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Reasoning about time is important in real-life situationd & engineered systems. In
this research, we develop new algorithms for solving thepBrfiemporal Problems (STP)
and the more general Temporal Constraint Satisfactionl@mbr CSP).

First, we propose a new efficient algorithm, th&sTP-solver, for computing the min-
imal network of an STP. This algorithm achieves high perfange by exploiting a topo-
logical property of the constraint graph (i.e., triangida) and a semantic property of the
constraints (i.e., convexity). Importantk,STP-solver implicitly guarantees the decompo-
sition of the constraint graph according to its articulatmints. We show empirically that
this new algorithm outperforms previously reported althons such as the Floyd-Warshall
algorithm - W, Directed-Path ConsistencpPC), and Partial Path-ConsistendRC).

Second, we report the integration of three approaches toowephe performance of
the exponential-time backtrack search (BT-TCSP) for sgviCSPs. The first approach
consists of using our new efficient algorithm\$TP) for solving the STP. The second
approach exploits the topology of the temporal network. sTihiaccomplished in three
ways: finding and exploiting articulation points (AP), ckieg the graph for new cycles
(NewCyc), and using a new heuristic for edge ordering (EddgOrhe third approach is
a filtering algorithmAAC, which is used as a preprocessing step to BT-TCSP and which
significantly reduces the size of the TCSP.

Our experiments on randomly generated problems demoadignificant improve-

ments in the number of nodes visited, constraint checksCatd time.
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Chapter 1

Introduction

Space and time have always been important subjects in ®cieAtousands years ago,
people estimated the time to arrange their schedule by aigethe length of the shadow
of a pole. With the advent of more modern technologies, people even more about
time. Almost everyone has a watch, so he/she can easily ¢hedkme. While people are
increasingly about time, time limit remains one of the bgjgaroblems. We have exactly
24 hours per day and constantly worry about using these 2éshoare efficiently. For
example: Tom wants to serve some tea to his friends. Thera Baw things he needs to
do: clean the pot (5 minutes), clean the tea cups (10 minatespoil water (15 minutes).
If Tom cleans the pot and tea cups first then boils the waten tre needs 30 minutes to
get the tea ready. It is actually easy to find a better schedam can wash the pot first,
and then start to boil water since the pot is clean. Whileihgivater (15 minutes), Tom
can clear the tea cups (10 minutes). After the water is rébmwy, can serve the tea. This
takes only 20 minutes. A little reasoning about time can $atvef time.
The study of time is addressed in almost every area of Scemt@lso in Artificial In-

telligence (Al). Reasoning about time is used in almostysaega of Al: planning, schedul-

ing, natural language understanding [2], and common-segesoning [30]. A typical
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temporal reasoning system may include some components asug temporal knowledge
base, an algorithm to check its consistency, a query-amsgverechanism, and an infer-
ence mechanism, which yields new information from the omwiged [13]. The goal of a
temporal reasoning system is that based on the temporaimatmn given in the temporal
knowledge base, the system can answer user’s questionsinfbin@ation stored in the
temporal database is in the form of propositions, such agn‘matching TV,” “Jim has
dinner with Jack,” with some information correspondinghwithe temporal intervals rep-
resenting the duration of these events. The informatiohdcoe relative (I was watching
TV after dinner) or metric (Tom arrived home at least 1 houtieathan his wife). The
information also can be disjunctive, such as “l go to schgabiis (30 -45 minutes) or by
car (10 -15 minutes).” Using the information stored in theatlase, the temporal reasoning
system may have to answer questions such as “Is it possti¢ tike the bus to school?”
or “If I do not want to be late, When should | get up?”.

In this chapter, we will introduce two different types of teanal networks: qualitative
temporal networks and quantitative temporal networkss Tinesis focuses on solving the

guantitative temporal networks.

1.1 Qualitative temporal networks

There are two types of temporal algebra for qualitative terapnetworks: Point Algebra
(PA) [34] and Interval Algebra (IA) [1]. In Point Algebra, ¢hprimary objects are time
points, indicating when events occurred or ended. In thgelada, temporal information
is expressed by a relation between two time points. For el@nmet up earlier than
Jack Supposé€ly is the time point | get up and; is the time point Jack gets up, then
this information is expressed d§ < 73 in the time point algebra. In Interval Algebra,

the primary objects are time periods, during which eventsipor propositions hold. For
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example:l meet Rob during lunch (lunch time is 15 mimyhich means my lunch time
(time intervalI) overlaps with Rob’s lunch time (time interv&l). This information can
also be represented in Point Algebra but it looks more cox@epposd, and/; are the
beginning and ending points @f R, and R, are the beginning and ending points Bf
Interval I and intervalR overlap is expressed asi{ < I1) A (Ry > Ip)] V [(Iy < Ry) A

(Zo > Ryp)] in the time point algebra.

1.1.1 Interval Algebra

Interval Algebra was first introduced by Allen. It exprestamporal knowledge as qual-
itative statements relating the positions of two intervdfsve have two intervalsA and
B, the possible relationships betwednand B are: before, meets, overlaps, starts, dur-
ing, finishes, equal and their inversg(m, o, s, d, f, bi, mi, oi, si, di, fi,=}). There are
13 simple relations between two intervals.

The simple relations are formally defined in Figure 1.1. Witken’s 13 relations, we
can express almost every qualitative temporal network. rekeion between two inter-
vals can be expressed by one or more (the disjunction of)lsinetations. There arg'?
possible relations between two intervals.

For examplel watch TV AFTER my dinnendI finish my dinner BEFORE watching
TV have the same meaning. It means the ending point of my disrarictly before the
starting point of watching TVIom comes to my house when | am watchingri@ans the
relation between the intervat (I am watching TV) and intervall (Tom is at my home) is
the vector(o, fi,di). Note that the only information we have is the starting tiroépof
intervalC' is during the time intervaB, we do not know any information about when Tom
leaves my house, Figure 1.2.

All relations in interval algebra are defined by vectors. fidey to propagate knowledge

and constraints, two mathematical operations, additichnamltiplication, are defined over



Relation Symbol Inverse Example
A before B b bi =S~
A equal B = = A
A meets B m mi ‘ A M
A overlaps B o oi A
=
A during B d di A
S=——=

A starts B s Si A

S
A finishes B f fi A

=

Figure 1.1:Simple relations in the interval algebra.

vectors of relations.

The operation addition is used in two different vectors dbsty the same relation of
two intervals. The addition intersects these two vectogrtwide the relation, which two
vectors all allows. For exampl@rof. A tells me | need to read a given pagérm, o) my
lunch time, Prof. B tells me | need to read the same pépey, d) my lunch timelf | want to
follow their recommendations, | need to read the pdpemy lunch time. Algorithmically,

the sum of two vectors is computed by finding their common Gtwent simple relations.

Vi = {ai,a9,...,0,} (1.1)
‘/2 = {b15b27"':bn} (12)
VieV2 = {ay,a9,...,a,} N {b1,bo,...,0,} (1.3)

For example:

VieV2 = (b,m,o0)N(o,s,d)= (o) (1.4)



A (b) B B (o, fi, di) C

NN

A: | am eatting my dinner
B: | am watching TV
C: Tom is visitting me

Figure 1.2:An example of interval algebra.

The operation multiplication is defined when we know the eeciof relations between
intervalsA andB and between intervalB andC, and we want know the vector of relations
of between the intervald andC. For example: we have vector of relatiovis between
intervals A and B, vector of relationd/; between interval®3 andC. V; ® V, gives the

vector of relations between intervatsandC' by V; and V5.

‘/1 = {al,ag,...,an} (15)
Vo = {b1,by,...,0,} (1.6)
‘/1®V2 = {al,ag,...,an}@){bl,b2,...,bn} (17)

= (a1 ®b1) V(61 ®by)...V(a2®b1))...V (an, ® by,) (1.8)

For example:

VieVy, = (b,m,0)® (b,m) (1.9)
= b®b)V(MmRLV(o®b)V(bem)V(mem)V(o®m) (1.10)

= OVO)VE)VE)VED)V(©D)=(0) (1.11)
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The multiplication operation for vectors is the union of tipllcation on simple rela-
tions. For the example above, the result of multiplicatmrii ® Vo, = (b, m, 0) @ (b,m) =
(b).

In some cases, computing multiplication can be really cempFor examplel begin
my dinner before | turn on the TV, and Tom comes to my house h@mnvatching TV. We
want know the relation that holds between my having dinner Bam being in my home
Suppose}; is the vector of relations between my dinner and TV time, Bnis the vector
of relations between TV time and Tom is staying in my housee Véctor of relations

between my dinner and Tom is staying in my house can be olstaiséollows:

Vi = {bm,o, fi,di} (1.12)
Vo = {o, fi,di} (1.13)
VieV2 = (bQo)V(mR®o)V(0®0)V (fiko)V(di®o)V (b® fi)
Vim® fi) V(o® fi) V (fi® fi) V (di ® fi) V (bQ di)
Vim®di)V(o®di)V (fi®di) V (di ® di) (1.14)
= )V )V (bo,m)V (0)V (o,di, fi) V (b) V (b) V (b,0,m) (1.15)
V(fi) Vv (di) vV (b) V (b) V (b, fi,di,o,m) V (di) (1.16)

= (b,0,m,di, fi) (1.17)

With these two operations, we can model a temporal probletin kwierval Algebra,
and assert the temporal information in the database of thpdeal reasoning system. The
system will compute those temporal relations that folloanirthe user’s assertions. This
task is executed by a polynomial-time algorithm proposeAlsn: constraint propagation
algorithm. This algorithm is sound, in the sense that it néwiers an invalid assertion.

However, Allen also demonstrates that the algorithm isnmglete. Vilain and Kautz [34]
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show that determining the satisfiability of a set of assedim the interval algebra is an
NP-hard problem.

Even though Allen’s interval algebra is intractable, itldtas some usages. First, it
can be used to solve some small problems. We can limit theo§izer temporal database.
Since the size of problem is small, even exponential-tinséilisacceptable. Unfortunately,
this condition does not hold for most real-world problemsc&@d, we can accept the con-
straint propagation algorithm’s incompleteness. Sineetinstraint propagation algorithm
is polynomial-time and sound, if the user’s question onlgdsevery few inferences, then
the algorithm may be able to satisfy the user. Of course, fplieations that need more

temporal reasoning, this option may not find a solution.

1.1.2 Point Algebra

Because no sound and complete polynomial-time algorithistsefor the interval algebra,
an alternative approach is to choose a temporal repregantaher than the full interval
algebra. This new representation can be either a fragmehéedllen’s interval algebra or
a new, less expensive algebra: the point algebra.

In Point Algebra, temporal information is expressed by nseafnconstraints on time
points. Obviously, there are only three basic relationsvbeh two time pointd® and@:
before P < Q), after P > @) and equal P = Q). Hence the number of possible re-
lations between two points & = 8, which is less than that for interval algebrt?).
Reasoning in Point Algebra is a polynomial-time processthia algebra, temporal net-
works are represented as variab{és, X, ..., X, }, where each variable is a time point.
The domain of each variable is a set of real numbers, whictharéme points the variable
may assume. The constraints are one or more relatiofig ffore, a fter, equal}. For ex-
ample,| began my dinner before | turned on the T&n be expressed in Point Algebra as

T(dinner) < T(TV).
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As we discussed for the case of Interval Algebra, we can défmaddition operation
and multiplication operation for Point Algebra. The defuiis of these two operations
are the same as the definitions for Interval Algebra. Sineeetlre very limited possible
relations between two time points, we can easily build tiéetéor all possible additions

and multiplications, Figure 1.3:

Addition: Multiplication:
< <=| > | >=| = |<>| 5 < <=| > | >=| = |<>| 5
< | < < F = F|<|< < | < < ) ) ? ?
<=| < <= F = = < | <= <=|< <= <=| 5 )
> Fl F > > F|> > > s s > > | > )
> = E = > > = = > > = > = ) ) > >=| >=| o )
= Fl= = =|F | = = | < |<=| >|>=| T |[<>] 2
<>| < < > s | F |<>| <> <>| o | o 5l o h <> 5
2 < | <= > >2E = <> 9 ? 2 2 ? ? ? 20 2
?is (<,>,9)
Fis (), the null vector

Figure 1.3:Addition and multiplication in the point algebra.

Any temporal network in Point Algebra also can be expressethtierval Algebra.
However, problems expressed by Interval Algebra may notXpeessible by Point Al-
gebra. For example, suppose we are given the interval ageotors betweeA B: A (s,

d) B which means time interval starts or is during3. Letz andy are the starting and
ending points ofA, m andn are the starting and ending pointsBf We can express the
same information as < y, m < n, m (<, =) z, y < n in Point Algebra. However4 (b,
bi) B in Interval Algebra cannot be expressed in Point Algebrgufa 1.4.

The constraint propagation algorithm is complete for Pdilgebra. The algorithm
runs to completion irO(n?) time. There even exists an algorithm with time complexity

O(n?) for deciding the consistency and for finding a consistentaide [33]. The minimal



Interval algrbra: A (s, d) B —P Point algebra: x <y, m<n,x(>=)m,y<n

X y
Al ] ]
° L . !
A ’—‘ X ’—‘ y
m n
Interval algrbra: A (b, ) B~ ——p» Point algebra: ???
A B
| S
B A
S |

Figure 1.4:The relation between Interval Algebra and Point Algebra.

network of a problem in Point Algebra can be obtained usicgdsistency ifD (n?) steps.
If we exclude thg(<>), the constraints are taken frofr, >, =, (>=), (<=)}, then this
subset of Point Algebra is called Convex Point Algebra. Th&mmal network of a network
modeled in Convex Point Algebra can be obtained by pathismmey algorithm irO(n?)
[13].

1.2 Quantitative temporal networks

In qualitative temporal network, all temporal relations egpresented as ‘before’ or ‘after’
relations. In the real-world, this kind of information magtrbe precise enough. For
example,Tom needs to go to school to attend the first class at 8:00 agmdéds to have
some breakfast first. Then he either takes a bus or drivesaifibasschool Only mention

that the breakfast is after he gets up, and driving or takifmys is after the breakfast
obviously are not enough. We need the information such agfvdoes he get up?”, “How

long does it take him to get from home to school by bus?”. To@htius information, we
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need to enhance the representation with metric informatiod model the problem with

guantitative temporal networks. Consider the followingmyple:

Tom has class at 8:00 a.m. He can either make breakfast faekifl0—-15
minutes), or get something in alocal store (less than 5 rag)uiAfter breakfast
(5-10 minutes), he goes to school either by car (20-30 nshwateby bus (at

least 45 minutes). Today, Tom gets up between 7:30 and 7:40.

In a quantitative temporal network, the variables are statdich represent snapshots of
events. In the example above, let variablerepresents the snapshot of Tom getting up,
let variable P, represents the snapshot of Tom getting his breakfast. Thstraints are
disjunction of quantitative intervals, such @P;, P,) is {[0, 5], [10, 15]}. Based on this
temporal information database, we can expect the tempeaaloning system to answer
guestions such as: “Is it possible that Tom is not late fobst?, “Is it possible for Tom
to take the bus?”, “If Tom wants to save money by making brastkbr himself and taking
the bus, when should he get up?”, and so on.

There are two kinds of quantitative temporal problems. Tis @ine is temporal con-
straint satisfaction problem (TCSP), which is general terapproblem and isNP-hard.
The second one is a restricted, simpler version of TCSP (sitepporal problem STP),

which we can solve in polynomial time.

1.2.1 The temporal constraint satisfaction problem (TCSP)

The TCSP problem can be described similarly to the gener®l @Semporal constraint

satisfaction problem (TCSP) is composed by a set of vasaklgch variable has a contin-
uous domain and binary constraints describe the relatibmdsn two variables or unary
constraints for one variable.

In TCSP model, variables represent time points (snapstaig)s The domain of the
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variable is any real number (continuous domain). Each cainsis represented by a set of

intervals:

{Il, IQ, . ,In} = {[61,1, bl], [CLQ, bg], PP [an, bn]} (118)

There are unary constrainfg, They restrict the domain of variabl€; to a disjunction of

intervals:

The most popular constraints are binary constraifits, define the allowed values for the

distancg X; — X;). It also allows the disjunction of intervals:

In fact, we can easily transfer the unary constraints torginanstraints by adding a refer-
ence time poin,. Every unary constrairf; can be transferred to a binary constraii.
For exampleTom gets up between 7:30 a.m and 7:40 aan be expressed as unary con-
straint 7:30< X; < 7:40. If we add the initial time poink, = 6:00, then this information
also can be expressed as binary const@int X; — X, < 100.

A binary TCSP is a temporal network that consists of a setodles, X, X,, ..., X,
and a set of binary and unary constraints. This network @sade represented as a directed
constraint graph, nodes represent variables and theiedgeg indicates a constraint be-
tween variable and variablej. The label of edge — j shows the intervals set of the
constraint. Figure 1.5 is an example of a directed congtgraph.

Similarly to general CSP, a solution of a TCSP is a set of rekles{x1, z, ..., z,},

{X; = 11,Xy = 29,..., X, = z,} that satisfies all the temporal constraints. We need
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[10, 15] ) [0, 5]
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5, 10]

[90, 100]

[20, 30]U [45,<:><:>

[0, 120]

Figure 1.5:An example directed constraint graph for TCSP.

to mention that since the TCSP has continuous domain, théeuof solutions usually
is infinity. If value v in the domain ofX; appears in a solution of TCSP then this value
is a feasible value for variabl&,. The set of all feasible values of variable is called the
minimal domain. Obviously, if any minimal domain is emptyen there is no solution for
the TCSP and we call this TCSP is inconsistent.

As we defined addition and multiplication for the intervag@bra and the point al-
gebra, we can similarly define the addition operation (w&kintersection) and multi-
plication operation (interval composition) for TCSP. Sapp we have constraint$ =
{I,L,,....I,},B={J, Jo, ..., J,}.

The addition (intersection) of two temporal constraidtend B is the values that are

allowed by both4 andB.

A@B = {Il,IQ,...,Im}@{Jl,JQ,...,Jn} (121)
- {11ﬂJl,IlﬂJQ,...,]QﬂJl,...]mﬂJn} (122)
= {Kl,KQ,...,Kt} (t<m+n) (123)

WhereK, = I, N J, for somez andy. A andB are different sets of intervals for the same
constraint andx is the new constraint proposed Byand B. For example, the constraint

betweenX andY is A = {[1, 4], [6, 8] }. For some reason we need add a constraint between
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X andY: B = {[0,1],[3,7]}. Since these two constraints apply to the same pair of
variables, the allowed values for the new constraint sheatwfy both constraintd and
B. Hence, the new constraitif is A & B = {[1,1],[3,4],[6, 7]}, see Figure 1.6. The
number of intervals i is up to the sum of the number of intervalsAnand B.
The multiplication (composition) of two temporal constrisiA and B defines a new
constraintK. If constraintK allows valuer, there must exist a value € A and a value

v € B, such thay +v = r.

A®B == {11,12,...,Im}®{J1,J2,...,Jn} (124)
= {11®J1,Il®J2,...,IQ®J1,...Im®Jn} (125)
= {K,K,,...,K;} (t<mxn) (1.26)

WhereK; = [a + ¢, b+ d] for somel, = [a, b] andJ, = [c, d]. If A is a constraint between
variablesX andY’, B is a constraint between variabl&sand 7, then the multiplication
will propose a new constraint betweghand Z. For example:A = {[1,2],[4,6]}, B =
{[2,3],[6, 7]}, the new constraink’ = {[3, 5], [6, 9], [10, 13]}, see Figure 1.6. The number

of intervals inK is up to the product of the number of intervalsdrand B.

1.2.2 Solving the Simple Temporal Problem (STP)

The simple temporal problem (STP) is a simple version of T&% notice that the two
operations, addition and multiplication, can make the neindd intervals per constraint
exponentially large. But if there is only one interval penstraint, then the addition and
multiplication always output a new constraint with only anteerval, which make the STP

easy to solve. In an STP, there is only one interval per caimstr

aij < Xj— Xi < b (1.27)
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Figure 1.6:The addition and multiplication operations of TCSP.

We also can express this inequality as two inequalities:

2
A

bi; (1.28)

Solving an STP amounts then to finding the set of solutionssyséem of linear inequali-
ties. We can solve STP by using an all pairs shortest patbsi#ig such as Floyd-Warshall
algorithm. We reformulate the STP as a distance graphlirected edge-weighted graph
Gqs = (V,E;). The difference between a constraint graph and a distaragghgds that
instead of having a directed edge— j with label of intervalla; ;, b; ;] in a constraint
graph, a distance graph labels the edge j with b, ; and edgej — 7 with —a; ;. Fig-
ure 1.7 gives the distance graph of the example describedyurd=1.5 (we choose only

one interval per edge). Since the multiplication works ol single intervals for STP,

1Also called a gap-graph [27].
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Figure 1.7:The distance graph of Figure 1.5.

we can easily get the constraint betweeand j with pathiy=i, i1, ..., ix=j In G4 is
[(ao,1 + a1 o+ .. +ag—1))(bo,1 +b12+. .. +brk_1) )] If there are more than one path from
i to j thenz; — z; < d, j, d; ; is the length of the shortest path frarto j.

An STP is consistent if and only if its distance graph has rgatiee cycles [31]. Any
consistent STP is decomposable relative to the constrairttsdistance graph.

The complete minimal distance graph can be obtained by U=mgl-Warshall’s all
pairs shortest paths algorithm. The algorithm finds the méhinetwork with© (n?) time.
Since this minimal network is decomposable, finding a sofutinly need€)(n?) time

because decomposability promises backtrack-free.

Al'l -pairs-shortest-paths algorithm (S7TP):
fori=1tondod;; + 0;
for i, j =ltondo di,]‘ S Q44,
for k=1 tondo
fori,j=1tondo
di,j — min{di,j, di,k + dk,j};

Figure 1.8:Floyd-Warshall's algorithm.

If we are only interested in the consistency of an STP, we candirectional path

consistency algorithmOPC) [15] instead of Floyd-Warshall’s algorithnDPC is a simple
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version ofPC- 1, the difference betweebPC andPC- 1 is thatDPCis a single pass algo-
rithm. From Figure 1.9, we can find that the set of edges ia®ing while the algorithm
is executing. At the end of execution of tBeC algorithm, an induced graph is obtained.
The number of edges in the induced graph is larger than inrtgmal constraint graph but

less than in the complete graph.

DPC(STP):
for k =n down to 1 by -1do
for alli, j j k such that (i, k), (j, k)e E do
ﬂ’j — T'i,j (&) ,I%’k X Tk,j, and
E+ EU(i,j),and
if T; ; = nil then exit (the network is inconsistent);

Figure 1.9:DPC algorithm.

Dechter shows that, given an STP, the algorithRC terminates at the final step in
Figure 1.9 if and only if the STP network is inconsistem®PC can be achieved more
efficiently than full path consistency. Unlilke W which need€)(n?), DPCcan be finished
in O(nW*(d)?) time for telling the consistency of an STP, whé¥& (d) is the maximum
number of parents that a node possesses in the induced dtafite thatiV*(d) is always
less tham, if we only want to know the consistency of an STP, we shout¥C instead
of F- Wdue to its lower cost.

There are several methods to solve STPs, we introduce twgulaantee the minimal

network with lower cost thaR- W as we discuss in detail in Chapter 3.

1.2.3 Solving the TCSP

The general TCSP has more than one interval per constraittt.tkié addition and multi-
plication operation, the number of intervals per constre@m become exponentially large.

Davis showed that determining consistency of a general TI€SIP-hard [13].
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The general TCSP is modeled as a meta-CSP. The variabldseaeelges and the do-
main of variable is the possible intervals. Hence we map aPra® a discrete CSP with

variablesX;, Xy, ..., X,, wheren = |E|, andX; with domain of intervald,, I, ..., I,

correspond to the label @f in constraint graph. Not like other CSPs, the consistency fo
an assignmenf X, = I,, Xo = Iy, ..., X;, = L} is decided by the consistency of

corresponding STP (Figure 1.10).

Figure 1.10:The search tree for solving the meta-CSP.

A general TCSP problem can be decomposed|iffx | 3| x. . .x|I,,| STPs. By solving
all STP and combining the solutions together, we can get the@mal network for TCSP.
The complexity of solving TCSP is the total cost of solvidg x |I3| x ... x |I,| STPs
(O(n®k'®") [15], k is the maximum number of intervals per edge aBdis the number
of edges). We also can use backtracking search to find alldhgistent STPs. With this
approach, we can use all techniques to improve the perfarenaihsearch and find all the
solutions.

Figure 1.11 is the backtrack algorithm (BT-TCSP) for sodviRCSP [15]. The back-
track algorithm expands a meta-CSP one edge at a time. ItwwmagroceduresForward
andGo-back At each stepForward expands one more edge. It assigns a new interval
(value) for this edge (variable), extending the current.3ffWe can find an interval from
the label of the new edge can make the resulting STP congititen callForward again.

If there is no interval that can make the corresponding STigistent, then we need to
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BT (7CSP):
Forward(l, I5, ..., ;)
if i=mthen
M < M U Solve — STP(I3, I»,...,I,), and
Go-back(,, I, ldots, 1,,);
Ci—l—l <+~ nil;
for everyl; in D;;, do
if Consistent-STRI4, I,,.. ., I;, I;) then
Cit1 < Cia U{L};
if Ci—|—1 ?é nil then
I; 1 < first elementinC;,,, and
remove [, from C;,, and
Forward(1:, I,.. ., I;, I;)
else
Go-back(y, I, ..., I,);
Go-back(ly, I, . . ., I;)
if i=0 then exit
if C; # nil then
I; < first element inC;, and
remove I; from C;, and
Forward(Iy, Is,. .., I;)
else
Go-back(y, I, ..., I; 1),

Figure 1.11:The backtrack algorithm for solving TCSP.

Go-back. A consistency-check procedure for the STP could be theaals-Shortest-Paths
algorithm. The only requirement is that the algorithm beeabl determine the consis-
tency of the STP, even if it cannot output the minimal netwdsk-back goes back to the
previous assignment, changes the value of the previouablariand then callSorward.
Although the worst-case complexity of using search is al§@*k'¥!), it allows us to apply
some new techniques into search such as back-jumpingbl@neadering, value ordering.
They can reduce the complexity much lower than the worst-camplexity.

We already know that the general TCSMNiB-hard. There is no way to find a poly-

nomial time algorithm to solve general TCSP. But people nmeyquestions such as “Is
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it possible that there are some TCSPs that are easy to spk&Pat do those TCSPs
looks like?”. The answer is positive; some TCSPs are not si. Hathe TCSP is sparse,
then there is a good chance we can find articulation pointgh Wficulation points, we
can decompose the constraint graph into some non-sepa@hlgonents. Each of these
components can be solved independently. For other TCSPs)aydind out most of the
intervals in the domain of edges never become a part of aignlidence, we can eliminate

them first before starting search, which reduces the sizetd1@SP.

1.3 Questions addressed

In this thesis, we address the following questions:

1. Is there a better algorithm thiat Wto solve STP?
Answer: We propose two other algorithms to solve SHPC and ASTP. They al-

ways perform better thalr- W

2. Can we use the topology of the network to improve the perémce of solving STP?
Answer:We show that the exploitation of articulation points helpducing the num-

ber of constraint checks when density is low.

3. Is there an arc-consistency-like algorithm to reducesibhe of meta-CSP (TCSP)?
Answer:We propose thé\AC algorithm for this purpose. We show that dramatically

reduces the size of meta-CSP especially when density is high

4. Can we improve the performance of search by combiningb8®P solver with BT-
TCSP?
Answer: Yes! We provide experimental results, which show signifidarmprove-

ments by applying those better STP solvers.
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5. Do we need to check consistency of STP at every node oftstrae?
Answer:No. We only need to check the consistency of STP when thestsexinew
cycle, otherwise a consistent STP necessarily yields anaibnsistent STP at the
following level. Further, only the consistency of the nedymed by biconnected
component needs to be checked. We use a new cycle check nmuhardetect the

existence of new cycle.

6. Does the variable ordering help to improve the perforraafsearch?
Answer: Yes, we propose a new variable ordering heuristic (edge enTiGSP)
that reduces the number of nodes visited and the number sfreamt checks when

searching the meta-CSP.

7. Can we observe the phase transition in solving TCSP?
Answer: The existence of phase transition is uncovered when we appg as a

preprocessing step for solving TCSP.

1.4 Summary of contributions

Our contributions can be organized into the following categs:

1. Solving STP:
e We applyPPCto solve the STP, and develop a new STP solReB,TP, which
is always better thaRPC.

e We show that the articulation points help to improve theqmniance of solving

STP by decomposing the temporal graph.

e The experimental results shows that althou@C may need fewer number

of constraint checks thanSTP when density is high, the performance of the
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ASTP remains superior because it outputs the minimal netwdrich cannot

be obtained by usinBPC.
2. Solving TCSP:

e We combine different STP solvers with BT-TCSP. The resuitsasthat using
PPC as STP consistency check algorithm always get better pegioce than

usingDPC as STP consistency check algorithm.
e We use articulation points to improve the performance ofcdea

e A new cycle check mechanism is used to avoid unnecessarjstemsy check.
It reduces the number of constraint checks without changedimber of back-

tracks.

e We find a good variable ordering, which reduces the numberoaktraint

checks and the number of nodes visited.
e A sound and efficient filtering algorithn?\AC, is developed to help to solve
TCSP by reduce the size of meta-CSP.

3. Evaluation conditions:

e We design and implement a few random STP and TCSP gener&onse of
them are used to generate random temporal problems fangestir temporal

problem solvers.

e A few generators developed by other researchers are alsbtogestify our

STP solvers.

4. Finally, we identify new directions for future research.
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1.5 Guide to thesis

This document is structured as follows. Chapter 2 introddlce random temporal problem
generators that we designed and used to the generate ranmdbierps for testing our
algorithms. Chapter 3 introduces a number of STP solverscdigare their performance
in terms of the number of constraint checks and CPU time. k@ 4, those STP solvers
are used as STP consistency check algorithm in BT-TCSP. $timee heuristics are used
to improve the performance of search. A special filteringpatgm also introduced in
this chapter to reduce the size of meta-CSP. Chapter 5 gigces@usion reviewing our

contributions and stating our directions for future reskar
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Chapter 2

Random temporal network generators

A temporal constraint network is a constraint gragh= (V, E), where nodes are vari-
ables and represent time points, edges are constraintauofibd difference labeled by a
disjunction of continuous intervals and represent tenigafarmation. To test our algo-
rithms and heuristics for solving STP and TCSP, some randdbbhahd TCSP generators
are developed.

All generators take as input (=|V'|), the number of nodes in the temporal constraint

graph (TCG) andl, the constraint density. The number of edges in TCG is thus:

e=|E| = (”_2);”_1)d+(n—1). 2.1)

Another input parameter is an interval of integer val&es [1, r|, which is used for value
selections as discussed below.

This chapter is organized as follow. In Section 2.1, we staverandom STP generators
(GenSTP- 0, GenSTP- 1) developed by us, and two random STP generatGes STP-
2, SPRAND) from loannis Tsamardinos [32] ar8PL| B [9]. Based on our STP gener-
ators, we also introduce two random TCSP generat@esn {CSP- 0, GenTCSP- 1) in

Section 2.2. A brief summary is given at the end of this chapte
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2.1 STP generators

STP has only one interval per constraint. To generate STBlgns, we develop two
generatorsGenSTP- 0 does not guarantee that the generated networks are comsstd
GenSTP- 1 guarantees that a user specified percentagef the generated problems are

consistent (the consistency of the remaining ones is natgteed).

2.1.1 GenSTP-0

GenSTP- 0 randomly selectgF| edges from all possible edges list, and labels them by one
randomly selected intervals withiR, given as input. The resulting network is tested for
connectivity (anO(|V| + |E|) process) and only connected networks are kept. Since the
interval labels of edges are randomly selected, most ofrgéet problems have negative

cycles and are thus inconsistent. More formally:

1. Start with a listL of all possible edges (there a?—@;—l) edges inL).

2. Select arandom edge= L and remove it fron..

3. Labeli with [I;, u;], wherel; andu; are randomly selected iR (with [; < ;).
4. Repeat (2)—(3) untilE| edges have been selected.

5. If the graph is not connected, go to step (1), otherwise #a problem to a file.

2.1.2 GenSTP-1

GenSTP- 1 randomly select$n — 2) distinct points within? = [1, r]. These nodes along
with the endpoints oR (i.e., 1 and) constitute the: nodes of the temporal constraint graph
(TCG). Edges for TCG are chosen randomly from all possibtgesdist as in GnSTP-0.

However, the lowet; and uppel; values of the label of a given edgbetween two nodes
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a andb (with b > a) are chosen such that< (b — a) andu; > (b — a). Thus, this process
is guaranteed to generate a consistent network.
In order to include some inconsistent instances in a given gioproblems generated
using this process, we swap, in a given instance, the lalb¢isocorandom edges with a

probability of (1 — p.). More formally:

1. Randomly seledtn — 2) distinct points within a given intervat = [1, r]. Each point
corresponds to the ‘position’ of a node in the graph. The ficgte of the graph has

position 1, and the last node in the graph has position
2. Start with a listL of all possible edges (there aﬂ%‘—l) edges inl).
3. Select a random edde= (a, b) from L and remove it from’.

4. Leto be the distance between the two poiatandb of edgei. Choose two values

0 < a, B < 4, and set the label of the edgéo be[d — «, 0 + f].
5. Repeat (3)—(4) untilE| edges have been processed.
6. With probability(1 — p.), swap the labels of two random edges in the graph.

7. If the graph is not connected, go to step (1), otherwise Haw problem to a file.

2.1.3 More STP generators

In order to test our algorithms with different types of temg@roblems, we introduce two
other random STP generators.

The first one GenSTP- 2) is developed by loannis Tsamardinos. SimilaGenSTP-
1, the randomly generated STPs 8gnSTP- 2 have no structure constraints. The bound

of each edge was chosen randomly from a given interval.
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The second random STP generatd8i®.| B. SPLIB is developed by Cherkassky et al.
to evaluate shortest path algorithms. It includes sevéfatent families of randomly prob-
lem generators. We use one of theBPRAND. All random STPs generated ISPRAND
have a big cycle, which connects all the nodes. It is impdssibfind an articulation point
in the TCG generated b$PRAND, which may makes the STPs harder to solve by some

STP solvers.

2.2 TCSP generators

Ina TCSP, an edge (representing a constraint) is labeledlisyuanction of non-overlapping
intervals. Similar toGenSTP- 0 and GenSTP- 1, we propose two generators of ran-
dom TCSP instances. As for the case of the STP, the first gené@enTCSP- 0) does
not guarantee that its instances are consistent (have tosgJuvhereas the second one
(GenTCSP- 1) does with probability.,.

In addition to the inputs specified for the STP generator§H Generators take as input

k, the maximum number of non-overlapping intervals in thelal an edge.

2.21 GenTCSP-0

Similar to GenSTP- 0, GenTCSP- 0 randomly select$F| edges from all possible edges
list (size of@). For each edge, the generator randomly selects @pritervals within
R, given as input. The resulting network is tested for conmiggt Since the interval labels

of edges are randomly selected, most of those problems@asistent. More formally:
1. Start with a listZ of all possible edges.
2. Select a random edge= L and remove it frond..

3. Randomly select a numbe(number of intervals for an edge) &
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4. Randomly selec@t numbers and sort thenkX; < X; < ... Xy 1 < Xy (X; € R).
Label: with ([ X7, Xs], [ X3, X4, ..., [Xor1, Xat])-

5. Repeat (2)—(4) untilE| edges have been selected.

6. If the graph is not connected, go to step (1), otherwise Haw problem to a file.

2.2.2 GenTCSP-1

Like GenSTP- 1, GenTCSP- 1 randomly selectén — 2) distinct points withinR = [1, r].
These nodes along with the endpointddfi.e., 1 and-) constitute the: nodes of the tem-
poral constraint graph (TCG). Edges for TCG are chosen rahdivom all possible edges
list as in GnSTP-0. However, to guarantee the resulting TIzFat least one solution, the
lower [; and uppen; values of one of the interval in the label of a given eddmetween
two nodes: andb (with b > a) are chosen such that< (b — a) andu; > (b — a). To add
more labels per edge, the generator also adds épg2dabels before intervdl,, u;|, and
up tok/2 labels after interval;, v;] (the total number of intervals per label is upite- 1).
We also add a parametéf to define the range of all labels. This process is guaranteed t
generate a consistent network.

In order to include some inconsistent instances in a givex gioproblems generated
using this process,we swap the labels of two random edgés igraph with probability of

1 — p.. More formally:

1. Randomly seledtr — 2) distinct points within a given intervat = [1, r]. Each point
corresponds to the ‘position’ of a node in the graph. The ficgte of the graph has

position 1, and the last node in the graph has position
2. Start with a listL of all possible edges.

3. Select a random edde= (a, b) from L and remove it froml.
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4. Leté be the distance between the two poimtandb of edgei. Choose two values

0 < «, 8 < d, and set the label of the edgeo be[l;, u;], [; = § — a andu; = § + 3.

5. Randomly select number < k/2. Randomly seleckp numbers and sort them.
T < 39 < < Top—1 < Top (LL'Z < H/Q) PUSh([lZ — 32‘1,li — xg],[li — $3,li —

374], ldOtS, [lz — Top-—1, lz — IL'Qp]) into labels.

6. Randomly select number < k/2. Randomly seleckq numbers and sort them.
Y1 < Y2 < ..lyag1 < Yog (Y < H/2) Append labek with ([u; + y1, ui + yol, [ui +

Y3, Ui & Yals - - - [Ui + Y2q—1, Ui + Yag))-
7. Repeat (3)-(6) untjlF| edges have been processed.
8. With probability(1 — p.), swap the labels of two random edges in the graph.

9. If the graph is not connected, go to step (1), otherwise #a problem to a file.

Summary

We state four random STP generators and two random TCSPajersein this chapter.
Since we want compare the performance of STP solvers fomiinthe consistency of
STP or finding the minimal network of STP, we only usi@gnSTP- 1, GenSTP- 2 and
SPRAND to test our STP solvers. To compare the performance of TC&Brsdor finding
all solution of TCSP, we us€éenTCSP- 1 to generate random TCSPs.
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Chapter 3

Solving STP

In this chapter, we propose a new efficient algorithm, £k®TP-solver, for computing
the minimal network of the Simple Temporal Problem (STP)sHigorithm achieves high
performance by exploiting a topological property of thestoaint graph (i.e., triangulation)
and a semantic property of the constraints (i.e., convexitigght of the results reported by
Bliek and Sam-Haroud [6], which were presented for gene&P€£and have not yet been
applied to temporal networks. Importantly, we design thest@int propagation il\STP-
solver to operate on triangles instead of operating on edgddmplicitly guarantee the
decomposition of the constraint graph according to italdtion points. We also provide
extensive empirical evaluations of all known algorithms $olving the STP on sets of
randomly generated problems. Our experiments demonsigaidicant improvements of
ASTP-solver, in terms of number of constraint checks and CPU ,tiaver previously
reported algorithms such as the Floyd-Warshall algoritRry [11, 15], Directed-Path
ConsistencyPPC) [15], and Partial Path-ConsistendRC) [6].
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3.1 Introduction

Many critical applications in planning and scheduling retyan efficient handling of tem-
poral information represented as a Simple Temporal Prolg&m®) [12, 15, 8]. The effi-
ciency of the constraint propagation in such a network is@aarly crucial in autonomous
space applications as demonstrated by the Deep Space 1 &Agent experiment [26].
Further, an efficient STP solver is a crucial component ftrisg the Temporal Constraint
Satisfaction Problem (TCSP) because the search proceigme@dy Dechter et al. [15]
for solving the TCSP requires solving an STReathnode expansion. Thus, the perfor-
mance of the overall process depends heavily on the perfarenaf solving an STP. In this
chapter, we propose a new algorithm$STP-solver, for solving the STP and demonstrate
empirically that it constitutes a dramatic improvementrqgueviously used algorithms.
We achieve this by first combining the results developed bgkBhnd Sam-Haroud
[6] for general Constraint Satisfaction Problems (CSP$h wnewstrategy for constraint
propagation, which restricts the propagation effort tottiangles of the triangulated con-
straint network instead of its edges. Then, we apply theltiegumechanism to solve the
STP. The triangulation of the graph and the convexity of thiestraints in the STP guar-
antee that\ASTP-solver is complete and sound for proving the consistend¢h@STP and
for finding the minimal (and decomposable) network. Thigatlais structured as follows.
Section 3.2 recalls the main properties of a CSP and showsa@ouse them in our study.
Section 3.3 discusses the algorithms for solving the STPeapthins the advantages of
the ASTP-solver. Section 3.4 describes our experiments and resutssummarizes our

observations. At the end of this chapter, a brief summaryisngto conclude this chapter.
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3.2 Background

A Constraint Satisfaction Problem (CSP) is defined as falo@iven a set of variables,
each with a set of possible values defining its domain, and af @®nstraints that restrict
the combinations of values that the variables can be assighthe same time, the task
is to assign a value to each variable such that all constrane simultaneously satisfied.
Path consistency, as we discuss below, is an important gyopea CSP. Recently Bliek
and Sam-Haroud [6] proposed the Partial Path ConsistétR®g)(algorithm, which deter-
mines whether or not a network is path consistent. SRR@ operates on the triangulated
constraint graph, it realizes significant computational savings over presig known al-
gorithms, especially for sparse networks. In this chapterfirst improve the propagation
mechanism of th&PC algorithm by making it operate on triangles instead of idinal
edges. We then use the improved version to solve the STPelnédkt section, we recall

the main properties of a CSP and discuss them in light of tHe ST

3.2.1 Main CSP properties

The general properties of constraint graphs and the maamitigns for achieving them are

outlined below.

e Path consistencyThis property ensures that given two values for any two dem
that satisfy the constraint between these variables, wémménalues for variables in
any path of any length (possibly infinite) that satisfy the@stoaintsalongthe path
[25]. In general CSPs, path-consistency algoritli?@ge.g.,PC- 1 [25] andPC- 2
[22]) are used to enforce path consistency by tighteningiinary constraints. (They
also tighten the domains, thus enforcing strong path-stersty.) Montanari estab-

lished that these algorithms, which consider only pathgwogth two, on @omplete

A graph is triangulated if every cycle of length strictly gter than 3 possesses a chord.



32
graplt guarantee a path-consistent network [25]. The Directi®aah-Consistency
(DPC) algorithm, which achieves path consisteradgng a given ordering/ of the
variables in the search process, was proposed by Dechiead B3 efficient approxi-
mation ofPC; it guarantees path consistency only in the direction trettens, which
is that of search. Recently Bliek and Sam-Haroud [6] progdise Partial Path Con-
sistency PPC) algorithm, which determines whether or not a network i gainsis-
tent without necessarily producing as tight network as With SincePPC operates
on the edges of the triangulated graph (fewer than thoseeofamplete graph), it

realizes significant computational savings, especialgpiarse networks.

e Minimality: Minimality, the central problem in CSPs, is a property strenthan path
consistency. It guarantees that all the binary constrairgss explicit (i.e., tight) as

possible [25].

e DecomposabilityDecomposability is stronger than minimality and guarasitbat a
solution to the CSP can be found backtrack-free. This is hlyidesirable property

and guarantees the tractability of the CSP.

e Consistencyin contrast to the above, the consistency property guagaraely the
existence of a solution. Note that decomposability is a @efit condition for con-

sistency.

e Decomposition into biconnected componenibe decomposition of the constraint
graph into its biconnected components according to itsidetion pointdis a known
technique for enhancing the performance of solving a CSRmegl. It provides an
upper bound, in the size of the largest biconnected compptethe search effort

[19]. We establish that the new solver we introdu€eSTP, implicitly decomposes

2|f the graph is not complete, it is made so by adding universaktraints between non-adjacent edges.
3An articulation point of a graph is a vertex whose removataisects the graph. A graph with an
articulation point is separable, otherwise it is biconedct
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the constraint graph into its biconnected components withsing articulation point.

This important observation justifies its high performance.

3.2.2 Properties of the STP

A Simple Temporal Problem (STP) is defined by a gréps (V, E, I') whereV is a set of
vertices; representing time pointg] is a set of edges; ; representing constraints between
two time pointsi andj; and I is a set of constraint labels for the edges; see Figure 3.1
(left). A constraint label;; of edgee; ; is auniqueinterval [a, b], a,b € R, and denotes

a constraint of bounded differenee< (j — i) < b. A Temporal Constraint Satisfaction
Problem (TCSP) is defined by a similar gra@h= (V, E, I), where each edge labg};=
{lg), lgf), lg-“)} is asetof disjoint intervals denoting a disjunction of constraimf

bounded differences betweeémnd, see Figure 3.1 (right). We assume that the intervals

2 2
! l12=1{3,5],[6, 9], ..}

\Oll,Zz [3, 5] \5_

Figure 3.1:Left: STP.Right: TCSP.

in a label are ordered in a canonical way. In this section veesoon STPs, but we are
integrating our results into an algorithm for solving TCSH3elow, we show how we

exploit the properties of Section 3.2.1 in the context of$fé.

1. Triangulation of network and convexity constrainta.addition to proposindPPC,
Bliek and Sam-Haroud also showed that when the constraiatsaamvex the PC
algorithm (operating on the complete graph) and RRE algorithm (operating on
the triangulated graph) yield the same labeling for the sdgenmon to both graphs.
This important feature of thBePC algorithm has never been exploited before in the

context of STRsn which the constraints, linear inequalities, are indeaavex. Our
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ASTP-solver exploits this result and yields significant saviofjthe computational
efforts over previously available techniques for est#litig path consistency of the

STP.

. Distribution of composition over intersectioriThe two operators on binary con-
straints for establishing path consistency are constcaimiposition® and constraint
intersection®. Montanari showed that, when constraint composition iFidistive
over constraint intersectio®C guarantees not only path consistency but also min-
imality and decomposabilility [25]. In the case of the STé&hstraint composition

is interval addition, and constraint intersection is iagdintersection, which verify
the distributivity as noted by Dechter et al. [15]. Therefare can deduce that the
PPC algorithm and the\ STP-solver, guarantee the minimality and decomposability
of the STP.DPC does not guarantee the path-consistency, minimality ocordeos-
ability of the constraint network, however, and this is apariant feature, it can be

used to determine the consistency of the STP.

. Decomposition into biconnected componeirighe special case of the TCSP, and a
fortiori the STP, Dechter et al. [15] showed that each biemt&d component can be
solved independently. If all the components are found todrsistent, then the en-
tire network is consistent. If any of the components is noiststent, then the overall
temporal network is not consistent. The minimal networkhaf original problem is
obtained by the union of the minimal networks of the indiatibiconnected com-
ponents. When the constraint graph is sparse, this progeprticularly attractive.
This allows us to process the components in parallel, bygeddent agents. Thus,
decomposition into biconnected components is particuktractive in the case of
STPs, especially for large problems with low density. Wenshwat this decomposi-

tion is implicit and automatic in oufA STP-solver.
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3.3 STP algorithms

Here we discuss four different algorithms to solve STPs. fiflsetwo solversF- Wand
DPC, have been extensively studied. However, their performancombination with a
decomposition strategy according to articulation poirgs hever been compared before.
The third STP solver we study BPC, which has never before been used on temporal

reasoning problems. Finally, we introduce our new solesTP.

3.3.1 F- Wand DPC exploiting articulation points

The Floyd-Warshall k- W algorithm for computing all-pairs shortest-paths is acse
case of thé”C algorithm. F- Wis applied to the distance graph of an STP to compute its
minimal network in®(n?). As discussed in Section 32PCis a single pass algorithm and
weaker tharPC. It does not necessarily yield a path consistent, mininrallecomposable
network, but it determines if the STP is consist@RCis more efficient thai- W instead
of ©(n?), DPC determines the consistency of STPGnW*(d)?), whereW*(d) is the
maximum number of parents that a node has in the induced giaply the orderingi,
which is substantially smaller than

We modify theF- WandDPCalgorithms to exploit the existence of articulation points
the temporal network. First, we identify the biconnectechponents [11], then we execute
a particular STP solver on each component, independentiys Viields two algorithms,
F- WHAP and DPC+AP, respectively. It is easy to show that W+ AP and DPC+AP never
check more constraints th&n WandDPC. In fact, for a sparse network, our experiments
show that they check substantially less. We also show ecafliyithat, even in the absence
of articulation pointsf- W+AP andDPC+AP almost never require more CPU time than the
original algorithms; when they do, the difference is indiigant due to the overhead for

finding the articulation points.
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3.3.2 PPCalgorithm for STPs

PPC was introduced for general CSPs by Bliek and Sam-Haroud (8] showed that the
path-consistency property can be determined in constgaaphs by triangulating them
instead of completing them. They showed a significant im@noent in performance in
comparison tdPC in sparse networks. They also established that, for coneastraints,
both PPC andPC compute the same labeling for the edges common to both gr&uhse
the constraints in the STP (constraints of bounded difisgare convex, we apply for the
first time PPCto solve a continuous domain problem and compute the mimetalork of
the STP.

As specified in Figure 3.2, tHéPCalgorithm starts by triangulating the constraint graph
G, then iterates over a quex; of all edges, including those edges added to the temporal

graph by the triangulation process. It popsaahbitrary edgee; ; from the queue, recovers

PPC (P):
Begin
consi st ency « True
G <+ Triangulate P)
Qg < edgesinG
While Qz A consi st ency Do
e;j < DequeueQg)
Forall k£ such that(i, j, k) is a subgraph off Do
When I;; # I;; Then I;; < I ; and Enqueug; ;, Q)
Ly, Ty & (Ii; ® L)
When I, # I, Then I;; < I;; and Enqueug; , Qr)
When I, # I, Then I, < I, and Enqueug; x, Qr)
When I;;, I;; or I;;, is emptyThen consi st ency « False
Return consi st ency
End

Figure 3.2:ThePPC algorithm, slightly improved to consider simultaneouslitiaree edges in a
triangle.
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all triangles(z, 7, k) in which e, ; participates, and updates its latigl by composing the
intervalsl;;, andl,; and intersecting the result of this composition with theia&l 7;;. We
slightly modify the original algorithm to allow it to updatdl three edges at once and to
terminate when the queue is empty or inconsistency is folihd.distributivity property of
interval addition over interval intersection guarantdes tunningPPC on an STP results

in the tightest possible labeling (i.e., minimal) of thesiig edges.

3.3.3 ASTP algorithm

The goal of PPC is to make the labels of the edges of the triangulated canstjeaph
as tight as possible. When the label of an edge in a triangletigs tight as it could be,
given the labels of the other edges in the triangle, the lsbghtened accordingly. This

process may require tightening the other edges in the tgaagyshown in Figure 3.3. In

B B B
[2,7] . 2n — - [2, 6]
6, 9] 6, 9] 6, 9]
c c
¢ A A

[
A [2,12] [8, 12] [8, 12]

Figure 3.3:An example of updating edges. The label of edge BC then tie«t afe updated.

this example we can see that it is worth considering all tle@ges of a given triangle
simultaneously and updating them sequentially. This olagiem is the basis of our first
improvement tdPPC, and is already integrated in the algorithm of Figure 3.2.

When the label of an edge in a given triangle is upda®&{; triggers constraint prop-
agation oveall the triangles in whiclany of the edges of the original triangle participate.
This is clearly an overkill since only the triangles in whittte updated edges participate
need to considered. This observation was the motivatioadonew algorithm.

While all existing methods consider the temporal network@sposed of edges, our

new algorithm considers the STP as composed of trianglesHigeire 3.4). The graph of
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b ¢ A=<a,b,c>
C=<b,c,e>

E=<c,d, e>

B=<a, b, e> D=<a,c, e>

Figure 3.4:The temporal graph as a graph of triangles.

the temporal network is replaced by a graph of triangleshBEaangle is represented by a
node, and two nodes are connected if and only if the trianthsrepresent have a common
edge. Thus\STP appears as an AC3-like algorithm [22] on this graph of trlaaglf an
edge of the original constraint graph is not a part of anyngie, it is omitted from the
graph of triangles. Indeed, an edge that does not appearitriangle has no effect on
the constraint propagation in the STP and thus can be safeitfeal from the graph of

triangles. Consequently:

Proposition 3.3.1. A tree-structured STP is decomposable and consistent, taneddge

labels are minimal.

We call our new algorithrd\ASTP, although it is applicable to general CSPs and would
more correctly be called\PPC. The new algorithm is shown in Figure 3.5. First, we
triangulate the temporal network, using for example thewtigm devised in [28], which
may result in new edges. We add these edges to the originsiraott graph as universal
constraints setting their label {e-co, c0). Then we put all the triangles into a quedg;,
of sizeO(|E| degree(G))). We check every triangle in the queue. If a given trianglé, &)
is not minimal, then we update one or more of its edges. We tttigieve all the adjacent
triangles that contain any of the updated edges and add thé§)n if they are not already
there. Finally, we remové, j, k) from the queue, and repeat this process uptiis empty

or inconsistency is found.
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ASTP (P):
Begin
consi st ency « True
G «+ Triangulate the graph ¢?
Qr < all triangles inG
While Q1 A consi st ency Do
QRE + empty list
(1,4, k) < First@r)
Ly« Iy ® (I ® Iiy)
When I; # I;; Then I;; + I;; and Enqueug; ;, Q)
Ly, L © (I;; ® L)
When I;, # I Then I;; < I;; and Enqueug; x, Q)
Ly = Lip @ (I ® Ly
When I, # I, Then I, < I, and Enqueug; s, Qr)
When I;;, I, or I is emptyThen consi st ency <« False
Whenconsi st ency
For e, € Qg DO
T, n+ all triangles containing,, ,
For (r,t,s) € T,,,, Do Unless(r, t, s) € Qr Then Enqueue(r, ¢, s), Qr)
QT A RemOVd@., j7 k‘), QT)
Return consi st ency
End

Figure 3.5:The ASTP algorithm.

3.3.4 Features ofASTP

We summarize the features OfSTP as follows:

e ASTP has the same pruning power &s Wwith less effort. ASTP achieves min-
imality on the triangulated graph, without requiring therguetion of the graph,

which is necessary fdf- W This yields dramatic gains in the computational effort.

e ASTP automatically decomposes the graph into its biconnectedpoments.The
decomposition of the graph into its biconnected components effective tech-
nique to bind the search effort and enhance the performansai\vong a CSP. Our

experiments of Figure 3.7 and 3.8 and Table 3.2 and 3.3 shavgtich a strategy im-
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proves the performance of tie Walgorithm, even when the articulation points must
be explicitly identified. Because constraints propagateugh trianglesPPC and
consequenthASTP implicitely exploit the decomposition into biconnectedmgmo-
nents. Consider a triangulated temporal network compokaslcosets of nodesy
={p, x1, X2, .-, T} @NAY = {p, y1, y2, - . ., Yn}, @andp is the articulation point.
Suppose that edges exist only between nodes in ekherY. Since no edges con-
nect these two sets, there obviously are no triangles thatest them. All triangles
are either in seX or in setY. As shown in Figure 3.4, two triangles in the graph of
triangles can only be connected by a common edge. Theraforeiangle in sefX

is connected to a triangle in st WhenPPC and consequenthASTP propagate
constraints through neighboring triangles, no updatestiX'anay affect triangles in
setY. As a resultPPCand ASTP implicitly guarantee that articulation points in the
graph (if any), are expoited, as if the network was decongh@se its biconnected

components without actually decomposing it.

ASTP is cheaper tharPPC. ASTP andPPC use the same idea of Bliek and Sam-
Haroud [6]; howeverASTP is more careful about how updates are propagated and
thus exploits triangulation of the graph more effectivélgnt PPC. Although propa-
gation of PPC occurs through triangle$PC does not have a mechanism to record
which triangles really need to be checked. This inabilitysss some unnecessary

constraint checks and a waste of CPU time.

Our improvement in solving the STP directly benefits the tdsolving the TCSP.
TCSP isNP-hard and is solved with backtrack search. Every node expairsthe

search tree needs to solve an STP. Thus a good STP solveciial ¢an solving the
TCSP. We are currently demonstrating this idea and showoagthe decomposition

into independent components is particularly useful in tioistext.
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Table 3.1:Parameters of generated problems.

Problem size
Generator | #Nodes Density #Edges Samples Results
Range Step Range Step| per point
GenSTP-1 | 50,100| [0.01,0.1] o0.01 100 Table 3.2 and
50,100| [0.2,0.9] 0.1 100 Figure 3.6, 3.7, 3.8
SPRAND 50 [200, 2000] 200 100 Table 3.3
100 [400, 1400] 200 100
100 [1600, 2800] 400 100
257 0.016 768 5 Figure 3.9
513 0.008 1536 5
GenSTP-2 256 0.016 3x256 =768 5 Figure 3.9
512 0.008 3x512 =1536 5

3.4 Empirical evaluations

We implemented the following six algorithms in Common Lidployd-Warshall E- W,
Directed-Path ConsistencypC), and in combination with a mechanism for detecting
and exploiting articulation point&- W+AP andDPC+AP, Partial Path Consistenci?iPC),

and our new triangle-based solvek$TP). We used three generators of random STPs:
GenSTP- 1, SPRAND, andGenSTP- 2. GenSTP- 1 is our own generator. We designed it
to guarantee that graphs are connected and that at leastf@@&generated instances are
consistentSPRAND is one class of STPs generated by the public domain lidsRiyl B,

[9]. All the problems we generate witBPRAND have a cycle connecting all the nodes
(i.e., a structural constraint). This guarantees strommectivity and the absence of any
articulation points. FinallyenSTP- 2 is a generator given to us by loannis Tsamardinos
and was used in [32[cenSTP- 2 does not enforce the existence of a structural constraint.
The density of the temporal network is definedRsnsity = % Table 3.4
summarizes the characteristics of the problems testellidimg the size of the instances

and the number of samples generated for each measuremett ploeé results, measured

in terms of the number of constraint checks and CPU time, weseaged over the number



42
of instances and showed a precision of 5%. The detailed didlte @above experiments on
the instances generated GgnSTP- 1 and SPRAND are shown in Table 3.2 and 3.3. The

CPU time measurements are made in msec, with a clock resoloftil0 msec.

3.4.1 Experiments conducted

Using the 50-node problems generatedden STP- 1, we conducted the following exper-

iments:

e Managing the queue IASTP. The manner in which triangles are inserted in the
gueue affects the performance ASTP. We tested three heuristics for adding the
triangles to the queue: at the front of quedeSTP- f r ont ), at the end of queue
(ASTP- back), and random insertion into the queug$TP- r andom). All three
strategies resulted in the same output (i.e., the same ¢dlibe edges). The re-
sults in terms of constraint checks are presented in Fig@eT8e results show that

ASTP- back consistently performs the least number of constraint chetkis can

180000

160000 | GenSTP-1: 50 nodes ASTP-front

140000 -

%

S 120000

o]

<

Q

« 100000 |

+

5

S 80000 -

~

2

w2

S 60000
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20000 T
PP Chae
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Figure 3.6:Constraint Checks foASTP- f r ont , ASTP- back and ASTP-r andom
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be informally interpreted as follows. It is more effectivegropagate the constraints
as early as possible across the network, in a ‘sweeping’ grarinterestingly, we
noticed that quiescence was consistently reached in 7 arfearations. We use

ASTP- back in the rest of our study.

Computing the minimal netwarkF- W F- W+AP, PPC and ASTP (but not DPC)
result in the labels of the common edges, the minimal lal¥étpure 3.7 shows that

ASTP clearly and sinificantly dominates all others, for all vawé density.

Saving on the constraint checks.

DPC does not necessarily yield the minimal network, but it cateeine whether
or not the network is consistent in significantly fewer coaisit checks thar- W
Figure 3.8 shows thah STP, which is more powerful in terms of pruning power and
yields the minimal network, dominat&PC-like strategies when density is less than

50%.

Effect of problem sizén order to compare the performance of these different selve
on larger problems, we tested them on larger problems getkeby SPRAND and
GenSTP- 2. Figure 3.9 and 3.10 show the ratio of the number of congtchiecks
and that of the CPU time needed for all six strategies testeeference to the values

needed foF- W



Random STP generated byGenSTP- 1 with 50 nodes

F-w F- W-AP DPC DPC+AP PPC ASTP
Density CcC CPU (s) cC CPU (s) CcC CPU (s) CcC CPU (s) cC CPU (s) CcC CPU (s)
0.01 122200.5 0.822 29924.05 0.2091 1777.03 0.1168 744.44 0.0307 273.97 0.0039 125.75 0.0025
0.02 123001.5 0.8347| 59091.93 0.4026 3572.7 0.1304 2364.62 0.0683 837.9 0.0109 409.64 0.0045
0.03 120339.99 0.8389 79195.61 0.5297, 4769.95 0.1376 3833.36 0.0945  1532.55 0.02 761.71 0.0091
0.04 120044.01 0.8063 90934.63 0.6029 6411.11 0.1547 5525.58 0.1176| 2529.68 0.03 1270.41 0.0115
0.05 117382.5 0.7935 99076.94 0.6591 8106.14 0.161 7510.24 0.1394| 3766.13 0.0433|  1910.97 0.0188
0.06 120075.49 0.8209 108975.06 0.7251]  10204.46 0.1804 9746.2 0.1679 5207.57 0.0599| 2622.19 0.0269
0.07 120940.51 0.8637] 113426.05 0.756/ 11487.391 0.189 11175.431 0.1818 6679.19 0.0782| 3445.79 0.0358
0.08 116800 0.7862| 112267.63 0.7598 11715.94 0.1894| 11447.12 0.181| 7861.92 0.0879 4109 0.0424
0.09 115321.5 0.7778 112951.92 0.7525 13024.311 0.1976  12915.95 0.1986| 9240.66 0.1031| 4800.74 0.0531
0.1 116336.5 0.7947| 114676.23 0.7617)  14072.08 0.2115 13975.311 0.207| 10857.08 0.1247| 5705.62 0.0649
0.2 108926.5 0.7335 108852.99 0.73420  21203.27 0.2717| 21203.262 0.2705  23677.2 0.2624| 12631.6 0.1533
0.3 120195.99 0.8113 120195.99 0.8019 28912.988 0.347] 28912.988 0.3442 41404.09 0.4637| 22206.16 0.2676
0.4 106959.5 0.7213 106959.5 0.7147)  27121.85 0.3313  27121.85 0.3252| 43483.79 0.4958 23388.791 0.291
0.5 108896.5 0.7487| 108896.5 0.732| 29731.49 0.3506] 29731.49 0.3514| 53446.668 0.61621 28504.24 0.3553
0.6 109074.99 0.7376 109074.99 0.7314  31533.85 0.3732]  31533.85 0.3692| 57422.24 0.6662 30716.22 0.4083
0.7 109592 0.7502 109592 0.7294| 32002.16 0.3795 32002.16 0.3725 62265.727 0.7224 33464.38 0.4269
0.8 107428.51 0.7298 107428.51 0.7116 32391.83 0.3816] 32391.83 0.3719 64625.727 0.7439 34257.42 0.443
0.9 108566.5 0.741] 108566.5 0.7207| 33249.992 0.3925 33249.992 0.3796 67977.31 0.7931] 36429.34 0.4616
Random STP generated byGenSTP- 1 with 100 nodes
0.01 976155.06 8.3611] 486223.66 4.088) 21574.19 1.0156/ 14401.68 0.5275 4424.22 0.0586| 2225.99 0.0108
0.02 955417 8.2284| 737264.25 6.2037] 45044.293 1.3432  39022.73 0.9329 14764.17 0.2035  7803.66 0.0772
0.03 944883 7.9927| 855073.25 7.142  71363.34 1.3655 67750.06 1.2528| 31849.158 0.3818 16698.209 0.1795
0.04 920881.06 7.8254 879589.9 7.3463 89384.945 1.4859 87387.805 1.4347 49463.91 0.5777| 26350.969 0.3076
0.05 931483.06 7.8308 918906.56 7.71] 115620.83 1.7429 114994.93 1.7121 72491.46 0.8411 38301.637 0.472
0.06 886372.94 7.5324 879934.7 7.3403 116526.336 1.6933 116144.984 1.661¢ 85443.125 1.0262 45141.34 0.5847|
0.07 916842 7.7882| 914465.9 7.6159 145073.03 1.9288 144846.11 1.9396 113607.77 1.3013 61303.09 0.8185
0.08 924955.94 7.907| 924361.94 7.7039 148479.61 1.9416 148393.72 1.9335 129904.16 1.4633 70892.98 0.9267|
0.09 935953 7.9439| 935805.6 7.7978 167192.17 21092 167192.17 2.1225 161399.25 1.8614 86110.63 1.1857|
0.1 895177 7.7186 894583 7.4615| 165887.34 2.086/ 165803.48 2.0561] 165634.69 1.9312 90790.92 1.2733
0.2 883597 7.5387 883597 7.3604| 218225.31 2.4666 218225.31 2.4527) 320976.06 3.7723 175113.86 2.6166
0.3 860400 7.4074 860400 7.1667| 232372.25 2.5446 232372.25 2.5384 396075.3 4.7658 219178.31 3.3071
0.4 833850 7.1203 833850 6.9936| 240254.4 2.6094 240254.4 2.5553 446748.47 5.4984 247012.77 3.805
0.5 879490.06 7.554 879490.06 7.3287] 262964.03 2.8133 262964.03 2.7976 520176.78 6.4435 287163 4.4565
0.6 891914.06 7.6565 891914.06 7.4904 276184.53 2.9108 276184.53 2.8815 564749.56 6.734| 309157.75 4.7986
0.7 866636 7.4485 866636 7.3051 267027.4 2.8092] 267027.4 2.8233 554381.6 6.5875/ 303306.12 4.7356
0.8 847892 7.3271 847892 7.2994| 258738.61 2.733 258738.61 2.6769 552344.1 6.4986| 299997.22 4.8764
0.9 854969 7.3954 854969 7.3383| 266861.47 2.8032 266861.47 2.7704 568128.25 6.7406 309514.87 4.9663

'T -d1Suargquab 41 S wopuel uo SISA|0S d1S 10} s)nsal |’€1U8LU!JSdXE|:Z'8 9|geL

14%



Random STP generated bySPRAND with 50 nodes

Number F-w F- WAP DPC DPC+AP PPC ASTP
of Edges CC CPU (s) cC CPU (s) cC CPU (s) CC CPU (s) cC CPU (s) CC CPU (s) E
200 125000 0.8467 125000  0.8255 21824.031  0.2798 21824.031  0.2847 20247.77 0.23¢ 12111.471  0.159% %
400 125000 0.8497 125000 0.8304 30981.5 0.3674 309815 0.3732 42313.25 0.4893 25902.35 0.347 ¢
600 125000  0.8441 125000  0.8244 34524.73  0.4044 34524.73  0.403§ 56231.418  0.6606 34142.043  0.4656 w
800 125000  0.8467 125000  0.8274 36254.89  0.4253 36254.89  0.4176 64894.547  0.7594 39436.86  0.5334 [1I
1000 125000 0.8457 125000 0.8281 37302.24 0.4369 37302.24  0.4318 69790.15 0.825 42623.07  0.569773
1200 125000 0.8521] 125000 0.82427 38020.63  0.4473 38020.63  0.4382 73899.914  0.8671 44889.09 0.5796 =
1400 125000 0.8501 125000  0.8243 38502.508  0.4556¢ 38502.508  0.4442 76743  0.9067| 46354.59 0.608 %
1600 125000 0.8513 125000 0.8331 38902.95 0.4647 38902.95 0.4458 79116.336 0.927 47597.69  0.6287 %
1800 125000 0.8553 125000 0.8343 39166.152  0.4694 39166.152  0.4532 80540.03 0.9526 48321.05 0.6306 =
2000 125000 0.8621] 125000 0.8363 39381.36  0.4574 39381.36 0.4519 81024.4 0.953§ 48789.93 0.6291 2
Random STP generated bySPRAND with 100 nodes o
400 1000000  8.507 1000000  8.3707 167877.39  2.1703 167877.39  2.1947 144819.36  1.7659 85055.414  1.44271
600 1000000 8.5019 1000000  8.35724 218599.22  2.5686 218599.22  2.5723 241016.73  2.858% 146966.83  2.5927 a
800 1000000  8.5177 1000000  8.3523 245378.12 2.775 245378.12  2.7759 318725.3  3.7333 198716.12 3.441 _—U|
1000 | 1000000  8.5218 1000000  8.3476 263177.97  2.9213 263177.97  2.920% 380805.94  4.4388 236103.58  4.1202 ,
1200 | 1000000  8.6507 1000000  8.3242 275036.7 3.0351 275036.7  3.0053 434212.72  5.0349 268235.28  4.6083 i_’
1400 | 1000000 8.6643 1000000  8.3216 283548.44  3.0986 283548.44  3.0367 474789.12  5.4202 292905.87 4.886 @
1600 | 1000000 8.7028§ 1000000 8.3169 289520.4  3.1461 289520.4 3.082 512087.9  6.1406 313113.25 5.4773‘3
2000 | 1000000  8.7974 1000000  8.3284 298104.53  3.2074 298104.53 3.148 565111.94  6.9515 343748.66  6.0293 =
2400 | 1000000  8.529 1000000  8.3569 303608.8  3.2493 303608.8 3.2088 599295  6.7189 365377.84 5.9462.§
2800 | 1000000  8.81935 1000000 8.341 307894.12  3.2842 307894.12  3.2199 631238.44  7.3478 382691  6.1807 2
3
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Figure 3.7:Constraint Checks (top) and CPU time (bottom) FerW F- W+AP, PPC, and ASTP.
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Figure 3.9:Constraint Checks (top) and CPU time (bottom) for STP sejyaoblems generated
by GenSTP- 2.
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Figure 3.10:Constraint Checks (top) and CPU time (bottom) for STP ssjy@oblems generated

by SPRAND.
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3.4.2 CObservations

From the above experiments, we draw the following obseraati

e Using articulation pointsDechter et al. [15] showed that decomposing the temporal
network into its biconnected components is particularfeaive in enhancing the
performance of search. It is worth recalling that this degosition does not affect
the quality of the solution: the same edge labels are fould and without decom-
position. Figure 3.7 and 3.8 show that oy Wrealizes significant savings when
the density is low. In contrast, decompostion into bicome@components does not
benefit theDPC solver to the same extent. This can be explained by the fattthke
cost of DPC is bounded byO(nW*(d)?), whereWW*(d) is the maximum number of
parents that a node has in the induced graph. Decomposiies bt significantly
change the induced width*(d); the total cost of solving the subproblems is not
significantly smaller than that of solving the original pkerdn. When density is high,
the network cannot be decomposed, &dAP and DPC+AP perform almost the
same a$- WandDPC, respectively. The problems generated3BRAND cannot be
decomposed because of the existence of a cycle that coralentsles (i.e., struc-
tural constraint). Indeed, Table 3.3 shows the same nunflmmstraint checks for
the algorithms with and without articulation points. Howewhe required effort for
finding these articulation points is negligible, since CRuess are the same within

the resolution of the clock.

e Improvements due #@PC. Given the constraint semanti¢2?Cis guaranteed to yield
the same labels & WandF- W+AP on their common edges. Sin&®C operates
on the triangulated graph it performs significantly betterlbw density values than
F- W which operates on the complete graph, and évewtAP, which exploits the

existence of articulation points. When the constraint dgmscreases, the number
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of triangles in the graph also increases and so does the t&®R® However, the
number of constraint checks and, to some extent, the CPUfeinfePC remain less
than those folF- Wand F- WFAP, which quickly reach a stable valué(n?). For
the larger problems generated BPRAND and GenSTP- 2), Figure 3.9 and 3.10
show thePPC outperformsDPC and DPC+AP, which in turn outperfornf- Wand
F- WHAP. Note, however, thadDPC and DPC+AP do not yield the tightest network.
A comparison of Figure 3.9 and 3.10 shows that the performaf®PC is better
on problems generated ienSTP- 2 than on those generated BPRAND. This
is due to the existence of a cycle connecting all the nodesobl@ms generated by
SPRAND, which prevents decompositions and causes the triangnlptbcess to add

relatively more edges.

Improvements due tA STP. As a refinement oPPC, ASTP exploits the benefits
of triangulation to a greater degree thARC does. Experimental results show that
ASTP has always better performance th@RC in all experiments we performed
(Figure3.7 and Table 3.2 and 3.3). For high density valQe3TP can show a worse
performance thabPC (Figure 3.8). However, this slight degradation is mislegdi
since it does not account for the output of these two algmsth Indeed ASTP
guarantees the minimal network aBBC does not. Hence, the performance of the
former remains superior. The experiments on large problshmswyn in Figure 3.9
and 3.10, demonstrate thAtSTP is the absolute winner over all algorithms. A
comparison of Figure 3.9 and 3.10 shows the8TP, like PPC, is sensitive to the
structure of the temporal graph (i.e., the existence of &gyl is more effective on

problems generated witBenSTP- 2 than on those generated wiBPRAND.
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3.4.3 Significance of our results

In practice, mosteal-world applications exhibit typically STPs with large size and low
density [7]. The performance of an STP solver in these sinatbecomes extremely
important. ASTP is perfect for this kind of job. Its outstanding performanceder low
density is particularly advantageous and makes it the dgetitam developed to date.
Further, when solving a TCSP with search, the STP examinedddt node in the search
tree is a subgraph of the original TCSP and thus has a lowesitgehan the TCSP. This
supports the importance of an efficient STP solver for lowsitgmetworks. We expect
the combination oASTP with a TCSP solver to improve dramatically the performanice o

current TCSP solvers.

Summary

We introducedA\STP, a new efficient algorithm for solving the STP. Our algoritiach
vantageously exploits previous results reported in tieedture and binds them via a new
strategy for constraint propagation based on trianglesd&eonstrated that this algorithm
outperforms all previous ones in terms of pruning power agidopmance. More impor-
tantly, ASTP solver provides us with a new perspective on temporal proskes composed
by a set of triangles, where two triangles are connectediitauty if they have one common

edge. Constraint propagation can be carried out accorditigs new graph of triangles.
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Chapter 4

Solving TCSP

In this chaptet., we address the task of solving the general Temporal CainstBatis-
faction Problem (TCSP). We report the integration of thrppraaches to improve the
performance of the exponential-time, backtrack search {BEP) proposed by Dechter
et al. [15] for this purpose. The first approach consists afgia new efficient algorithm
(ASTP) [35] for solving the Simple Temporal Problem (STP), peration that must be ex-
ecuted at each node expansion during BT-TCSP. The seconokappgmproves BT-TCSP
itself by exploiting the topology of the temporal networkhi3 is accomplished in three
ways: finding and exploiting articulation points (AP), ckieg the graph for new cycles
(NewCyc), and using a new heuristic for edge ordering (EaddeOrhe third approach is
a filtering algorithm AAC, which is used as a preprocessing step to BT-TCSP, anchwhic
significantly reduces the size of the TCSP [36]. In addit@mtroducing two new tech-
niques, NewCyc and EdgeOrd, this chapter discusses arsesdeavaluation of the merits
of the above three approaches. Our experiments on randa@nbragted problems demon-
strate significant improvements in the number of nodesadsitonstraint checks, and CPU

time.

1This chapter is the topic of two papers currently submittecgpiiblication [36, 37].
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4.1 Background and motivation

A Temporal Constraint Satisfaction Problem (TCSP) is defibg a similar graphz =

(V, E,I) as STP, where each edge labg¥ {lw , ff) cn Z] ")} is asetof disjoint intervals
denoting a disjunction of constraints of bounded diffeemnbetweern and;j. We assume
that the intervals in a label are disjoint and ordered in an&al way. The following is a

typical example:

Tom has class at 8:00 a.m. He can either make breakfast fosdifr(iL0-15
minutes), or get something to eat from a local store (lesa thminutes). After
breakfast (5-10 minutes), he goes to school either by ca3(2hinutes) or by

bus ( at least 45 minutes). Today, Tom gets up between 7:30:40d

We wish to answer queries such as: “Can Tom arrive at schaahi for class?”, “Is it
possible for Tom to take the bus?”, “If Tom wanted to save mydynemaking breakfast for
himself and taking the bus, when should he get up?”, and sdrbrs temporal problem
can be represented as a temporal graph.

Let P, be a reference time-point (e.g., 6:00 amR),the time point Tom gets ug, the
time point he starts his breakfagt;, the time point he finishes it, anf, the time point he

arrives at the school. Figure 4.1 shows the temporal gragofT CSP.

[10, 15] / |
\@

[90, 100]

5, 10]

[20, 30]. [45, == L Cosistent sTP

e &
[0, 120] @ -

Figure 4.1:A TCSP example (left) and formulate it as meta-CSP (right)
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Dechter [13] described a backtrack search procedure (B3P)Gor solving a TCSP,
which is anNP-hard problem. To this end, the TCSP is expressed as a ‘metsst@int
Satisfaction Problem (meta-CSP). The variables of the 16&R are the edges; of G.
Their number depends on the density of the temporal grapé.ddémain of a variable;
is its label, I, ;= {I{), 1{), ..., I¥}. A partial solution is a sef(e;;, 1))} of variable-
value pairs (vvps) that form a consistent SWRich is a global constraint A complete
solution is a consistent STP in which all the edges /adppear. The minimal network of
the TCSP is the union of the minimal networksadf complete solutions, and solving the
TCSP requires finding all the solutions of the meta-CSP. Eacte in the tree generated
by BT-TCSP is an ST that hasE’ edges, a subset of the edges of the original network
(E' C E), each labeled with a unique interval from its domain. Wi consistent, the
node is expanded by adding & an edge from{ E — E’) labeled with an interval from its
domain. This yields a new STP that is checked again for ctarsig. Figure 4.2 illustrates

the tree corresponding to the example of Figure 4.1, whegesdre considered in their

lexicographical order.

.ﬁ’wf@sz] lg.oy*@w\m gw/@w

[20, 30] [4502] ‘

[20, 30]

Figure 4.2:The search tree for the example of Figure 4.1.
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In this chapter, we combine the following techniques to iowerthe performance of

BT-TCSP, and demonstrate their effectiveness on randoerigmated problems:

1. Every node in the tree is an STP that needs to be solvedebifersearch can pro-
ceed. Hence, the performance of a TCSP solver dependsltyitbn that of the STP
solver. We compare for the first time the performance of verinown STP solvers,
including a new oneASTP, that we proposed in previous chapter. We show that it
outperforms all others. Note that the performance of the &Jl¥2er does not affect

the number of nodes visited in BT-TCSP.

2. One well-known technique to improve the performance ofS® s to decompose
it into sub-problems using its articulation points [17, 18], and to solve the sub-
problems independently. We provide for the first time an eirogli evaluation of the

effectiveness of this technique.

3. Further exploiting the topology of the temporal netwavke, show how to avoid run-
ning an STP-solver by checking the existence of new cyclesv@®yc) in the net-
work as edges are added along a given path in the tree. Foxanepée shown in
Figure 4.2, the first four consistency checks are unnecessmause there are no

cycles in the respective networks and the corresponding &fdalways consistent.

4. Another way to improve the performance of BT-TCSP is to fingood variable-
ordering heuristic for the search. This corresponds to aessrjng ofF, the edges
of GG, as they are added along a given path in the tree. A good segueduces
unnecessary backtracking and also the number of constitadcks. We introduce a
new ordering heuristic (EdgeOrd) that exploits the adjageri existing triangles in

the graph to determine the ordering of their edges in the tree

5. We reduce the domains of the variables of the meta-CSPiby tiee efficient filter-

ing algorithm,AAC [36].
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The contributions of this chapter can be summarized asvistio

1. A new technique for saving constraint checks (NewCyc)anew ordering heuristic

(EdgeOrd).

2. The combination of the above listed techniques (i.e., BR-Solver, AP, NewCyc,
EdgeOrd, and\AC) to solve the TCSP.

3. Empirical evaluation and analysis of the effectivenddh@ese techniques and their

combinations to demonstrate their significance.

This chapter is structured as follows. Section 4.2 revidvesviarious STP-solvers we
used. Section 4.3 discusses the three improvements thaiteake topology of the tempo-
ral network. Section 4.4 addresses a filtering algorithmg¢lvban siginificently reduce the
size of meta-CSP. Section 4.5 describes our experimentstasetvations. Finally, a brief

summary concludes this chapter.

4.2 Algorithms for solving the STP

TCSP isNP-hard and is solved with backtrack search. Every node expansthe search
tree needs to check the consistency of an STP. Thus a good$/BEPis critical for solving
the TCSP. We test the following STP solvers: Directed PathsitencyDPC [16], Partial

Path ConsistencPC|[6], and Triangle-STRASTP [35].

4.2.1 Solving the STP using Directional Path ConsistencypPC)

A basic algorithm to solve an STP is the Floyd-Warshall atgar (F- W, which computes
all-pairs shortest-paths in a distance graph [F]Wguarantees consistency, minimality,
and decomposability and has a worst-case complexi®(af). Montanari showed thd-

Wis a special case of the Path Consisteri®y)(algorithm [25]. Dechter et al. propose the
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Directed-Path ConsistenciPC) algorithm. This algorithm is never more costly tHanW
runs inO(n?), and can determine the consistency of an ST® (W *(d)?), whereWW*(d)

is the induced width of the graph along a given orderinBPC determines the consistency
of the STP, but does not necessarily yield the minimal andmgosable network. Due to
the fact that only the consistency of an STP matters during 88P, we us®PC instead

of F- Wbecause of its lower cost.

4.2.2 Solving the STP using Partial Path ConsistencyrPC)

Bliek and Sam-Haroud introduced Partial Path-Consist@Reg), an algorithm applicable
to general CSPs (and not restricted to temporal networksPBC works on a triangulated
graph, unlike thd>C algorithm which requires a complete graph. Further, Blie® &am-
Haroud showed that when the constraints @evex the PC algorithm (operating on the
complete graph) and tHePC algorithm (operating on the triangulated graph) yield equi
alent results: the same labeling for the edges common todragths and the minimality
and decomposability of the STIFPC never requires more constraint checks tR&which
is advantageous when the (triangulated) graph is sparss.islparticularly attractive in
BT-TCSP, which requires solving an STP at each node.

PPCrequires that the graph be triangulated, which may resukw edges being added
to the graph. We triangulate the temporal network using kperghm devised in [28]. We
represent the new edges as universal constraints in thealrigpnstraint graph and set
their label to(—oo, 00).

In the tree generated by BT-TCSP, each node represents anvBdse graph adds
exactly one edge to the graph of the parent of the node (antradsangulated to be used
by PPC). Assuming a static ordering in the tree, the total numbegraphs that appear
along any given complete path is exactly equal to the numbedges in the original

problem. Further, all nodes at a given level of the searah heese the same graph (only
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the edge labelings may vary). Thus, under static orderlmgnumber of possible graphs
considered during the BT-TCSP process is exactly equakttotial number of edges in the
temporal network.

We devise two methods for accessing the triangulations @fShPs need in given a

static ordering, Figure 4.3. In the first meth&dian A we pre-compute all the STPs needed

All-triangulated-subgraphs (G, d) Induced-subgraphs G;, G;)
G+ nil E; < edges of7,;
TriSubGs«+— ni | N; + all nodese G;
E, + all edges i, using ordering? E; < nil
For e € Ey do Forall e; ; € E;
Push(e, G) Wheni € N; andj € N;
Push(Triangulate(G), TriSubG$ Then Push(e; ;, E;)
Return Rever se(TriSubG$ Return E;

Figure 4.3:Left: List of triangulated subgraphs given an orderifigight: Inducing a subgraph
from the triangulated original graph.

in search, triangulate them, and store their triangulatifam use during search. In the
second methodPlan B, we triangulate the entire network only once. We, then irduc
from the triangulated graph, the subgraph whose verticestioe STP under consideration.

Since the original graph is triangulated, each induced iydbgis also triangulated.

e Plan A Given avariable ordering, the list of the graphs considered during BT-TCSP
is generated as shown in Figure 4.3 (lefdush adds an item to a lisRever se
reverses a list, andriangulate triangulates a graph. We use tif¢ element of

Tri SubGs list as the triangulated subgraph for the node atthkevel of the tree.

e Plan B: Here we compute the triangulated graph only once and indoce it the
subgraph needed at every step. Figure 4.3 (right) showddbetam whereG, is
the triangulated graph of the original network afdis the subgraph considered at
level1 < i < |E] in the search. Note that this technique may end up consiglerin

denser graphs than necessary, which increases the cos$tiofjgbe STP.
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Our experimental results show thatan A always outperform#lan B in terms of the
number of constraint checks and CPU time. Note that neithitiese two plans affects the

number of backtracks (the number of nodes visited) in BT-FCS

4.2.3 ASTP algorithm used with TCSP algorithm

ASTP algorithm can output the same minimal networkasVandPPC. It uses the idea of
triangulation and considers the temporal graph as compafsieidngles instead of edges.
Constraint propagation is ‘triangle-based’ rather thadg&based.” As a finer version of
PPC, ASTP can find the minimal network with less cost thenWandPPC. When density
is low, ASTP is even cheaper thddPC, which does not guarantee the minimal network.
Similar to PPC, the pre-requisite condition foASTP is to first triangulate the temporal
graph. We have introduced above two plans to obtain triatgdIsubgraphs in the previous
subsection. We will usPlan Afor its lower cost in practice.

When solving a TCSP with search, the STP examined at eachindke search tree
is a subgraph of the original TCSP. Thus the STPs we need tk @dieays have lower
density than the original TCSP, Since Thus the outstandanfppnance ofASTP under

low density makes it even more attractive to use for solvirggECSP.

4.3 Exploiting the topology of the constraint network

We propose three techniques topology-based techniqueshnee the performance of
search. While the first technique is appligdbor to search to decompose the problem into

independent components, the last two are intertwined \Wetsearch process.
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4.3.1 Decomposition using articulation points

The existence of articulation points in the graph of the terapnetwork can be used to
decompose the network into its biconnected componentg;hwdan be solved indepen-
dently. Finding the articulation points can be don€jifiE|) [11]. This method provides
an upper bound to the search effort in the size of the largeshhected component [19].
It can effectively reduce the number of constraint checkBTATCSP and the number of
nodes visited in its tree. A solution to the entire networlaisombination of any of the
solutions of the biconnected components. The total numbsolations is:S = []; s,
wheres; is the number of solutions for componentThis conjunctive decomposition of
the temporal network [20] allows us to solve the sub-prolsl@mparallel, as in a multi-
agent system. Articulation points usually appear only wihendensity is low or when the
TCSP has a special topology. Note that even in the absencgaflation points, we could
‘induce’ such decompositions by removing some edges ofridyelg in a manner similar to
the cycle-cutset method of Dechter and Pearl [14]. We hayteimented the mechanism
for finding and using existing articulation points but not g&plored how to induce their

existence.

4.3.2 New cycle check (NewCyc)

The inconsistency of an STP is detected by the existence efative cycle in its distance

graph. When the graph of an STP has no cycles, the STP is aefgessnsistert

Proposition 4.3.1. A tree-structured constraint network is necessarily glhbeonsistent.

In BT-TCSP, nodes are expanded by adding one edge at a timen Wk addition of

a new edge does not yield a new cycle in the graph, a consST@ntremains consistent

°Note that is a stronger result than using the tree-structittes constraint graph, which requires ensuring
2-consistency [18].
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regardless of the labeling chosen for the new edge. We dxpisi observation to save

unnecessary consistency checks.

Corollary 1. When the addition of an edge to a globally consistent STRIyigb new

cycles, the resulting STP is globally consistent.
2 4

1 3 S

Figure 4.4:Simple constraint graph.

Consider the example of Figure 4.4. Suppose that searchsath@following ordering
of the edgese; 5, €23, €13, €34, €24, andey 5. Figure 4.5 shows the configurations of the

STPs checked for consistency at each level in the search.

Search level| 1 2 3

4 5 6
P DR
STP 1¢ 16 3 I 3 le——3 3 1 3 °5
v v
X X

Checking strategy Total
Always vV vV V Vv 6
NewCyc X Vv Vv X 2

Figure 4.5:Comparison of STP checks using different the new-cyclekdieristic.

Along a given path, as the tree generated by search is bepigred in a depth-first
manner, two strategies can be adopted at a given level: (@ayd check the STP for
consistency, and (2) check the consistency of the STP ongnvehnew cycle has been
added to the network. At levels 1 and 2, no cycles exist in ttaply and the STP is
necessarily consistent, Figure 4.5. At levels 4 and 6, no cyales have been added to
the graph of levels 3 and 5 respectively, and the correspgn8irPs remain necessarily
consistent regardless of their labeling. As illustratedval checking for new cycles saves

us unnecessary operations.
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Figure 4.6:0nly check the consistency of the newly formed biconnectieganent.

Further, when the addition of a new edge yields a new cycle,deonnected compo-
nents of the previous level are necessarily merged into abiemnnected component at
the current level. We need to cheokly the consistency of the newly formed biconnected
component (Figure 4.6), and we can safely ignore the resteofdmporal network. This

allows us to localize the effort of consistency checkinginecessary part of the network.

Corollary 2. When the addition of an edge to a globally consistent STRiyial new
cycle, the resulting STP is globally consistent if and ohthé newly formed biconnected

component is a consistent STP.

The application of this new heuristic, NewCyc, significgrghhances the performance
of solving the meta-CSP with search. To apply it, we need eatifly, between two levels
of the search tree, (1) that a new cycle has been introduad@2arthe two biconnected
components that were merged as a result. This is done bymyiné O (| E|) algorithm
for finding articulation points at each level, checking wiegtthe number of biconnected
components was reduced between two levels, and identifiggngomponent to be checked

as that containing the new edge.
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4.3.3 Ordering heuristic for the meta-CSP

Variable ordering is an effective heuristic for improvingetperformance of search. In
general, it is governed by the ‘fail first principle.” The #baver the node pruned in the
tree, the larger the pruned subtree, and the larger the awsigs. For the meta-CSP, a
node is pruned when it corresponds to an inconsistent STUR, Tine ordering of the edges
(which are the variables of the meta-CSP) affects how quigklinconsistent STP is found
and also the effectiveness of constraint propagation ilsire

As stated in Corollary 1, along a given path, no inconsistenay occur between one
level and the next unless at least one new cycle is formedenetimporal graph. Conse-
guently, a reasonable ordering heuristic is to first condinlese edges that form triangles
with edges existing in the STP. This may allow us to uncoveoisistencies as early as
possible. It also increases the effectiveness of backtrgckecause it is more likely to
undo an inconsistency by changing the labeling of an eddgedsame triangle as the one
that yielded the inconsistency than that of a random edgen®a edge-ordering heuristic
orders the edges of the temporal graph in such a way that therkeis expanded triangle
by triangle ‘around’ the existing edges. The algorithmgegivn Figure 4.7, returns the list
of edges in the order to be used by the search. It uses basiatiops on lists.Append
concatenates two lists in the order providdebp removes and returns the first item in
a list. It requires that each edge be associated with the auwifitriangles in which it
appears in&, which is bounded byn — 1), wheren in the number of nodes it (i.e.,
the time points). We obtain these numbers as a by-produdteoimiplementation of the
triangulation algorithm.

Based on the topology of the network, we choose the edgedhiatipates in the largest
number of triangles and schedule the edges of those trimfigiea priority instantiation
during the search. Figure 4.8 illustrates the first stepsi@fapplication of the algorithm

starting from edge 1. First, the triangles in which edge ltipgrates are explored. From
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EdgeOrd (G)
E, < all edges of=
E<«nil
While E, do
e;; < Edge ofE, appearing in the largest number of triangleszin
E « Append (E, {e;;})
Q <« nil
While € j do
Forall £ such thatjk is a subgraph off do
Q < Append (@, {eix ejx}), E < Append (E, {eix, e })
Ey + Eo\ {eij, €ikr €k} e;j < Pop(Q)
Return E

Figure 4.7:Edge ordering heuristic.

there, we reapply iteratively the same process to each efdtyes explored, i.e. edges I, 11,
and IV, gradually covering all the edges in the biconnectmdmonent. The modification

of the label of any these edges propagates through thesglesa Thus, inconsistencies
and deadends are likely to be more quickly detected duriagcbeand backtrack remains

locally contained (Figure 4.9).

Figure 4.8:lllustrating the exploration of the edges of a graph by thgeedrdering heuristic.

We can show that this process stops when all the edges ind¢beriected component
have been visited. Then EdgeOrd restarts from an unvisdgd &om the original graph
and repeats the process until all edges of the original rm&tivave been visited. The
function returns a list in which the edges that are in a givearimected component appear

in sequence.

As aresult, this ordering heuristic implicitly enablesrebao examine the biconnected
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Figure 4.9:EdgeOrd localize backtracking.

components of the graph in isolation, and thus decomposgrdph automatically. The

advantages of this mechanism are:

1. Localized backtrackirig This heuristic is based on the topology of the temporal
graph. Neighboring levels in the search tree are likely tptbesically related. When
it encounters a deadend, search will backtrack to an eddestimore likely the

culprit than another edge taken randomly from the graph.

2. Automatic decomposition of the graph into its biconnectedgonentsThe decom-
position of the graph into its biconnected components isfiattve technique to
bind the search effort and enhance the performance of pdVirCSP. This ordering
heuristic implicitly guarantees that articulation poiimighe graph (if any), are ex-
ploited, as if the network was decomposed into its bicoretecbmponents without

using the special algorithm necessary for this purpose.

4.4 The label filtering algorithm

When solving a CSP, it is common to run a domain filtering madm (such as arc-

consistency, AC) as a preprocessing step to search, antetteave search with a looka-
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head strategy (such as forward-checking, FC [21]). The gbaln AC algorithm is to
reduce the domain of the variables, thus reducing the siteed€SP and that of the search
tree to be explored. Arc-consistency is usually easy toeaehin polynomial time. Quite
a few general arc-consistency algorithms exist, such a8 A22], AC-4 [23], AC-6 [4],
AC-7 [3], AC-3.1 [38], and AC-2001 [5].

The backtrack search on the meta-CSP requires solving ama&&®ery node in the
search. Its complexity is thug(n?k/Fl) [13]. Given the definition of the unique global
constraint, running a generalized arc-consistency algor{24] on the meta-CSP is pro-

hibitively expensive.
Proposition 4.4.1.Generalized arc-consistency on the meta-CSRRshard.

Proof: The only constraint in the meta-CSP is a global constrdtstallowed tuples are
all consistent STPs that are solutions to the meta-CSPirfgrts definition to enforce
generalized arc-consistency is thus equivalent to solthegneta-CSP, which iSP-hard
[13]. O

Filtering is exponential —> Filtering is polynomial

Consistent STP @
One global,

exponentil size
constraint

Polynomial number of
polynomail-size ternary
constraint

Figure 4.10:Replacing the global constraint with a polynomial numbeteshary constraints.

We propose to approximate this problem by replacing the eaptal-size global con-
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straint in the meta-CSP with a polynomial number of polyralrsize ternary constraints
Figure 4.10. We define an efficient generalized arc-comsigtalgorithm specialized for
these ternary constraints, which we cAlAC. The complexity of AAC is O(degree(Q)
X|E| x k¥) = O(n|E|k?), resulting in an approximation of the generalized arc-isiescy
of the meta-CSP. We report the performance improvementdbdlcktrack search for solv-
ing the meta-CSP with and without this preprocessing in $ediCPU time and number
of constraint check€C.

To the best of our knowledge, the only other work reportedhéliterature on applying
consistency algorithms to the meta-CSP is a study by SchavadtDechter [29, 13]. They
attempt to apply a path consistency algoritHd@) to the labels of variables of the meta-
CSP. Given the disjunctive intervals, this closure al¢nonicauses a fragmentation problem,
which increases the number of intervals per label and mdieesesulting meta-CSP even
harder to solve by a search algorithm. To avoid this fragates problem, Schwalb and
Dechter introduced the Upper-Lower Tightening algorithdh T) [29]. ULT computes
looser networks than those resulting from enforcing futhpeonsistency, but results in the
same upper and lower boundsRG

Our approach is neither like path-consistency nor ikd. We consider each interval
as an independent value in the domain of a variable. Our gdal iemove inconsistent
individual intervals from the labels, not to tighten theservals, which may not terminate
in the general case and is prohibitively expensive in thegral case.

We reformulate the meta-CSP by replacing its unique globastaint with a ternary
constraintAle; ;, e; k., €] among every variable, ;, e; ,, ande;; of the meta-CSP that
forms anexistingtriangle in the temporal network'. Note that we do not triangulate
the temporal network, nor do we make it a complete graph. vBeM® define the\arc-
consistency property as the generalized arc-consistdrtéysoconstraint and describe the

AAC algorithm to achieve it.
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4.4.1 Aarc-consistency

For each trianglejk in the original temporal network we define a ternary constrai
the meta-CSR\e; ;, i 1, €;4]. Given three variable-value paifs; j, l;;), (e, li), and
(ejk,ljx) Of the meta-CSP, with # j # k, we say that the labeled triangl®[(e; ;, 1;;),
(eiks lir), (ejx, k)] i @ consistent triangle if and only (f;; o 1;x) N l;, # 0. Figure 4.11

shows a consistent triangl®|(e; ;, [3, 5]), (i, [4,9]), (e, [2,6])]. We also say that each

k
? A [(e.,j [3,8) €k [4,9]) (§ k. [2,6]) ]

iO/D\OJ

Figure 4.11:A consistent triangle.

variable-value pair in the triangle is supported by the tileeo variable-value pairs. We

introduce the following definitions:

e The ternary constraim\e; ;, e; ., €, 1] iS AAC relative to the meta-CSP variablg,
if and only if for every intervallg) € Donai n(e; ;) there exist an intervdlgfj) €

Domai n(e; ) and an interva,l,(;.) € Domai n(ey ;) such tha(i¥) o l,(c’;.)) Ny #0.

e The ternary constraimh[e; j, e; x, €;,c] is AAC if and only if it is AAC relative to the

variablese; ;, e; 5, ande; .
e Finally, the meta-CSP i&AC if and only if all its ternary constraints ar@AC.

We identify all the existing triangles in the temporal netivand replace each of them by
a ternary triangle constraint. The number of these new caings is iNO(|E|degree(G))
= O(|E|n). The size of each constraint is at m&3t Note that we do not add any edges

to the temporal network to make it a complete graph or to gridate it.
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4.4.2 AAC algorithm

The AAC algorithm, shown in Figure 4.14, removes the intervalthendomain of ar; ;
that do not have a support in any triangle in whigh appears in the temporal graph. It
implements mechanisms for consistency checking that aneniecent of AC-4 [23] and
AC-2001 [5] in that it tries to optimize the effort for con@acy checking. It uses the pro-
ceduredi r st - support of Figure 4.12 andini ti al i ze- support of Figure 4.13.

ThePush andDel et e operations we use are destructive stack operations.

Fi rst-support (e, li;), ijk))
tijk <= Al(esg, lig), (€ik 1), (€44, 13)] < Suppor t ed- by (((es, li), ijk))
Unlesst;;, Thenr <~ 1,5+ 0
For m from (s + 1) to |Domai n(e; )|
Unless(ly, o 1) N l;; = ni | Return Al(e;j, L), (ei, 1), (€0, 172)]

If 7=|Domai n(e; )|

Then Return ni |

Else Forn from (r + 1) to |Domai n(e; )|

For ¢ from 1 to|Domai n(e;y)|
Unless(If, o I5,) N l;; = ni | Return Al(e;j, L), (€i, 15), (€5, 14)]

Return ni |

Figure 4.12:Fi r st - support.

It operates by looking at every combination of a ¢, /;;) and the triangles;k
in which it appears, denotede; ;, l;;), ijk). The support of(e; ;, l;;), ijk) is the first
element in the domains ef , ande; that yields a consistent triangle (Note that domains
and variables are ordered canonically). Intervals in thealo of a variable that are not
supported in any triangle are removed from the domain. Whentarval is removed, some
vvps may lose their supporfA AC tries to find the next acceptable support. The process is
repeated until all vvps have a valid support in every reletdgangle.

We use a hash-tabBuppor t ed- by to keep track of the support of each vi&p ;, /;;)

in atriangleijk. A key in this hash-table is a tuplée; ;, l;;), ijk); its value is a consistent
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Initialize-support (G)
Support - by, Support s: two empty hash-tables
Q < {(ei;, i)}, set of all vwps in the meta-CSP
Q@' < ni |, Consistency— ¢
While @ A Consistencylo
(eiy, lij) < Pop(Q)
Forall k£ such thatjk is a subgraph ofr do
tz’jk — A[(@i,j, lij)a (ei,k, lzk)a (ej,k, l]k)] — First- suppor t (((ei,j, lij)a Z]k))
If tijku Then Suppor t ed- by[(ei,j, lij)a Z]k] — tz’jk
PUSh(<€i’j, li]‘, ij), Suppor t S[(ei,k, lzk)])
Push((ei, li;, ijk), Suppor t s[(e;x, Ljx)])
Else Domai n(e; ;) < Domai n(e; ;) \ {l;}
Push((e; ;, i), Q")
Unl ess Donai n(e; ;) Then Consistency— f
Return ', Suppor t ed- by, Support s, Consistency

Figure 4.13:1 niti al i ze- support .

triangleA[(e; ;, lij), (€ik, lix), (€, Lix)]. The size oBuppor t ed- by isO(|E|k degree(G)).
We also use a hash-tal$eppor t s to keep track of what a given vvp supportsSmppor t ed-
by. The key is a vie; ;, l;;) and the value is a list of the keys 8tippor t ed- by that
this vvp supports.

The procedurgé ni ti al i ze- support shows how these data-structures are initial-
ized. By constructionSupports hasO(|E|k) keys and a total 0O(|E|k degree(G))
elements.

In addition to these hash-tabldsji ti al i ze- support returns the list)’ of vvps
deleted from the domains of the meta-CSP at the initiabrasitep. AAC, shown in Fig-
ure 4.14, iterates over the vvps that have been deleted &nadteethem from supporting
entries inSuppor t ed- by.

We can prove thahAC terminates, does not remove any consistent intervals (&
sound), and is irQ(degree(G)|E|k®) = O(n|E|k®). We can further improve its perfor-

mance and reduce the number of constraint checks by exygalite convexity property of
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AAC(G)
Q, Suppor t ed- by, Support s, Consistency— I ni ti al i ze- support (G)
While @ A Consistencylo
(eik, lix) + Pop(Q)
Forall each(e; ;, l;;,jk) € Suppor t s{(eix, lix)])
tz‘jlc < A[(GZ], zg) (ez ks lzk) (ej ks ]k)] < Suppor t ed- by(((ei,j, lij)a ’L_]k))
Del et e(((ei ;,li;), ijk), Suppor t s[(e;k, lix)])
Del et e({(ei;, lij), 17k), Suppor t s[(e;, lx)])
%Jk/<_ Al(eig, lij)s (i, lix.), (€555 gk)] < Fi rst-support ({(e,li;), ijk))
If ¢,
Tinen Suppor t ed- by|(ei, lij), ijk] + t;jk
Push({e; ;, lij,ijk), Suppor t s{(e;, li;)])
Push(({e; ;, lij,ijk), Suppor t s[(e;«, l;.,c)])
Else Donai n(em-) «— Domai n(ei,j) \ {lw}
PUSh((@i,j, lij)a Q)
UnlessDomai n(e; ;) Then Consistency— f
Return {Domai n(e; ;)}

Figure 4.14:AAC.

interval intersection, which we suspect may result in aimogitalgorithm.

4.5 Experimental results

Figure 4.15 shows the TCSP solvers we tested, with and wifhredprocessing bYAAC.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, TCSPSolvers

i STP Solver Exploiting Articulation Checking for New

! ppe Poznts (AP) Cycles (NewCyc)

e DPC-TCSP DPC+AP-TCSP DPC+AP+NewCyc-TCSP
Preprocessing 1| - . Triangulation plan !
Wlth ARC or i bpC . —=PPC-A-TCSP ‘ PPC+AP-A-TCSP PPC+AP+NewCyc-A-TCSP |
Wlthout Anc nin i i 3
77777777777777 L . =—=PPC-B-TCSP —— PPC+AP-B-TCSP PPC+AP+NewCyc-B-TCSP |

i :ASTP.  Plan A + EdgeOrd (automatic decomposition) + NewCyc ASTP-TCSP

Figure 4.15:TCSP solvers tested.

The STP solvers we used d&PC, PPC, andASTP of Section 4.2. We combined them
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with the techniques proposed in Section 4.3 (i.e., AP, Newsy@nd EdgeOrd). We com-
pared their performance in terms of the number of nodesedslY, constraint check€C,
and CPU time. Note that all CPU time curves have almost extietlsame shapes as (0@
curves. We carried out our tests on randomly generatedrdgtesed) connected problems.
Our generatorGenTCSP- 1, guarantees that at least 80% of these problems have at least
one solution. The TCSP instances generated have the fallpeharacteristicsn = 8,

k randomly chosen between 1 and 5, density of the temporalonktg = %)
varies in [0.02, 0.1] with a step of 0.02 and in [0.2, 0.9] watlstep of 0.1. The number
of variables in the meta-CSP, for which we must fedtdsolutions varies from 7 to 26.
The size of the meta-CSP varies on average betweenl0’6and 5.2<10'°. We averaged
the results of over 100 samples. The goal of our experimeasstw study theffectson
the various solvers of the improvements we proposéc., ASTP, AP, NewCyc, Edge-
Ord, AAC), and to establish their effectiveness. It is not our duale to compare the
performance of the various STP solvers, which is alreadyudised extensively in previous
chapter.

Section 4.5.1 demonstrate the filtering power/®AC. In order to demonstrate the
advantages oNAC, we report the cost of solving the meta-CSP with and withbis
preprocessing. We use the Directional Path-Consistergryritim DPC also of Dechter
[13] to check the consistency of STP at each node. Sectiaf diScusses the number
of solutions of the problems tested. Naturally, all solvensst find the same solutions.
Counting the number of solutions was useful to confirm thisalvers were sound and
that our implementation was bug-free. Section 4.5.3 shbeeffect of our techniques on
the shape of the tree by measuring the number of nodes visstection 4.5.4 shows the
effect of our techniques on the various TCSP solvers (@BC, PPC, and ASTP) on the

number of constraint checks. In Sections 4.5.3 and 4.5.4lseeshow how filtering the

3Note that although decomposition according to articutagioints is a well-known technique, to the best
of our knowledge, it has not been yet assessed experimentall
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meta-CSP wit\AC dramatically improves the performance of search. Theceff this
preprocessing is clearly visible in comparisons of theesofthe vertical axis of the charts
without and after preprocessing.

The detailed data of the above experiments on the instaecesated bys>en TCSP- 1
are shown in Table 4.5, Table 4.2, Table 4.3 and 4.4.

Table 4.1:Performance oANAC

Graph Number of Size of meta-CSP Number of Cost of search Cost of search Cost of AAC
density | variablesin solutions without AAC with AAC
meta-CSP Original Filtered CPU [s] CcC CPU [s] CcC CPU [s] CcC

0.02 7 16701.67 16701.67 16701.67 13.6 518463.66 13.62 518463.66|| 5.00E-04 0
0.04 8 58448.44 40831.72 4176.91 21.6 843112.7 17.86 712777.75 0.0011 55.53
0.06 8 64780.24 48399.24 4837.69 25.03 965354.3 22.02 868557 0.0012 50.98
0.08 9 282427.3 142638.28 1437.01 24.23 1008288.4 18.14 782634.6 0.0022 122.7
0.1 9 271254.2 132758.27 1331.86 26.08 1103695.6 17.83 793677.7 0.0017 134.14
0.2 11 4257366 653949 105.88 23.95 1105540.5 6.43 335393.7 0.0033 324.44
0.3 13 6.81E+07 2424326.7 20.02 16.32 866010.3 2.1 117963.05 0.005 575.8
0.4 15 1.10E+09 11173955 5.97 22.13 1320010.5 0.49 29187.07 0.0075 880.23
0.5 18 6.64E+10 62.07 2.4 26.11 1630835.2 0.07 3654.7 0.0115 1383.8
0.6 20 1.06E+12 33.21 2.35 29.25 1932359.2 0.07 3821 0.015 1711.11
0.7 22 1.61E+13 31.16 2.19 34.87 2297002.5 0.077 3607.89 0.0192 2059.18
0.8 24 2.74E+14 2.41 1.66 57.13 3946315 0.07 3226.7 0.0217 2393.2
0.9 26 5.23E+15 2.48 1.6 74.39 5128653 0.08 3851.71 0.0262 2839.48




TCSP solver without AAC

BT based onDPC BT based onPPC- A BT based onPPC- B BT based onASTP

Density AP AP+NewCyc AP AP+NewCyc AP AP+NewCyc | NewCyc+EedeOrd
0.02 518463.66 0 0 0 0 0 0 0 0 0
0.04 843112.7 7098.57 5428.29 195478.37 4656.7 3185.1]1 130208.28 3193.86 3193.8p 2732.05
0.06 965354.3 19478.22 15111.471 247673.87 13226.26 8798.33 170087.39 8770.99 8770.9p 7070.2
0.08 1008288.4 208692.31 104777.69 329940.2 91361.41 50101.957 206974.66  49796.168 51038.53 17415.29
0.1 1103695.6  146097.48 70758.62 335411.9 69567.13 37837.2 203333.9 37839.12 38099.08 13098.529
0.2 1105540.5 427509.1 132239.03444156.22  200879.33 70834.13172033.37 75767.01 67844.07 7640.5903
0.3 866010.3 612256.7 152573.14 419374.37  271919.87 85687.97129761.72 87368.99 75188.18 13369.98
0.4 1320010.5 1140589.6 231152.44 629796.3 572063 128503.8 139582.05 126608.2 110898.97 13173.97
0.5 1630835.2 1623335.6 253523.25881600.94 869830.9 140018.53126249.19 124945.4 112451.02 11500.86
0.6 1932359.2  1932359.2 241397.171132821.4 1132821.4 145871[2124646.92 124646.92 109810.49 13533.8
0.7 2297002.5 2297002.5 203337.03 1221336 1221336 125914.4)7 106470.74  106470.74 98323.805 11595.09
0.8 3946315 3946315 283957.3[7 2312516.7 2312516.7 171134.44136861.39 136861.39 1320652 13617.9
0.9 5128653 5128653 264101.9 3125162.5 3125162.5 170470.61142386.44  142386.44 139375.42 13482.91

TCSP solver after AAC

0.02 518463.66 0 0 0 0 0 0 0 0 0
0.04 712777.75 7042.8496 5391.87 180705.23 4627.27 3166.9 122173.29 3175.65 3175.6b 2681.83
0.06 868557 19429.16 15079.471 237374.4 13200.36 8782.33 164291.92 8754.99 8754.99 7030.8496
0.08 782634.6  199238.55 100803.305259604.69 86338.79 47635.937 165931.56 47328.24 48526.64 16875.111
0.1 793677.7 131938.3 64213.543 254822.17 61250.344 34128.92159538.44 34071.95 34296.9 13686.17
0.2 335393.7 171026.39 59681.01 129256.44 75406.72 31419.69 61471.055 34251.39 29890.4 9583.06
0.3 117963.05 100633.83 39738.96 72655.13 63498.027 26085.182 26988.21 23354.92 20417.04 4034.39
0.4 29187.068 28307.87 10054.83 20862.37 20433.33 6122.4p 5851.99 5572.18 4908.52 2710.5
0.5 3654.7 3614.67 2112.71 2872.62 2838.98 1828.04 1384.58 1371.86 1308.78 796.66
0.6 3821 3821 2569.39 3523.51 3523.51 2431.3% 1756.16 1756.16 1719.35 1100.83
0.7 3607.89 3607.89 2651.483 3677.83 3677.83 2834.49  1906.57 1906.57 1886.31 1451.6
0.8 3226.7 3226.7 2419.56 3603.56 3603.56 2802.2% 1740.82 1740.82 1730.42 1385.8
0.9 3851.71 3851.71 2962.27 4588.59 4588.59 3635.96 2101.98 2101.98 2096.71 1692.36
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TCSP solver without AAC

BT based onDPC BT based onPPC- A BT based onPPC- B BT based onASTP

Density AP AP+NewCyc AP AP+NewCyc AP AP+NewCyc | NewCyc+EdgeOrd
0.02 13.6012 0.0012 0.0016 2.9475 8.00E-04 0.0011 2.0418 0.0018 0.002 7.00E-04
0.04 21.5972 0.1454 0.117 8.0523 0.1134 0.089 5.2475 0.0777 0.0743 0.1602
0.06 25.0329 0.4376 0.3413 9.2482 0.3014 0.2303 6.1463 0.1952 0.1884 0.4806
0.08 24.2254 4.3314 2.1852 10.5273 2.1741 1.4013 7.1445 1.2439 1.1834 1.2915
0.1 26.0802 2.9953 1.5577 11.0083 1.6644 1.083% 6.7494 0.9578 0.90043 0.9524
0.2 23.945 8.6494 2.7925 12.1999 5.1939 2.3822 6.2219 2.4927 2.1745 0.5818
0.3 16.3212  10.4973 3.0631 9.7721 6.2291 2.8293 4.3629 2.807 2.4388 1.0811
0.4 22.1312 19.3378 47679 13.598 12.2608 49896 5.2502 4.7373 4.0686 1.0972
0.5 26.1097 25.7714 5.2948 17.5251 17.4339 5.5902 5.5594 5.4671 4.8504 1.0095
0.6 29.2475  29.2092 5.2324 20.7785 20.7554 6.0247 6.2324 5.9301 5.196 1.2594
0.7 34.8727 34.9366 4.777% 22.7941 22.8446 6.013 5.9852 5.9829 5.4353 1.1629
0.8 57.1265 56.9518 6.8542 39.2782 39.1814 8.8453 9.0351 9.0753 8.0979 1.4266
0.9 74.385 74.5737 7.357 51.7004 52.061 10.4281 11.0689 11.0537 10.01338 1.4812

TCSP solver after AAC

0.02 13.6168 0.0014 0.0013 2.9113 0.0012 0.0026 2.0563 0.0019 0.0015 0.001
0.04 17.8629 0.1464 0.1156 6.6389 0.1139 0.097 4.281 0.0755 0.071¢9 0.1612
0.06 22.0242 0.4366 0.3489 8.2771 0.3011 0.2509 5.3853 0.192 0.1837 0.481
0.08 18.1424 4.1696 2.1301 7.7162 2.049 1.4437 4.7949 1.1597 1.1074 1.248
0.1 17.8349 2.6798 1.4 7.6339 1.4468 1.0273 4.7383 0.8468 0.7974 0.9899
0.2 6.4253 3.2855 1.1821 3.2472 1.8491 1.0474 1.7861 0.9873 0.8544 0.776
0.3 2.1025 1.8001 0.7688 1.4603 1.2832 0.73§ 0.6767 0.5931 0.5274 0.3348
0.4 0.4918 0.479 0.1924 0.3799 0.3713 0.1869 0.1633 0.157 0.1404 0.2406
0.5 0.0654 0.0655 0.0519 0.0562 0.0568 0.0498 0.0422 0.0402 0.0443 0.098
0.6 0.0692 0.0707 0.0621 0.065 0.0665 0.0611 0.0494 0.0491 0.0547% 0.1335
0.7 0.0714 0.0727 0.069 0.0701 0.0702 0.0706 0.0564 0.0559 0.0633 0.1906
0.8 0.0655 0.0668 0.065 0.068 0.0689 0.0696 0.057 0.0551 0.0637 0.1765
0.9 0.0781 0.0796 0.077 0.0839 0.085 0.084 0.0681 0.066 0.073 0.228
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TCSP solver without AAC

BT based onDPC BT based onPPC- A BT based onPPC- B BT based onASTP

Density AP AP+NewCyc AP AP+NewCyc AP AP+NewCyc | NewCyc+EdgeOrd
0.02 22463.73 0 0| 22463.73 0 0| 22463.73 0 0 0
0.04 22987.63 302.41 302.41 22987.63 302.41 302.41 22987.63 302.41 302.41 318.83
0.06 25003.81 660.84 660.84 25003.81 660.84 660.84 25003.81 660.84 660.84 654.85
0.08 22990.65 3684.61 3684.61 22990.65 3684.61 3684.61 22990.65 3684.61 3684.61 1546.24
0.1 23925.88 3305.01 3309.58 23925.88 3305.01 3305.01 23925.88 3309.58 3309.58 1394.64
0.2 21555.33 8748.92 8749.22 21555.33 8748.92 8748.92 21555.33 8749.22 8749.22 757.95
0.3 14371.13 8992.471 8992.471 14371.13 8992.471 8992.471L 14371.13 8992.471 8992.471L 1065.07
0.4 17150.84  15490.259 15490.259 17150.84 15490.259 15490.259 17150.84 15490.259 15490.259 951.49
0.5 19171.459 18848.65 18848.6/519171.459 18848.65 18848.65519171.459 18848.65 18848.65 744.15
0.6 20187.63 20187.63 20187.68 20187.63 20187.63 20187.68 20187.63 20187.63 20187.68 772.57
0.7 20756.48 20756.48 20756.48 20756.48 20756.48 20756.48 20756.48 20756.48 20756.48 643.15
0.8 32091.64 32091.64 32091.64 32091.64 32091.64 32091.64 32091.64 32091.64 32091.64 768.8
0.9 38826.61 38826.61 38826.6[L 38826.61 38826.61 38826.6[L 38826.61 38826.61 38826.6(L 589.11

TCSP solver after AAC

0.02 22463.73 0 0| 22463.73 0 0| 22463.73 0 0 0
0.04 18735.102 294.05 294.05 18735.102 294.05 294.05 18735.102 294.05 294.05 312.96
0.06 22143.98 653.51 653.51 22143.98 653.51 653.51 22143.98 653.51 653.51 645.45
0.08 16569.23 3396.96 3396.96 16569.23 3396.96 3396.96 16569.23 3396.96 3396.96 1511.45
0.1 16875.42 2864.68 2864.68 16875.42 2864.68 2864.68 16875.42 2864.68 2864.68 1439.16
0.2 5981.71 3390.78 3390.78 5981.71 3390.78 3390.78 5981.71 3390.78 3390.78 854.75
0.3 2101.57 1782.61 1782.61 2101.57 1782.61 1782.61 2101.57 1782.61 1782.61 366.9
0.4 516.44 506.08 506.04 516.44 506.08 506.04 516.44 506.08 506.04 173.95
0.5 49.92 49.19 49.19 49.92 49.19 49.19 49.92 49.19 49.19 38.97
0.6 46.38 46.38 46.38 46.38 46.38 46.38 46.38 46.38 46.38 39.28
0.7 36.48 36.48 36.48 36.48 36.48 36.48 36.48 36.48 36.48 40
0.8 30.23 30.23 30.23] 30.23 30.23 30.23] 30.23 30.23 30.23] 31.34
0.9 33.07 33.07 33.07| 33.07 33.07 33.07| 33.07 33.07 33.07| 33.07
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45.1 Power of AAC

The comparison of the average size of the meta-CSP beforafterdiltering is shown in
Figure 4.16. It shows thak AC dramatically reduces the size of meta-CSP especiallynwwhe
density is high, which is typical of consistency filteringh@iques used as a preprocessing
step to search. More importantly, Figure 4.16 shows thasibe of meta-CSP obtained

after filtering by AAC is close to the number of solutions for high-density nekso

1. 0E+15 | —+—before running AAC
' —=—after running AAC

N - - number of solutions
< 1. 0E+12
=]
o
—
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o
=
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» N -w— -
‘ \.-"*""'ﬁ'---A--.\_"-___.___-'
L OE+00 —55 0.2 0.4 0.6 0.8 1.0

Figure 4.16:Reduction of problem size of TCSP I.

The results of solving the meta-CSP in terms of CPU time andtcaint check€Care
shown in Figure 4.17 and Figure 4.18, and the numerical gadoe reported in Table 4.5.
In this table, we also report the cost of runnidgAC although it is already included in
the cost of search in order to demonstrate that the overheadodfiltering is practically

negligible.
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Figure 4.17:Constraint checks for solving TCSP.
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Figure 4.18:CPU time for solving TCSP I.
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45.2 Solutions to the TCSP

When density is low, there are few constraints, any partikiteon is likely to be extended

to a global solution, and there are many solutions to the 18&# as is seen in Figure 4.19.

18000
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6000

Number of Solutions

4000 |

2000

0 e . . . . * *
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Density

Figure 4.19:The number of solution of TCSP.

Indeed, under low density, the temporal network (which iarganteed connected by
construction) has almost no cycles. Thus, almost any caatibimof intervals in the label
of the edges is a solution to the meta-CSP (see Proposioh)4The number of solutions
quickly drops density. Whet=0.9, there are only one or two solutions, one of which us

guaranteed by construction.

4.5.3 Effects on the size of the search tree

The effects of AP and EdgeOrd on the ‘shape’ of the tree casdesaed by the number of

nodes visited\V by search. They are shown in Figure 4.20.
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Figure 4.20:Nodes visited by BT-TCSP.
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Note that the effects of NewCyc on the various STP solvexs DPC, PPC, andASTP)
are irrelevant to this measurement. Indeed, they aim atcieguhe cost of checking the
consistency of the STP at a node in the tree once search leasiadty reached the node.
The ‘*’ in the legend of Figure 4.20 indicates that these resultd far all STP solvers
tested. Figure 4.20 shows that AP reduces significaddywhen density is low. When
density is high, almost no articulation point exists, heA€edoes impaclV. The effect
of EdgeOrd is quite dramatic across all values for densitabse it allows BT-TCSP to
quickly identify dead-ends, as a good ordering heuristisupposed to do. Moreover,
we find that usingAAC as a preprocessing step significantly reduce the numbeodads
visited especially when density is high, and we start toagothe existence of a phase
transition that appears aroudd= 0.1 and becomes increasingly visible as we move toward

more effective TCSP solvers.

4.5.4 Effects on the number of constraints checks (same as ORime)

Here we discuss the effects of our techniques on the vari@&PTsolversDPC, PPC, and
ASTP. We show the benefits of AP and NewCyc DRC (Figure 4.21 and Figure 4.22).
We show the benefits of AP, NewCyc BRC for bothPlan A(Figure 4.23 and Figure 4.24)
andPlan B (Figure 4.25 and Figure 4.26). Finally, we show the benefitsdgeOrd and
NewCyc undePlan Aon ASTP (Figure 4.27 and Figure 4.28).
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Figure 4.21: Constraint checks and CPU time f@PC-TCSPwithout AAC (Top: Constraint
Checks; Bottom: CPU time [s])
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Figure 4.22 Constraint checks and CPU time fDPC-TCSRafter AAC (Top: Constraint Checks;
Bottom: CPU time [s])
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Figure 4.23:Constraint checks and CPU time fePC-TCSRusing Plan A withoutAAC (Top:
Constraint Checks; Bottom: CPU time [s])
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Figure 4.24: Constraint checks and CPU time f&PC-TCSPusing Plan A afterAAC (Top:
Constraint Checks; Bottom: CPU time [s])
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Figure 4.25:Constraint checks and CPU time f&PC-TCSRusing Plan B withoutAAC (Top:

Constraint Checks

; Bottom: CPU time [s])
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Figure 4.26: Constraint checks and CPU time f&PC-TCSPusing Plan B afterAAC (Top:
Constraint Checks; Bottom: CPU time [s])
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Figure 4.27:Constraint checks and CPU time fé&xSTP-TCSP withou\AC (Top: Constraint
Checks; Bottom: CPU time [s])
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Figure 4.28: Constraint checks and CPU time fakSTP-TCSP afterAAC(Top: Constraint
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Exploiting articulation points:

For DPC (Figure 4.21) andPPC (Figure 4.23 and 4.25), AP is again particularly effective

for low density graphs but useless for high density ones.

New cycle check:

NewCyc dramatically reduce3C across all density values (even though it has no effect on

the number of nodes visited, as stated in Section 4.5.3).

Triangulation plans:

The triangulation of an STP during search, required™®C solver, is carried out according
to Plan A(Figure 4.23) andPlan B(Figure 4.25) of Section 4.2.2. By comparing the scale
of the vertical axis of these two figures, we conclude Blah Ais superior tdPlan B. This
can be explained as follow®lan Atriangulates, before search, all the networks that will
be checked for consistency during search (there are eXd@gtsuch graphs)Plan Bfinds
the triangulation of an STP at a given node during search dyaimg a subgraph from the
triangulated original STP. HencBlan Btriangulates the network only once, whitéan A
carries out as many triangulation operations as the nunfbedges in the network (and
levels in the search). However, the induced subgrapR$an Bend up much denser than
the ones used biRlan A thus requiring more effort fror®PPC, the STP solver. Further,
the fact thatPlan Ayields no denser graphs th&tan B becomes an even more desirable
feature when TCSP is dense. This explains the significaf@rdiices in behavior between

Plan AandPlan Bunder high density TCSPs.

AAC:

Compare the cost of solving TCSP with and without usingC, the results show that

AAC does not negatively affect the cost of search under lovsitheand is tremendously
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effective in reducing the total cost under high density.eked, the cost of search is almost
negligible when density is high. In contrast, search withaeprocessing witt\AC is
prohibitively expensive when density is high.

When density is low, the temporal graph has few edges, hémecmeta-CSP has rel-
atively few variables and its size is small. When densityeases, the number of edges
in the temporal graph, and hence the number of variablesimigta-CSP, increase, yield
exponentially larger problems. However, this increasesitimber of triangles in the tem-
poral graph and enhances the filtering powefA#C, which removes most intervals. In all

cases, the experiments strongly support ughfC when solving a TCSP.

The winning combination:

In [35] we compared the performancesFefW DPC, PPC, and ASTP for solving an STP.
We found thatDPC, PPC, and ASTP consistently outperforni- W the Floyd-Warshall
algorithm. Further ASTP consistently outperformBPC. Indeed, the former is a finer
version of the latter. Importantly, when the density of teeporal graph is below 0.4,
ASTP (which guarantees minimality) outperforfdBC (which does not). For sensibly
high densities, we foun®PC to be more effective. Since in the search for solving the
meta-CSP we consider subgraphs of the original networknéterorks at the different
levels of the tree are more likely to be sparse than denses skuws that even when the
TCSP is dense/)\STP is a good choice for the STP solver. Hence, among the tecégsiqu
tested, the best combination one could use to solve a TC3t isrte we called\STP-
TCSP (Figure 4.15). Indeed STP outperforms all TCSP solvers including the one based
on DPC (compare Figure 4.21 and 4.27).
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Summary

At the beginning of our investigations, the best mechanisown to date for solving the
meta-CSP was one based odPC. We introduced\STP, enhanced it with NewCyc and
EdgeOrd, and showed empirically that it results in dramaetiprovements. Indeed, in
comparison to the origin®PC, the best combination of our techniques reduces the number
of constraint checks by a factor of 500 (median) and 40,008réme) and that of CPU by
a factor of 320 (median) and 1,200 (average).

Further, we showed that our techniques uncover the existefiec phase-transition-like
phenomenon for solving the TCSP, which is most visible WitBTP-TCSP. This observa-

tion calls for more detailed investigations in this directi

“Note that we do not include in our comparison algorithms tighten these intervals in the labels of the
edges. Those may not terminate in the general case and &ibifively expensive in the integral case [13].
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Chapter 5

Conclusions and future work

This thesis focuses on solving quantitative temporal gaisl. It covers aspects of model-
ing the temporal constraints, solving the temporal proklegeneral, and exploiting topo-
logical and semantic information to improve the solverdgenance. We address both the
Simple Temporal Problem (STP) and the general Temporal t€onsSatisfaction Prob-
lem (TCSP). For this purpose, we combine traditional teghes (e.g., articulation points),
the latest results in constraint propagation (e.g., dgth consistency), a new powerful
technique for constraint filtering (e.gMAC andASTP), and a set of new search heuristics
(e.g., NewCyc and EdgeOrd). We also provide extensive setgperimental results to

compare the performance of the resulting solvers with presty known ones.

5.1 Conclusions for the STP

Simple temporal problem (STP) is a simple version of temip@&P (TCSP) that can be
solved in polynomial time. There are a number of algorithargfis task such as- Wand
DPC. We first apply partial path consistency algorithRPC) on STP, which is applicable
in general CSP. TheCalgorithm (operating on the complete graph) andRRE algorithm

(operating on the triangulated graph) yield the same lagédbr the edges common to both
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graphs, which is the minimal network of an STP. Furthermioasged orPPC, we develop a
new STP solverASTP, which is a finer version dPPC. In ASTP, constraint propagation
operates on the set of triangles of the triangulated tenhpetavork instead of operating
on its set of edges. It yields the minimal network with a cdaiags lower than or equal
to that of PPC. Note that the topology of temporal graph is very importarg,explore the
articulation points to decompose the temporal graph intoesbiconnected components.

Experimental results show the following conclusions:

1. Exploiting articulation points reduces the number ofstomint checks of- Wand
DPC when constraint density is low. The almost non-existencattulation points
under high density results in the same number of constragtls for both strategies
(exploiting articulation points and ignoring them) whiletraffecting the computa-
tional effort. Interestingly, we noticed that the expltiba of articulation points has

little effect on the performance &@PC even when constraint density is low.

2. PPCis more efficient thari-- W especially under low densityASTP is always su-

perior toPPCin terms of constraint checks and CPU time.

3. F- WPPC, andASTP yield the same minimal labeling of the common edgeBC
only determines the consistency of the STP. It cannot energroperty of path
consistency, or a fortiriori that of and minimality, of themiporal network. While it
generally needs less constraint checks theBTP under high density, the fact that
DPC does not guarantee as tight a resulsSTP does, it is reasonable to consider

that ASTP is superior taDPCin general.

4. F- Wis not sensitive to the topology of temporal network. Thet cb$-- Wis always
©(n?). DPCis sensitive to the density of temporal network, becauseoimsplexity
depends of the induced width. When density is high (inducelthis large), the cost

of determining the consistency of an STP usDR increasesPPC and ASTP are
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more sensitive to the structure of temporal network. Problevith big still cycles

will increase the cost of finding the minimal network.

5. PPC and ASTP implicitly guarantee that articulation points in the grafphany),
are exploited, as if the network was decomposed into itsrimeoted components

without actually decomposing it.

5.2 Conclusions for the TCSP

Temporal CSP in general is atiP-hard problem. We use backtrack search (BT-TCSP)
introduced by Dechter et al. to solve TCSP. The TCSP is censitlas a meta-CSP. Every
node in the search tree of meta-CSP consists of an STP. Thestancy of this STP needs
to be checked before the search can proceed or backtraclgolhés to find all solutions
of meta-CSP. By combining all solutions of meta-CSP, we d#aio the minimal network
of TCSP.

We introduce a few heuristics to improve the performanceleTBSP. Similar to solve
CSP, we want save the number of constraint checks (it dyreddicates the CPU time for
solving CSP) as well as the number of nodes visited (it ind&the number of backtracks).
Obviously, Using more efficient STP algorithm can save thalmer of constraint checks at
each node. Consequently, it saves the number of constrasnks of BT-TCSP. Exploring
the topology of the temporal graph could be very helpful fadwvg TCSP. Using articula-
tion points to decompose the temporal problem into somesablems provides an upper
bound, in the size of the largest biconnected componentgtgearch effort. But this only
works in low density networks. We introduce a new edge cheeklranism, which points
out the consistency of STP at some level of search tree withciually running the STP
consistency check. Using this mechanism saves lots of @nsthecks especially under

high density. Good variable ordering always helps to imprite efficiency of search. We
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introduce an edge (variable) ordering heuristic based etgbology of temporal network.
It expands the sub-problem to bigger and bigger set of theandt reduces the number of
backtracks, constraint checks, and also decompose thh gtapmatically. At last, a fil-
tering algorithm AAC, is developed to reduce the size of meta-CSP. Experirhersialts

show the following achievements:

1. The use of articulation points to decompose the tempoaggreduces the number
of nodes visited and constraint checks in the search treleeofnieta-CSP when the
temporal network is sparse. It does not affect the perfoomani search when the

network is densely connected.

2. The use oPPC for checking the consistency of STP at each node of the séereh

requires fewer constraint checks tHaC does.

3. The different ways for retrieving the triangulated swpirs needed at every level of
the tree significantly impact the overall performance &fRC-based BT-TCSP. In-
deed,Plan A which pre-computes and stores the triangulations of aelktibgraphs
to be used during search, is more effective tRéam B, which induces the triangu-

lated subgraphs from the triangulation of the original grap

4. The new heuristic NewCyc avoids uneccessary consistdrexks at some levels of
the search tree. It does not affect the number of nodes didi@reoever, it checks
only the consistency of newly formed biconnected companehich is typically
smaller than than the original problem. We noticed that acpce the expansion of
graph by addition of one new edge rarely produces a new cydlee graph. This
explains why NewCyc is so powerful in reducing the numberaistraint checks

for solving the meta-CSP.

5. EdgeOrd, our new variable ordering heuristic for seaighhe meta-CSP, arranges

the edges accoring to the adjacency property of the tempetalork. By this edge
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ordering, the network is expanded as bigger and bigger seiangles. Since the
propagation of temporal network is based on triangles,gtige ordering makes the
propagation more efficient and quickly determines the is@iancy of an STP. This
heuristic reduces the number of nodes visited as well as ah&ar of constraint
checks. Applying this heuristic guarantees that artiocottapoints in the graph (if
any), are implicitly exploited, as if the network was decarsgd into its biconnected

components without requiring the use of any special algoritor this purpose.

6. ASTP consistently outperformBPC. We can readily expect that theSTP-based
BT-TCSP will outperform the one oRPC. To further boost the performance of the
BT-TCSP solver, we also apply the new techniques we devethpmmelyPlan A
NewCyc, and EdgeOrd. The resulting new TCSP sole3TP-TCSP, is the abso-

lute winner over all TCSP solvers we describe.

7. AAC s a sound, cheap, and effective algorithm for consti@iopagation in a TCSP.
It dramatically reduces the size of TCSP especially whenehgoral network is
dense. ApplyingAAC as a preprocessing technique for solving the meta-TCSP
magnificently improves the performance of search. It alsoouers the potential

existence of phase transition, which requires a more thalranvestigation.

5.3 Directions for future research

We propose to extend our investigations in the followingdiions:

1. We can further imprové\AC’s performance and reduce the number of constraint
checks by exploiting the convexity property of intervalergection. We suspect that
this improvment may result in an optimal algorithm for detering the genelized

arc-consistency of the reformulated network.
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2. Another interesting direction for future research isneestigate howAAC can be
used to improve the performance of teT algorithm of Schwalb and Dechter [29]

since the two approaches are orthogonal.

3. The idea of inducing the decomposition of a graph by igrptine existence of some
edges is particularly attractive to us. With this idea, wa aéways decompose a
large problem into smaller components, as a sufficient aqmiation for establishing
inconsistency. This may dramatically increase the sizé lmihTCSPs that we are

currently able to handle.
4. Investigate how to explohAC in a lookahead strategy for solving the meta-TCSP.

5. Evaluate empirically how to improve BT-TCSP with dynarbindling [10], which

is particularly attractive in this context since we are limgkfor all solutions.

The ability to represent time in a flexible way and reason ahiaifectively is central
to the success of Artificial Intelligence and its usefulnessur lives. In this thesis, we
have exploited previously known results in a creative way iatroduced new techniques
to enhance the performance of processing the two repreégergtaf temporal networks, the
STP and the TCSP. In the future, we plan to pursue our in\astigs of the basic aspects
of temporal reasoning and apply them in specific problemaisgltasks such as planning

and scheduling in order to demonstrate their usefulnessaittipal settings.
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