� �� 	 	� � �� is a consistent triangle if and only if�	�� � 	� � � � 	�� �� �
. Figure 4.11

shows a consistent triangle
� ���� �� 	 �� 	 ��� 	 ��� �� 	 �	 	 ��� 	 ��� �� 	 �� 	
���. We also say that each

ei,j(, [3, 5]) ei,k(, [4, 9]) ej,k(, [2, 6])∆ [, ,]
ji

k

Figure 4.11:A consistent triangle.

variable-value pair in the triangle is supported by the two other variable-value pairs. We

introduce the following definitions:

� The ternary constraint
� ��� �� 	 �� �� 	 �� �� � is

�
AC relative to the meta-CSP variable�� ��

if and only if for every interval	 �� ��� � Domain(�� ��) there exist an interval	 �
� ��� �

Domain(�� ��) and an interval	 �� ��� � Domain(�� ��) such that�	 �
� ��� � 	 �� ��� � � 	 �� ��� �� �

.

� The ternary constraint
� ��� �� 	 �� �� 	 �� �� � is

�
AC if and only if it is

�
AC relative to the

variables�� �� , �� �� , and�� �� .

� Finally, the meta-CSP is
�

AC if and only if all its ternary constraints are
�

AC.

We identify all the existing triangles in the temporal network and replace each of them by

a ternary triangle constraint. The number of these new constraints is in� � �� ������� �� ��
� � � �� �
 �. The size of each constraint is at most� �. Note that we do not add any edges

to the temporal network to make it a complete graph or to triangulate it.

70

4.4.2 �AC algorithm

The
�

AC algorithm, shown in Figure 4.14, removes the intervals inthe domain of an�� ��

that do not have a support in any triangle in which�� �� appears in the temporal graph. It

implements mechanisms for consistency checking that are reminiscent of AC-4 [23] and

AC-2001 [5] in that it tries to optimize the effort for consistency checking. It uses the pro-

ceduresFirst-support of Figure 4.12 andInitialize-support of Figure 4.13.

ThePush andDelete operations we use are destructive stack operations.

First-support(���� �� 	 	�� � 	 �� � �)
��� � � � ���� �� 	 	�� � 	 ��� �� 	 	��� � 	 ��� �� 	 	�� � �� � Supported-by ����� �� 	 	� �� � 	 �� � ��
Unless��� � Then � � 1, � � 0
For
 from �� � �� to �Domain ��� �� � �

Unless�	��� � 	�� � � � 	�� = nil Return
� ���� �� 	 	�� � 	 ��� �� 	 	��� � 	 ��� �� 	 	�� � ��

If �= �Domain��� �� � �
Then Return nil
Else For
 from �� � �� to �Domain��� �� � �

For � from 1 to �Domain��� �� � �
Unless�	��� � 	�� � � � 	�� = nil Return

� ���� �� 	 	�� � 	 ��� �� 	 	��� � 	 ��� �� 	 	�� � ��
Return nil

Figure 4.12:First-support.

It operates by looking at every combination of a vvp��� �� , 	�� � and the triangles�� �

in which it appears, denoted���� �� , 	�� �, �� � �. The support of���� �� , 	�� �, �� � � is the first

element in the domains of�� �� and�� �� that yields a consistent triangle (Note that domains

and variables are ordered canonically). Intervals in the domain of a variable that are not

supported in any triangle are removed from the domain. When an interval is removed, some

vvps may lose their support.
�

AC tries to find the next acceptable support. The process is

repeated until all vvps have a valid support in every relevant triangle.

We use a hash-tableSupported-by to keep track of the support of each vvp��� �� 	 	�� �
in a triangle�� �. A key in this hash-table is a tuple���� �� 	 	�� �, �� � �; its value is a consistent

71

Initialize-support(
�

)
Support-by, Supports: two empty hash-tables
� � ���� �� 	 	�� ��, set of all vvps in the meta-CSP
� � � nil, Consistency� �
While � � Consistencydo

��� �� 	 	�� � � Pop(�)
Forall � such that�� � is a subgraph of

�
do

��� � � � ���� �� 	 	�� � 	 ��� �� 	 	�� � 	 ��� �� 	 	� � �� � First-support(���� �� 	 	�� � 	 �� � �)
If ��� � , Then Supported-by

���� �� 	 	�� � 	 �� � � � ��� �
Push(��� �� 	 	�� 	 �� � �, Supports ���� �� 	 	�� ���
Push(��� �� 	 	�� 	 �� � �, Supports ���� �� 	 	� � ���

Else Domain ��� �� � � Domain��� �� � � �	�� �
Push(��� �� 	 	�� � 	� �

)
Unless Domain��� �� � Then Consistency� �

Return � �
, Supported-by, Supports, Consistency

Figure 4.13:Initialize-support.

triangle
� ���� �� 	 	�� �, ��� �� 	 	�� �, ��� �� 	 	� � ��. The size ofSupported-by is� � �� �� ������ �� ��.

We also use a hash-tableSupports to keep track of what a given vvp supports inSupported-

by. The key is a vvp��� �� 	 	�� � and the value is a list of the keys ofSupported-by that

this vvp supports.

The procedureInitialize-support shows how these data-structures are initial-

ized. By construction,Supports has� � �� �� � keys and a total of� � �� �� ������ �� ��
elements.

In addition to these hash-tables,Initialize-support returns the list� �
of vvps

deleted from the domains of the meta-CSP at the initialization step.
�

AC, shown in Fig-

ure 4.14, iterates over the vvps that have been deleted and retracts them from supporting

entries inSupported-by.

We can prove that
�

AC terminates, does not remove any consistent intervals (i.e., is

sound), and is in� ������� �� � �� �� � � � � �
 �� �� � �. We can further improve its perfor-

mance and reduce the number of constraint checks by exploiting the convexity property of

72

�
AC(

�
)

� , Supported-by, Supports, Consistency� Initialize-support(
�

)
While � � Consistencydo

��� �� 	 	�� � � Pop(�)
Forall each��� �� 	 	�� 	 �� � � � Supports

���� �� 	 	�� ��)
��� � � � ���� �� 	 	�� � 	 ��� �� 	 	�� � 	 ��� �� 	 	� � �� � Supported-by ����� �� 	 	�� � 	 �� � ��
Delete(���� �� 	 	�� � 	 �� � �, Supports ���� �� 	 	�� ��)
Delete(���� �� 	 	�� � 	 �� � �, Supports ���� �� 	 	� � ��)
� ��� � � � ���� �� 	 	�� � 	 ��� �� 	 	 ��� � 	 ��� �� 	 	 �� � �� � First-support(���� �� 	 	�� � 	 �� � �)
If � ��� �

Then Supported-by
���� �� 	 	�� � 	 �� � � � � ��� �

Push(��� �� 	 	�� 	 �� � �, Supports ���� �� 	 	 ��� ���
Push(��� �� 	 	�� 	 �� � �, Supports ���� �� 	 	 �� � ���

Else Domain ��� �� � � Domain��� �� � � �	�� �
Push(��� �� 	 	�� � 	�)
UnlessDomain��� �� � Then Consistency� �

Return �Domain ��� �� ��

Figure 4.14:�AC.

interval intersection, which we suspect may result in an optimal algorithm.

4.5 Experimental results

Figure 4.15 shows the TCSP solvers we tested, with and without pre-processing by
�

AC.

AC

AC

STP-TCSP

PPC

DPC

STP

PPC-A-TCSP

PPC-B-TCSP

Triangulation plan

DPC-TCSP

Plan A + EdgeOrd (automatic decomposition) + NewCyc

PPC+AP-B-TCSP

PPC+AP-A-TCSP

Without

With or

STP Solver

Preprocessing

Points (AP)
Exploiting Articulation

TCSP Solvers

Cycles (NewCyc)
DPC+AP-TCSP

Checking for New

DPC+AP+NewCyc-TCSP

PPC+AP+NewCyc-A-TCSP

PPC+AP+NewCyc-B-TCSP

Figure 4.15:TCSP solvers tested.

The STP solvers we used areDPC, PPC, and
�
STP of Section 4.2. We combined them

73

with the techniques proposed in Section 4.3 (i.e., AP, NewCyc, and EdgeOrd). We com-

pared their performance in terms of the number of nodes visitedNV, constraint checksCC,

and CPU time. Note that all CPU time curves have almost exactly the same shapes as theCC

curves. We carried out our tests on randomly generated, (guaranteed) connected problems.

Our generator,GenTCSP-1, guarantees that at least 80% of these problems have at least

one solution. The TCSP instances generated have the following characteristics:
 � �,

� randomly chosen between 1 and 5, density of the temporal network (� �� �� ����� ������ �� ����� �)
varies in [0.02, 0.1] with a step of 0.02 and in [0.2, 0.9] witha step of 0.1. The number

of variables in the meta-CSP, for which we must findall solutions, varies from 7 to 26.

The size of the meta-CSP varies on average between 1.6���� and 5.2��� ��. We averaged

the results of over 100 samples. The goal of our experiments was to study theeffectson

the various solvers of the improvements we proposed3 (i.e.,
�

STP, AP, NewCyc, Edge-

Ord,
�

AC), and to establish their effectiveness. It is not our goalhere to compare the

performance of the various STP solvers, which is already discussed extensively in previous

chapter.

Section 4.5.1 demonstrate the filtering power of
�

AC. In order to demonstrate the

advantages of
�

AC, we report the cost of solving the meta-CSP with and without this

preprocessing. We use the Directional Path-Consistency algorithmDPC also of Dechter

[13] to check the consistency of STP at each node. Section 4.5.2 discusses the number

of solutions of the problems tested. Naturally, all solversmust find the same solutions.

Counting the number of solutions was useful to confirm that all solvers were sound and

that our implementation was bug-free. Section 4.5.3 shows the effect of our techniques on

the shape of the tree by measuring the number of nodes visited. Section 4.5.4 shows the

effect of our techniques on the various TCSP solvers (i.e.,DPC, PPC, and
�
STP) on the

number of constraint checks. In Sections 4.5.3 and 4.5.4 we also show how filtering the
3Note that although decomposition according to articulation points is a well-known technique, to the best

of our knowledge, it has not been yet assessed experimentally.

74

meta-CSP with
�

AC dramatically improves the performance of search. The effect of this

preprocessing is clearly visible in comparisons of the scale of the vertical axis of the charts

without and after preprocessing.

The detailed data of the above experiments on the instances generated byGenTCSP-1

are shown in Table 4.5, Table 4.2, Table 4.3 and 4.4.

Table 4.1:Performance of�AC
Graph Number of Size of meta-CSP Number of Cost of search Cost of search Cost of�AC
density variables in solutions without �AC with �AC

meta-CSP Original Filtered CPU [s] CC CPU [s] CC CPU [s] CC
0.02 7 16701.67 16701.67 16701.67 13.6 518463.66 13.62 518463.66 5.00E-04 0
0.04 8 58448.44 40831.72 4176.91 21.6 843112.7 17.86 712777.7 5 0.0011 55.53
0.06 8 64780.24 48399.24 4837.69 25.03 965354.3 22.02 868557 0.0012 50.98
0.08 9 282427.3 142638.28 1437.01 24.23 1008288.4 18.14 782634.6 0.0022 122.7
0.1 9 271254.2 132758.27 1331.86 26.08 1103695.6 17.83 793677.7 0.0017 134.14
0.2 11 4257366 653949 105.88 23.95 1105540.5 6.43 335393.7 0.0033 324.44
0.3 13 6.81E+07 2424326.7 20.02 16.32 866010.3 2.1 117963.0 5 0.005 575.8
0.4 15 1.10E+09 1117395.5 5.97 22.13 1320010.5 0.49 29187.07 0.0075 880.23
0.5 18 6.64E+10 62.07 2.4 26.11 1630835.2 0.07 3654.7 0.0115 1383.8
0.6 20 1.06E+12 33.21 2.35 29.25 1932359.2 0.07 3821 0.015 1711.11
0.7 22 1.61E+13 31.16 2.19 34.87 2297002.5 0.077 3607.89 0.0192 2059.18
0.8 24 2.74E+14 2.41 1.66 57.13 3946315 0.07 3226.7 0.0217 2393.2
0.9 26 5.23E+15 2.48 1.6 74.39 5128653 0.08 3851.71 0.0262 2839.48

7
5

Tab
le

4
.2

:T
h
e

n
u
m

b
e
r

o
fco

n
stra

in
t

ch
e
cks

fo
r

d
iffe

re
n
t

T
C

S
P

so
lve

rs.

TCSP solver without

�

AC
BT based on

�

DPC BT based onPPC-A BT based onPPC-B BT based on

�

STP
Density AP AP+NewCyc AP AP+NewCyc AP AP+NewCyc NewCyc+EedeOrd

0.02 518463.66 0 0 0 0 0 0 0 0 0
0.04 843112.7 7098.57 5428.29 195478.37 4656.7 3185.11 130208.28 3193.86 3193.86 2732.05
0.06 965354.3 19478.22 15111.471 247673.87 13226.26 8798.33 170087.39 8770.99 8770.99 7070.2
0.08 1008288.4 208692.31 104777.69 329940.2 91361.41 50101.957 206974.66 49796.168 51038.53 17415.29
0.1 1103695.6 146097.48 70758.62 335411.9 69567.13 37837.2 203333.9 37839.12 38099.03 13098.529
0.2 1105540.5 427509.1 132239.03444156.22 200879.33 70834.13172033.37 75767.01 67844.07 7640.5903
0.3 866010.3 612256.7 152573.14 419374.37 271919.87 85687.97129761.72 87368.99 75188.18 13369.98
0.4 1320010.5 1140589.6 231152.44 629796.3 572063 128503.8 139582.05 126608.2 110898.97 13173.97
0.5 1630835.2 1623335.6 253523.25881600.94 869830.9 140018.53 126249.19 124945.4 112451.02 11500.86
0.6 1932359.2 1932359.2 241397.171132821.4 1132821.4 145871.2124646.92 124646.92 109810.49 13533.8
0.7 2297002.5 2297002.5 203337.03 1221336 1221336 125914.47 106470.74 106470.74 98323.805 11595.09
0.8 3946315 3946315 283957.37 2312516.7 2312516.7 171134.44136861.39 136861.39 132065.2 13617.9
0.9 5128653 5128653 264101.9 3125162.5 3125162.5 170470.61142386.44 142386.44 139375.42 13482.91

TCSP solver after

�

AC
0.02 518463.66 0 0 0 0 0 0 0 0 0
0.04 712777.75 7042.8496 5391.87 180705.23 4627.27 3166.9 122173.29 3175.65 3175.65 2681.83
0.06 868557 19429.16 15079.471 237374.4 13200.36 8782.33 164291.92 8754.99 8754.99 7030.8496
0.08 782634.6 199238.55 100803.305259604.69 86338.79 47635.937 165931.56 47328.24 48526.64 16875.111
0.1 793677.7 131938.3 64213.543 254822.17 61250.344 34128.92159538.44 34071.95 34296.9 13686.17
0.2 335393.7 171026.39 59681.01 129256.44 75406.72 31419.69 61471.055 34251.39 29890.4 9583.06
0.3 117963.05 100633.83 39738.96 72655.13 63498.027 26085.182 26988.21 23354.92 20417.04 4034.39
0.4 29187.068 28307.87 10054.83 20862.37 20433.33 6122.45 5851.99 5572.18 4908.52 2710.5
0.5 3654.7 3614.67 2112.71 2872.62 2838.98 1828.04 1384.58 1371.86 1308.73 796.66
0.6 3821 3821 2569.35 3523.51 3523.51 2431.35 1756.16 1756.16 1719.35 1100.83
0.7 3607.89 3607.89 2651.43 3677.83 3677.83 2834.49 1906.57 1906.57 1886.31 1451.6
0.8 3226.7 3226.7 2419.56 3603.56 3603.56 2802.25 1740.82 1740.82 1730.42 1385.8
0.9 3851.71 3851.71 2962.27 4588.59 4588.59 3635.96 2101.98 2101.98 2096.71 1692.36

7
6

Tab
le

4
.3

:C
P

U
tim

e
[s]fo

r
d
iffe

re
n
t

T
C

S
P

so
lve

rs.

TCSP solver without

�

AC
BT based on

�

DPC BT based onPPC-A BT based onPPC-B BT based on

�

STP
Density AP AP+NewCyc AP AP+NewCyc AP AP+NewCyc NewCyc+EdgeOrd

0.02 13.6012 0.0012 0.0016 2.9475 8.00E-04 0.0011 2.0418 0.0018 0.002 7.00E-04
0.04 21.5972 0.1454 0.117 8.0523 0.1134 0.089 5.2475 0.0777 0.0743 0.1602
0.06 25.0329 0.4376 0.3413 9.2482 0.3014 0.2303 6.1463 0.1952 0.1888 0.4806
0.08 24.2254 4.3314 2.1852 10.5273 2.1741 1.4013 7.1445 1.2439 1.1838 1.2915
0.1 26.0802 2.9953 1.5577 11.0083 1.6644 1.0835 6.7494 0.9578 0.9003 0.9524
0.2 23.945 8.6494 2.7925 12.1999 5.1939 2.3822 6.2219 2.4927 2.1745 0.5818
0.3 16.3212 10.4973 3.0631 9.7721 6.2291 2.8293 4.3629 2.807 2.4388 1.0811
0.4 22.1312 19.3378 4.7679 13.598 12.2608 4.9896 5.2502 4.7373 4.0686 1.0972
0.5 26.1097 25.7714 5.2948 17.5251 17.4339 5.5902 5.5594 5.4671 4.8505 1.0095
0.6 29.2475 29.2092 5.2324 20.7785 20.7554 6.0247 6.2324 5.9301 5.196 1.2594
0.7 34.8727 34.9366 4.7775 22.7941 22.8446 6.013 5.9852 5.9829 5.4353 1.1629
0.8 57.1265 56.9518 6.8542 39.2782 39.1814 8.8453 9.0351 9.0753 8.0979 1.4266
0.9 74.385 74.5737 7.357 51.7004 52.061 10.4281 11.0689 11.0537 10.0133 1.4812

TCSP solver after

�

AC
0.02 13.6168 0.0014 0.0013 2.9113 0.0012 0.0026 2.0563 0.0019 0.0015 0.001
0.04 17.8629 0.1464 0.1156 6.6389 0.1139 0.0975 4.281 0.0755 0.0719 0.1612
0.06 22.0242 0.4366 0.3489 8.2771 0.3011 0.2509 5.3853 0.192 0.1837 0.481
0.08 18.1424 4.1696 2.1301 7.7162 2.049 1.4432 4.7949 1.1597 1.1074 1.248
0.1 17.8349 2.6798 1.4 7.6339 1.4468 1.0273 4.7383 0.8468 0.7972 0.9899
0.2 6.4253 3.2855 1.1821 3.2472 1.8491 1.0474 1.7861 0.9873 0.8544 0.776
0.3 2.1025 1.8001 0.7688 1.4603 1.2832 0.735 0.6767 0.5931 0.5272 0.3348
0.4 0.4918 0.479 0.1925 0.3799 0.3713 0.1869 0.1633 0.157 0.1404 0.2406
0.5 0.0654 0.0655 0.0519 0.0562 0.0568 0.0498 0.0422 0.0402 0.0443 0.098
0.6 0.0692 0.0707 0.0621 0.065 0.0665 0.0611 0.0494 0.0491 0.0547 0.1335
0.7 0.0714 0.0727 0.069 0.0701 0.0702 0.0706 0.0564 0.0559 0.0633 0.1906
0.8 0.0655 0.0668 0.065 0.068 0.0689 0.0696 0.057 0.0551 0.0637 0.1765
0.9 0.0781 0.0796 0.077 0.0839 0.085 0.084 0.0681 0.066 0.073 0.228

7
7

Tab
le

4
.4

:T
h
e

n
u
m

b
e
r

o
fn

o
d
e
s

visite
d

fo
r

d
iffe

re
n
t

T
C

S
P

so
lve

rs.

TCSP solver without

�

AC
BT based on

�

DPC BT based onPPC-A BT based onPPC-B BT based on

�

STP
Density AP AP+NewCyc AP AP+NewCyc AP AP+NewCyc NewCyc+EdgeOrd

0.02 22463.73 0 0 22463.73 0 0 22463.73 0 0 0
0.04 22987.63 302.41 302.41 22987.63 302.41 302.41 22987.63 302.41 302.41 318.83
0.06 25003.81 660.84 660.84 25003.81 660.84 660.84 25003.81 660.84 660.84 654.85
0.08 22990.65 3684.61 3684.61 22990.65 3684.61 3684.61 22990.65 3684.61 3684.61 1546.24
0.1 23925.88 3305.01 3309.58 23925.88 3305.01 3305.01 23925.88 3309.58 3309.58 1394.64
0.2 21555.33 8748.92 8749.22 21555.33 8748.92 8748.92 21555.33 8749.22 8749.22 757.95
0.3 14371.13 8992.471 8992.471 14371.13 8992.471 8992.471 14371.13 8992.471 8992.471 1065.07
0.4 17150.84 15490.259 15490.259 17150.84 15490.259 15490.259 17150.84 15490.259 15490.259 951.49
0.5 19171.459 18848.65 18848.65 19171.459 18848.65 18848.65 19171.459 18848.65 18848.65 744.15
0.6 20187.63 20187.63 20187.63 20187.63 20187.63 20187.63 20187.63 20187.63 20187.63 772.57
0.7 20756.48 20756.48 20756.48 20756.48 20756.48 20756.48 20756.48 20756.48 20756.48 643.15
0.8 32091.64 32091.64 32091.64 32091.64 32091.64 32091.64 32091.64 32091.64 32091.64 768.8
0.9 38826.61 38826.61 38826.61 38826.61 38826.61 38826.61 38826.61 38826.61 38826.61 589.11

TCSP solver after

�

AC
0.02 22463.73 0 0 22463.73 0 0 22463.73 0 0 0
0.04 18735.102 294.05 294.05 18735.102 294.05 294.05 18735.102 294.05 294.05 312.96
0.06 22143.98 653.51 653.51 22143.98 653.51 653.51 22143.98 653.51 653.51 645.45
0.08 16569.23 3396.96 3396.96 16569.23 3396.96 3396.96 16569.23 3396.96 3396.96 1511.45
0.1 16875.42 2864.68 2864.68 16875.42 2864.68 2864.68 16875.42 2864.68 2864.68 1439.16
0.2 5981.71 3390.78 3390.78 5981.71 3390.78 3390.78 5981.71 3390.78 3390.78 854.75
0.3 2101.57 1782.61 1782.61 2101.57 1782.61 1782.61 2101.57 1782.61 1782.61 366.9
0.4 516.44 506.08 506.08 516.44 506.08 506.08 516.44 506.08 506.08 173.95
0.5 49.92 49.19 49.19 49.92 49.19 49.19 49.92 49.19 49.19 38.97
0.6 46.38 46.38 46.38 46.38 46.38 46.38 46.38 46.38 46.38 39.28
0.7 36.48 36.48 36.48 36.48 36.48 36.48 36.48 36.48 36.48 40
0.8 30.23 30.23 30.23 30.23 30.23 30.23 30.23 30.23 30.23 31.34
0.9 33.07 33.07 33.07 33.07 33.07 33.07 33.07 33.07 33.07 33.07

78

4.5.1 Power of�AC

The comparison of the average size of the meta-CSP before andafter filtering is shown in

Figure 4.16. It shows that
�

AC dramatically reduces the size of meta-CSP especially when

density is high, which is typical of consistency filtering techniques used as a preprocessing

step to search. More importantly, Figure 4.16 shows that thesize of meta-CSP obtained

after filtering by
�

AC is close to the number of solutions for high-density networks.

Figure 4.16:Reduction of problem size of TCSP I.

The results of solving the meta-CSP in terms of CPU time and constraint checksCC are

shown in Figure 4.17 and Figure 4.18, and the numerical values are reported in Table 4.5.

In this table, we also report the cost of running
�

AC although it is already included in

the cost of search in order to demonstrate that the overhead due to filtering is practically

negligible.

79

Figure 4.17:Constraint checks for solving TCSP.

Figure 4.18:CPU time for solving TCSP I.

80

4.5.2 Solutions to the TCSP

When density is low, there are few constraints, any partial solution is likely to be extended

to a global solution, and there are many solutions to the meta-CSP as is seen in Figure 4.19.

Figure 4.19:The number of solution of TCSP.

Indeed, under low density, the temporal network (which is guaranteed connected by

construction) has almost no cycles. Thus, almost any combination of intervals in the label

of the edges is a solution to the meta-CSP (see Proposition 4.3.1). The number of solutions

quickly drops density. When=0.9, there are only one or two solutions, one of which us

guaranteed by construction.

4.5.3 Effects on the size of the search tree

The effects of AP and EdgeOrd on the ‘shape’ of the tree can be assessed by the number of

nodes visitedNV by search. They are shown in Figure 4.20.

81

Without AC

After AC

Figure 4.20:Nodes visited by BT-TCSP.

82

Note that the effects of NewCyc on the various STP solvers (i.e.,DPC,PPC, and
�
STP)

are irrelevant to this measurement. Indeed, they aim at reducing the cost of checking the

consistency of the STP at a node in the tree once search has effectively reached the node.

The ‘�’ in the legend of Figure 4.20 indicates that these results hold for all STP solvers

tested. Figure 4.20 shows that AP reduces significantlyNV when density is low. When

density is high, almost no articulation point exists, henceAP does impactNV. The effect

of EdgeOrd is quite dramatic across all values for density because it allows BT-TCSP to

quickly identify dead-ends, as a good ordering heuristic issupposed to do. Moreover,

we find that using
�

AC as a preprocessing step significantly reduce the number ofnodes

visited especially when density is high, and we start to notice the existence of a phase

transition that appears around � � ��
and becomes increasingly visible as we move toward

more effective TCSP solvers.

4.5.4 Effects on the number of constraints checks (same as CPU time)

Here we discuss the effects of our techniques on the various TCSP solvers:DPC, PPC, and
�
STP. We show the benefits of AP and NewCyc onDPC (Figure 4.21 and Figure 4.22).

We show the benefits of AP, NewCyc onPPC for bothPlan A(Figure 4.23 and Figure 4.24)

andPlan B (Figure 4.25 and Figure 4.26). Finally, we show the benefits of EdgeOrd and

NewCyc underPlan Aon
�
STP (Figure 4.27 and Figure 4.28).

83

Without AC

Without AC

Figure 4.21: Constraint checks and CPU time forDPC-TCSPwithout �AC (Top: Constraint
Checks; Bottom: CPU time [s])

84

After AC

After AC

Figure 4.22:Constraint checks and CPU time forDPC-TCSPafter�AC (Top: Constraint Checks;
Bottom: CPU time [s])

85

Without AC

Without AC

Figure 4.23:Constraint checks and CPU time forPPC-TCSPusing Plan A without�AC (Top:
Constraint Checks; Bottom: CPU time [s])

86

After AC

After AC

Figure 4.24: Constraint checks and CPU time forPPC-TCSPusing Plan A after�AC (Top:
Constraint Checks; Bottom: CPU time [s])

87

Without AC

Without AC

Figure 4.25:Constraint checks and CPU time forPPC-TCSPusing Plan B without�AC (Top:
Constraint Checks; Bottom: CPU time [s])

88

After AC

After AC

Figure 4.26: Constraint checks and CPU time forPPC-TCSPusing Plan B after�AC (Top:
Constraint Checks; Bottom: CPU time [s])

89

Without AC

Without AC

Figure 4.27:Constraint checks and CPU time for�STP-TCSP without�AC (Top: Constraint
Checks; Bottom: CPU time [s])

90

After AC

After AC

Figure 4.28: Constraint checks and CPU time for�STP-TCSP after�AC(Top: Constraint
Checks; Bottom: CPU time [s])

91

Exploiting articulation points:

ForDPC (Figure 4.21) andPPC (Figure 4.23 and 4.25), AP is again particularly effective

for low density graphs but useless for high density ones.

New cycle check:

NewCyc dramatically reducesCC across all density values (even though it has no effect on

the number of nodes visited, as stated in Section 4.5.3).

Triangulation plans:

The triangulation of an STP during search, required forPPC solver, is carried out according

to Plan A(Figure 4.23) andPlan B(Figure 4.25) of Section 4.2.2. By comparing the scale

of the vertical axis of these two figures, we conclude thatPlan Ais superior toPlan B. This

can be explained as follows.Plan A triangulates, before search, all the networks that will

be checked for consistency during search (there are exactly�� � such graphs).Plan Bfinds

the triangulation of an STP at a given node during search by inducing a subgraph from the

triangulated original STP. Hence,Plan B triangulates the network only once, whilePlan A

carries out as many triangulation operations as the number of edges in the network (and

levels in the search). However, the induced subgraphs inPlan Bend up much denser than

the ones used byPlan A, thus requiring more effort fromPPC, the STP solver. Further,

the fact thatPlan Ayields no denser graphs thanPlan Bbecomes an even more desirable

feature when TCSP is dense. This explains the significant differences in behavior between

Plan AandPlan Bunder high density TCSPs.

�
AC:

Compare the cost of solving TCSP with and without using
�

AC, the results show that
�

AC does not negatively affect the cost of search under low density and is tremendously

92

effective in reducing the total cost under high density. Indeed, the cost of search is almost

negligible when density is high. In contrast, search without preprocessing with
�

AC is

prohibitively expensive when density is high.

When density is low, the temporal graph has few edges, hence the meta-CSP has rel-

atively few variables and its size is small. When density increases, the number of edges

in the temporal graph, and hence the number of variables in the meta-CSP, increase, yield

exponentially larger problems. However, this increases the number of triangles in the tem-

poral graph and enhances the filtering power of
�

AC, which removes most intervals. In all

cases, the experiments strongly support using
�

AC when solving a TCSP.

The winning combination:

In [35] we compared the performances ofF-W, DPC, PPC, and
�

STP for solving an STP.

We found thatDPC, PPC, and
�
STP consistently outperformF-W, the Floyd-Warshall

algorithm. Further,
�
STP consistently outperformsPPC. Indeed, the former is a finer

version of the latter. Importantly, when the density of the temporal graph is below 0.4,
�

STP (which guarantees minimality) outperformsDPC (which does not). For sensibly

high densities, we foundDPC to be more effective. Since in the search for solving the

meta-CSP we consider subgraphs of the original network, thenetworks at the different

levels of the tree are more likely to be sparse than dense. This shows that even when the

TCSP is dense,
�
STP is a good choice for the STP solver. Hence, among the techniques

tested, the best combination one could use to solve a TCSP is the one we called
�

STP-

TCSP (Figure 4.15). Indeed
�
STP outperforms all TCSP solvers including the one based

onDPC (compare Figure 4.21 and 4.27).

93

Summary

At the beginning of our investigations, the best mechanism known to date for solving the

meta-CSP4 was one based onDPC. We introduced
�

STP, enhanced it with NewCyc and

EdgeOrd, and showed empirically that it results in dramaticimprovements. Indeed, in

comparison to the originalDPC, the best combination of our techniques reduces the number

of constraint checks by a factor of 500 (median) and 40,000 (average) and that of CPU by

a factor of 320 (median) and 1,200 (average).

Further, we showed that our techniques uncover the existence of a phase-transition-like

phenomenon for solving the TCSP, which is most visible with
�

STP-TCSP. This observa-

tion calls for more detailed investigations in this direction.

4Note that we do not include in our comparison algorithms thattighten these intervals in the labels of the
edges. Those may not terminate in the general case and are prohibitively expensive in the integral case [13].

94

Chapter 5

Conclusions and future work

This thesis focuses on solving quantitative temporal problems. It covers aspects of model-

ing the temporal constraints, solving the temporal problemin general, and exploiting topo-

logical and semantic information to improve the solver’s performance. We address both the

Simple Temporal Problem (STP) and the general Temporal Constraint Satisfaction Prob-

lem (TCSP). For this purpose, we combine traditional techniques (e.g., articulation points),

the latest results in constraint propagation (e.g., partial path consistency), a new powerful

technique for constraint filtering (e.g.,
�

AC and
�
STP), and a set of new search heuristics

(e.g., NewCyc and EdgeOrd). We also provide extensive sets of experimental results to

compare the performance of the resulting solvers with previously known ones.

5.1 Conclusions for the STP

Simple temporal problem (STP) is a simple version of temporal CSP (TCSP) that can be

solved in polynomial time. There are a number of algorithms for this task such asF-W and

DPC. We first apply partial path consistency algorithm (PPC) on STP, which is applicable

in general CSP. ThePC algorithm (operating on the complete graph) and thePPC algorithm

(operating on the triangulated graph) yield the same labeling for the edges common to both

95

graphs, which is the minimal network of an STP. Furthermore,based onPPC, we develop a

new STP solver,
�
STP, which is a finer version ofPPC. In

�
STP, constraint propagation

operates on the set of triangles of the triangulated temporal network instead of operating

on its set of edges. It yields the minimal network with a cost always lower than or equal

to that ofPPC. Note that the topology of temporal graph is very important,we explore the

articulation points to decompose the temporal graph into some biconnected components.

Experimental results show the following conclusions:

1. Exploiting articulation points reduces the number of constraint checks ofF-W and

DPC when constraint density is low. The almost non-existence ofarticulation points

under high density results in the same number of constraint checks for both strategies

(exploiting articulation points and ignoring them) while not affecting the computa-

tional effort. Interestingly, we noticed that the exploitation of articulation points has

little effect on the performance ofDPC even when constraint density is low.

2. PPC is more efficient thanF-W, especially under low density.
�
STP is always su-

perior toPPC in terms of constraint checks and CPU time.

3. F-W, PPC, and
�
STP yield the same minimal labeling of the common edges.DPC

only determines the consistency of the STP. It cannot ensurethe property of path

consistency, or a fortiriori that of and minimality, of the temporal network. While it

generally needs less constraint checks than
�
STP under high density, the fact that

DPC does not guarantee as tight a result as
�
STP does, it is reasonable to consider

that
�
STP is superior toDPC in general.

4. F-W is not sensitive to the topology of temporal network. The cost of F-W is always

� �
 � �. DPC is sensitive to the density of temporal network, because itscomplexity

depends of the induced width. When density is high (induced width is large), the cost

of determining the consistency of an STP usingDPC increases.PPC and
�
STP are

96

more sensitive to the structure of temporal network. Problems with big still cycles

will increase the cost of finding the minimal network.

5. PPC and
�
STP implicitly guarantee that articulation points in the graph(if any),

are exploited, as if the network was decomposed into its biconnected components

without actually decomposing it.

5.2 Conclusions for the TCSP

Temporal CSP in general is anNP-hard problem. We use backtrack search (BT-TCSP)

introduced by Dechter et al. to solve TCSP. The TCSP is considered as a meta-CSP. Every

node in the search tree of meta-CSP consists of an STP. The consistency of this STP needs

to be checked before the search can proceed or backtrack. Thegoal is to find all solutions

of meta-CSP. By combining all solutions of meta-CSP, we can obtain the minimal network

of TCSP.

We introduce a few heuristics to improve the performance of BT-TCSP. Similar to solve

CSP, we want save the number of constraint checks (it directly indicates the CPU time for

solving CSP) as well as the number of nodes visited (it indicates the number of backtracks).

Obviously, Using more efficient STP algorithm can save the number of constraint checks at

each node. Consequently, it saves the number of constraint checks of BT-TCSP. Exploring

the topology of the temporal graph could be very helpful for solving TCSP. Using articula-

tion points to decompose the temporal problem into some sub-problems provides an upper

bound, in the size of the largest biconnected component, to the search effort. But this only

works in low density networks. We introduce a new edge check mechanism, which points

out the consistency of STP at some level of search tree without actually running the STP

consistency check. Using this mechanism saves lots of constraint checks especially under

high density. Good variable ordering always helps to improve the efficiency of search. We

97

introduce an edge (variable) ordering heuristic based on the topology of temporal network.

It expands the sub-problem to bigger and bigger set of triangles. It reduces the number of

backtracks, constraint checks, and also decompose the graph automatically. At last, a fil-

tering algorithm,
�

AC, is developed to reduce the size of meta-CSP. Experimental results

show the following achievements:

1. The use of articulation points to decompose the temporal graph reduces the number

of nodes visited and constraint checks in the search tree of the meta-CSP when the

temporal network is sparse. It does not affect the performance of search when the

network is densely connected.

2. The use ofPPC for checking the consistency of STP at each node of the searchtree

requires fewer constraint checks thanDPC does.

3. The different ways for retrieving the triangulated subgraphs needed at every level of

the tree significantly impact the overall performance of aPPC-based BT-TCSP. In-

deed,Plan A, which pre-computes and stores the triangulations of all the subgraphs

to be used during search, is more effective thanPlan B, which induces the triangu-

lated subgraphs from the triangulation of the original graph.

4. The new heuristic NewCyc avoids uneccessary consistencychecks at some levels of

the search tree. It does not affect the number of nodes visited. Moreoever, it checks

only the consistency of newly formed biconnected component, which is typically

smaller than than the original problem. We noticed that in practice the expansion of

graph by addition of one new edge rarely produces a new cycle in the graph. This

explains why NewCyc is so powerful in reducing the number of constraint checks

for solving the meta-CSP.

5. EdgeOrd, our new variable ordering heuristic for searching the meta-CSP, arranges

the edges accoring to the adjacency property of the temporalnetwork. By this edge

98

ordering, the network is expanded as bigger and bigger set oftriangles. Since the

propagation of temporal network is based on triangles, thisedge ordering makes the

propagation more efficient and quickly determines the inconsistency of an STP. This

heuristic reduces the number of nodes visited as well as the number of constraint

checks. Applying this heuristic guarantees that articulation points in the graph (if

any), are implicitly exploited, as if the network was decomposed into its biconnected

components without requiring the use of any special algorithm for this purpose.

6.
�
STP consistently outperformsPPC. We can readily expect that the

�
STP-based

BT-TCSP will outperform the one onPPC. To further boost the performance of the

BT-TCSP solver, we also apply the new techniques we developped, namely:Plan A,

NewCyc, and EdgeOrd. The resulting new TCSP solver,
�
STP-TCSP, is the abso-

lute winner over all TCSP solvers we describe.

7.
�

AC is a sound, cheap, and effective algorithm for constraintpropagation in a TCSP.

It dramatically reduces the size of TCSP especially when thetemporal network is

dense. Applying
�

AC as a preprocessing technique for solving the meta-TCSP

magnificently improves the performance of search. It also uncovers the potential

existence of phase transition, which requires a more thourough investigation.

5.3 Directions for future research

We propose to extend our investigations in the following directions:

1. We can further improve
�

AC’s performance and reduce the number of constraint

checks by exploiting the convexity property of interval intersection. We suspect that

this improvment may result in an optimal algorithm for determining the genelized

arc-consistency of the reformulated network.

99

2. Another interesting direction for future research is to investigate how
�

AC can be

used to improve the performance of theULT algorithm of Schwalb and Dechter [29]

since the two approaches are orthogonal.

3. The idea of inducing the decomposition of a graph by ignoring the existence of some

edges is particularly attractive to us. With this idea, we can always decompose a

large problem into smaller components, as a sufficient approximation for establishing

inconsistency. This may dramatically increase the size limit of TCSPs that we are

currently able to handle.

4. Investigate how to exploit
�

AC in a lookahead strategy for solving the meta-TCSP.

5. Evaluate empirically how to improve BT-TCSP with dynamicbundling [10], which

is particularly attractive in this context since we are looking for all solutions.

The ability to represent time in a flexible way and reason about it effectively is central

to the success of Artificial Intelligence and its usefulnessin our lives. In this thesis, we

have exploited previously known results in a creative way and introduced new techniques

to enhance the performance of processing the two representations of temporal networks, the

STP and the TCSP. In the future, we plan to pursue our investigations of the basic aspects

of temporal reasoning and apply them in specific problem-solving tasks such as planning

and scheduling in order to demonstrate their usefulness in practical settings.

100

Bibliography

[1] James F. Allen. Maintaining Knowledge about Temporal Intervals.Communications

of the ACM, 26:123–154, 1983.

[2] James F. Allen. Towards a general theory of action and time. Artificial Intelligence,

26:123–154, 1984.

[3] C. Bessière, E. C. Freuder, and J.-C. Règin. Using Constraint Metaknowledge to

Reduce Arc Consistency Computation.Artificial Intelligence, 107 (1):125–148, 1999.

[4] Christian Bessière. Arc-Consistency and Arc-Consistency Again. Artificial Intelli-

gence, 65:179–190, 1994.

[5] Christian Bessière and Jean-Charles Régin. Refining the Basic Constraint Propagation

Algorithm. In Proc. of the 17�� IJCAI, pages 309–315, Seattle, WA, 2001.

[6] Christian Bliek and Djamilla Sam-Haroud. Path Consistency for Triangulated Con-

straint Graphs. InProc. of the 16�� IJCAI, pages 456–461, Stockholm, Sweden,

1999.

[7] Mark Boddy. Personal communication, 2002.

[8] Amedeo Cesta, Angelo Oddi, and Stephen Smith. A constraint-based method for

project scheduling with time windows.Journal of Heuristics, 8(1):109–136, April

2002.

101

[9] Boris V. Cherkasskyn, Andrew V. Goldberg, and Tomasz Radzik. Shortest Paths

Algorithms: Theory and Experimental Evaluation.Mathematical Programming,

73:129–174, 1996.

[10] Berthe Y. Choueiry and Amy M. Davis. Dynamic Bundling: Less Effort for More

Solutions. In Sven Koenig and Robert Holte, editors,5th International Symposium on

Abstraction, Reformulation and Approximation (SARA 2002), volume 2371 ofLecture

Notes in Artificial Intelligence, pages 64–82. Springer Verlag, 2002.

[11] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to

Algorithms. McGraw-Hill Book Co & MIT Press, 2001.

[12] Thomas Dean and Drew McDermott. Temporal Data Base Management. Artificial

Intelligence, 32:1–55, 1987.

[13] Rina Dechter. Constraint Processing. Manuscript, forthcoming, 2003.

[14] Rina Dechter and Avi Dechter. Belief Maintenance in Dynamic Constraint Networks.

In Proc. of AAAI-88, pages 37–42, St. Paul, MN, 1988.

[15] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal Constraint Networks.Artificial

Intelligence, 49:61–95, 1991.

[16] Rina Dechter and Judea Pearl. Network-Based Heuristics for Constraint-Satisfaction

Problems.Artificial Intelligence, 34:1–38, 1987.

[17] Salmon Even.Graph Algorithm. Computer Science Press, 1979.

[18] Eugene C. Freuder. A Sufficient Condition for Backtrack-Free Search. JACM,

29 (1):24–32, 1982.

[19] Eugene C. Freuder. A Sufficient Condition for Backtrack-Bounded Search.JACM,

32 (4):755–761, 1985.

102

[20] Eugene C. Freuder and Paul D. Hubbe. A Disjunctive Decomposition Control Schema

for Constraint Satisfaction. In Vijay Saraswat and Pascal Van Hentenryck, editors,

Principles and Practice of Constraint Programming, pages 319–335. MIT Press,

Cambridge, MA, 1995.

[21] Robert M. Haralick and Gordon L. Elliott. Increasing Tree Search Efficiency for

Constraint Satisfaction Problems.Artificial Intelligence, 14:263–313, 1980.

[22] Alan K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,

8:99–118, 1977.

[23] Roger Mohr and T. C. Henderson. Arc and Path ConsistencyRevisited. Artificial

Intelligence, 28:225–233, 1986.

[24] Roger Mohr and Gérald Masini. Good Old Discrete Relaxation. In European Con-

ference on Artificial Intelligence (ECAI-88), pages 651–656, Munich, W. Germany,

1988.

[25] Ugo Montanari. Networks of Constraints: Fundamental Properties and Application

to Picture Processing.Information Sciences, 7:95–132, 1974.

[26] Nicolas Muscettola, Paul Morris, and Ioannis Tsamardinos. Reformulating Tempo-

ral Plans for Efficient Execution. InSixth International Conference on Principles

of Knowledge Representation and Reasoning (KR’98), pages 444–452, Trento Italy,

1998.

[27] Peter Revesz.Introduction to Constraint Databases. Springer-Verlag, New York,

2001.

[28] U. Kjærulff. Triagulation of Graphs - Algorithms Giving Small Total State Space.

Research Report R-90-09, Aalborg University, Denmark, 1990.

103

[29] Eddie Schwalb and Rina Dechter. Processing Disjunctions in Temporal Constraint

Networks.Artificial Intelligence, 93:29–61, 1997.

[30] Yoav Shoham.Reasoning About Change. MIT Press, Cambridge, MA, 1988.

[31] Robert Shostak. Deciding Linear Inequalities by Computing Loop Residues.Journal

of the ACM, 28(4):769–779, 1981.

[32] Ioannis Tsamardinos. Reformulating Temporal Plans for Efficient Excution. Master’s

thesis, Intelligent Systems Program, University of Pittsburgh, 1998.

[33] Peter van Beek. Approximation Algorithms for TemporalReasoning. InProc. of the

11 �� IJCAI, pages 1291–1296, Detroit, MI, 1989.

[34] M. Vilain and Henry Kautz. Constraint Propagation Algorithms for Temporal Rea-

soning. InProc. of AAAI-86, pages 377–382, Philadelphia, PA, 1986.

[35] Lin Xu and Berthe Y. Choueiry. A New Efficient Algorithm for Solving the Simple

Temporal Problem. In10th International Symposium on Temporal Representation

and Reasoning and Fourth International Conference on Temporal Logic (TIME-ICTL

2003), Cairns, Queensland, Australia, 2003. IEEE Computer Society Press.

[36] Lin Xu and Berthe Y. Choueiry. An Efficient Algorithm forFiltering the TCSP. In

Principles and Practice of Constraint Programming, 2003. Submitted.

[37] Lin Xu and Berthe Y. Choueiry. Improving Backtrack Search for Solving the TCSP.

In Principles and Practice of Constraint Programming, 2003. Submitted.

[38] Yualin Zhang and Roland H.C. Yap. Making AC-3 an OptimalAlgorithm. In Proc.

of the 17�� IJCAI, pages 316–321, Seattle, WA, 2001.

