
HIGHER-LEVEL CONSISTENCIES: WHERE, WHEN, AND HOW MUCH

by

Robert J. Woodward

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry and
Dr. Christian Bessiere

Lincoln, Nebraska

September, 2018

RAPPORT DE GESTION
2015

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITÉ DE MONTPELLIER

En informatique

École doctorale Information, Structures, Systèmes

Unité de recherche Laboratoire d'Informatique,
de Robotique et de Micro-électronique de Montpellier (LIRMM)

En partenariat international avec Université du Nebraska--Lincoln, États Unis

Présentée par Robert J. WOODWARD
Le 20 septembre 2018

Sous la direction de Christian BESSIERE

et Berthe Y. CHOUEIRY

 Devant le jury composé de

Sébastian ELBAUM, Professeur, Université de Virginie
Stephen D. SCOTT, Professeur Associé, Université du Nebraska—Lincoln
Souhila KACI, Professeur, LIRMM
Jamie RADCLIFFE, Professeur, Université du Nebraska—Lincoln
Christian BESSIERE, directeur de recherche CNRS, LIRMM
Berthe Y. CHOUEIRY, Professeur Associé, Université du Nebraska—Lincoln

rapporteur
rapporteur
examinatrice
examinateur
co-directeur
co-directrice

Les Cohérences Fortes : Où, Quand, et Combien

HIGHER-LEVEL CONSISTENCIES: WHERE, WHEN, AND HOW MUCH

Robert J. Woodward, Ph.D.

University of Nebraska, 2018

Adviser: B.Y. Choueiry and C. Bessiere

Determining whether or not a Constraint Satisfaction Problem (CSP) has a so-

lution is NP-complete. CSPs are solved by inference (i.e., enforcing consistency),

conditioning (i.e., doing search), or, more commonly, by interleaving the two mecha-

nisms. The most common consistency property enforced during search is Generalized

Arc Consistency (GAC). In recent years, new algorithms that enforce consistency

properties stronger than GAC have been proposed and shown to be necessary to

solve difficult problem instances.

We frame the question of balancing the cost and the pruning effectiveness of con-

sistency algorithms as the question of determining where, when, and how much of a

higher-level consistency to enforce during search. To answer the ‘where’ question, we

exploit the topological structure of a problem instance and target high-level consis-

tency where cycle structures appear. To answer the ‘when’ question, we propose a

simple, reactive, and effective strategy that monitors the performance of backtrack

search and triggers a higher-level consistency as search thrashes. Lastly, for the ques-

tion of ‘how much,’ we monitor the amount of updates caused by propagation and

interrupt the process before it reaches a fixpoint. Empirical evaluations on benchmark

problems demonstrate the effectiveness of our strategies.

iv

DEDICATION

Dedicated to the memory of Dr. John C. Woodward Sr.

v

ACKNOWLEDGMENTS

I would like to thank Dr. Berthe Y. Choueiry and Dr. Christian Bessiere for their

continued support and encouragement and for allowing me to be a part of both of

research groups, namely, the Constraint Systems Laboratory (ConSystLab) at the

University of Nebraska-Lincoln and the Coconut team at LIRMM and the Université

de Montpellier. I treasure the friendships, conversations, and interactions with all of

the people in both labs and feel honored that I could belong to both groups.

I would like to acknowledge research collaborations and the scientific input of

the following individuals: Mr. Anthony Schneider for collaboration on Stampede,

the ConSystLab solver, without which my research would have not been able to

advance so far; Mr. Denis Komissarov laid important foundation for me being able to

implement visualizations in Stampede; Mr. Ian Howell extended much of my initial

visualization work (Chapter 3) into Wormhole far faster and better looking than I

ever could; Mr. Nathan Stender with whom I developed the framework for enforcing

multiple consistencies (Section 3.4.2), which was made more efficient in collaboration

with Mr. Schneider; Mr. Christopher Reeson created the original 4PPC algorithm

that I extended (Chapter 6); Mr. Daniel Geschwender was always available for help

with experimental design. I am grateful to the Holland Computing Center team for

their support in running all of the experiments, especially to Dr. David Swanson and

Dr. Derek Weitzel.

Finally, I am grateful to my loving family, who always encouraged me to pursue

my passion of Computer Science. I am especially grateful to my wife, Allison, who

lovingly and patiently put up with all the late nights spent on research.

vi

GRANT INFORMATION

This research was supported by:

• National Science Foundation (NSF) Grants No. RI-111795 and RI-1619344,

• An NSF Graduate Research Fellowship Grant No. 1041000,

• An NSF Graduate Research Opportunities Worldwide grant,

• A Chateaubriand Fellowship of the Office for Science and Technology, Embassy

of France in the USA, and

• The Dean’s Fellowship, Office of Graduate Studies, University of Nebraska-

Lincoln.

This work was completed utilizing the Holland Computing Center of the University

of Nebraska, which receives support from the Nebraska Research Initiative.

vii

Contents

Contents vii

List of Figures xiv

List of Tables xviii

1 Introduction 1

1.1 Motivation and Claims . 2

1.2 Approach . 5

1.2.1 Visualizing Search and Consistency Costs 6

1.2.2 ‘When:’ Reactive Strategies for Enforcing HLC 9

1.2.3 ‘How Much:’ Monitoring Constraint Propagation 10

1.2.4 ‘Where:’ Channel HLC along Cycles 11

1.3 Contributions . 11

1.4 Outline of Dissertation . 14

2 Background 17

2.1 Constraint Satisfaction Problem (CSP) 17

2.1.1 Solving a CSP . 19

2.1.2 Representation . 20

viii

2.1.3 Elimination Ordering and Graph Triangulation 21

2.1.4 Tree Decomposition . 22

2.2 Consistency Properties and Algorithms 25

2.2.1 Variable-Based Consistency 26

2.2.2 Relation-Based Consistency 29

2.2.3 Comparing Consistency Properties 32

2.3 Minimum Cycle Basis . 33

2.4 Related Literature . 36

2.4.1 Where . 36

2.4.2 When . 36

2.4.3 How much . 37

2.4.4 Where and when . 37

2.4.5 Where and how much . 37

3 Visualizing Search 39

3.1 Previous Approaches to Visualizing Search 40

3.2 Analyzing Search Effectiveness . 43

3.2.1 Backtracks per Depth . 44

3.2.2 Calls per Depth . 45

3.3 Comparing Different Consistency Algorithms 47

3.4 Implementing the Visualization . 50

3.4.1 Real-Time Feedback . 51

3.4.2 Running Multiple Consistencies 52

4 A Reactive Strategy for High-Level Consistency During Search 56

4.1 When HLC: A Trigger-Based Strategy 57

4.1.1 PrePeak . 57

ix

4.1.2 Update Strategies for θ . 60

4.1.3 Initializing the threshold θ . 61

4.2 How Much HLC: Monitoring Propagation 62

4.3 Other Reactive Triggering Strategies 63

4.3.1 BTWatch . 63

4.3.2 Scheduled Enforcement of HLC 65

4.4 Empirical Evaluation on POAC . 66

4.4.1 Experimental Setup . 66

4.4.2 Comparing with BTWatch 68

4.4.3 Triggering Cannot be Scheduled 69

4.4.4 Putting together ‘When’ and ‘How Much’ 70

4.4.5 PrePeak+ versus GAC and APOAC 70

4.4.6 Visualizing Search Performance 74

4.4.7 Comparison to Multi-Armed Bandits 75

5 Restricting Consistency to Cycles 78

5.1 New Conditions for Tractability . 78

5.1.1 Terminology . 79

5.1.2 Binary CSPs . 80

5.1.3 Binary and Non-Binary CSPs 84

5.2 Localizing POAC . 85

5.2.1 NPOAC: Localization to Neighborhoods 86

5.2.2 ∪cycPOAC: Localization to MCBs 87

5.2.3 NPOACQ: A Variable-Based Algorithm 89

5.2.4 ∪cycPOACQ: A Variable-Based Algorithm 92

5.2.5 Extension to Relations . 92

x

5.2.6 Practical Improvement of Algorithms 94

5.3 Approximating a Minimum Cycle Basis 95

5.3.1 Minimum Cycle Basis Evaluation 96

5.3.2 Approximation Cycles Using a Breath-First Search 97

5.3.3 Comparing Cycles Found by BFSC and MCB 100

5.4 Empirical Evaluation . 101

5.4.1 Experimental Setup . 102

5.4.2 Localizing Adaptive POAC . 103

5.4.3 Combining PrePeak+ and Localized POAC 106

5.5 Cycles for Determining Singleton Tests 109

5.5.1 Determine Singleton Tests . 110

5.5.2 Experimental Results . 111

6 Localizing Consistency to Triangles 113

6.1 Revisiting 4PPC . 114

6.1.1 The Algorithm . 115

6.1.2 Bit Implementation of the Constraints 118

6.1.3 Variations of PPC . 119

6.2 Generating Triangulated Edge Constraints 123

6.2.1 Using the Separators of a Tree Decomposition 123

6.2.2 Using the Clusters of a Tree Decomposition 124

6.2.3 Implementing Triangle Generation 126

6.2.4 Decision Tree for Selecting Triangles for PC 129

6.2.5 Watching Memory Usage . 131

6.3 Experimental Evaluation of 4PPC 132

6.3.1 Experimental Setup . 132

xi

6.3.2 Comparison of Variations of PPC 134

6.3.3 As Pre-Processing . 135

6.3.4 As Real-Full Lookahead . 136

6.3.5 Triggering PPC . 137

6.4 Hyper-3 Consistency . 139

6.4.1 Extending Hyper-3 Consistency 139

6.4.2 Extending 4PPC to 4PH3C 141

6.4.3 Bit Implementation for 4PH3C 142

6.4.4 Decision Tree for Selecting Triangles for H3C 142

6.5 Empirical Evaluation of 4PH3Cbit 144

6.5.1 Experimental Setup . 145

6.5.2 PH3C versus PPC on Binary CSPs 146

6.5.3 Decision Tree for Selecting Triangles for PH3C 147

6.5.4 Selecting PH3C Strength . 149

6.5.5 4PH3C+ with PrePeak . 150

7 Conclusions and Future Work 152

7.1 Summary of Contributions . 152

7.2 Directions for Future Research . 153

A Weight-Based Variable Ordering in the Context of High-Level

Consistency 158

A.1 Motivation . 159

A.2 Weighting Schemes . 160

A.2.1 Partition-One Arc-Consistency (POAC) 160

A.2.2 Relational Neighborhood Inverse Consistency (RNIC) 162

A.3 Experimental Evaluation . 163

xii

A.3.1 Experimental Setup . 163

A.3.2 Partition-One Arc-Consistency 166

A.3.3 Relational Neighborhood Inverse Consistency 170

B Adaptive Parameterized Consistency for Non-Binary CSPs by Count-

ing Supports 173

B.1 Introduction . 174

B.1.1 Local Consistency Properties 175

B.2 Adaptive Parameterized Consistency 176

B.3 Modifying apc-LC for Non-Binary CSPs 178

B.3.1 p-stability for GAC . 178

B.3.2 Computing p-stability for GAC 179

B.3.3 Algorithm for Enforcing apc-LC 180

B.4 Empirical Evaluations . 181

C Witness-Based Search for Solution Counting 186

C.1 Introduction . 186

C.2 Main Definitions . 188

C.2.1 Constraint Satisfaction Problem 188

C.2.2 Backtrack Search with Tree Decomposition 189

C.2.3 AND/OR Tree Search . 191

C.3 Tree-Based Solution Counting . 193

C.3.1 Solution Counting in a Tree-Structured Binary CSP 194

C.3.2 Solution Counting in the BTD 196

C.3.3 Solution Counting in an AND/OR Search Tree 196

C.4 Solution Counting in Witness-Based Search 197

C.4.1 A Generic Pseudo-Code for Witness-Based Search 197

xiii

C.4.2 Analysis of Witness-Based Search 199

C.5 Empirical Evaluations . 200

C.5.1 Experimental Set-Up . 200

C.5.2 Comparing Witness-BTD with BTD 201

C.5.3 Comparing Witness-AND/OR with AND/OR Tree Search . . 204

C.5.4 An example with extreme benefits 205

D Assigning Blame when Triggering HLC 208

D.1 A Simple Motivating Example . 208

D.2 Apply Consistency at Each Step . 209

D.3 An Approximation of Blame . 210

D.3.1 Variable-Based Consistencies 210

D.3.2 Relational-Based Consistencies 211

D.3.3 Considering Both Relational and Variable-Based Consistencies 211

E Benchmark Information 213

E.1 Primal Density of Benchmarks . 213

E.2 Performance of GAC2001 and STR2+ on Binary CSPs 223

F Detailed Results for Chapter 4 226

Bibliography 234

xiv

List of Figures

1.1 The stronger the consistency, the more the pruning 3

1.2 Balancing the cost of search and that of consistency 3

1.3 Dimensions of enforcing consistency . 3

1.4 The dimensions of enforcing consistency investigated in this dissertation . . . 5

1.5 Number of backtracks per depth (BpD) using APOAC as an HLC for solving

problem instance pseudo-aim-200-1-6-4 . 7

1.6 Superimposing the number of backtracks per depth (BpD) and the three types

of number of calls per depth (CpD) to APOAC as an HLC for problem instance

pseudo-aim-200-1-6-4 . 8

1.7 A constraint graph with two cyclic biconnected components 11

2.1 A hypergraph . 20

2.2 The primal graph . 20

2.3 A dual graph . 21

2.4 A minimal dual graph . 21

2.5 A incidence graph . 22

2.6 Triangulated primal graph and its maximal cliques 24

2.7 A tree decomposition of the CSP in Figure 2.1 24

2.8 A re-arrangement of the incidence graph of Figure 2.5 34

xv

2.9 Dimensions of enforcing consistency . 36

3.1 The tree view [Simonis and Aggoun, 2000] 41

3.2 The phase-line display [Simonis and Aggoun, 2000] 41

3.3 The number of each constraint check at every depth [Epstein et al., 2005] . . . 43

3.4 The result of a node visit at every depth [Simonis et al., 2010] 43

3.5 BpD for GAC (left) and POAC (right) on instance 4-insertions-3-3. 45

3.6 Superimposing CpD and BpD for POAC on 4-insertions-3-3 46

3.7 Superimposing BpD and detailed CpD (wipeout in green, filtering in blue, no-

filtering in red) for POAC on 4-insertions-3-3 47

3.8 BpD and CpD of GAC on pseudo-aim-200-1-6-4 48

3.9 BpD (purple) and CpD’s (colored) of APOAC on pseudo-aim-200-1-6-4 49

3.10 BpD (purple) and CpD’s (colored) of PrePeak+ on pseudo-aim-200-

1-6-4 . 50

4.1 Cumulative instances completed by CPU time on dom/deg 72

4.2 Cumulative instances completed by CPU time on dom/wdeg 73

4.3 Search progress on pseudo-aim-200-1-6-4 using dom/wdeg: GAC (top), APOAC

(middle), and PrePeak+ (bottom) . 76

5.1 A constraint graph with two cyclic biconnected components 81

5.2 A constraint graph that is a tree of cyclic biconnected-components 81

5.3 A constraint graph made of a cycle of cycles 82

5.4 A CSP with no solution but SAC removes no values 83

5.5 The constraint graph of the CSP is a cycle 83

5.6 NPOAC but not NIC . 87

5.7 NIC but not NPOAC . 87

xvi

5.8 A incidence graph . 87

5.9 Search progression’s past, current, and future variables 110

6.1 MinFill adds the edge (i, j) because of the existing edges (i, k) and (j, k) . . 120

6.2 The sequence of triangles along the PEO of a triangulated graph 120

6.3 Pruning strengths of the proposed PPC-based consistencies 122

6.4 The primal graph . 125

6.5 Triangulated primal graph and its maximal cliques 125

6.6 A tree decomposition of the CSP in Figure 6.4 125

6.7 Selecting the triangles for PPC . 129

6.8 Cumulative instances completed by CPU time for triggering 4P3C+ 138

6.9 Selecting the triangles for PH3C . 143

7.1 The dimensions of enforcing consistency investigated in this dissertation . . . 153

A.1 Cumulative number of instances completed by CPU time for POAC 169

A.2 Cumulative number of instances completed by CPU time for RNIC 171

B.1 The constraint x1 ≤ x2. 〈x1, 4〉 is not 0.25-stable for AC. 177

B.2 The relation of x1 ≤ x2. 〈x1, 3〉 and 〈x1, 4〉 are not 0.25-stable for GAC. . . . 179

C.1 A hypergraph . 189

C.2 The primal graph . 189

C.3 Triangulated primal graph and its maximal cliques 190

C.4 A tree decomposition of the CSP in Figure C.1 190

C.5 A constraint graph . 192

C.6 A pseudo-tree of the example from Figure C.5 192

C.7 An AND/OR search tree of the example from Figure C.5 192

C.8 The AND/OR search graph by merging OR contexts 194

xvii

C.9 Connecting a tree with no solution to a tree with many solutions 206

xviii

List of Tables

3.1 Search with GAC and POAC on 4-insertions-3-3. Note that GAC timed out . 44

4.1 The overall performance of the BTWatch strategies of Section 4.3.1 68

4.2 The overall performance of the other strategies of Section 4.3.2 69

4.3 PrePeak+ versus ‘when,’ ‘how much’ . 70

4.4 GAC, APOAC, and PrePeak+ on dom/deg 71

4.5 GAC, APOAC, and PrePeak+ on dom/wdeg 71

4.6 Representative benchmarks using dom/wdeg (time in [sec]) 74

5.1 Time and memory to compute a minimum cycle basis 97

5.2 Comparing computing cycles using MCB and BFSC 101

5.3 Comparing lookahead using A∪bfsc
cyc POAC and A∪mcb

cyc POAC 103

5.4 Lookahead with adaptive POAC techniques 103

5.5 APOAC techniques on select benchmarks where APOAC beats GAC 104

5.6 APOAC techniques on select benchmarks where GAC beats APOAC 105

5.7 PrePeak+ with POAC techniques . 106

5.8 Benchmarks where PrePeak+ with POAC performs well 107

5.9 PrePeak+ with POAC techniques on select benchmarks good for GAC . . . 108

5.10 Changing the r reward for PrePeak+ with ∪cycPOAC 109

5.11 Lookahead with GAC, APOAC, and Localized POAC 111

xix

6.1 4PPC variants as RFL with dom/deg . 134

6.2 4PPC variants as RFL on dom/wdeg . 134

6.3 4P3C on subsets of triangles at pre-processing followed by GAC as RFL . . . 135

6.4 The performance of enforcing consistency as RFL 136

6.5 The good performance of 4P3C as RFL on select benchmarks 137

6.6 The performance of triggering 4P3C+ . 138

6.7 Comparing the filtering obtained from PPC and PH3C 147

6.8 Enforcing the decision tree selections of PH3C at pre-processing followed by

GAC as RFL . 148

6.9 4PH3C+ variants as pre-processing with dom/deg 149

6.10 4PH3C+ variants as RFL with dom/deg 149

6.11 Comparing GAC and PrePeak with 4DPH3C+ 150

6.12 Benchmarks where PrePeak with 4DPH3C+ performs well 150

A.1 Statistical analysis of weighting schemes for POAC 166

A.2 Overall results of experiments for POAC . 167

A.3 Examples of quasi-group completion benchmark for POAC 168

A.4 Examples of graph coloring, random, crossword benchmarks for POAC 168

A.5 Results of experiments for RNIC . 170

A.6 Examples of Dimacs benchmarks where AllC and Head perform best 171

A.7 Two graph coloring benchmarks where AllC and Head perform best 172

B.1 Number of instances completed by the tested algorithms 182

B.2 Results of the experiments per benchmark, organized in four categories 183

B.3 Number of calls to STR and R(∗,2)C by benchmark 184

C.1 Number of instances with fewest #NV, and average #NV 202

xx

C.2 #Instances completed fastest and average time 203

C.3 Average number of goods and no-goods stored 203

C.4 Average #NV . 204

C.5 #Instances completed fastest and average time 204

C.6 Average number of goods and no-goods stored 205

E.1 Primal densities for benchmark instances 213

E.2 Performance of GAC2001 and STR2+ on Binary CSPs 223

F.1 All benchmark data sorted by PrePeak+ CPU time gain over STR 227

1

Chapter 1

Introduction

Constraint Processing (CP) is a flexible and effective framework for modeling and

solving many decision and optimization problems in Engineering, Computer Science,

and Management. In contrast to other areas that study the same problems, such

as Mathematical Programming and SAT solving, the formulation of a Constraint

Satisfaction Problem (CSP) allows the user to state arbitrary constraints over a set

of variables in a transparent way, thus, directly reflecting the human’s understanding

of the problem.

Many combinatorial problems of practical importance are commonly modeled as

Constraint Satisfaction Problems (CSPs), including scheduling [Baptiste et al., 2006],

resource allocation [Lim et al., 2004], and product configuration and design [Yvars,

2008]. Puzzles are whimsical and attractive tools to introduce the general public to

CSPs and also to attract Computer Science students to this area of study. Examples

include the Sudoku puzzle [Reeson et al., 2007; Howell et al., 2018a],1 Minesweeper

[Bayer et al., 2006],2 and the Game of Set [Swearingn et al., 2011].3

1http://sudoku.unl.edu
2http://minesweeper.unl.edu
3http://gameofset.unl.edu

http://sudoku.unl.edu
http://minesweeper.unl.edu
http://gameofset.unl.edu

2

Research on CP dates back to the early 1960’s, and the field has matured into

an independent research area in Artificial Intelligence with textbooks [Tsang, 1993;

Dechter, 2003a; Lecoutre, 2009], a handbook [Rossi et al., 2006], an association,4 a

journal,5 and an annual conference.6

To solve a CSP, CP focuses on two main directions: search and inference. In this

dissertation, we use constructive backtrack search as a sound and complete algorithm

for solving CSPs. Inference relies on a set of consistency properties and algorithms for

enforcing them. These properties and algorithms are perhaps what best distinguishes

CP from related fields that address the same combinatorial problems. They constitute

the focus of this dissertation.

1.1 Motivation and Claims

Consistency algorithms operate by removing from the problem values or combination

of values that cannot possibly appear in a solution to the problem. They typically

operate locally on subproblems of a fixed size. As such, they typically run in polyno-

mial time in the number of variables in the problem. In practice, they are interleaved

with search, which runs in exponential time in the number of variables. By pruning

the search tree and removing inconsistent branches and subtrees, enforcing consis-

tency can significantly reduce the size of the search space. The stronger the enforced

consistency, the larger the pruning (see Figure 1.1). However, the higher the consis-

tency, the higher the computational cost of enforcing it. Thus, it becomes critical to

decide whether it is more cost effective to spend more time exploring the search tree

or pruning it (see Figure 1.2).
4Association for Constraint Programming (ACP), http://www.a4cp.org/.
5Constraints, An International Journal published by Springer.
6International Conference on Principles and Practice of Constraint Programming with proceed-

ings published by Springer in their series ‘Lecture Notes on Computer Science.’

http://www.a4cp.org/

3

1

n Pr
un

in
g

1

n M
or

e
pr

un
in

g
Figure 1.1: The stronger the consistency,
the more the pruning

Cost of
Search

Cost of
Consistency

Figure 1.2: Balancing the cost of search
and that of consistency

In recent years, effective dynamic variable-ordering heuristics that learn during

search have rendered the search cost even more sensitive to that of the algorithms

for enforcing higher-level consistency (HLC), especially when these algorithms are

applied systematically throughout search and uniformly over the entire network.

In this dissertation, we claim that strategies for enforcing HLCs during search can

be organized along orthogonal dimensions and we have identified three such ‘axes,’

namely, where, when, and how much of an HLC to enforce, as shown in Figure 1.3.

Where?

When?

How much?

HLC	

Where?
One variable Entire CSP

 Always GAC Always HLC
When?

How much?
Stop early Until fixpoint

Figure 1.3: Dimensions of enforcing consistency

In summary,

• The ‘where’ axis identifies specific (or groups of) variables/constraints on which

HLC is enforced

• The ‘when’ axis identifies at what point, during search, HLC is enforced

4

• The ‘how much’ axis indicates whether or not HLC is forced to terminated

before reaching a fixpoint.

The point of origins where these three axes meet indicates the ‘strongest’ applica-

tion of HLC (i.e., enforce HLC uniformly over the entire future subproblem, at each

variable instantiation, and until quiescence). While such a strategy proved useful for

solving difficult problem instances, the cost overhead is not always warranted. This

situation yields the following question, central to this dissertation:

Where, when, and how much of a higher-level consistency should be enforced

during search?

In this dissertation, we answer this critical question as follows:

High-Level consistency (HLC) properties and algorithms are instrumental for

smashing the hardness of a problem instance and are cost effective:

1. When the search starts thrashing

2. Where the local structure of the constraint network has loops

3. As long as filtering and propagation are active and ‘alive’

We implement the above vision with a set of techniques that:

5

1. Monitor the search progress to dynamically enforce higher-level consis-

tency when search appears to be thrashing.

2. Identify critical cycles in the problem’s topological structure on which

to restrict the application of the higher-level consistency.

3. Monitor the ‘liveliness’ of the filtering along the propagation queue and

terminate propagation early and before a fixpoint is reached.

1.2 Approach

In this dissertation, we propose to combine techniques that ‘weaken’ HLC along one

or more of the three axes identified above (i.e., when, where, and how much) in order

to effectively prune the search space while avoiding the cost overhead and maintaining

competitive performance. The main components of our techniques are as follows, see

Figure 1.4:

When?

Where?

How much?

Neighborhood

Cycles

HLC Trigger
HLC

Queue window
Time limit

Figure 1.4: The dimensions of enforcing consistency investigated in this dissertation

1. Monitor search to trigger HLC (see ‘Trigger HLC’ in Figure 1.4): We propose

a reactive technique that monitors the amount of backtracking steps during

6

search as an indication of wasteful thrashing. It automatically increases the

frequency of applying HLC as long it is effectively pruning the search space.

Otherwise, it decreases this frequency.

2. Identify cycles to channel HLC (see ‘Cycles’ in Figure 1.4): We propose to

exploit existing cycles in the constraint graph and even create new ones as

structures particularly effective at localizing and channeling propagation.

3. Monitor propagation to interrupt any single execution of HLC (see ‘Queue win-

dow’ and ‘Time limit’ in Figure 1.4): We propose to monitor the effectiveness

of constraint propagation by watching whether or not any filtering is obtained

during a window whose width is a function of the size of the propagation queue.

We also bound the maximum duration of any single call to HLC.

Below, we overview each of the proposed techniques.

1.2.1 Visualizing Search and Consistency Costs

In order to illustrate the performance of search in terms of the effort spent searching,

thrashing, and enforcing consistency, we propose to visualize:

1. The number of backtracks per depth of the search tree (BpD).

2. The number of calls per depth of the search tree (CpD) to a given consistency

algorithm.

Figure 1.5 shows the BpD of a backtrack search with the consistency algorithm

APOAC [Balafrej et al., 2014] for problem instance pseudo-aim-200-1-6-4 of the

pseudo-aim benchmark.7

7www.cril.univ-artois.fr/~lecoutre/benchmarks.html

www.cril.univ-artois.fr/~lecoutre/benchmarks.html

7

0

100

200

300

400

500

600

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

B

ac
kt

ra
ck

s

Depth

APOAC #BTs
CPU Time: 23.77 sec.
#NV: 59,181
#BT: 53,212
#Calls POAC: 11,142

Figure 1.5: Number of backtracks per depth (BpD) using APOAC as an HLC for solving
problem instance pseudo-aim-200-1-6-4

Moreover, in order to illustrate the effectiveness of the consistency algorithm, we

further split the CpD into three curves corresponding to:

1. Calls deemed to be extremely effective in that they prune an entire subtree and

yielded backtracking

2. Calls that are not particularly effective in that they cause some pruning but do

not cause a wipeout

3. Calls that are totally wasted in that they do not yield any filtering

By comparing the three CpD curves, we detect where a consistency algorithm is

effective and where its efforts are wasted.

Further, the superimposition of the BpD curve and the three CpD curves provides

a qualitative indication of the performance of search and of the effectiveness of a

consistency algorithm. Figure 1.6 shows the superimposition of the BpD and the

8

three CpD curves for solving the problem instance pseudo-aim-200-1-6-4 from the

pseudo-aim benchmark while enforcing APOAC. Note that:

0

10

20

30

40

50

0

100

200

300

400

500

600

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

C

al
ls

 to
 P

O
A

C

B

ac
kt

ra
ck

s

Depth

APOAC

#BTs
Filter
No Filter
Wipeout

CPU Time: 23.77 sec.
#NV: 59,181
#BT: 53,212
#Calls POAC: 11,142

Figure 1.6: Superimposing the number of backtracks per depth (BpD) and the three types
of number of calls per depth (CpD) to APOAC as an HLC for problem instance pseudo-
aim-200-1-6-4

• The number of backtracks is shown on the left vertical axis.

• The number of calls to HLC (i.e., POAC) is shown on the right vertical axis.

• The purple line shows the number of backtracks per depth (BpD).

• The green line shows the number of HLC calls that are ‘extremely effective’

(i.e., yield wipeouts).

• The blue line shows the number of HLC calls that are ‘not particularly effective’

(i.e., filtering but no wipeouts).

• The red line shows the number of HLC calls that are ‘a total waste of effort’

(i.e., no filtering at all).

9

In Figure 1.6, we see that only one third of the calls to APOAC (i.e., the green curve)

are really effective, which hints to the possibility of improving performance of search

by ‘firing’ APOAC only when it is really effective.

We claim that this visualization is a powerful explanation tool of the performance

of search and effectiveness of an HLC and that it could even be used to allow a human

user to directly intervene in the search process.

1.2.2 ‘When:’ Reactive Strategies for Enforcing HLC

In Constraint Processing, it is customary today to enforce the consistency known as

Generalized Arc Consistency (GAC) at every step of the search process. As long

as GAC allows search to effectively advance to deeper levels in the (tree-shaped)

search space, GAC should remain the default consistency enforced. However, as

thrashing occurs, we advocate to enforce stronger consistencies in order to more

aggressively prune the search space and, subsequently, reduce the search effort. We

propose to watch the number of backtrack steps during search as an indication of

thrashing. To this end, we investigate three techniques: BTWatch, PrePeak, and

PP-BTWatch:

1. BTWatch watches the number of backtrack along the search and triggers

HLC whenever the counter reaches a given value, regardless of the position in

the search tree.

2. PrePeak watches the number of backtracks per level of search (which is equal

to the number of variables of the CSP) and enforces HLC at levels slightly

shallower than the level where the peal value of the number of backtracks per

level is observed.

10

3. PP-BTWatch is a hybrid between BTWatch and PrePeak, which watches

the number of backtrack along the search and triggers HLC whenever the

counter reaches a given value and the depth is before the level where a peak

value of the number of backtracks per level is observed.

Further, in all three techniques, we use the same three geometric laws to update

the value of the threshold for triggering HLC. The threshold value is updated in the

following situations:

1. When HLC has been extremely effective (i.e., filtering yielded wipeout), we

decrease the value of the threshold.

2. When HLC has not been particularly effective (i.e., some filtering but not wipe-

out), we slightly increase the value of the threshold.

3. When HLC was a total waste of effort (i.e., HLC resulted in no filtering at all),

we aggressively increase the value of the threshold.

Overall, all three strategies are statistically equivalent, but exploring and evaluating

them improves our understanding of reactive strategies.

1.2.3 ‘How Much:’ Monitoring Constraint Propagation

We explore three directions for monitoring the effectiveness of constraint propagation.

First, enforce an ordering on the elements of the propagation queue of the HLC

algorithm based on the activity of a variable/constraint or a structural property (e.g.,

elimination ordering). Second, because an HLC call can be costly in terms of time,

we interrupt the execution of an HLC and allow it to process only a fraction of its

propagation queue. Finally, we impose a bound on the duration of any call to HLC.

11

Combining PrePeak with the above three strategies yields PrePeak+, which

is the main contribution of this dissertation.

1.2.4 ‘Where:’ Channel HLC along Cycles

Figure 1.7 shows a constraint network with two cycles intersecting on exactly one

variable, which is an articulation node in the graph. This network is the ‘poster

Figure 1.7: A constraint graph with two cyclic biconnected components

child’ to illustrate the importance of cycles. Indeed, instantiating the variable of the

articulation node creates a chain, yielding a tractable CSP [Freuder, 1982]. More

specifically, for this cycle, applying singleton arc consistency on the articulation node

allows us to remove all values that do not participate in any solution (i.e., computes

the minimal CSP). We theoretically characterize HLC properties that singleton-based

consistencies guarantee (i.e., sufficient conditions) backtrack-free search on cactus and

block graphs.

During search, we propose to exploit cycles in the constraint network of a CSP and

channel constraint propagation along those cycles to improve the effectiveness of local

consistency algorithms. In particular, we study two types of cycles in a constraint

network, namely, a minimum cycle basis and triangles.

1.3 Contributions

In this section, we summarize our main contributions. We divide them into core

contributions, which support the main claim of this dissertation, and secondary con-

12

tributions, which are not directly related to the main thesis but are still valuable

research results. Our core contributions are the following:

1. A new visualization of the search effort [Howell et al., 2018b]. The proposed

visualization tracks search progress and difficulties as well as the effort of enforc-

ing consistency as a function of the depth of the search tree. This visualization

has raised a sharp interest in discussions with the designers of several constraint

solvers and is the topic of a new research direction in our laboratory.

2. A reactive strategy for enforcing high-level consistency [Woodward et al., 2018].

We propose trigger-based strategies for enforcing high-level consistencies only

when they are needed in order to exploit their effectiveness in pruning the

search space while reducing the impact of the corresponding computational

overhead. Further, we provide a unifying framework based on three orthogonal

dimensions of ‘when-where-how’ to characterize how approaches for enforcing

high-level consistency during search operate. Finally, we validate our approach

for two HLCs, namely, POAC (a variable-based consistency property) and PC

(a relational consistency property).

3. New structural properties. We identify new tractability results for block and

cactus shaped constraint graphs. Exploiting our results about cactus graphs,

we explore the benefits of channeling constraint propagation along cycles. More

specifically, we propose to restrict POAC to the cycles of a minimum cycle basis

of the graph [Woodward et al., 2016a; Woodward et al., 2017] and restrict path

consistency to select triangles of the triangulated constraint graph. Future work

should investigate exploiting our results for block graphs.

4. A first practical algorithm for Partial Hyper-3 Consistency (PH3C). We start

13

by investigating partial path consistency [Bliek and Sam-Haroud, 1999], empir-

ically evaluating it as lookahead, which has never been studied. Jégou [1993]

introduces, for non-binary CSPs, a relational-consistency property, called hyper-

3 consistency (H3C), that is ‘symmetrical’ to path consistency for binary CSPs.

The advantage of this property is that it allows us to operate on a special type of

cycles, that is, triangles. We introduce a weakening of H3C into partial hyper-3

consistency (PH3C).8 We introduce the first practical algorithm for enforcing

PH3C during search. Importantly, we show that the ‘dubois’ benchmark9 can

be solved backtrack free using PH3C.

Our secondary contributions are the following:

1. Weight-Based variable ordering in the context of a higher-level consistency [Wood-

ward and Choueiry, 2017]. Dom/wdeg is one of the most effective heuristics for

dynamic variable ordering in backtrack search [Boussemart et al., 2004]. As

originally defined, this heuristic increments the weight of the constraint that

causes a domain wipeout (i.e., a dead-end) when enforcing arc consistency dur-

ing search. We explore alternatives for the weighing scheme in the context of

two consistency properties, namely, POAC and RNIC.

2. Adaptive parameterized consistency for non-binary CSPs by counting supports

[Woodward et al., 2014]. Balafrej et al. [2013] proposed an adaptive parame-

terized consistency for binary CSPs as a strategy to dynamically select one of

two local consistencies (i.e., AC and maxRPC). We propose a similar strategy

for non-binary table constraints to select between enforcing GAC and pairwise

consistency (PWC). This contribution is an instance of enforcing HLC only on
8Similar to the PPC algorithm for binary CSPs, PH3C operates on a triangulation of the dual

graph of the CSP.
9Available from www.cril.univ-artois.fr/~lecoutre/benchmarks.html

www.cril.univ-artois.fr/~lecoutre/benchmarks.html

14

select constraints, that is, along the axis ‘where’ of our proposed framework of

‘where-when-how much.’

3. Witness-based search for solution counting [Woodward et al., 2016b]. Counting

the exact number of solutions of a CSP is a difficult task (#P-complete) that is

receiving increased attention in the research community. We propose witness-

based search as a general improvement mechanism for any counting algorithm

that exploits a tree decomposition of the CSP. and empirically establish the

benefits of our technique in the context of two popular search-based counting

algorithms.

1.4 Outline of Dissertation

The rest of this dissertation is organized as follows:

• Chapter 2 reviews background information.

• Chapter 3 introduces a novel way to visualize the search effort, which moti-

vated this thesis. This contribution is at the source of a new research direction

[Howell et al., 2018b].

• Chapter 4 introduces a strategy for dynamically enforcing higher-consistency

by monitoring the performance search. Results from this chapter appeared in

[Woodward et al., 2018].

• Chapter 5 discusses how to localize consistency properties and algorithms to

operate on cycles in the graphical representation of a CSP. Preliminary results

from this chapter appeared in [Woodward et al., 2017; Woodward et al., 2016a].

15

• Chapter 6 discusses a special case of cycles, triangles, and enforcing Partial-

Path Consistency and Partial Hyper-3 Consistency.

• Chapter 7 concludes this dissertation and suggests directions for future re-

search.

In order to maintain the coherence of this dissertation, incidental results and com-

plementary information that are not central to the core contributions are organized

in the appendices:

• Appendix A introduces weighting strategies for high-level consistency. Results

from this chapter appeared in a technical report [Woodward and Choueiry,

2017].

• Appendix B introduces a method for adjusting the level of consistent by count-

ing supports. Results from this chapter have been published [Woodward et al.,

2014].

• Appendix C introduces a scheme for improving the performance of solution

counting by first finding a ‘witness’ solution in a sub-tree before counting all

solutions. Results from this chapter appeared in a technical report [Woodward

et al., 2016b].

• Appendix D introduces how to determine the appropriate depth of search to

attribute filtering when triggering higher-level consistency.

• Appendix E lists the benchmarks used in the experiments along with infor-

mation regarding their hardness.

• Appendix F provides the details of the results of the experiments in Chapter 4.

16

Summary

This chapter introduced our motivation and claims, reviewed our approach and con-

tributions, and described the structure of this dissertation.

17

Chapter 2

Background

In this chapter, we review background information about Constraint Satisfaction

Problems (CSPs) useful for this dissertation. Then, we review the state of the art

by casting previous approaches in terms of the three axes that we identified, namely,

where, when, and how much.

2.1 Constraint Satisfaction Problem (CSP)

A Constraint Satisfaction Problem (CSP) is defined by P = (X ,D, C) where

• X is a set of variables

• D is a set of domain values, where a variable xi ∈ X has a finite domain

dom(xi) ∈ D

• C is a set constraints restricting the combinations of values that can be assigned

to the variables, where a constraint ci ∈ C is defined by a scope scope(ci) ⊆ X

and a relation, which is a subset of the Cartesian product of the domains of the

variables in scope(ci)

18

A solution to the CSP assigns, to each variable, a value taken from its domain such

that all the constraints are satisfied. The problem is to determine the existence of a

solution and is NP-complete.

Example 1 Consider the Boolean CSP given by:

• X = {A,B,C,D,E, F,G,H, I, J,K, L,M,N}

• D = {DA, DB, DC , DE, DF , DG, DH , DI , DJ , DK , DL, DM , DN}, where each Di =

{0, 1}

• C = {〈R1, {ABCN}〉, 〈R2, {IMN}〉, 〈R3, {IJK}〉, 〈R4, {AKL}〉, 〈R5, {BDEF}〉,

〈R6{CDH}〉, 〈R7, {FGH}〉, 〈R8{EFG}〉}

The relations are given in the tables below:
R1

A B C N
0 0 0 1
0 1 0 1
0 1 1 0
1 0 1 1

R2

I MN
0 1 0
1 0 1
1 1 1

R3

I J K
0 0 0
0 1 1
1 1 0

R4

A K L
0 1 0
1 1 1

R5

B D E F
0 0 0 1
0 1 0 1
1 0 1 0

R6

C D H
0 0 0
1 0 0
1 1 0

R7

F G H
0 0 0
1 0 0
1 1 0

R8

E F G
0 0 0
1 0 0
1 1 0

The following variable-value pairs constitute a solution to this CSP:

〈A, 0〉, 〈B, 1〉, 〈C, 1〉, 〈D, 0〉, 〈E, 1〉, 〈F, 0〉, 〈G, 0〉,

〈H, 0〉, 〈I, 0〉, 〈J, 1〉, 〈K, 1〉, 〈L, 0〉, 〈M, 1〉, 〈N, 0〉.

The satisfying tuples are highlighted in the relations.

19

2.1.1 Solving a CSP

Backtrack search is a sound and complete method for finding a solution for a CSP

[Bitner and Reingold, 1975]. In this dissertation, we do not use local search because

it is not a complete algorithm and may miss a solution even when one exists.

Search operates by assigning a value to a variable and backtracks when a dead-

end is encountered by undoing past assignments. The variable-ordering heuristic

determines the order that variables are assigned in search, which can be dynamic

(i.e., change during search). Boussemart et al. [2004] introduced dom/wdeg, a popular

dynamic variable-ordering heuristic. This heuristic associates to each constraint c ∈ C

a weight wc(c), initialized to one, that is incremented by one whenever the constraint

causes a domain wipeout when enforcing arc consistency. The next variable xi chosen

by dom/wdeg is the one with the smallest ratio of current domain size to the weighted

degree, αwdeg(xi), given by

αwdeg(xi) =
∑

(c∈Cf)∧(xi∈scope(C))
wc(c) (2.1)

where Cf ⊆ C is the set of constraints with at least two future variables (i.e., variables

who have not been assigned by search).

Modern solvers enforce a given consistency property on the CSP after each variable

assignment. This lookahead removes from the domains of the unassigned variables

values that cannot participate in a solution. Such filtering prunes from the search

space fruitless subtrees, reducing the size of the search space and thrashing. The

higher the consistency level enforced during lookahead, the stronger the pruning and

the smaller the search space. A basic form of lookahead is forward checking, which

filters the domains of only the unassigned variables connected, by a constraint, to

the assigned variable. A more aggressive version of lookahead is Real Full Lookahead

20

(RFL) [Nadel, 1989], which enforces a given consistency property on the CSP induced

by the unassigned variables (i.e., the future subproblem).

2.1.2 Representation

Several graphical representations of a CSP exist. Below, we introduce five graphical

representations:

• In the hypergraph, the vertices represent the variables of the CSP, and the hyper-

edges represent the scopes of the constraints. Figure 2.1 shows the hypergraph

of the CSP in Example 1.

A B C

E

D

FGH

I J K

M L

N
R4R2

R3

R1

R5
R6

R7 R8

Figure 2.1: A hypergraph

A

B

C E
D

F

G

H

I

J

K
M

L

N

Figure 2.2: The primal graph

• In the primal graph, the vertices represent the CSP variables, and the edges con-

nect every two variables that appear in the scope of some constraint. Figure 2.2

shows the primal graph of CSP whose hypergraph is shown in Figure 2.1.

• The dual graph is the graphical representation of the dual encoding of a CSP.

The dual encoding of a CSP P is a binary CSP, PD, where the variables are

the relations of P , and their domains are the tuples of those relations. A

constraint exists between two variables in PD if their corresponding relations’

scopes intersect. This constraint enforces the equality of the shared variables.

Figure 2.3 shows the dual graph in Figure 2.1.

21

R7

R2

R3

R4

R5

R6

R1
A,B,C,N

I,J,K

I,M,N A,K,L

F,G,H

B,D,E,FC,D,H

N
A

I K H F

B
C

D

R8E,F,GG,F
E,F

Figure 2.3: A dual graph

R7

R2

R3

R4

R5

R6

R1
A,B,C,N

I,J,K

I,M,N A,K,L

F,G,H

B,D,E,FC,D,H

N
A

I K H

B
C

D

R8E,F,GG,F
E,F

Figure 2.4: A minimal dual graph

• A minimal dual graph of a CSP is its dual graph with no redundant edges

are removed. In the dual graph, an edge between two vertices is redundant

if there exists an alternate path between the two vertices such that the shared

variables appear in every edge in the path [Janssen et al., 1989; Dechter, 2003a].

Redundant edges can be removed without changing the set of solutions. A

minimal dual graph can be efficiently computed [Janssen et al., 1989], but is

not unique. Figure 2.4 shows a minimal dual graph of Figure 2.3 where the

edge linking R5 and R7 is redundant, and thus removed.

• The incidence graph of a CSP is a bipartite graph where one set of vertices

contains the variables of the CSP and the other set the constraints. An edge

connects a variable and constraint if and only if the variable appears in the

scope of the constraint. The incidence graph is the same graph used in the

hidden-variable encoding [Rossi et al., 1990]. Figure 2.5 shows the incidence of

the CSP of Example 1.

2.1.3 Elimination Ordering and Graph Triangulation

An ordering of a graph is a total ordering of its vertices. The parents of a vertex

are the neighbors that appear before it in the ordering. The width of a vertex is the

number of its parents. The width of an ordering is the maximum vertex width. The

22

E I L MJ NKHA D FB GC

R1
A,B,C,N

R3
I,J,K

R2
I,M,N

R4
A,K,L

R7
F,G,HR5

B,D,E,F

R6
C,D,H

R8
E,F,G

Figure 2.5: A incidence graph

width of a graph, denoted w, is the minimum width of all its possible orderings, and

can be found in quadratic time in the number of vertices in the graph [Freuder, 1982].

A graph is triangulated, or chordal, iff every cycle of length four or more in the

graph has a chord, which is an edge between two non-consecutive vertices. Graph

triangulation adds an edge (a chord) between two non-adjacent vertices in every cycle

of length four or more. While minimizing the number of edges added by the trian-

gulation process is NP-hard, MinFill is an efficient heuristic commonly used for this

purpose [Kjærulff, 1990; Dechter, 2003a]. Roughly, MinFill operates by determining,

for each vertex, the number of edges needed to fully connect its parents (e.g., number

of fill edges). It selects the vertex with the minimum number of fill edges and connects

all of its parents. It then repeats until all the vertices have been selected.

A perfect elimination ordering of a graph is an ordering of the vertices such that,

for each vertex v, v and the neighbors of v that occur after v in the ordering form

a clique. If a graph is triangulated iff the graph has a perfect elimination ordering

[Fulkerson and Gross, 1965]. The width of a triangulated graph is called the induced

width, denoted w∗, of the ordering used.

2.1.4 Tree Decomposition

A tree decomposition of a CSP is a tree embedding of its constraint network. It is

defined by a triple 〈T , χ, ψ〉, where T is a tree, and χ and ψ are two functions that

23

determine which CSP variables and constraints appear in which nodes of the tree.

The tree nodes are clusters of variables and constraints from the CSP. The set of

variables of a cluster cl is denoted χ(cl) ⊆ X , and the set of constraints ψ(cl) ⊆ C.

A tree decomposition must satisfy two conditions:

1. Each constraint appears in at least one cluster and the variables in its scope

must appear in this cluster; and

2. For every variable, the clusters where the variable appears induce a connected

subtree.

Many techniques for generating a tree decomposition of a CSP exist [Dechter and

Pearl, 1989; Jeavons et al., 1994; Gottlob et al., 2000]. We use here the tree-clustering

technique [Dechter and Pearl, 1989].

1. First, we triangulate the primal graph of the CSP using the min-fill heuristic

[Kjærulff, 1990].

2. Using the perfect elimination ordering given by the MaxCardinality algo-

rithm [Tarjan and Yannakakis, 1984], we identify the maximal cliques in the re-

sulting chordal graph using the MaxCliques algorithm [Golumbic, 1980], and

use the identified maximal cliques to form the clusters of the tree decomposi-

tion. Figure 2.6 shows a triangulated primal graph of the example in Figure 2.1.

The dotted edges (B,H) and (A,I) in Figure 2.6 are fill-in edges generated by

the triangulation algorithm. The ten maximal cliques of the triangulated graph

are highlighted with ‘blobs.’

24

A
B

C

E

D

F

G

H

I

J

K
M

L

N

C1

C2

C7

C3

C4

C5
C6

C8

C9

Figure 2.6: Triangulated primal graph and its maximal cliques

3. We build the tree by connecting the clusters using the JoinTree algorithm [Dechter,

2003a]. While any cluster can be chosen as the root of the tree, we choose the

cluster that minimizes the longest chain from the root to a leaf.

4. Finally, we determine the variables and constraints of each cluster as follows:

a) The variables of a cluster cl, χ(cl), are the variables in the maximal clique

that yields the cluster; and b) The constraints of a cluster cl, ψ(cl), are all the

constraints Ri, such that scope(Ri) ⊆ χ(cl). Figure 2.7 shows a tree decompo-

sition for the example of Figure 2.1. Note that we may end up with clusters

{A,B,C,N},{R1}

{A,I,N},{} {B,C,D,H},{R6}

{I,M,N},{R2} {B,D,E,F,H},{R5}

C1
C2

C3

C7

C8
{A,I,K},{}

C4

{I,J,K},{R3}
C5

{A,K,L},{R4}
C6

{E,F,G,H},{R7,R8}
C9

Figure 2.7: A tree decomposition of the CSP in Figure 2.1

with no constraints (e.g., C2, C4 and C8).

A separator of two adjacent clusters is the set of variables that are associated with

25

both clusters.

2.2 Consistency Properties and Algorithms

We distinguish between global and local consistency properties. Algorithms for en-

forcing a given consistency property typically operate by filtering values from the

variables’ domains or tuples from the constraints’ relations. For any consistency

property, there could be a number of algorithms for enforcing it on a CSP.

Global consistency properties are defined over the entire CSP. Minimality and

decomposability are two global consistency properties [Montanari, 1974]. Constraint

minimality requires that every tuple in a constraint appears in a solution. Decompos-

ability guarantees that every consistent partial solution of any length can be extended

to a complete solution. Decomposability is a highly desirable property: it guaran-

tees that the CSP can be solved in a backtrack-free manner. Because guaranteeing a

globally consistent CSP is in general exponential in time and space [Bessiere, 2006],

we focus in practice on local consistency properties, which are in general tractable.

Local consistency properties are defined over combinations of a fixed size of vari-

ables (i.e., variable-based consistency) or constraints (i.e., relation-based consistency).

A local consistency property guarantees that the values of all combinations of a given

number of CSP variables (alternatively, the tuples of all combinations of a given size

of CSP relations) are consistent with the constraints that apply to them. This con-

dition is necessary but not sufficient for the values (or the tuples) to appear in a

solution to the CSP.

Below, we review the main variable-based and relation-based consistency proper-

ties relevant to this dissertation.

26

2.2.1 Variable-Based Consistency

The most common property is Arc Consistency (AC) for binary CSPs, or Generalized

Arc Consistency (GAC) for non-binary CSPs [Mackworth, 1977].

Definition 1 Generalized Arc Consistent (GAC) [Mackworth, 1977]: A CSP is Gen-

eralized Arc Consistent (GAC) iff, for every constraint ci, and every variable x ∈

scope(ci), every value v ∈ dom(x) is consistent with ci (i.e., appears in some consis-

tent tuple of Ri).

Algorithms for enforcing GAC remove domain values that have no GAC-support,

leaving the relations unchanged [Bessière et al., 2005]. Simple Tabular Reduction

(STR) algorithms not only enforce GAC on the domains, but also remove all tuples

τ ∈ Rj where ∃xi ∈ scope(Rj) such that τ [xi] /∈ dom(xi) [Ullmann, 2007; Lecoutre,

2011; Lecoutre et al., 2012].

Definition 2 Max Restricted Path Consistent (maxRPC) [Debruyne and Bessière,

1997a]: A binary CSP is max Restricted Path Consistent (maxRPC) iff it is (1, 1)-

consistent and for all xi ∈ X , for all a ∈ dom(xi), for all xj ∈ X s.t. there exists

c ∈ C with scope(c) = {xi, xj}, there exists b in dom(xj), s.t. for all xl ∈ X , there

exists d ∈ dom(xl) s.t. the 3-tuple ((xi, a), (xj, b), (xl, d)) is consistent.

Informally, a problem is maxRPC iff it is (1, 1)-consistent and for each value (xi, a)

and variable xj linked to xi by some constraint, there is a consistent extension b of a

on xj and this pair of values is path consistent.1

An extension of maxRPC to non-binary CSPs is maxRPWC.

Definition 3 max Restricted Pairwise Consistent (maxRPWC) [Bessière et al., 2008]:

A CSP is max Restricted Pairwise Consistent (maxRPWC) iff ∀xi ∈ X and ∀a ∈
1See Definition 10 for path consistency.

27

dom(xi), ∀cj ∈ C, where xi ∈ scope(cj), ∃τ ∈ rel(cj) such that τ [xi] = a, τ is

valid, and ∀cl ∈ C(cl 6= cj), s.t. scope(cj) ∩ scope(cl) 6= ∅, ∃τ /∈ rel(cl), s.t.

τ [scope(cj) ∩ scope(cl)] = τ ′[scope(cj) ∪ scope(cl)] and τ ′ is valid. In this case we

say that τ ′ is a PW-support of τ .

Singleton Arc-Consistency (SAC) ensures that no domain becomes empty when

enforcing GAC after assigning a value to a variable [Debruyne and Bessière, 1997b].

This operation is called a singleton test. Let GAC(P ∪ {xi ← vi}) be the CSP after

assigning xi ← vi and running GAC.

Definition 4 Singleton Arc-Consistency (SAC) [Debruyne and Bessière, 1997b]: A

variable-value pair (xi, vi) of the CSP P is Singleton Arc-Consistency (SAC) iff

GAC(P ∪ {xi ← vi}) 6= ∅ (the singleton check). P is SAC iff every variable-value

pair is SAC.

Algorithms for enforcing SAC remove all domain values that fail the singleton test.

Neighborhood SAC (NSAC) [Wallace, 2015] restrict the AC check of SAC to the

neighborhood of a variable. Given a CSP P and V a subset of the variables of P , we

denote P|V the subproblem induced by V on P . The constraints included in P|V are

all those constraints whose scope contains a variable in V .

Definition 5 Neighborhood Singleton Arc-Consistency (NSAC) [Wallace, 2015]: A

variable-value pair (xi, vi) of the CSP P is Neighborhood Singleton Arc-Consistency

(NSAC) iff GAC(P|{xi}∪neigh(xi) ∪ {xi ← vi}) 6= ∅ (the singleton check). P is NSAC

iff every variable-value pair is SAC.

Partition-One Arc-Consistency (POAC) adds an additional condition to SAC

[Bennaceur and Affane, 2001]. Let (xi, vi) denote a variable-value pair, (xi, vi) ∈ P

iff vi ∈ dom(xi).

28

Definition 6 Partition-One Arc-Consistent (POAC) [Bennaceur and Affane, 2001]:

A constraint network P = (X ,D, C) is Partition-One Arc-Consistent (POAC) iff P is

SAC and for all xi ∈ X , for all vi ∈ dom(xi), for all xj ∈ X, there exists vj ∈ dom(xj)

such that (xi, vi) ∈ GAC(P ∪ {xj ← vj}).

Balafrej et al. [2014] introduced two algorithms for enforcing POAC: POAC-1

and its adaptive version APOAC.

1. POAC-1 operates by enforcing SAC. In POAC-1, all the CSP variables are

singleton tested and the process is repeated over all the variables until a fixpoint

is reached. When running a singleton test on each of the values in the domain

of a given variable, POAC-1 maintains a counter for each value in the domain

of the remaining variables to determine whether or not the corresponding value

was removed by any of the singleton tests. Values that are removed by each

of those singleton tests are identified as not POAC and removed from their

respective domains. POAC-1 typically reaches quiescence faster than SAC.

2. In APOAC, the adaptive version of POAC-1, the process is interrupted as soon

as a given number of variables is processed. This number depends on input

parameters and is updated by learning during search.

Neighborhood Inverse Consistency (NIC) [Freuder and Elfe, 1996] ensures that

every value in the domain of a variable xi can be extended to a solution of the

subproblem induced by xi and the variables in its neighborhood.

Definition 7 Neighborhood Inverse Consistency (NIC) [Freuder and Elfe, 1996]: A

variable xi is Neighborhood Inverse Consistency (NIC) iff every value in dom(xi) can

be extended to the variables in neigh(xi) that satisfies all the constraints in neigh(xi).

A network is NIC iff every variable is NIC.

29

2.2.2 Relation-Based Consistency

In the dual graph of a CSP, the vertices represent the CSP constraints and the edges

connect vertices representing constraints whose scopes overlap. Relational Neighbor-

hood Inverse Consistency (RNIC) [Woodward et al., 2011b] enforces NIC on the dual

graph of the CSP. That is, it ensures that any tuple in any relation can be extended

in a consistent assignment to all the relations in its neighborhood in the dual graph.

Definition 8 Relational Neighborhood Inverse Consistent (RNIC) [Woodward et al.,

2011b]: A relation Ri is Relational Neighborhood Inverse Consistent (RNIC) iff every

tuple in Ri can be extended to the variables in ⋃
Rj∈Neigh(Ri) scope(Rj) \ scope(Ri) in

an assignment that simultaneously satisfies all the relations in Neigh(Ri). A network

is RNIC iff every relation is RNIC.

NIC and RNIC are theoretically incomparable [Woodward et al., 2012], but RNIC

has two main advantages over NIC:

1. NIC was originally proposed for binary CSPs and the neighborhoods in NIC

likely grow too large on non-binary CSPs.

2. RNIC can operate on different dual graph structures to save time and/or im-

prove propagation. Three variations of RNIC were introduced and operate on

dual graphs that are minimal (wRNIC), triangulated (triRNIC), or both min-

imal and triangulated (wtriRNIC) [Woodward et al., 2011a; Woodward et al.,

2011c]. Given an instance, selRNIC uses a decision tree to automatically select

the dual graph for RNIC to operate on.

Definition 9 m-wise consistent [Gyssens, 1986; Janssen et al., 1989]: A CSP is m-

wise consistent if, every tuple in a relation can be extended to every combination of

m− 1 other relations in a consistent manner.

30

Pairwise Consistency (PWC) guarantees that every tuple consistent with a constraint

ci is consistent with every constraint in neigh(ci) [Gyssens, 1986]. Pairwise Consis-

tency is equivalent to 2-wise consistency. Keeping with relational-consistency nota-

tions, Karakashian et al. denoted m-wise consistency by R(∗,m)C, and proposed

a first practical algorithm for enforcing it [2010]. For simplicity, we will refer to

R(∗,m)C as the property combining both GAC and R(∗,m)C, which can be obtained

algorithmically by projecting the relations onto their scopes individually after enforc-

ing R(∗,m)C.

Montanari [1974] originally introduced the property of path consistency as a

tractable approximation of minimality.

Definition 10 Path Consistent (PC) [Dechter, 2003a]: Given a CSP P, the variables

xi and xj are Path Consistent (PC) relative to a variable xk 6=i for every consistent

assignment {(xi, a), (xj, b)} there is some value c ∈ dom(xk) such that both the as-

signments {(xi, a), (xk, c)} and {(xj, b), (xk, c)} are consistent. P is path consistent

iff ∀xi, xj, xk ∈ V with xk 6= xi 6= xj, xi and xj are path consistent relative to xk.

Directional path consistency (DPC) is a restriction of path consistency to an

ordering ord of the variables, typically the perfect elimination ordering.

Definition 11 Directional Path Consistent (DPC) [Dechter and Pearl, 1988]: A CSP

is Directional Path Consistent (DPC) relative to order ord = (x1, x2 . . . , xn), iff for

every k ≥ i, j, the two variables xi and xj are path consistent relative to xk.

Conservative Path Consistency (CPC) is a restriction of path consistency to the

existing constraints of a problem. If there is no Ci,j ∈ C then xi and xj are conservative

path consistent, otherwise xi and xj must be path consistent.

31

Definition 12 Conservative Path Consistent (CPC) [Debruyne, 1999]: An assign-

ment to two variables xi and xj such that there is no constraint Ci,j ∈ C is Conserva-

tive Path Consistent (CPC). If Ci,j ∈ C, the assignment {(xi, a), (xj, b)} is conserva-

tive path consistent iff (a, b) ∈ Ri,j and ∀xi, xj, xk ∈ V with k 6= i 6= j, Ci,k, Cj,k ∈ C ⇒

∃c ∈ dom(xk) such that (a, c) ∈ Ri,k and (b, c) ∈ Rj,k. A constraint Ci,j ∈ C is conser-

vative path consistent iff for all the tuples (a, b) ∈ Ri,j, the assignment {(xi, a), (xj, b)}

is conservative path consistent. A CSP is conservative path consistent iff it is arc con-

sistent and ∀Ci,j ∈ C, Ci,j is conservative path consistent.

Partial path consistency [Bliek and Sam-Haroud, 1999] was introduced in the same

year as CPC. We present the definition as phrased by Lecoutre et al. [2011].

Definition 13 Partial Path Consistent (PPC) [Lecoutre et al., 2011]: A CSP is

Partial Path Consistent (PPC) iff every closed graph-path of its constraint graph is

consistent.

The algorithms for enforcing PPC on a CSP involves triangulating the CSP (i.e.,

generating constraints for the added triangulated edges) and enforcing CPC on the

triangulated network.

Definition 14 Conservative Dual Consistent (CDC) [Lecoutre et al., 2007]: Given

a CSP, P, an assignment {(xi, a), (xj, b)} is Conservative Dual Consistent (CDC)

iff (ci,j /∈ C) ∨ ((xj, b) ∈ AC(P|xi←a) ∧ (xi, a) ∈ AC(P|xj←b)). P is conservative

dual consistent iff every consistent assignment {(xi, a), (xj, b)} is conservative dual

consistent.

CDC combined with AC is called Strong Conservative Dual Consistency (sCDC).

32

2.2.3 Comparing Consistency Properties

Using the terminology of Debruyne and Bessière [1997b], we say that a consistency

property p is stronger than p′ if in any CSP where p holds p′ also holds. Further, we

say that p is strictly stronger than p′ if p is stronger than p′, and there exists at least

one CSP in which p′ holds but p does not. We say that p and p′ are equivalent if p

is stronger than p′, and vice versa. Finally, we say that p and p′ are incomparable

when there exists at least one CSP in which p holds but p′ does not, and vice versa.

In practice, when a consistency property p is stronger than another p′, enforcing p

never yields less pruning than enforcing p′ on the same problem.

Following this terminology, POAC is strictly stronger than SAC, which is strictly

stronger than GAC. The consistency property enforced by the adaptive algorithm

APOAC is strictly stronger than GAC, incomparable with SAC, and strictly weaker

than POAC.

Below, we introduce a new result.

Theorem 1 On binary CSPs, Conservative Path Consistency (CPC) is equivalent

to R(∗,3)C.

Proof: By contradiction.

⇒ : Assume that CPC removes more tuples than R(∗,3)C does. Thus, CPC filters

a tuple τi,j on variables i, j when trying to extend the tuple to a third variable

k. Three constraints must exist between these three variables because of the

conservative property. Thus, there is a combination of three constraints ci,j,

ci,k, cj,k in R(∗,3)C. Thus, R(∗,3)C attempts to extend τi,j to a tuple in ci,k and

a tuple in cj,k, which filters τi,j because CPC filtered this tuple using the same

combination, which yields a contradiction.

33

⇐ : Assume that R(∗,3)C filters more than CPC. Thus, R(∗,3)C filters a tuple τi,j

on constraint ci,j when extending to a combination of three constraints ci,j, c2, c3

in the dual graph. We illustrate by contradiction that this cannot happen for

all possible scopes for c2 and c3 on binary CSPs:

1. scope(c2) = {i, k} and scope(c3) = {j, k}. Thus R(∗,3)C cannot extends

τi,j to variable k. But, CPC would have filtered this tuple.

2. scope(c2) = {v, k} and scope(c3) = {v, l}, where v is i or j. All dual

constraints are an equality constraint over the common subscope v, the

edge between c2 and c3 is redundant, which means R(∗,3)C cannot obtain

filtering stronger than PWC, which on binary CSPs is equivalent to GAC.

Thus, this tuple could not be removed.

3. scope(c2) = {i, k} and scope(c3) = {j, l}. Thus, R(∗,3)C forms a chain of

three constraints, which on binary CSPs is equivalent to GAC. Thus, the

tuple could not be removed.

All situations yield a contradiction. �

2.3 Minimum Cycle Basis

A cycle basis of a graph is a maximal set of cycles that are linearly independent (i.e.,

cycles in the basis cannot be obtained by taking the composition of other cycles in

the basis)2 [Horton, 1987]. In a weighted graph, the weight of a cycle in the graph is

the sum of the weights of the edges in the cycle. A minimum cycle basis (MCB) is a

cycle basis where the sum of the weights of the cycles in the cycle basis is minimum.

Informally, a minimum cycle basis is a minimum set of cycles that can generate all
2The composition of two cycles is the symmetric difference (exclusive-or) between the edges of

the cycles.

34

the cycles of the graph. In the case of an unweighted graph, the weights of each

edge is one, a minimum cycle basis has a minimum total length.3 Algorithms for

finding a minimum cycle basis are either exact or approximate, finding the minimum

within some bound [Horton, 1987; Kavitha et al., 2007; Mehlhorn and Michail, 2009;

Amaldi et al., 2010]. The complexity of the exact algorithm is O(e2n/ log(n)) where

n is the number of vertices and e the number of edges in the graph [Amaldi et al.,

2010]. That of the approximate algorithm is O(eω
√
n log(n)) where ω is the best

exponent of matrix multiplication (ω < 2.376) [Kavitha et al., 2007].

Figure 2.8 shows the incidence graph of Example 1), where circles denote the

variables and the squares the constraints. The graph has thirteen cycles:

E I

L

M

J

N

K

H AD

F

B

G

C
R1

A,B,C,N

R3I,J,K

R2I,M,N

R4A,K,LR7 F,G,H R5B,D,E,F

R6 C,D,H

R8E,F,G

Figure 2.8: A re-arrangement of the incidence graph of Figure 2.5

1. (R6, H,R7, F, R5, D)

2. (R6, D,R5, B,R1, C)

3. (R5, F, R8, E)

4. (R7, G,R8, F)
3Note that an MCB is not unique.

35

5. (R1, A,R4, K,R3, I, R2, N)

6. (R6, H,R7, F, R5, B,R1, C), obtained by the symmetric difference of first and

second cycle.

7. (R6, H,R7, F, R8, E,R5, D), obtained from the symmetric difference of first and

third cycle.

8. (R6, H,R7, G,R8, F, R5, D), obtained from the symmetric difference of first and

forth cycle.

9. (R5, F, R7, G,R8, E), obtained form symmetric difference of third and forth cy-

cle.

10. (R6, H,R7, F, R8, E,R5, B,R1, C), obtained from the symmetric difference of

first, second, and third cycle.

11. (R6, H,R7, G,R8, F, R5, B,R1, C), obtained from the symmetric difference of

first, second, and forth cycle.

12. (R6, H,R7, G,R8, E,R5, D), obtained from the symmetric difference of first,

third, and forth cycle.

13. (R6, H,R7, G,R8, E,R5, B,R1, C), obtained from the symmetric difference of

first, second, third, and forth cycle.

Notice the sixth through thirteenth cycle can be obtained from symmetric difference

of the first five. Thus, the first five cycles constitute a minimal cycle basis for this

graph. Incidentally, note that the variables M,J, L do not appear in any cycle.

36

2.4 Related Literature

We organize the related work along the three axes shown in Figure 2.9 and combina-

tions of these dimensions.

Where?

When?

How much?

HLC	

Where?
One variable Entire CSP

 Always GAC Always HLC
When?

How much?
Stop early Until fixpoint

Figure 2.9: Dimensions of enforcing consistency

2.4.1 Where

The consistency level is chosen based on some property of the variables and/or con-

straints. One can exploit structural properties of the constraint network, such as the

neighborhood of a variable or a constraint [Freuder and Elfe, 1996; Wallace, 2015;

Woodward et al., 2011b], or some configuration of constraints [Karakashian et al.,

2010]. Freuder and Wallace [1991] enforce arc consistency on a subproblem within

a given distance (i.e., where) from the instantiated variable. Balafrej et al. [2013]

and Woodward et al. [2014] exploit the degree of support that constraints provide to

variable-value pairs, which is a structural property.

2.4.2 When

The consistency selected depends on search performance. Borrett et al. [1996] switch

between backtrack algorithms, level of consistency enforced, and ordering heuristics

by a complex combination of domain sizes, number of variables, and backtrack levels.

37

Epstein et al. [2005] consider several strengths of AC-based consistencies depending

on the depth of the search tree. Balafrej et al. [2015] use a multi-armed bandit at

each depth of search tree to select between MAC, maxRPC, or POAC.

2.4.3 How much

Propagation is terminated before reaching a fixpoint. Such approaches focus on

the propagation queue of a consistency algorithm. They either order the prop-

agation queue according to some heuristic [Wallace and Freuder, 1992] or inter-

rupt the consistency algorithm when the pruning effect of propagation has sub-

sided [Balafrej et al., 2014] or the allocated time has elapsed [Eén and Biere, 2005;

Geschwender et al., 2016].

2.4.4 Where and when

Some authors propose heuristics to dynamically switch from GAC to a stronger prop-

erty on a selection of constraints (i.e., where) based on the amount of activity of the

constraints during search (i.e., when). For example, Stergiou [2008] switches between

GAC and maxRPC for binary CSPs and Paparrizou and Stergiou [2012] between

GAC and maxRPWC for nonbinary CSPs.

2.4.5 Where and how much

Paparrizou and Stergiou [2017] propose a strategy for interrupting enforcing Neighborhood-

SAC based on the amount of filtering it yields. For each singleton test on the consid-

ered variable, the filtering is interrupted (i.e., how much) unless the domain of any

neighboring variable (i.e., where) becomes singleton.

38

Summary

In this chapter, we gave background information on CSPs. We described represen-

tations of a CSP and introduced some common consistency properties and reviewed

how they can be compared. Finally, we reviewed the main approaches to enforcing

high-level consistency during while positioning each approach along the three orthog-

onal directions that we have identified, thus validating the relevance of our proposed

characterization.

39

Chapter 3

Visualizing Search

Carro and Hermenegildo [1998] distinguish three main uses of visualization in Con-

straint Programming:

1. Debugging: Providing a clear view of the program state to the programmer.

2. Tuning and optimizing programs: Providing, to the programmer or the expert

user, profiling statistics about the solver’s execution.

3. Teaching and education: Providing explanations to a layperson.1

Thus, the design of any visualization takes into account the intended use, or the

goal, of the visualization. In this chapter we focus the goal of ‘tuning and optimizing

programs.’ To that end we introduce a visualization to help with understanding the

performance of backtrack search and the effectiveness of enforcing a local consistency

property on a problem instance.

Below, we first review previous approaches to visualization in Constraint Pro-

gramming. Then, we introduce our proposed visualizations [Howell et al., 2018b].
1For example, the visualization of constraint solving in the context of Sudoku (http://sudoku.

unl.edu), Minesweeper (http://minesweeper.unl.edu), the Game of Set (http://gameofset.
unl.edu), and SAT solving (http://satviz.unl.edu).

http://sudoku.unl.edu
http://sudoku.unl.edu
http://minesweeper.unl.edu
http://gameofset.unl.edu
http://gameofset.unl.edu
http://satviz.unl.edu

40

We discuss how our visualizations allow us to interpret the performance of search,

to compare the performances of two or more search algorithms, and to understand

the effectiveness of enforcing a particular local consistency during search. Finally, we

discuss two aspects of our implementation: how to provide a real-time visualization

of search and how to enforce multiple consistency algorithms during search.

3.1 Previous Approaches to Visualizing Search

In Constraint Programming, visualizations are developed for the search tree and

for the constraints, which are typically global constraints. The visualization in this

dissertation focuses on the former because we operate on arbitrary constraints. Prior

research on search-tree visualization focuses on the 2-way branching scheme, which

is typical in Constraint Programming, in contrast to the k-way branching scheme

adopted by the CSP community. In the constraint solver CHIP, Simonis and Aggoun

[2000] propose to visualize the search tree from two perspectives, namely, tree view

and phase-line display:

• Tree view: The search tree is displayed using a parent-children relationship.

Each node in the tree is an variable-assignment that was consistent after en-

forcing lookahead. Failed branches are ‘collapsed’ to keep the display of the

tree manageable. Figure 3.1 shows an example tree view.

• Phase-line display: Each variable is given a line that shows the depth in the

search tree at which the variable was assigned (y-axis) as time progresses (x-

axis). This visualization would show horizontal lines for a static variable-

ordering, and can be useful for visualizing dynamic variable-ordering heuristics.

Figure 3.2 shows an example phase line display.

41

Figure 3.1: The tree view [Simonis and Ag-
goun, 2000]

Figure 3.2: The phase-line display [Simonis
and Aggoun, 2000]

In addition to these two views of the search tree, Simonis and Aggoun [2000]

provide functionalities that allow an in-depth analysis of the states of the variables and

constraints, and to view the order of the constraints considered during propagation.

Simonis et al. [2000] also introduce visualizations of global constraints in the context

of the constraints meaning in the CSP.

The tree view and phase-line display were originally proposed in the larger DiSCiPl

project. The DiSCiPl project provides extensive visual functionalities to develop,

test, and debug constraint logic programs such as displaying variables’ states, effect

of constraints and global constraints, and event propagation at each node of the

search tree [Simonis and Aggoun, 2000; Carro and Hermenegildo, 2000]. Many useful

methodologies from the DiSCiPl project are implemented in CP-Viz [Simonis et

42

al., 2010] and other works [Shishmarev et al., 2016]. The implementation of CP-

Viz is solver-agnostic. It takes as input an XML trace of the solver and generates

visualizations of that search.

The OZ Explorer displays the search tree allowing the user to access detailed

information about the node at each tree node and to collapse and expand failing

trees for closer examination [Schulte, 1996]. This work is currently incorporated into

Gecode’s Gist [Schulte et al., 2015].

The above approaches focus on exploring the search tree (as well as a problem’s

components) while our work proposes particular projections (i.e., views, summaries)

of the data reflecting (i.e., compiling) the cost and the effectiveness of both search

and enforcing consistency. We believe that these visualizations are orthogonal and

complementary.

Tracking search effort by depth was first proposed by Epstein et al. [2005] for

the number of constraint checks and values removed per search and by Simonis et

al. [2010] in CP-Viz for the number of nodes visited (also used for solving a packing

problem [Simonis and O’Sullivan, 2011]). Figure 3.3 shows an example visualization

of the number of constraint checks at every depth of search [Epstein et al., 2005].

Figure 3.4 shows an example visualization of the result of every node visit call, either

a failure (i.e., found the current subtree inconsistent) or successful (i.e., try a variable

instantiation) [Simonis et al., 2010].

We claim that the number of constraint checks, values removed, and nodes visited

are not accurate measures of the thrashing effort. Indeed, the number of constraint

checks varies with the degree of the variables. The number of values removed and

nodes visited vary with the size of the domain. In contrast, we claim that the number

of backtracks per search depth (BpD) provides a more faithful representation of the

thrashing effort, which is exactly the aspect of search that we aim to characterize.

43

Figure 3.3: The number of each constraint
check at every depth [Epstein et al., 2005]

Figure 3.4: The result of a node visit at ev-
ery depth [Simonis et al., 2010]

Recently, techniques have appeared in Constraint Processing for dynamically

choosing between a set of consistency properties based on the CPU time spent on

exploring a given subtree [Balafrej et al., 2015]. We claim that we better track the

effectiveness of such decisions by following the number of backtracks per depth (BpD)

and the number of consistency calls per depth (CpD) rather than the CPU time of

searching a given subtree.

3.2 Analyzing Search Effectiveness

We propose two visualizations towards summarizing and explaining the performance

of search:

1. We track the number of backtracks per depth (BpD) at each level of search to

understand where and how search struggles and where it smoothly proceeds.

2. To understand the impact of enforcing a given consistency property, we track

44

the number of calls to the consistency algorithm per depth (CpD) in the search

tree. Further, we split these calls into three categories: those that yield domain

wipeout (i.e., detect inconsistency), those that effectively filter domains without

detecting a dead-end, and those that yield no filtering.

3.2.1 Backtracks per Depth

The Backtracks per Depth (BpD) chart reflects various aspects of search effective-

ness as we illustrate with an example. Table 3.1 reports runtime statistics of search

for solving a coloring problem while enforcing the GAC algorithm STR2+ [Lecoutre,

2011] and POAC algorithm POAC-1 [Balafrej et al., 2014] using the dom/wdeg or-

dering heuristic [Boussemart et al., 2004].2 The definitions of GAC (Definition 1 in

Table 3.1: Search with GAC and POAC on 4-insertions-3-3. Note that GAC timed out

Algorithm CPU Time (sec) # Nodes Visited # Backtracks maxBpD

GAC >8,099.9 335,498,250 243,259,300 15,241,175
POAC 2,447.4 1,325,469 930,208 59,756

Section 2.2.1) and POAC (Definition 6 in Section 2.2.1) are not needed for this dis-

cussion: it suffices to say that an algorithm that enforces GAC is generally quick but

does little filtering while a POAC algorithm is typically costly but can prune larger

substrees of the search space than the GAC algorithm. As we can see in Table 3.1,

it is clear that our ‘investment’ in POAC is worthwhile because POAC solves the

instance in about 41 minutes while GAC does not terminate.

Figure 3.5 shows the BpD charts of the search with GAC (left) and POAC (right).

We see that GAC thrashes around depth 50 with maxBpD=15,241,175 backtrack at

depth 53. POAC, which enforces a strictly stronger consistency throughout search,
2Instance 4-insertions-3-3 of the benchmark graphColoring-k-insertions from www.cril.

univ-artois.fr/~lecoutre/benchmarks.html.

www.cril.univ-artois.fr/~lecoutre/benchmarks.html
www.cril.univ-artois.fr/~lecoutre/benchmarks.html

45

Figure 3.5: BpD for GAC (left) and POAC (right) on instance 4-insertions-3-3.

limits the severity of thrashing to only maxBpD=59,756 backtracks at depth 29. By

detecting and pruning inconsistencies at a shallower search level, POAC solves the

problem while GAC fails.

3.2.2 Calls per Depth

Enforcing a higher-level consistency (HLC), such as POAC, after each variable instan-

tiation during search is not always worthwhile. On easier problems, the computational

cost of a HLC can be an overkill. We propose another visualization to examine the

effectiveness of enforcing a high-level consistency by superimposing, to the BpD chart,

the Calls per Depth (CpD) chart reporting the number of calls to POAC per depth.

Figure 3.6, unsurprisingly shows that the BpD and the CpD charts of POAC largely

overlap in shape (modulo their respective ranges shown on both sides of the chart),

which is explained by the fact that POAC is called at every variable instantiation

during search. In other dynamic strategies where two or more levels of consistency

are enforced, the CpD would allow us to differentiate between the impact of each

46

Figure 3.6: Superimposing CpD and BpD for POAC on 4-insertions-3-3

consistency algorithm.

We propose to split more finely the CpD into three categories depending on

whether calls to HLC resulted in:

1. a domain wipeout (the most effective HLC calls, which cause backtracking),

2. filtering but no wipe out (which prunes inconsistent subtrees, reducing the

search space, but cannot detect inconsistency), and

3. no filtering (which are wasteful calls to HLC).

In Figure 3.7, these three CpDs are shown in green, blue, and red, respectively. In the

case of our particular example, we can see that the wasteful calls to POAC, shown

in red, are extremely few and that almost all calls are effective (green or blue). This

realization fully explains the ability of POAC to prevent search from thrashing at

deeper search levels and its effectiveness in solving this difficult instance.

47

Figure 3.7: Superimposing BpD and detailed CpD (wipeout in green, filtering in blue,
no-filtering in red) for POAC on 4-insertions-3-3

3.3 Comparing Different Consistency Algorithms

We use the BpD and CpD to understand and compare the behavior of PrePeak+,

which is a new reactive strategy for enforcing high level consistency during search

described in Chapter 4.

To this end, we solve the CSP instance pseudo-aim-200-1-6-4 with backtrack

search under three settings: (1) maintaining GAC, (2) with APOAC, and (3) Pre-

Peak+. PrePeak+ is conservative in that it primarily enforces GAC. However, it

triggers an HLC, such as POAC, when the number of backtracks per depth (BpD)

reaches a given threshold value θ but only when search backtracks to levels shallower

than the depth where the threshold is met. PrePeak+ keeps firing the HLC as long

as the BpD at the considered depth is smaller than θ. Furthermore, every time it

backtracks, PrePeak+ updates the values of θ by reducing it or increasing it ac-

48

cording to three geometric laws depending on whether the HLC yields wipeout (i.e.,

it is effective), filters the search space, or yields no filtering (i.e., the HLC calls are

wasteful).

Figure 3.8 shows the BpD for GAC at the end of search. This curve exhibits a

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

B

ac
kt

ra
ck

s

Depth

GAC

#BTs

CPU Time: 140.81 sec.
#NV: 3,978,074
#BT: 3,348,330

Figure 3.8: BpD and CpD of GAC on pseudo-aim-200-1-6-4

peak at depth 92 with 34,023 backtracks at that depth, showing that GAC is too

weak to filter out bad values: it spends much of its time thrashing around this depth

level.

Figure 3.9 shows the BpD (purple) and CpD (colored) curves for APOAC. Exam-

ining the BpD curve, we realize that APOAC so effectively prunes the ‘bad subtrees’

from the search space that it dramatically reduces the number of backtracks at the

peak depth down to 407 and the location of peak to around depth 75. We see that

this instance benefits from enforcing an HLC such as POAC with a clear benefit on

the CPU time (which is reduced by one order of magnitude from GAC). However,

by observing the colored curves in Figure 3.9, we notice that the number of calls

49

0

10

20

30

40

50

60

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

C

al
ls

 to
 P

O
A

C

B

ac
kt

ra
ck

s

Depth

APOAC

#BTs
Filter
No Filter
Wipeout

CPU Time: 23.77 sec.
#NV: 59,181
#BT: 53,212
#Calls POAC: 11,142

Figure 3.9: BpD (purple) and CpD’s (colored) of APOAC on pseudo-aim-200-1-6-4

to POAC that are ineffective (red curve) are of the same order as those that yield

wipeout (green curve). The detailed CpD curves hint to some savings that could be

further obtained could one cancel the wasteful calls to POAC.

Figure 3.10 shows the BpD (purple) and CpD (colored) curves for PrePeak+.

PrePeak+ is conservative in that it calls an HLC only when search thrashes, justify-

ing the cost of a stronger but more costly consistency algorithm. Indeed, we observe

that the peak value of BpD is smaller than for GAC but greater than for APOAC

(2,421 versus 34,023 and 407, respectively). However, examining the detailed CpD

curves shows that advantage of PrePeak+: Indeed, the wasteful calls to POAC

(red) are almost eliminated and the total calls to POAC are reduced down to 228

for PrePeak+ from 11,142 for APOAC. This economy in the calls to POAC is im-

mediately translated by the reduction of the CPU time. Thus, despite the fact that

PrePeak+ explores a larger search tree than APOAC (see number of nodes visited)

because it does not call the HLC at each variable instantiation, it effectively reacts

50

0

10

20

30

40

50

60

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

C

al
ls

 to
 P

O
A

C

B

ac
kt

ra
ck

s

Depth

PREPEAK+

#BTs
Filter
No Filter
Wipeout

CPU Time: 12.06 sec.
#NV: 284,289
#BT: 238,833
#Calls POAC: 228

Figure 3.10: BpD (purple) and CpD’s (colored) of PrePeak+ on pseudo-aim-200-
1-6-4

to thrashing, calling the HLC only when it is needed, but spontaneously reverting to

GAC otherwise.

This example illustrates the pertinence of the tools provided by BpD and CpD in

visually explaining the behavior of search and the benefits of PrePeak+.

3.4 Implementing the Visualization

We discuss two implementation details for the visualization proposed in this chapter.

We first discuss how to create a system that provides a real-time look at the search

progress. Then, we discuss how to enforce multiple consistency algorithms during

search, as was required in our case study of Section 3.3.

51

3.4.1 Real-Time Feedback

Previous approaches operate by storing a trace of the program to a text file, allowing

a post-mortem examination of the search process. We produce our visualization of

the BpD (Section 3.2) in real time in order to provide, to the user, an instantaneous

feedback of how search is operating.

We implement this visualization in Stampede, the CSP solver developed in the

Constraint Systems Laboratory. The framework in Stampede operates by passing

JavaScript Object Notation (JSON) messages from the solver (i.e., server) to the

web-interface (i.e., client).3 Messages are cached and sent on a time schedule to avoid

the overhead of sending many small messages. More specifically, messages are sent

every 3 milliseconds. The client receives these messages and updates the visualization

based on the messages received.

Stampede creates a WebSocket server to pass the JSON messages to the web

client. The change in the graph from the previous message is sent to the client to

reduce the size of the messages sent. Two types of messages are sent from the solver

to the client, corresponding to the two visualizations:

1. BpD: The depths where backtracks have occurred since the last message and

the additional number of backtracks at those depths.

2. CpD: The depths where each consistency algorithm was enforced since the last

message and the result of its enforcement at those depths.

Once a message is received, the interface parses the message and updates the chart,

applying the difference to what is currently rendered.
3Anthony Schneider designed the communication framework for passing messages from Stam-

pede to the visualization. Denis Komissarov designed the generic framework for adding visualiza-
tions in JavaScript.

52

For post-mortem examination of the chart (i.e., examining the chart as it appears

at the end of search), no messages are sent to the client. Instead, when the solver ter-

minates, a JSON string representing the complete chart is stored. The web interface

is enhanced to also take as input JSON strings.

If a user wants to see the evolution of search, they must watch search as it pro-

gresses in real time. However, for problems where search takes a large amount of

time, the user is required to wait in real time. Further, the user lacks advanced con-

trols, such as pause and rewind. Howell et al. [2018b] extended these visualizations in

Wormhole to be able to reconstruct the visualization after search terminates, which

allows the user to carefully examine the visualization as search progresses. Similar to

CP-Viz [Simonis et al., 2010], Wormhole is solver agnostic and can visualize any

solver that reports the corresponding JSON messages.

3.4.2 Running Multiple Consistencies

Most consistency algorithms can be viewed as being ‘event based’ in that a given

constraint removes a value in the domain of a variable in its scope requiring some

other constraints to be considered. The arc-consistency algorithm AC5 is one of an

example of an event-based consistency algorithm [Hentenryck et al., 1992].

Vion et al. [2011] fit higher-level consistencies into the same event-based framework

by defining a number of abstract constraints depending on how a specific higher-level

consistency operates. Each abstract constraint represents a specific combination of

element on which the higher-level consistency should operate (e.g., an element in

the queue). When this abstract constraint is considered, it executes the higher-level

consistency algorithm on that specific combination of elements. In this framework,

some of the constraints represent low-level consistency (i.e., AC), others represent

53

high-level consistency. The technique relies on sorting the constraints to determine

the proper order of enforcement. These abstract constraints are not able to enforcing

consistency in a ‘when’ strategy (i.e., enforce the consistency during certain parts of

the search space), but does allow for easily enforcing a ‘where’ strategy (i.e., enforcing

the consistency on a part of the problem).

We propose an alternative approach for enforcing multiple consistencies. Our

approach does not involve re-framing the consistency algorithms as events. Rather,

it ‘informs’ each consistency algorithm about the changes that have occurred in the

problem since the consistency was last enforced.4

Algorithm 1 shows the steps used when a consistency algorithm, consistency, is

to be enforced at some depth of the search tree. The algorithm uses the following

Algorithm 1: RunConsistency(consistency,depth)
Input: consistency: A consistency algorithm; depth: Depth of the search tree

1 if consistency 6∈ ranConsistencies[depth] then SaveState(consistency)
2 ranConsistencies[depth]← ranConsistencies[depth] ∪ {consistency}
3 ViewReductions(consistency)
4 Run(consistency)

methods:

• SaveState(consistency) tells the consistency algorithm consistency that it is

at a new level in search, useful for saving its state of the CSP (e.g., save the

supports).

• ViewReductions(consistency) passes all of the changes to the problem (i.e.,

value and tuple deletions) since the last time the consistency algorithm consistency

was executed. The idea is that the consistency algorithm uses this information
4This framework was initially designed in collaboration with Nathan Stender. It was later refined

and made more efficient in collaboration with Anthony Schneider.

54

to re-queue any changes for the next time it runs. We discuss below how these

changes are stored.

• Run(consistency) executes the consistency algorithm consistency.

In Algorithm 1, ranConsistencies is a global vector of size n that stores, for each search

depth, the set of consistency algorithms executed at that depth. Initially all sets in

the vector are empty. Line 1 determines whether or not the consistency was previously

executed at this depth by checking ranConsistencies, and calls SaveState on the

consistency in case it has not been executed before. Line 3 calls ViewReductions

on the consistency to alert it of any changes that have occurred since it was last

executed.

Every change to the problem (e.g., removing a variable-value pair or a relation-

tuple pair) is stored as a reduction.5 Every variable (table constraint) is associated

with an ordered list of value (tuple) reductions that were deleted for that variable

(table constraint). Every consistency algorithm stores a pointer to every list of reduc-

tions, pointing to the latest reduction processed when the algorithm was last enforced.

The method ViewReductions retrieves all the reductions listed after the consis-

tency’s current pointer then updates this pointer to point to the end of the list. Note

that the reductions retrieved may have occurred at any depth of search deeper than

when the consistency was last enforced. If a consistency algorithm caused a reduction,

it does not need to view these changes as it caused it, thus its pointer is automatically

updated to the end of the list. The typical use of the ViewReductions method is

to assist the consistency algorithm in what elements of change to re-queue.

When search undoes an assignment (i.e., when a node visit fails), UndoAssign-

ment (Algorithm 2) ‘tells’ the consistency algorithms executed at this search depth to
5Storing filtered values as reductions was first proposed by Prosser for the Forward-Checking

algorithm [Prosser, 1993].

55

restore the state of the problem. The algorithm UndoAssignment uses the method

Algorithm 2: UndoAssignment(depth)
Input: depth: The search depth

1 foreach consistency ∈ ranConsistencies[depth] do
2 RestoreState(consistency)
3 ranConsistencies[depth]← ∅

RestoreState(consistency), which tells the consistency algorithm consistency that

the assignment is undone. RestoreState corresponds to the undo operation of the

SaveState call. RestoreState also restores the pointers of the reductions for ev-

ery variable and table constraint to the previous level. The restoration of the pointers

is accomplished by using a reversible-set data-structure [Demeulenaere et al., 2016].

Summary

In this chapter, we introduced a new approach for visualizing the progression of search

by summarizing the number of backtracks and the number of calls to consistency at

each depth in the search tree. We also discussed two design mechanisms for imple-

menting this visualization.

56

Chapter 4

A Reactive Strategy for High-Level

Consistency During Search

Enforcing a higher-Level Consistency (HLC) can be between 2–40 times slower than

enforcing GAC algorithms. Thus, enforcing HLC needs to reduce the number of

node visits by this same amount for enforcing HLC to yield CPU time improvements.

Alternatively, instead of enforcing HLC at every step in search we can selectively

enforce it.

Our motivation comes from noticing that using the variable-ordering heuristic

dom/wdeg [Boussemart et al., 2004] with GAC algorithms is able to solve many

problems with little search. In these situations, we want to exploit the easiness of the

problem by letting GAC solve the problem and not enforcing HLC.

In this chapter, we present PrePeak+ as a reactive strategy that operates on the

two dimensions ‘when’ and ‘how much.’ In particular, (a) we introduce a triggering

strategy, PrePeak, that tracks search performance and triggers HLC when search

starts thrashing (i.e., when), and (b) choose to enforce HLC on a fraction of the (or-

dered) propagation queue and within a bounded time duration (i.e., how much). We

57

validate our approach on benchmark problems using Partition-One Arc-Consistency

as an HLC. However, our strategy is generic and can be used with other higher-level

consistency algorithms, as we show in future chapters.

4.1 When HLC: A Trigger-Based Strategy

We first introduce our HLC-triggering strategy, PrePeak. Then we discuss using

geometric laws to allow PrePeak to react to the effectiveness of enforcing HLC.

4.1.1 PrePeak

The idea behind our reactive strategy is to monitor the ‘progress’ of search while

maintaining some consistency property, such as GAC, in a d-way branching backtrack

search. When search starts thrashing, we trigger some high-level consistency (HLC),

such as POAC, and keep enforcing it as long as it is beneficial. In order to determine

that thrashing has reached a dangerous level, we propose to track the number of

backtracks at each depth (or level) of the search tree. We advocate using the number

of backtracks as a better indication of thrashing than the number of constraint checks

(e.g., [Epstein et al., 2005]) or the number of nodes visited because the former depends

on the number of constraints that apply to a variable and the latter depends on the

variable’s domain size. To this end, we store the number of times each level of the

search tree was backtracked to in a vector btcounts[·] indexed by the corresponding

level. The size of the vector is n+1 where n is the number of variables in the problem.

When an entry in this vector reaches some threshold value θ, we set peakd, identified

as the ‘peak’ depth of thrashing, to the search depth corresponding to that entry.

When search backtracks to a shallower depth than peakd, we enforce HLC as long as

HLC is effective, then we revert to enforcing GAC after resetting to 0 all the counts

58

in btcounts[·]. We call this approach PrePeak because (a) it is based on identifying

the peak depth to which search backtracks and (b) HLC is enforced up to this depth.

Our goal is to ‘hit hard’ the future subproblem with HLC and reduce its size before

the search reaches the peak depth again.

We present PrePeak as simple modifications of the functions Unlabel (Algo-

rithm 3) and Label (Algorithm 4) of Prosser’s ‘classical’ backtrack search algorithm

[1993]. These modifications are obtained by adding the lines highlighted in the pseu-

docode. Below, we discuss only the lines corresponding to our modifications. Further,

we declare btcounts[·] and peakd as global variables to the search procedure. We ini-

tialize all the entries of btcounts[·] to 0 and set peakd to 0 indicating that there is no

active peak.

Algorithm 3: Unlabel(i,consistent) unlabels variable xi
Input: i: depth of failed variable; consistent: state of current path
Output: depth of current variable

1 Restore domains of current and future variables
2 h← i− 1
3 dom(xh)← dom(xh) \ {AssignedValue(xh)}
4 consistent← dom(xh) 6= ∅
5 btcounts[h]← btcounts[h] + 1
6 if btcounts[h] = θ then peakd ← h
7 return h

In Line 5 of Unlabel (Algorithm 3), we increment the value of btcounts[h] where

h is the depth to which we backtrack. If btcounts[h] reaches the threshold value θ,

we set peakd to h to reduce the chance of thrashing at i (Line 6). We discuss the

selection of the initial value of θ in Section 4.1.3.

It is in the function Label (Algorithm 4) that we must decide whether or not to

enforce HLC. At every assignment of the current variable xi, we first enforce GAC

(Line 6). At Line 7, if we find that a peak was identified (peakd > 0) and the

59

Algorithm 4: Label(i,consistent) instantiates variable xi
Input: i: depth of current variable; consistent: state of current path
Output: depth of current variable

1 consistent ← false
2 HLCenforced ← false
3 HLCfiltered ← false
4 foreach vi ∈ dom(xi) while not consistent do
5 xi ← vi
6 consistent ← GAC(P)
7 if consistent and peakd > 0 and i ≤ peakd then
8 (consistent, filtered)← HLC(P)
9 HLCenforced ← true

10 HLCfiltered ← HLCfiltered or filtered
11 if not consistent then dom(xi)← dom(xi) \ {vi}
12 if HLCenforced then
13 if not consistent then θ ← rw · θ
14 else
15 ∀z btcounts[z]← 0
16 peakd ← 0
17 if HLCfiltered then θ ← rf · θ
18 else θ ← rn · θ

19 if consistent then return i+ 1 else return i

current depth is shallower than the peak’s depth (i ≤ peakd), we enforce HLC on the

future subproblem recording the outcome of this call, for the given assignment, using

the Boolean variables consistent and filtered (Line 8), where consistent indicates the

consistency of the current path and filtered indicates whether or not HLC yielded

any filtering. The Boolean variables HLCenforced and HLCfiltered indicate, for any

tested assignment for the current variable, whether or not HLC was enforced (Line 9)

and yielded filtering (Line 10), respectively. Note, once HLC is triggered, we enforce

it for all the tested values for the current variable xi.

We claim that, whenever we trigger HLC, it is timely to revise and update the

triggering threshold, θ, given the recorded outcome of HLC. We distinguish three

60

regimes:

1. Wipeout: HLC effectively depletes the domain of xi by yielding a wipeout at

every instantiation. It forces search to backtrack.

2. Filtering: HLC yields some filtering, but finds a consistent assignment for xi

and allows search to proceed to the next level.

3. Neither : HLC does not yield any filtering at all (beyond what GAC may have

filtered). Search proceeds to the next level with a consistent instantiation for

xi.

We update the threshold value θ by multiplying its current value by a factor of rw

(Line 13), rf (Line 17), or rn (Line 18), for each of the above regimes, respectively, as

we argue below. We discuss these factors in Section 4.1.2.

The first regime (i.e., wipeout) ‘reinforces’ our belief in the usefulness of HLC and

entices us to continue to enforce HLC as we backtrack by one or more levels. To this

end, we do not reset the values of peakd or btcounts[·]. In the remaining two regimes,

we are reserved about the usefulness of HLC and prevent it from triggering again too

soon. Thus, we reset the values of both btcounts[·] and peakd (Lines 15 and 16). As a

result, subsequent calls to the function Label do not enforce HLC until a new peak

is detected.

4.1.2 Update Strategies for θ

The three identified regimes allow us to ‘plug in’ arbitrary strategies for updating θ,

thus providing an opportunity to adjust PrePeak’s reactivity to the relative cost

of the consistency properties enforced. We propose to use geometric laws similar to

61

the one used for cutoff-value update in restarting randomized search [Walsh, 1999]

θ ← r · θ with different values of the common ratio r for each of the regimes.

1. Wipeout: We use rw = 1.2−1 (Line 13).1

2. Filtering: We use rf = 1.22 (Line 17).

3. Neither: We use rn = 1.23 (Line 18).

The above strategies allow PrePeak to adapt to the instance at hand by updating θ

based on HLC’s pruning effectiveness. Indeed, when it yields a domain wipeout (first

regime), HLC is effectively reducing thrashing and its frequency is increased. Oth-

erwise, the update strategies decrease HLC’s triggering frequency more aggressively

when HLC yields no filtering (third regime) than when it does (second regime).

4.1.3 Initializing the threshold θ

Our reactive strategy enforces GAC until search starts thrashing, triggering HLC

when backtracking ‘reaches’ the value of the threshold θ. If we choose too small an

initial value for θ, HLC may trigger while GAC is still effective, which adds to the

CPU cost.2 If we choose too large a value, GAC may have run for too long in a barren

subtree.

In PrePeak, the distribution of the backtracks in the vector btcounts[·] varies

depending on the problem instance, making the choice of the initial value of θ not

straightforward. We investigated an alternative reactive strategy that triggers HLC
1The value of 1.2 is a commonly used factor (e.g., [Walsh, 1999]) and provides a ‘gentle’ evolution.

Other values tested (e.g., 1.1, 1.4, and 1.6) yielded qualitatively similar results.
2We empirically noticed that the three update laws (Section 4.1.2) allow us to recover from

starting with smaller values by dynamically adjusting the value of θ to the instance at hand, thus
providing some robustness to our approach.

62

based on the value of ∑n
l=1 btcounts[l]. This study inspired the following initializa-

tion of θ for PrePeak: we set θ to be the maximum value of btcounts[·] when∑n
l=1 btcounts[l] = n2, thus, setting θ ← maxnl=1(btcounts[l]). In other words, we iden-

tify the first peak and its depth by taking a snapshot of the backtrack profile after

search executes n2 backtracks. We tested different values, such as various powers of

n, various factors of n, the sum of domain sizes, and the ratio of the CPU times for

enforcing GAC and HLC computed in a pre-processing step. We empirically found

that values that are quadratic in the number of variables (e.g., n2 and sum of domain

sizes) perform best, thus, we select n2.

4.2 How Much HLC: Monitoring Propagation

We propose using two mechanisms to control the early termination of HLC, namely,

the size of the propagation queue and the time bound for running HLC:

1. While ordering the elements of the propagation queue of the HLC algorithm

based on the activity of a variable or constraint (e.g., dom/wdeg [Boussemart

et al., 2004]), we allow only a fraction of the propagation queue to be processed.

2. We impose a bound on the duration of any call to HLC.

Let q be the number of elements in the propagation queue each time we trigger

HLC. We terminate HLC as soon as either of the following two criteria is met:

1. q
2 elements of the propagation queue are processed, or

2. HLC has consumed a total CPU time q
2 ·Time(GAC) where Time(GAC) is the

time spent on the last call to GAC prior to HLC (Line 6 of Algorithm 4).

63

Our approach is inspired from Balafrej et al. [2014], who noticed that POAC is too

costly to be used on its own. They advocated to (a) order the variables in the

propagation queue by the dom/wdeg ordering heuristic and (b) terminate POAC when

the amount of filtering by POAC significantly drops. They proposed an adaptive

strategy APOAC, based on a “10% learning, 90% exploitation”-learning strategy,

which assumes that POAC is enforced at every step during search. PrePeak cannot

accommodate such a learning process because HLC is enforced only reactively.

Other mechanisms to monitor propagation may exist. For example, we can watch

propagation during a given window of the propagation queue while sliding this obser-

vation window as long as filtering is ‘active.’ Alternatively, we can consider a sliding

window of time. We tested combinations of such criteria. While the results were pos-

itive in general, they were unstable across benchmarks. As a lesson, we conclude that

a fixed amount for each mechanism (i.e., queue and time) is simpler to implement,

more stable, and as effective.

4.3 Other Reactive Triggering Strategies

Reactive triggering is a general strategy of which PrePeak is one instance. We

present alternative instances for comparison.

4.3.1 BTWatch

We introduce another reactive triggering strategy that we call BTWatch. The idea

of BTWatch is to maintain a single backtrack counter throughout the search process

that we compare to the threshold value θ in the same manner as in PrePeak. As a

result, BTWatch may trigger at a search depth shallower or deeper than the peak’s

depth. Thus, in BTWatch, we determine that search is thrashing by watching the

64

backtrack counts during search, while in PrePeak, we do so by tracking the peak in

the backtrack profile. Before discussing BTWatch, we first describe a hybrid, PP-

BTWatch. Empirically, all three strategies are statistically equivalent, but they

improve our understanding of reactive strategies.

PP-BTWatch aims at controlling the depth at which HLC is triggered in BT-

Watch, the rationale being that we need to ‘pound on the difficulty’ right before it

arises. To this end, in PP-BTWatch, we compute the backtrack counter of BT-

Watch as ∑n
l=1 btcounts[l] and the trigger depth of PrePeak as arg maxnl=1(btcounts[l]).

In practice, PP-BTWatch uses the functions Unlabel (Algorithm 3) and Label

(Algorithm 4) of Section 4.1.1 by simply changing Line 6 of Unlabel (Algorithm 3)

as follows:

if ∑n
l=1 btcounts[l] = θ then peakd ← arg maxnl=1(btcounts[l])

BTWatch triggers HLC every θ backtracks at any depth and regardless of peakd.

BTWatch uses the same function Unlabel as PP-BTWatch (i.e., with the mod-

ified Line 6 in Algorithm 3). As for the function Label, BTWatch removes the test

i ≤ peakd in Line 7 of Algorithm 4 so that it triggers HLC as soon as the threshold

θ is met. Note that, for BTWatch, we could dispose of btcounts[·] and use a simple

integer as a backtrack counter.

We designed and investigated PrePeak and BTWatch in parallel. Comparing

their behavior improved our insight into reactive triggering and allowed us to blend

the two strategies. For example, PP-BTWatch implements the use of peakd in

BTWatch. Conversely, PrePeak borrows the initialization mechanism of θ of

BTWatch. In our experiments, all three strategies yielded statistically equivalent

results. We believe that more triggering strategies remain to be investigated.

65

4.3.2 Scheduled Enforcement of HLC

The most basic We introduce three strategies that decide when to enforce HLC based

on a schedule rather than using feedback from the progression of search.

Random: We introduce a random strategy for triggering HLC as a baseline com-

parison. In our experiments, we randomly trigger 1% or 10% of the time.

Time: Recent work in the SAT community has been applying higher-level consis-

tency to SAT problems both at pre-processing [Davis and Putnam, 1960; Rish and

Dechter, 2000; Subbarayan and Pradhan, 2005; Eén and Biere, 2005], and inprocess-

ing (i.e., lookahead) [Järvisalo et al., 2012]. The higher-level consistency enforced

is typically a form of variable elimination or bucket elimination in CP terminology

[Seidel, 1981; Dechter and Pearl, 1988]. The inprocessing done by SAT is conducted

by interleaving search and enforcing high-level consistency. Wotzlaw et al. [2013] ad-

vocate reserving 10% of the CPU time for inprocessing versus search. As a result,

the more time is spent on search, the more ‘inprocessing’ is allowed.

The Time strategy mimics that of Wotzlaw et al. [2013], which monitors the

cumulative time spent enforcing HLC, CumulativeTime(HLC), and the cumulative

time spent enforcing GAC, CumulativeTime(GAC). When CumulativeTime(HLC)
CumulativeTime(GAC) < x,

for some value x, we will allow HLC to be enforced.

TimeRatio: The TimeRatio strategy is similar to Time, except that it removes

the parameter x (i.e., 10%). Instead, at pre-processing it determines the amount of

time for enforcing GAC, RunningTime(GAC), followed by the enforcement of HLC,

RunningTime(HLC). Using the ratio RunningTime(GAC)
RunningTime(HLC) = x, TimeRatio trigger

HLC after every x calls to GAC.

66

4.4 Empirical Evaluation on POAC

In this section, we evaluate the effectiveness of our strategy. To this end, we con-

sider the problem of finding a single solution to a CSP using backtrack search, the

dom/wdeg variable ordering heuristic [Boussemart et al., 2004], and real-full looka-

head [Haralick and Elliott, 1980].

We first discuss our experimental setup. We then validate our approach in five

directions:

1. We demonstrate that our strategy is better than triggering randomly, Sec-

tion 4.4.3.

2. We show that PrePeak+ performs better than either of its components, Sec-

tion 4.4.4

3. Compare PrePeak+ against GAC and APOAC using two different dynamic

variable-ordering heuristics: dom/deg [Bessière and Régin, 1996] and dom/wdeg

[Boussemart et al., 2004], Section 4.4.5

4. We introduce a visualization of the search process to provide a graphical inter-

pretation of the good performance of our approach, Section 4.4.6.

5. Comparison to a multi-armed bandit technique, Section 4.4.7.

4.4.1 Experimental Setup

We set up our experiments as follows. We use STR2+ [Lecoutre, 2011] as the GAC

algorithm for lookahead (Line 6 in Algorithm 4) because STR2+ empirically outper-

forms GAC2001 on non-binary problems.

67

We choose POAC for the higher-consistency property and enforce it using the

POAC-1 algorithm [Balafrej et al., 2014], where we exclude variables with singleton

domains from the singleton tests. We use the benchmark problems available from

Lecoutre’s website.3 We test all available binary and non-binary CSPs, including

Boolean, patterned, random, quasi-random, academic, and real-world benchmarks.

We include all benchmarks with at least one instance with a primal graph of density

less than 50%.4 Indeed, on high density networks, the impact of an instantiation on

a future variable is immediately propagated by GAC while HLC typically yields no

further filtering but costs predictable data-setup overhead. This selection results in a

total of 138 benchmarks (57 non-binary and 81 binary) consisting of 4,077 instances

(1,716 non-binary and 2,361 binary). The selected benchmarks have a mixture of

instances with densities ≥ 50% and < 50%, however, only 137 instances of the 4,077

instances included have densities ≥ 50%. We setup our reactive strategies to first

compute the density of an instance. If the density is ≥ 50%, we enforce GAC.

Otherwise, we execute the reactive strategy. Our results include this computation

time. We use a time limit of 60 minutes per instance and 8GB of memory.

We denote PrePeak+ the combination of our when strategy (PrePeak, Sec-

tion 4.1) and our how-much strategy (Section 4.2).

In the tables that summarize our results, we report for each algorithm, where

applicable:

• The number of instances solved in a given benchmark (#solved)

• The number of node visits averaged over the instances completed by all algo-

rithms (avg. NV)
3www.cril.univ-artois.fr/~lecoutre/benchmarks.html
4Table E.1 in Appendix E list the selected benchmarks.

www.cril.univ-artois.fr/~lecoutre/benchmarks.html

68

• The sum of the CPU time in seconds of the run time of an algorithm for all

the instances in a benchmark completed by any of the compared algorithms

(∑CPU). When an algorithm does not terminate within the allocated time, we

add 3,600 seconds to the CPU time and indicate with a ‘>’ sign that the time

reported is a lower bound.

• The average number of calls to POAC over the instances completed by all

algorithms (#CallsPOAC). GAC does not call POAC, thus the number of calls

to POAC is reported as N/A.

• Finally, we highlight, with a boldface, the best value in a given row.

4.4.2 Comparing with BTWatch

We compare the performance of PrePeak+ to that of the BTWatch and PP-

BTWatch strategies of Section 4.3.1. We again denote BTWatch+ and PP-

BTWatch+ the combination of BTWatch and PP-BTWatch and our how-much

strategy (Section 4.2). Table 4.1 gives the overall performance on all the benchmarks

evaluated. All three strategies are statistically equivalent. However, PrePeak+

Table 4.1: The overall performance of the BTWatch strategies of Section 4.3.1

PrePeak+ BTWatch+ PP-BTWatch+

#solved 2,284 2,278 2,279
ΣCPU [sec] >338,775.9 >341,106.8 >343,723.7
avg. NV 412,568.6 327,001.4 364,717.8
#CallsPOAC 723.8 486.6 645.4
#Instances: total 4,077; solved by all 2,269; solved by one 2,291

solves the largest number of instances in the smallest CPU time. Thus, we discuss

only PrePeak+ as it offers the best empirical performance. Table F.1 of Appendix F

gives the data for each benchmark.

69

4.4.3 Triggering Cannot be Scheduled

We compare the performance of PrePeak+ to that of the three ‘scheduled’ strategies

discussed in Section 4.3.2, namely, Random, TimeRatio, and Time, which we

combine with our how-much strategy (Section 4.2). For both Random and Time,

we try two parameters, using 10% and 1% for the percentage of effort to spent on HLC.

Table 4.2 gives the overall performance on all the benchmarks evaluated. PrePeak+

solves the largest number of instances in the least amount of time. All of the Random,

TimeRatio, and Time strategies are worse than GAC. Random-10%, TimeRatio,

and Time-10% have a large number of calls to POAC compared to PrePeak+. One

may think that the large number of calls to POAC is the cause of the performance loss.

Thus, we evaluated the Random-1% and Time-1% strategies, which lowered the calls

to POAC to be on the same order of magnitude than PrePeak+, they continued to

be worse than GAC. Looking at the average node visits, Random-1% and Time-1%

visited the same order of node visits as GAC, despite enforcing more POAC than

PrePeak+. This results shows that PrePeak+ is correctly targeting the areas to

enforce POAC to reduce the search space. Overall, Random, TimeRatio, and Time

yield poor results because they are agnostic to ‘where,’ in the search space, an HLC

is needed. Further, they are unable to react to the effectiveness of HLC (i.e., amount

of pruning obtained by the HLC).

Table 4.2: The overall performance of the other strategies of Section 4.3.2

Random Time
Algorithm GAC PrePeak+ 1% 10% TimeRatio 1% 10%
#solved 2,278 2,286 2,271 2,272 2,270 2,276 2,275∑CPU [sec] >365,233.4 >349,578.1 >391,457.7 >419,706.0 >394,812.8 >372,481.8 >393,591.7
avg. NV 473,637.8 324,265.7 447,399.8 191,179.6 276,524.4 468,868.4 385,157.7
#CallsPOAC - 283.6 783.8 4,324.9 3,632.9 501.7 1,622.9

#Instances 4,077 total, 2,248 by all, 2,296 by at least one

70

4.4.4 Putting together ‘When’ and ‘How Much’

In this experiment, we use the dom/wdeg variable-ordering heuristic. Table 4.3 shows

the contributions of the two aspects ‘when’ (PrePeak, Section 4.1) and ‘how much’

(interrupting propagation, Section 4.2) to the good performance of PrePeak+. Pre-

Table 4.3: PrePeak+ versus ‘when,’ ‘how much’

Algorithm PrePeak+ When How Much
#solved 2,286 2,239 2,171∑CPU [sec] >356,778.1 >610,958.6 >915,738.6
avg. NV 568,072.7 123,224.9 10,925.7
#CallsPOAC 2,477.5 1,128.1 5,019.4
#Instances: 4,077 total; 2,131 by all; 2,298 by at least one

Peak+ solves more instances than either component taken individually, which shows

the importance of combining the two orthogonal dimensions. The number of calls to

POAC in PrePeak+ is mostly controlled by the triggering strategy (i.e., ‘when’),

which by itself is more expensive than PrePeak+ because POAC runs until a fix-

point. The right-most column enforces POAC with early termination (Section 4.2)

at every node, yielding the smallest number of nodes visited but the largest CPU

time. ‘When’ and ‘how much’ complete difference instances: only 2,131 instances are

completed by both. Combining ‘when’ and ‘how much’ in PrePeak+ allows it to

solve instances not solved by both.

4.4.5 PrePeak+ versus GAC and APOAC

Table 4.4 compares the performance of GAC, APOAC, and PrePeak+ under the

dom/deg ordering heuristic.5 PrePeak+ solves the most instances and is the fastest
5Although dom/wdeg is generally more effective than dom/deg, the decisions made by dom/wdeg

are considered too unstable to objectively allow comparing algorithms’ performance. Researchers
studying the performance of HLC during search typically use dom/deg in their experiments [Balafrej
et al., 2015; Paparrizou and Stergiou, 2016; Paparrizou and Stergiou, 2017].

71

Table 4.4: GAC, APOAC, and PrePeak+ on dom/deg

Algorithm GAC APOAC PrePeak+

#solved 2,036 2,058 2,173∑CPU [sec] >1,044,380.1 >1,042,622.9 >455,189.2
avg. NV 1,138,447.6 90,047.4 324,020.2
#CallsPOAC - 30,911.5 686.1
#Instances: 4,077 total; 1,891 by all; 2,205 by at least one

algorithm. Predictably, in terms of average nodes visited, APOAC explores the fewest

and PrePeak+ is closer to APOAC than to GAC despite the relatively few calls to

POAC (686.1). We conclude that PrePeak+ triggers HLC at the right place and in

the right amount, thus validating our approach.

Figure 4.1 shows the cumulative number of instances completed by GAC, APOAC,

and PrePeak+ (on dom/deg) as time increases. Comparing GAC and APOAC, we

see that GAC dominates APOAC on instances solved within 1,600 seconds, while

APOAC dominates GAC after this point. This behavior motivates the need for HLC

on difficult instances and illustrates its overhead on easier instances. By selectively

triggering HLC, our strategy, PrePeak+, dominates both GAC and APOAC.

Table 4.5 repeats the same experiment under dom/wdeg. The results are similar

Table 4.5: GAC, APOAC, and PrePeak+ on dom/wdeg

Algorithm GAC APOAC PrePeak+

#solved 2,279 2,138 2,286∑CPU [sec] >372,433.4 >1,095,125.8 >356,778.1
avg. NV 480,897.9 23,472.9 319,453.4
#CallsPOAC - 9,924.4 288.6
#Instances: 4,077 total; 2,122 by all; 2,298 by at least one

to those in Table 4.4: PrePeak+ outperforms GAC and APOAC in terms of both

number of instances solved and CPU time. Note that it would be incorrect to conclude

that the CPU time of APOAC deteriorates from Table 4.4 to Table 4.5 because this

72

1,800

1,850

1,900

1,950

2,000

2,050

2,100

2,150

2,200

0 300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3,600

C

om
pl

et
ed

 In
st

an
ce

s

CPU Time [sec]

PrePeak+
APOAC
GAC

Figure 4.1: Cumulative instances completed by CPU time on dom/deg

measurement accounts for the number of instances completed in each experiment,

which is different (i.e., 2,205 in Table 4.4 and 2,298 in Table 4.5).

Figure 4.2 shows the cumulative number of instances completed by GAC, APOAC,

and PrePeak+ (dom/wdeg) as CPU time increases. APOAC is clearly dominated

by both GAC and PrePeak+. For instances easily solved by GAC (i.e., solved in less

than 300 seconds), PrePeak+ has few calls to POAC because GAC is not thrash-

ing. For the remaining harder instances, PrePeak+ dominates GAC. PrePeak+

remains competitive under dom/wdeg, which is known to dwarf the benefits of HLC.

Table 4.6 provides a finer examination of the results with dom/wdeg for a range

of representative benchmarks, showing the number of instances in each benchmark in

parentheses.

73

2,000

2,050

2,100

2,150

2,200

2,250

2,300

0 300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3,600

C

om
pl

et
ed

 In
st

an
ce

s

CPU Time [sec]

PrePeak+
GAC
APOAC

Figure 4.2: Cumulative instances completed by CPU time on dom/wdeg

Rows 1–3 show benchmarks where PrePeak+ significantly outperforms all others

both in CPU time and the number of solved instances. For all remaining benchmarks,

PrePeak+ solves as many instances as the best algorithm.

APOAC solves more instances than GAC in rows 4 and 5, showing that HLC

is required for these benchmarks. PrePeak+ solves the same number of instances

as APOAC, in faster CPU time, by selectively enforcing HLC. These benchmarks

confirm the ability of our approach to mimic APOAC’s performance when APOAC

is needed.

In row 6 (QCP-15), GAC and APOAC are roughly equivalent, yet PrePeak+

outperforms both in CPU time. For rows 7 and 8, GAC solves more instances than

APOAC, however, PrePeak+’s few calls to POAC allow it to slightly improve on the

74

Table 4.6: Representative benchmarks using dom/wdeg (time in [sec])

Benchmark GAC APOAC PrePeak+

1
QCP-20 # solved 4 4 5
(15) ∑CPU >5,328.7 >4,861.0 2,762.9

2
nengfa # solved 4 4 5
(10) ∑CPU >3,820.6 >4,235.9 2,321.0

3
frb45-21 # solved 7 0 8
(10) ∑CPU >17,642.0 >28,800.0 16,239.8

4
k-insertion # solved 16 17 17
(32) ∑CPU >3,955.2 3,550.0 2,903.5

5
pseudo-ii # solved 9 14 14
(41) ∑CPU >18,619.8 2,481.9 2,088.4

6
QCP-15 # solved 15 15 15
(15) ∑CPU 1,310.0 1,248.4 1,213.5

7
sgb-queen # solved 14 12 14
(50) ∑CPU 5,712.9 >9,969.6 5,692.0

8
super-os # solved 9 1 9
taillard5 (30) ∑CPU 11,971.1 >28,924.3 11,969.8

9
super-os # solved 28 22 28
taillard-4 (30) ∑CPU 7,647.2 >33,042.7 7,675.5

10
geom # solved 100 98 100
(100) ∑CPU 7,254.3 >28,365.6 7,372.8

11
TSP-20 # solved 15 15 15
(15) ∑CPU 276.5 1,426.9 298.6

CPU performance of GAC. For rows 9–11, GAC significantly outperforms APOAC

both in instance completions and CPU time: HLC is too costly on these benchmarks.

However, PrePeak+ is able to adapt to the situation with a CPU time similar to

GAC’s.

4.4.6 Visualizing Search Performance

For a deeper insight into the behavior of search, we visualize the search execution,

using dom/wdeg, on a CSP instance as shown in Figure 4.3, which ‘profiles’ search

with GAC, APOAC, and PrePeak+. In each of the three plots, we report, on the

75

horizontal axis, the depth of the search tree. We plot the number of backtracks at

each depth, accumulated throughout search (purple line), with the scale reported

on the vertical axis to the left. We superimpose the cumulative number of calls to

POAC (#Calls POAC) at each depth, with the scale reported on the vertical axis

to the right. We split the number of calls to POAC into three cases: POAC yields

wipeout (green line), POAC yields some filtering (blue line), and POAC yields no

filtering at all (red line).

In Figure 4.3, the backtrack curve (purple) shows that APOAC (middle) dramat-

ically reduces the peak value reached by GAC (top) thanks to the large number of

calls to POAC. Unfortunately, many of these calls are totally wasted (red curve) or

likely of little impact (blue curve): In the middle plot, they compete with the wipeout

calls (green curve). PrePeak+ (bottom) makes significantly fewer calls to POAC

and those calls are mostly effective (many more calls in green than in blue or red),

which establishes that HLC is wisely exploited.

4.4.7 Comparison to Multi-Armed Bandits

Balafrej et al. [2015] use Multi-Armed Bandits (MABs) at each search level to choose

among a set of consistency algorithms. We compare this MAB technique to Pre-

Peak+.6 To level the playing field, we enhanced them both with our propagation-

monitoring strategy (i.e., ‘how-much HLC,’ Section 4.2).

In our experiments on dom/wdeg (see Table 4.5), the MAB approach solves 2,253

instances in >529,767.9 seconds. It outperforms APOAC but performs worse than

GAC. Because each MAB operates at a fixed level in search, using dom/wdeg ad-

versarially affects the effectiveness and stability of a bandit’s learning. Further, the
6We choose between GAC and POAC although the original paper also uses maxRPC, but it

operates on only binary CSPs.

76

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

B

ac
kt

ra
ck

s

Depth

GAC

#BTs

CPU Time: 140.81 sec.
#NV: 3,978,074
#BT: 3,348,330

0

10

20

30

40

50

60

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

C

al
ls

 to
 P

O
A

C

B

ac
kt

ra
ck

s

Depth

APOAC

#BTs
Filter
No Filter
Wipeout

CPU Time: 23.77 sec.
#NV: 59,181
#BT: 53,212
#Calls POAC: 11,142

0

10

20

30

40

50

60

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

C

al
ls

 to
 P

O
A

C

B

ac
kt

ra
ck

s

Depth

PREPEAK+

#BTs
Filter
No Filter
Wipeout

CPU Time: 12.06 sec.
#NV: 284,289
#BT: 238,833
#Calls POAC: 228

Figure 4.3: Search progress on pseudo-aim-200-1-6-4 using dom/wdeg: GAC (top),
APOAC (middle), and PrePeak+ (bottom)

77

MAB approach assesses the performance of a consistency call by the CPU cost of

searching the subtree rooted at the call (regardless of which consistencies are used

in the subtree). PrePeak+ largely outperforms the MAB-based strategy for both

dom/deg and dom/wdeg because PrePeak+ uses the number of backtracks to assess

search progress, which is a more precise measure of the HLC’s effectiveness.

Summary

In this chapter we introduce a simple, reactive, trigger-based strategy for advanta-

geously enforcing a higher-level consistency during search, which we call PrePeak+,

and empirically validate our approach.

78

Chapter 5

Restricting Consistency to Cycles

The goal of this chapter is to provide a solution to the question of where to enforce

consistency. In particular, we investigate looking at the cycles that appear in a

graphical structure of the CSP. The rationale for investigating cycles structures is

because a cycle is the basic graphical component as to why arc consistency fails, and

thus, are a basic component for the complexity of solving the CSP.

We first introduce the theoretical benefits of utilizing the cycles with singleton

consistencies, proving situations where the CSP becomes tractable if it possesses

certain structural restrictions. Then, we introduce a technique for localizing cycles to

POAC followed by RNIC. Finally we give an empirical evaluation of the approach.

5.1 New Conditions for Tractability

We focus on the structural restrictions to a CSP that cause it to be solvable in a

backtrack free manner (i.e., becomes tractable). Another line of research is formal-

izing language restrictions (i.e., how constraints are formed) and hybrid restrictions

restricting both language and structure [Cohen and Jeavons, 2017]. There is likely a

79

unifying framework, but that is out of the scope of our work.

We start with the most basic form of structural tractability: an acyclic CSP can

be solved in a backtrack tree manner after enforcing Directional Arc-Consistency

[Dechter and Pearl, 1988; Freuder, 1982].

If the CSP contains exactly one cycle, enforcing SAC on the problem breaks the

cycle and it can be solved backtrack free. If there are two cycles and their overlap is on

more than one variable, or there are three cycles that have two disjoint overlaps, SAC

cannot solve the problem because singleton testing a individual variable cannot break

all of the cycles simultaneously. This example motivates our analysis, to determine

under what conditions SAC can break all the cycles.

We next discuss some basic terminology for our analysis, then discuss the condi-

tions on binary and then non-binary CSPs.

5.1.1 Terminology

For our analysis we investigate how a minimum cycle basis of a graphical structure

of the CSP can illustrate complexity. Given a CSP P , a minimum cycle basis MCB

of the incidence graph of P is a set of cycles,1 each represented by a set of variables

and constraints. Given a CSP P , a minimum cycle basis MCBD of the dual graph of

P is a set of cycles,2 each represented by a set of dual variables and dual constraints.

Similarly, a minimum cycle basis MCBrrD of the minimal dual graph of P can be

defined.

Given an MCB of P , MCB(x) of a variable x is the set of cycles in the MCB in

which x appears. Thus,

∀x, φ ∈MCB(x)⇔ x ∈ φ.
1By extension, we also say the MCB of P.
2By extension, we also say the MCBD of P.

80

For any given cycle φ of anMCB of P , we denote vertices(φ) the set of variables that

appear in φ. We denote vars(MCB(x)) = ∪φ∈MCB(x)vertices(φ) the set of variables

that appear in any cycle of MCB(x).

Given a CSP P , a local consistency property L, and an MCB of P , P is ∪cycleL

iff every variable X is L on the subproblem induced by vars(MCB(x)). All of these

definitions can similarly be defined with MCBD and MCBrrD.

We consider cactus and block graphs in our theorems.

Definition 15 A cactus graph (sometimes called a cactus tree) is a connected undi-

rected graph in which any two simple cycles have at most one vertex in common. The

graph appears as a tree of biconnected components where each component is a simple

cycles.

Definition 16 A block graph (sometimes called a clique tree) is a connected undi-

rected graph in which every biconnected component (block) is a clique. The graph

appears as a tree of biconnected components where each component is a simple cycles.

5.1.2 Binary CSPs

We consider binary CSPs and compute a minimum cycle basis on the constraint

graph.3 We first focus on cactus graphs structures and then block graph structures

in the constraint graph.

Cactus-shaped constraint graphs allow ∪cycleSAC to find solutions in a backtrack-

free manner.

Theorem 2 If the constraint graph of a binary CSP P is a cactus graph and P is

∪cycleSAC consistent, than the domains of P are minimal.
3Indeed, the constraint graph and the incidence graph are the same for binary CSPs.

81

Sketch of Proof: Each variable-value pair has a partial-solution induced by the

biconnected components it participates in. These partial-solutions must be able to

be continued to a full solution because the biconnected components only intersect on

at most one variable. �

We illustrate the above theorem with the following examples:

Example 2 Figure 5.1 shows a CSP with two cycles, intersecting on exactly one

variable. This CSP is the ‘poster child’ for ∪cycleSAC-decidable because assigning

Figure 5.1: A constraint graph with two cyclic biconnected components

the intersecting variable creates a tree. All the singleton tests on the articulation

node allow us to remove all values that do not participate in any solution. Thus, the

problem is ∪cycleSAC-decidable.

Example 3 Figure 5.1 can be extended to any number of cyclic biconnected-components

arranged in a tree structure as shown in Figure 5.2. A CSP whose graph has this

structure remains ∪cycleSAC decidable.

Figure 5.2: A constraint graph that is a tree of cyclic biconnected-components

Example 4 The tree structure of the biconnected components is important. Indeed,

examine the constraint graph shown in Figure 5.3 where cycles sharing a single vertex

82

are connected in a cycle. Consider one of the variables at the intersection of two cycles.

An MCB of such a variable consists of four cycles: the two small directly adjacent to

it, the cycle on the inside (highlighted in gray), and the outer cycle. SAC is not able

to break the cycles to determine decidability. Thus, the tree structure of the cycles

seems to be an important property.

Figure 5.3: A constraint graph made of a cycle of cycles

Example 5 One may wonder whether ∪cycleSAC decidable is still guaranteed if we

‘changed’ a cactus graph by replacing an articulation node between two cycles by

a bridge (i.e., an edge whose removal disconnects the graph). Consider the case of

a ladder graph. This example is interesting in the sense that the graph considered

in every singleton test is a tree. It is thus not unreasonable to wonder whether or

not CSP with such a constraint graph can be guaranteed ∪cycleSAC decidable. We

show that this is not the case with the counterexample shown in Figure 5.4. More

generally, the fact that the subgraph induced by a singleton test is a tree does not

guarantee ∪cycleSAC decidable. The domains of each variable is {1, 2, 3, 4}. This CSP

has no solution but SAC cannot remove any value.

For binary CSPs whose constraint graph is a block graph, we need to increase the

level of consistency enforced on the biconnected components.

Theorem 3 If the constraint graph of a binary CSP P is a block graph and P is

NIC, then the domains of P are minimal.

83

X2 X1 X3 X4

X6 X5 X7 X8

= =

Scope Relation
〈X1, X2〉 R1
〈X2, X3〉 R1
〈X3, X4〉 R1
〈X5, X6〉 R2
〈X6, X7〉 R1
〈X7, X8〉 R1
〈X1, X5〉 =
〈X2, X6〉 R3
〈X3, X7〉 R3
〈X4, X8〉 =

R1

1 3
1 4
2 1
2 2
3 1
3 2
4 3
4 4

R2

1 1
1 2
2 3
2 4
3 3
3 4
4 1
4 2

R3

1 1
1 3
2 2
2 4
3 1
3 3
4 2
4 4

Figure 5.4: A CSP with no solution but SAC removes no values

Sketch of Proof: The neighborhood of every variable is all of the variables in the

components (blocks) that it appears in. Because the problem is NIC, there exists

a partial solution to every variable-value pair to its neighborhood. By the same

argument of Theorem 2 the domains must be minimal. �

However, decidability can be obtained by enforcing NIC on only the articulation

points.

Theorem 4 If the constraint graph of a binary CSP P is a block graph then enforcing

NIC on the variables at the articulation points guarantees decidability.

Incidentally, note that SAC and POAC are equivalent on cycles. Indeed, consider

the network of the binary CSP shown in Figure 5.5. A singleton test on any of

Figure 5.5: The constraint graph of the CSP is a cycle

84

the variables breaks the cycle into a chain and arc consistency guarantees global

consistency [Freuder, 1982].

Proposition 5 POAC is equivalent to SAC on a cycle.

5.1.3 Binary and Non-Binary CSPs

In this section, we consider both binary and non-binary CSPs and compute the MCB

on the dual graph of the CSP. We state analogous properties for the dual graph and

minimal dual graph as was for the constraint graph.

Dual graphs: The consistency properties Singleton Pairwise Consistency (SPWC)

and RNIC that operate on the dual graph are analogous to the consistency properties

SAC and NIC that operate on the constraint graph.

Theorem 6 If the dual graph of A CSP P is a cactus graph and P is ∪cycleSPWC,

then the relations of P are minimal.

Theorem 7 If the dual graph of a CSP P is a block graph and P is RNIC, then the

relations of P are minimal.

Theorem 8 If the dual graph of a CSP P is a block graph then enforcing RNIC on

the articulation points of the dual graph guarantees decidability.

The proofs for Theorems 6, 7, and 8 follow from Theorems 2, 3, and 4, respectively.

Minimal dual graphs: In case the original dual graph does is not a cactus or

block graph, it may be the case that a minimal dual graph has it. (A minimal dual

graph is one where redundant edges have been removed.) We denote MCBrrD the

85

set of cycles of a minimal dual graph. To cope with this situation, we need to use

∪cyclerrD
RNIC, a local consistency property that is strictly stronger than SPWC.

Theorem 9 If the dual graph of a CSP P is a cactus graph after removing redundant

edges and P is ∪cyclerrD
RNIC, then the relations of P are minimal.

Theorem 10 If the dual graph of a CSP P is a cactus graph after removing redundant

edges then enforcing ∪cyclerrD
RNIC on the articulation points of the minimal dual

graph guarantees decidability.

Theorems 9 and 10 follow from Theorems 6 and 8, respectively.

From another perspective, in this situation, ∪cyclerrD
RNIC is equivalent to cl-

R(?,|ψ(cli)|)C, where the biconnected components obtained after redundancy removal

form the clusters of a tree decomposition [Karakashian et al., 2013].

5.2 Localizing POAC

The algorithm POAC-1, which enforces POAC, runs a singleton test on each variable-

value pair of the CSP [Balafrej et al., 2014]. In each test, it enforces arc consistency on

the entire CSP. Whenever the domain of any variable is updated, the entire process is

repeated (i.e., POAC-1 runs the singleton test on all the variables again). We propose

to reduce the cost of POAC-1 in two ways.

1. At a singleton test on a given variable x, we restrict arc consistency to the

variables in the cycles in which x appears.

2. Whenever the domain of any variable, x or a variable that appears in a cycle of

x, is updated as the result of this test, we repeat the singleton tests on all the

variables in the cycles of the affected variable.

86

Below, we formalize the consistency property NPOAC and ∪cycPOAC, that result

from our approach, then introduce algorithms NPOACQ and ∪cycPOACQ, which

implements our idea. Then, we extend, in a trivial manner, our approach to relations.

Finally, we discuss the practical improves to the POAC algorithms during search.

5.2.1 NPOAC: Localization to Neighborhoods

We define Neighborhood Partition-One Arc-Consistency (NPOAC) similarly to neigh-

borhood SAC (NSAC) [Wallace, 2015]. Informally, neighborhood POAC localizes the

singleton test to the neighborhood of the variable. Given a CSP P and V a subset of

the variables of P , we denote P|V the subproblem induced by V on P . The constraints

included in P|V are all those constraints whose scope contains a variable in V .

Definition 17 A constraint network P = (X ,D, C) is Neighborhood Partition-One

Arc-Consistent (NPOAC) iff P is neighborhood SAC (NSAC), and for all xi ∈ X ,

for all xj ∈ neigh(xi), for all vj ∈ dom(xj), there exists vi ∈ dom(xi) such that

vj ∈ AC(P|{xi}∪neigh(xi) ∪ {xi ← vi}).

Theorem 11 Neighborhood Inverse Consistency (NIC) is incomparable to Neighbor-

hood POAC (NPOAC).

Proof: Figure 5.6 shows a CSP that is NPOAC but variable v is not NIC. Figure 5.7

shows a CSP that is NIC but X4 ← 1 is not NPOAC (X4 ← 1 is removed in every

singleton test for X1). This example was first proposed to show that POAC is strictly

stronger than SAC [Bennaceur and Affane, 2001]. �

87

y

v

w

x z

Figure 5.6: NPOAC but not NIC

R12
X1X2
v1 v1
v2 v2
v3 v1
v3 v2

R14
X1X4
v1 v1
v1 v2
v2 v1
v2 v2
v3 v2

R23
X2X3
v1 v2
v1 v3
v2 v1
v2 v3

R34
X3X4
v1 v1
v1 v2
v2 v1
v2 v2
v3 v2

R13
X1X3
v1 v1
v1 v3
v2 v2
v2 v3
v3 v1
v3 v2
v3 v3

Figure 5.7: NIC but not NPOAC

5.2.2 ∪cycPOAC: Localization to MCBs

For each singleton test for a given variable xi, we propose to enforce arc consistency

on the subproblem induced by the union of the variables of a minimum cycle basis

(MCB) of xi, where a MCB of xi is computed on the incidence graph of the CSP.

Figure 5.8 shows the incidence graph of a CSP, where the circles denote the vari-

ables and the squares the constraints. This graph has three cycles:

A

B

ABC

BD

CE

DF

E

F

EF

D

C

CD

Figure 5.8: A incidence graph

1. (B,ABC,C,CD,D,BD),

2. (C,CD,D,DF, F,EF,E,CE), and

3. (B,ABC,C,CE,E,EF, F,DF,D,BD).

88

The third cycle can be obtained from the first two by symmetric difference. Thus,

the first two cycles constitute a minimal cycle basis for this graph. Incidentally, note

that variable A does not appear in any cycle.

We use the same terminology for defining the cycles of a variable as in Section 5.1.1.

However, we slightly adjust the definitions of vars(MCB(xi)):

vars(MCB(xi)) = {xi} ∪ neigh(xi) ∪φ∈MCB(xi) vertices(φ).

This definition allows us to include variables that do not appear in a cycle (e.g., A

does not appear in any cycle in Figure 5.8). This adjustment allows the definition to

guarantee arc-consistency.

Given a CSP P and V a subset of the variables of P , we denote P|V the subproblem

induced by V on P . The constraints included in P|V are all those constraints whose

scope contains a variable in V .

Now, we formulate the consistency property Union-Cycle Partition-One Arc-Consistency

(∪cycPOAC). It is similar to POAC but restricts the propagation of arc consistency

during a singleton test for a variable xi to the subproblem induced on the CSP by

the variables in vars(MCB(xi)). Like POAC, the property must hold for all the

variables of the CSP.

Definition 18 Given a minimum-cycle basis MCB of a CSP P = (X ,D, C), the

CSP is Union-Cycle Partition-One Arc-Consistent (∪cycPOAC) iff ∀xi ∈ X , the CSP

P is AC for all vi ∈ dom(xi) on P|vars(MCB(xi)) ∪ {xi ← vi}, and ∀xj 6=i ∈ X , vj ∈

dom(xj),∃vi ∈ dom(xi) such that vj ∈ AC(P|vars(MCB(xi)) ∪ {xi ← vi}).

It is easy to see that ∪cycPOAC is strictly stronger than GAC, not comparable with

SAC, and strictly weaker than POAC.

89

5.2.3 NPOACQ: A Variable-Based Algorithm

POAC-1, the original algorithm for POAC, uses a list of all the CSP variables,

ordered by some heuristic such as decreasing values of dom/wdeg [Balafrej et al.,

2014]. After processing once every variable in the list, it repeats the process again

whenever any domain is updated. Importantly, POAC-1 does not reconsider any

variable for singleton testing before all the variables of the CSP have been processed.

The size of the list does not change. To implement a similar behavior, our algorithm

NPOACQ (Algorithm 5) uses three queues: Q stores the variables to be processed

by singleton testing, Qseen stores the variables that have been processed during the

current iteration, and QtoRevisit stores the variables affected by change during the

current iteration. Only when all the variables in Q have been processed (Q is empty),

the variables in QtoRevisit are moved to Q to be processed.

Q is handled as a priority list using the same heuristic as POAC-1 (Line 4 of

Algorithm 5). The popped variable is stored in Qseen (Line 5) so that no variable is

re-processed for singleton testing before Q is empty. varNPOACQ (Algorithm 7) is

then called (Line 6 of Algorithm 5) to execute singleton tests for the popped variable.

In Lines 9 and 19, varNPOACQ calls ReQueue (Algorithm 6) on all the variables

in the neighborhood of any variable whose domain was updated. ReQueue adds

those variables to QtoRevisit in case they were already singleton tested during the

current iteration (Line 1), otherwise it adds them to Q (Line 2). When Q is empty,

the variables in QtoRevisit are moved to Q, and Qseen is cleared (Lines 7 and 8 of

Algorithm 5).

varNPOACQ (Algorithm 7) runs singleton tests on a given CSP variable by calling

TestAC (Algorithm 8) which enforces arc consistency on the subproblem induced

on the CSP by the variables in neigh(xi) (Line 4). As in POAC-1, whenever a value

90

Algorithm 5: NPOACQ(P)
Input: P = (V,D, C): A CSP instance
Output: true when P is ∪cycPOAC, otherwise false

1 Q← V, QtoRevisit ← ∅, Qseen ← ∅
2 consistent ← EnforceAC(P, ∅)
3 while consistent and Q 6= ∅ do
4 xi ← Pop(Q)
5 Qseen ← Qseen ∪ {xi}
6 if not varNPOACQ(xi,P) then return false
7 if Q = ∅ and QtoRevisit 6= ∅ then
8 Q← QtoRevisit, QtoRevisit ← ∅, Qseen ← ∅

9 return true

Algorithm 6: ReQueue(xi)
Input: xi: a variable to requeue
Output: Adds xi to either Q or QtoRevisit

1 if xi ∈ Qseen then QtoRevisit ← QtoRevisit ∪ {xi}
2 else Q← Q ∪ {xi}

is removed from a variable’s domain, varNPOACQ enforces AC on the CSP (Lines 6

and 20).

Like POAC-1, we use the data structure counter(·, ·). counter(xj, vj) records how

many times value vj of variable xj was pruned during the singleton tests for another

variable xi. If, after running all the singleton tests for xi, counter(xj, vj) = |dom(xi)|,

then we know that (xj, vj) is necessarily inconsistent and can be safely removed.

TestAC (Algorithm 8) implements the singleton test for xi ← vi and updates

counter(·, ·). EnforceAC(P , L) allows running any arc consistency algorithm. It

stores in L the list of variable-value pairs that were removed as a result of enforc-

ing AC. TestAC (Algorithm 8) updates the counters only when the problem is arc

consistent (Line 6).

91

Algorithm 7: varNPOACQ(xi,P)
Input: xi: Variable to instantiate; P = (V,D, C): A CSP instance; Q: The

propagation queue
Output: true if consistent, else false

1 ∀xj ∈ V, vj ∈ dom(xj), counter(xj , vj)← 0
2 size← |dom(xi)|
3 foreach vi ∈ dom(xi) do
4 if not TestAC({xi} ∪ neigh(xi),D, cons(xi) ∪ {xi ← vi}, counter(·, ·)) then
5 dom(xi)← dom(xi) \ {vi}
6 if not EnforceAC(P, L) then return false

7 if dom(xi) = ∅ then return false
8 if |dom(xi)| 6= size then
9 foreach xk ∈ neigh(xi) do ReQueue(xk)

10 change ← false
11 foreach xj ∈ neigh(xi) do
12 size← |dom(xj)|
13 foreach vj ∈ dom(xj) do
14 if counter(xj , vj) = |dom(xi)| then
15 dom(xj)← dom(xj) \ {vj}, change ← true

16 counter(xj , vj)← 0
17 if dom(xj) = ∅ then return false
18 if |dom(xj)| 6= size then
19 foreach xk ∈ neigh(xj) \ {xi} do ReQueue(xk)

20 if change and not EnforceAC(P, ∅) then return false
21 return true

Algorithm 8: TestAC(P, counter(·, ·))
Input: P: A CSP instance; counter(·, ·): the counter data structure
Output: true if consistent, else false

1 L← ∅
2 consistent ← EnforceAC(P, L)
3 foreach (xj , vj) ∈ L do
4 dom(xj)← dom(xj) ∪ {vj}
5 if consistent then
6 counter(xj , vj)← counter(xj , vj) + 1

7 return consistent

92

5.2.4 ∪cycPOACQ: A Variable-Based Algorithm

∪cycPOACQ (Algorithm 9) is similar to NPOACQ (Algorithm 5). The major differ-

ence is in Line 6, where var∪cycPOACQ (Algorithm 10) is called to execute singleton

tests for the popped variable.

var∪cycPOACQ (Algorithm 10) is similar to varNPOACQ (Algorithm 7), which

runs singleton tests on a given CSP. The major difference is in Line 4, where TestAC

is induced on the MCB of a variable, rather than its neighborhood. var∪cycPOACQ

does not restrict how MCBs are generated (i.e., using exact or approximate algo-

rithms) or the graphs (i.e., incidence or dual) on which they are computed.

Algorithm 9: ∪cycPOACQ(P,MCB)
Input: P = (V,D, C): A CSP instance; MCB: a minimum cycle basis of P
Output: true when P is ∪cycPOAC, otherwise false

1 Q← V, QtoRevisit ← ∅, Qseen ← ∅
2 consistent ← EnforceAC(P, ∅)
3 while consistent and Q 6= ∅ do
4 xi ← Pop(Q)
5 Qseen ← Qseen ∪ {xi}
6 if not var∪cycPOACQ(xi,P,MCB) then
7 return false

8 if Q = ∅ and QtoRevisit 6= ∅ then
9 Q← QtoRevisit, QtoRevisit ← ∅, Qseen ← ∅

10 return true

5.2.5 Extension to Relations

We extend the definition of POAC to relations.

Definition 19 A CSP P = (X ,D, C) is Relational Partition-One Arc-Consistent

(rPOAC) iff the CSP is singleton PWC, and for all ci ∈ C, for all τi ∈ Ri, for all

cj ∈ C, there exists τj ∈ Rj such that (ci, τi) ∈ PWC(P ∪ {Ri ← τi}).

93

Algorithm 10: var∪cycPOACQ(xi,P,MCB)
Input: xi: Variable to instantiate; P: A CSP instance; MCB: a minimum cycle

basis of P
Output: true if consistent, else false

1 ∀xj ∈ V, vj ∈ dom(xj), counter(xj , vj)← 0
2 size← |dom(xi)|
3 foreach vi ∈ dom(xi) do
4 if not TestAC(P|vars(MCB(xi)) ∪ {xi ← vi}, counter(·, ·)) then
5 dom(xi)← dom(xi) \ {vi}
6 if not EnforceAC(P, ∅) then return false

7 if dom(xi) = ∅ then return false
8 if |dom(xi)| 6= size then
9 foreach xk ∈ vars(MCB(xi)) \ {xi} do ReQueue(xk)

10 change ← false
11 foreach xj ∈ vars(MCB(xi)) \ {xi} do
12 size← |dom(xj)|
13 foreach vj ∈ dom(xj) do
14 if counter(xj , vj) = |dom(xi)| then
15 dom(xj)← dom(xj) \ {vj}, change ← true

16 counter(xj , vj)← 0
17 if dom(xj) = ∅ then return false
18 if |dom(xj)| 6= size then
19 foreach xk ∈ vars(MCB(xj)) \ {xj} do ReQueue(xk)

20 if change and not EnforceAC(P, ∅) then return false
21 return true

The property rPOAC can be extended to Relational Neighborhood-POAC (rNPOAC),

and Relational Union-Cycle POAC (∪cycPOAC).

Theorem 12 Relational Neighborhood Inverse Consistency (RNIC) is incomparable

to Relational Neighborhood POAC (rNPOAC).

Proof: Follows from Theorem 11. �

The algorithm to enforce rPOAC is a trivial adaptation of the variable-based

POAC algorithm: it operates on relations’ tuples instead of variables’ values. Further,

94

instead of AC, we enforce pair-wise consistency (PWC). We denote rNPOACQ and

∪cycrPOACQ the adaptation of NPOACQ and ∪cycPOACQ, respectively, to relations.

Preliminary studies enforcing rPOAC showed that enforcing PW-AC2 is, in gen-

eral, faster and can solve the most benchmarks than the rPOAC variants [Woodward

et al., 2016a]. Combining the adaptive mechanism of APOAC [Balafrej et al., 2014]

with rPOAC proved to be beneficial, but still did not outperform PW-AC2. We

strongly believe that the adaptive mechanism could be further improved with better

tuning of the parameters, which is beyond the topic of this dissertation. Further,

improving the PWC algorithm will boost the performance of rPOAC algorithms. It

is too early to rule out the usefulness of the relational versions of POAC, the effec-

tiveness of propagation over cycles is noteworthy even in this context.

5.2.6 Practical Improvement of Algorithms

Below, we make useful observations for improving the performance of the POAC al-

gorithm in practice.

Singleton domains. Because the algorithms for enforcing POAC-like properties (e.g.,

POAC-1 and ∪cycPOACQ) enforce GAC whenever singleton testing a variable yields

a domain update, variables with a singleton domain never need to be singleton tested.

We do not include this test in our pseudocode to avoid reducing readability.

Proposition 13 On a CSP that is GAC, singleton testing a variable x with |dom(x)| =

1 yields no filtering.

Proof:After assigning x to the unique value in its domain, the CSP remains GAC. �

95

Domino effect. This observation allows us, during backtrack search using a POAC-like

algorithm for real-full lookahead, to instantiate all variables with singleton domains

(i.e., domino effect) without re-enforcing consistency because no further filtering can

be obtained, thus saving on effort. Note that the same behavior is implicitly guaran-

teed for consistency algorithms using supports.

Q initialization. After an assignment x← v, Q is initialized to neigh(x) for NPOAC

and vars(MCB(x)) \ {x} for ∪cycPOAC.

Large variables’ domains. On small variables’ domains singleton testing is quicker and

empirically yields more filtering than on larger variables’ domains. The observation

explains why using dom/wdeg to order to the variables for singleton testing yields

good performance in practice. It also explains the good performance of the adaptive

algorithm APOAC, which avoids singleton testing variables with large domains, a

costly process that rarely yields any filtering.

5.3 Approximating a Minimum Cycle Basis

The time complexity of the exact algorithm for computing a minimum cycle basis

(MCB) is O(e2n/ log(n)) where n is the number of vertices and e the number of edges

in the graph [Amaldi et al., 2010]. The approximate algorithm for computing an MCB

is O(eω
√
n log(n)) where ω is the best exponent of matrix multiplication (ω < 2.376)

[Kavitha et al., 2007].

We first give an evaluation of a minimum cycle basis, showing that it takes too

much time in practice. Then we give our approximation, followed by an empirical

comparison to computing an MCB.

96

5.3.1 Minimum Cycle Basis Evaluation

On some problems computing a minimum cycle basis using either the exact algorithm

[Mehlhorn and Michail, 2009; Amaldi et al., 2010] or the approximate algorithm

[Kavitha et al., 2007] takes more time and memory than we are willing to give it

(i.e., greater than a minute and 8GB). We compute a minimum cycle basis using the

algorithm of Amaldi et al. [2010], and Table 5.1 shows:

• The total number of instances (#Instances).

• The number of instances that could compute a MCB (#Completed).

• The number of instances that timed out while computing a MCB (#Time Out).

• The number of instances that reached the memory limit while computing a

MCB (#Mem Out).

• The average memory consumption to load the CSP, initialize POAC, and com-

pute the cycles (Avg. Memory [MB]).

• The average time to compute the minimum cycle basis (Avg. Time [sec]), with-

out solving the problem. For a comparison, the average time to find the first

solution using GAC is given in parenthesis.

• The average size differences of the resulting neighborhoods for each variable in

∪cycPOAC (Vertices beyond neighborhood).

On all the benchmarks the average memory usage was 709.3 and the average time to

compute the cycles was 163.4 seconds. We report a selection of benchmarks where

the performance of computing an MCB differs greatly. For the jobShop-ewddr2 and

myciel benchmarks computing a MCB has minimal overhead. These benchmarks

showcase an ideal situation of computing the MCB.

97

Table 5.1: Time and memory to compute a minimum cycle basis

B
en

ch
m
ar
k

#
In
st
an

ce
s

#
C
om

pl
et
ed

#
T
im

e
O
ut

#
M
em

O
ut

A
vg

.
M
em

or
y
[M

B
]

A
vg

.
T
im

e
[s
ec
]

V
er
ti
ce
s
be

yo
nd

ne
ig
hb

or
ho

od

All Benchmarks 3,525 2,851 19 655 709.3 163.4 (924.0) 7.9
jobShop-ewddr2 10 10 0 0 767.0 0.1 (13.0) 3.5
myciel 16 16 0 0 580.7 54.9 (872.6) 7.6
QCP-20 15 15 0 0 7,667.3 2,905.5 (2,755.2) 3.6
ehi-90 100 100 0 0 4,109.5 1,549.0 (3.7) 0.0
domino 16 12 1 3 341.9 5.5 (59.7) 597.0
full-insertion 41 22 0 19 1,209.3 153.1 (80.9) 4.1

However, not all benchmarks elicit good performance computing an compute the

MCB. On the QCP-20 and ehi-90 benchmarks, computing a MCB requires a large

amount of memory and CPU time. These benchmarks could be solved using GAC

faster than the time it took to compute a MCB, which does not start the solving

process. Further, for ehi-90, the extra computation resulted in no gain of the neigh-

borhood size. The domino and full-insertion benchmarks hit the memory limit while

computing a MCB.

5.3.2 Approximation Cycles Using a Breath-First Search

Because of the poor time and memory consumption of computing a minimum cycle

basis, we introduce a new approximation. Our approximation does not guarantee the

minimum cycle basis property nor does it compute a basis. Instead, the approxima-

tion heuristically finds local cycles for every variable in the problem, which is the

central goal for using the cycles in ∪cycPOAC. Algorithm 11 presents our algorithm

98

for finding the cycles of each variable. We call this algorithm BFSC as we are con-

Algorithm 11: BFSC(P)
Input: X : The set of variables in the CSP
Output: allCycles: A set of detected cycles in the problem

1 allCycles ← ∅
2 foreach x ∈ X do
3 allCycles ← allCycles ∪RootedBFSC(x)
4 return allCycles

ducting a breath-first search (BFS) to find the cycles of the graph. RootedBFSC

(Algorithm 12) is called on every variable in the problem to find cycles involving that

variable (i.e., node in the graph).

Algorithm 12 (RootedBFSC) conducts the breath first search starting from a

given node in the graph. The breath first search attempts to find the shallowest

cycle that involves every node in the neighborhood of the root node. We use two

maps, seenNodesFrom and seenNodeParent, to record what neighbor a node was first

visited from and their parents in the breath first search, respectively. Note that

seenNodesFrom can be obtained by traversing seenNodeParent until a neighbor of

root is reached, but we choose to record it in its own data-structure to save on this

operation. Initially the only node we have seen is the root node who has no parent

(Line 3).

Our heuristic attempts to find one cycle for every neighbor of root. We store in

neighToMatch a set of neighbors that we still need to find a cycle for, initially all

neighbors of root (Line 7). We record that we have seen all of the neighbors, and that

their parents are root (Line 8). We start the breath first search from the neighbors

by inserting them into the list of nodes to visit toVisit (Line 9).

We pop from the front of the toVisit (Line 11), and if this node is rooted from a

neighbor that we need to match, we attempt to see if we can form a cycle to any of the

99

Algorithm 12: RootedBFSC(root)
Input: root: A root node to run BFS on
Output: cycles: A set of cycles

1 cycles ← ∅
2 seenNodesFrom ← ∅; seenNodesParent ← ∅
3 seenNodesFrom[root]←⊥; seenNodesParent[root]←⊥
4 toVisit ← []
5 neighToMatch ← ∅
6 foreach neigh ∈ neigh(root) do
7 neighToMatch ← neighToMatch ∪ {neigh}
8 seenNodesFrom[neigh]← neigh; seenNodesParent[neigh]← root
9 toVisit ← PushBack(neigh, toVisit)

10 while toVisit 6= ∅ do
11 node ← PopFront(toVisit)
12 if seenNodesFrom[node] ∈ neighToMatch then
13 foreach neigh ∈ neigh(node) do
14 if neigh 6∈ seenNodesFrom then
15 seenNodesFrom[neigh]← node
16 seenNodesParent[neigh]← seenNodesParent[node]
17 PushBack(neigh, toVisit)
18 else
19 if seenNodesFrom[node] 6= seenNodesFrom[neigh] then
20 neighToMatch← neighToMatch \

{seenNodesFrom[node], seenNodesFrom[neigh]}
21 cycle ← [node, neigh]
22 visitedNode← node
23 while visitedNode 6= root do
24 PushFront(visitedNode, cycle)
25 visitedNode ← seenNodesParent[visitedNode]
26 visitedNode ← neigh
27 while visitedNode 6= root do
28 PushBack(visitedNode, cycle)
29 visitedNode ← seenNodesParent[visitedNode]
30 PushBack(root, cycle)
31 cycles ← cycles ∪ {cycle}

32 return cycles

100

neighbors of root. To find a cycle, we check each neighbor of node (Line 13). If the

neighbor has not been visited, we populate its seenNodesFrom and seenNodesParent

and add it to the list of nodes to visit (Lines 15–17). Otherwise, the neighbor has

been visited before, and if it was discovered from different neighbors of root, we can

form a cycle (Line 19).

If we formed a cycle, we stop processing nodes from this cycle (Line 20). We form

the cycle between node and neigh (Line 21) by traversing the seenNodesParent until

we reach root (Lines 22–29). We then add the root to the cycle (Line 30) and add

the cycle to the set of all cycles (Line 31).

The time complexity of the BFSC algorithm n calls to RootedBFSC, which

is O(n · e), where n is the number of variables and e is the number of edges. This

complexity is smaller than the time complexity of the exact algorithm for computing

an MCB, O(e2n/ log(n)) [Amaldi et al., 2010].

5.3.3 Comparing Cycles Found by BFSC and MCB

Table 5.2 shows the result of computing the cycles using the approximation BFSC and

the MCB algorithm of Amaldi et al. [2010] (MCB), showing the same information

as Table 5.1. Overall, we can compute cycles on more instances using the BFSC

algorithms than MCB. We can compute on more instances because we reduce the

number of instances that memout, and can its computation on each instances is much

quicker. On the QCP-20 and ehi-90 benchmarks BFSC uses an order of magnitude

less memory. However, our approximation does not find any cycles. Indeed, with

BFSC there is no increase in the neighborhood sizes, while the MCB had 3.6 variables

beyond the neighborhood.

101

Table 5.2: Comparing computing cycles using MCB and BFSC

B
en

ch
m

ar
k

#
In

st
an

ce
s

#
C

om
pl

et
ed

#
T

im
eO

ut

#
M

em
O

ut

A
vg

.
M

em
[M

B
]

A
vg

.
T

im
e

[s
ec

]

V
er

ti
ce

s
be

yo
nd

ne
ig

hb
or

ho
od

B
y

O
ne

M
C

B

B
F

SC

M
C

B
B

F
SC

M
C

B

B
F

SC

M
C

B

B
F

SC

M
C

B

B
F

SC

M
C

B

B
F

SC

Summary 3,525 2,851 2,851 3,082 19 6 655 437 709.3 184.6 163.4 2.3 7.9 8.8
jobShop-ewddr2 10 10 10 10 0 0 0 0 767.0 767.1 0.1 0.0 3.5 4.3
myciel 16 16 16 16 0 0 0 0 580.7 37.4 54.9 0.5 7.6 9.0
QCP-20 15 15 15 15 0 0 0 0 7,667.3 505.7 2,905.5 26.6 3.6 0.0
ehi-90 100 100 100 100 0 0 0 0 4,109.5 206.7 1,549.0 2.9 0.0 0.0
domino 16 12 12 12 1 1 3 3 341.9 226.5 5.5 1.6 597.0 597.0
full-insertion 41 22 22 37 0 0 19 4 1,209.3 66.6 153.1 0.4 4.1 12.8

5.4 Empirical Evaluation

The goal of the section is to assess the effectiveness of localizing POAC to neighbor-

hoods and cycles when used for real-full lookahead during search. To that end, we

evaluate finding a single solution to a CSP using backtrack search, real-full lookahead,

and the dom/wdeg variable ordering heuristic [Boussemart et al., 2004].

We first discuss our experimental setup. The adaptive POAC of Balafrej et al.

[2014] is a how much strategy, terminating the POAC-1 algorithm early. We evaluate

combining this strategy with our where strategies of localizing POAC to neighbor-

hoods and cycles. We then evaluate the PrePeak+ strategy of Chapter 4, which is

a when and how much strategy, combined with localizing POAC.

102

5.4.1 Experimental Setup

We set up our experiments as follows. We use STR2+ [Lecoutre, 2011] as the GAC

algorithm for lookahead. We use the POAC-1 algorithm [Balafrej et al., 2014] for

enforcing POAC. We also evaluate using NPOACQ (Section 5.2.3, Algorithm 5) and

∪cycPOACQ (Section 5.3, Algorithm 9). We compute the cycles from a minimum cycle

basis using the algorithm of Amaldi et al. [2010] (∪mcb
cyc POACQ) or approximated by

BFSC of Section 5.3 (∪bfsc
cyc POACQ). For all the POAC algorithms we use dom/wdeg

to select the variable for singleton testing. In particular, this orders the list of variables

to process in POAC-1 and the propagation queue for the POACQ-based algorithms.

In general, POAC is too expensive to enforce until quiescence. Balafrej et al.

[2014] advocated for an adaptive version of POAC (APOAC), which is a ‘how much’

strategy that interrupts the singleton testing after a given number of variables has

been processed. This cutoff values is learned during search. We use the best adaptive

version reported by Balafrej et al. [2014], where the maximum number of singleton

calls, maxK, is initialized to the number of variables in the problem. The algorithm

spends 1/10 of its time learning4 a maxK threshold and 9/10 of its time exploiting

the learned maxK. In our experiments, we evaluate using the adaptive versions,

which is denoted by adding an ‘A’ before all the algorithm names.

We conducted the experiments on the following benchmark problems from Lecoutre’s

webpage:5 including all benchmarks with at least one instance with a primal graph

of density less than 50%.6 We set a time limit of 60 minutes per instance with 8GB

of memory.
4Using the terminology of Balafrej et al. [2014], maxK = n, last drop with β = 0.05, and

70%-PER.
5http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
6Table E.1 in Appendix E list the selected benchmarks.

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

103

5.4.2 Localizing Adaptive POAC

Table 5.3 compares the performance of the method for finding the cycles: a min-

imum cycle basis (MCB) or the approximation using a BFS (BFSC, Section 5.3).

A∪bfsc
cyc POAC solves more instances than A∪mcb

cyc POAC, showing that our approxi-

Table 5.3: Comparing lookahead using A∪bfsc
cyc POAC and A∪mcb

cyc POAC

Algorithm A∪bfsc
cyc POAC A∪mcb

cyc POAC
#solved 2,217 2,157∑CPU [sec] >500,767.3 >853,730.6
avg. NV 163,525.9 177,010.3
#Instances 3,525 total, 2,150 by all, 2,224 by at least one

mation technique is useful in this context. Notice that the average node visits of

A∪bfsc
cyc POAC is smaller than A∪mcb

cyc POAC, which is expected as because BFSC com-

puted larger neighborhoods for each variable than MCB (i.e., a larger vertices beyond

neighborhood in Table 5.2). Thus, in the remaining experiments, we will only report

the results of the cycles computed by BFSC.

Table 5.4 compares the performance of APOAC, ANPOAC, and A∪bfsc
cyc POAC.

APOAC performs the worst by solving the fewest number of instances in the largest

Table 5.4: Lookahead with adaptive POAC techniques

Algorithm GAC APOAC ANPOAC A∪bfsc
cyc POAC

#solved 2,277 2,132 2,224 2,215∑CPU [sec] >368,158.3 >1,102,942.7 >659,937.3 >763,566.4
avg. NV 460,387.0 15,348.0 349,452.9 66,373.8

#Instances 3,525 total, 2,111 by all, 2,295 by at least one

CPU time. However, it was also the strongest consistency enforced and resulted in the

small number of node visits. This result is not surprising as we saw when evaluating

our triggering strategy in Section 4.4. Localizing POAC to the neighborhoods and

104

cycles (i.e., ANPOAC and A∪cycPOAC) solve more instances than APOAC, but not

as many as GAC. Thus, localizing POAC is not enough to overcome GAC by itself.

Table 5.5 investigates a selection of benchmarks where APOAC performed well,

to help identify what is happening with the localizations. For the dubois, pseudo-

Table 5.5: APOAC techniques on select benchmarks where APOAC beats GAC

Algorithm GAC APOAC ANPOAC A∪cycPOAC
dubois #Instances 13 total, 6 by all, 11 by at least one

#solved 6 11 6 8∑CPU [sec] >22,284.0 2,233.3 >23,162.1 >14,456.3
avg. NV 123,405,942.7 528,813.3 85,514,422.2 7,560,067.3

pseudo-ii #Instances 41 total, 9 by all, 14 by at least one
#solved 9 14 9 9∑CPU [sec] >18,619.8 2,481.9 >18,705.1 >18,592.0
avg. NV 282,191.0 72,442.0 282,191.0 139,305.0

mug #Instances 8 total, 4 by all, 6 by at least one
#solved 4 6 5 6∑CPU [sec] >7,200.1 2,974.8 >4,005.4 3,168.0
avg. NV 94.0 94.0 94.0 94.0

k-insertion #Instances 32 total, 16 by all, 18 by at least one
#solved 16 18 16 17∑CPU [sec] >7,554.1 4,177.6 >7,632.3 >5,360.2
avg. NV 367,761.6 14,763.0 367,761.6 92,015.3

cril #Instances 8 total, 3 by all, 7 by at least one
#solved 4 6 7 7∑CPU [sec] >12,655.6 >4,199.3 2,465.1 2,419.3
avg. NV 367,754.3 107,020.3 197,697.3 135,826.3

QWH-20 #Instances 10 total, 9 by all, 9 by at least one
#solved 9 9 9 9∑CPU [sec] 2,581.3 1,870.9 1,290.4 1,522.1
avg. NV 532,566.1 33,813.4 137,518.7 137,518.7

QCP-20 #Instances 15 total, 4 by all, 5 by at least one
#solved 4 4 5 5∑CPU [sec] >5,328.7 >4,861.0 4,557.6 4,696.9
avg. NV 770,529.5 44,462.8 568,227.8 568,227.8

ii, mug, and k-insertion benchmarks, APOAC performs the best on all measures,

while ANPOAC is the worst adaptive-POAC technique in terms of CPU time and

105

A∪cycPOAC’s CPU time is between the APOAC and ANPOAC. On the pseudo-ii

benchmark, ANPOAC has the exact same search tree as GAC, which shows that the

neighborhood is too localized to offer filtering. For the cril benchmark, A∪cycPOAC

has the smallest CPU time, thus finding cycles can perform best. On the QWH-

20 and QCP-20 benchmarks, ANPOAC has the smallest CPU time. The BFSC

method of finding cycles did not identify any cycles that ‘grew’ a neighborhood, thus

A∪cycPOAC is equivalent to ANPOAC.

Table 5.6 investigates a selection of benchmarks where APOAC performed poorly,

to help identify what is happening with the localizations. For these benchmarks, GAC

Table 5.6: APOAC techniques on select benchmarks where GAC beats APOAC

Algorithm GAC APOAC ANPOAC A∪cycPOAC
geom #Instances 100 total, 98 by all, 100 by at least one

#solved 100 98 100 100∑CPU [sec] 7,254.3 >28,365.6 14,427.7 14,433.1
avg. NV 20,915.3 3,373.0 5,213.8 5,217.5
tightness0.35 #Instances 100 total, 100 by all, 100 by at least one
#solved 100 100 100 100∑CPU [sec] 7,547.1 32,155.0 11,120.8 11,487.5
avg. NV 80,978.6 9,901.0 58,410.6 57,073.3
super-os-taillard-4 #Instances 30 total, 22 by all, 28 by at least one
#solved 28 22 28 28∑CPU [sec] 7,647.2 >33,042.7 17,170.5 17,185.3
avg. NV 8,416.7 17.0 114.4 114.4

wordsVg #Instances 65 total, 58 by all, 65 by at least one
#solved 65 58 65 63∑CPU [sec] 8,402.3 >37,232.1 8,782.8 >27,807.3
avg. NV 17,133.3 1,015.9 17,141.7 9,620.0

performs the best over all adaptive POAC techniques. ANPOAC is second in terms

of CPU time, while A∪cycPOAC and APOAC are third and fourth, respectively. On

these benchmarks even enforcing a localized version of POAC is detrimental. This

explains why looking at all benchmarks (Table 5.4) ANPOAC has a smaller CPU

106

time than A∪cycPOAC but larger than GAC. The majority of the benchmarks are

those where GAC performs best. Thus, the weakest POAC technique will have the

second smallest CPU time.

5.4.3 Combining PrePeak+ and Localized POAC

From the evaluations localizing adaptive-POAC (Section 5.4.2), we saw that ∪cycPOAC

provides a compromise between POAC and NPOAC, but the technique is detrimen-

tal because of instances where enforcing POAC, and its localized versions, are not

beneficial. The goal of PrePeak+ (Chapter 4) is to determine the usefulness of a

higher-level consistency and enforce it accordingly. In this section we use the local-

ized versions of POAC, NPOAC and ∪cycPOAC, with that of the triggering scheme

PrePeak+.

Table 5.7 compares the performance of PrePeak+ with triggering POAC tech-

niques. Combining PrePeak+ with NPOAC and ∪cycPOAC is worse than GAC

Table 5.7: PrePeak+ with POAC techniques

PrePeak+

Algorithm GAC POAC NPOAC ∪cycPOAC
#solved 2,277 2,284 2,276 2,273∑CPU [sec] >350,158.3 >323,045.3 >358,297.3 >359,930.5
avg. NV 511,621.9 229,898.3 534,553.4 506,888.8
#CallsPOAC - 256.5 20.8 31.8

#Instances 3,525 total, 2,268 by all, 2,290 by at least one

in terms of completions and CPU time. Both NPOAC and ∪cycPOAC have simi-

lar average node visits to that of GAC. Given the relatively few calls to POAC for

NPOAC and ∪cycPOAC (20.8 and 31.8) compared with POAC (256.5), it makes sense

there is not a large reduction of node visits. Indeed, because NPOAC and ∪cycPOAC

107

are weaker consistencies, PrePeak+ learns that they are not effective (i.e., causing

domain wipeouts as frequently) and does not trigger them very often.

We now focus on individual benchmarks to help show our reasoning as to why

PrePeak+ with POAC performs better than PrePeak+ with NPOAC and ∪cycPOAC.

Table 5.8 shows a selection of benchmarks where PrePeak+ with POAC performs

the best. For dubois and k-insertion benchmarks, the number of calls to POAC is

Table 5.8: Benchmarks where PrePeak+ with POAC performs well

PrePeak+

Algorithm GAC POAC NPOAC ∪cycPOAC
dubois #Instances 13 total, 6 by all, 11 by at least one

#solved 6 11 6 6∑CPU [sec] >22,284.0 4,157.8 >24,447.9 >24,120.7
avg. NV 123,405,942.7 24,440,578.0 132,236,419.2 125,963,931.7
#CallsPOAC - 54,073.8 17.0 22.3

k-insertion #Instances 32 total, 16 by all, 17 by at least one
#solved 16 17 16 16∑CPU [sec] >3,954.1 2,839.7 >3,982.4 >4,039.4
avg. NV 367,761.6 93,532.0 367,761.6 422,957.0
#CallsPOAC - 1,475.1 1.3 4.5

pseudo-ii #Instances 41 total, 9 by all, 13 by at least one
#solved 9 13 9 9∑CPU [sec] >15,019.8 1,697.1 >15,054.8 >15,054.4
avg. NV 282,191.0 282,191.0 282,191.0 282,191.0
#CallsPOAC - 0.0 0.0 0.0

mug #Instances 8 total, 4 by all, 5 by at least one
#solved 4 5 4 4∑CPU [sec] >3,600.1 1,382.1 >3,600.1 >3,600.1
avg. NV 94.0 94.0 94.0 94.0
#CallsPOAC - 0.0 0.0 0.0

nengfa #Instances 12 total, 4 by all, 5 by at least one
#solved 4 5 4 4∑CPU [sec] >3,820.6 2,592.7 >3,822.5 >3,822.5
avg. NV 4,526.5 4,526.5 4,526.5 4,526.5
#CallsPOAC - 0.0 0.0 0.0

large for PrePeak+ with POAC. However, PrePeak+ with NPOAC and ∪cycPOAC

108

are not triggering often, and thus does not significantly reduce the number of node

visits and CPU time. Because the #CallsPOAC for NPOAC and ∪cycPOAC are so

small in comparison to POAC, we think that the reinforcement of PrePeak+ likely

needs to be modified in the context of weaker consistencies.

For the pseudo-ii, mug, and nengfa benchmarks, GAC solves the easy instances

without triggering POAC (i.e., on all instances solved by GAC, the #CallsPOAC is

0). However, PrePeak+ with POAC could solve addition instances that PrePeak+

with NPOAC and ∪cycPOAC could not solve.

Table 5.9 investigates a selection of benchmarks where PrePeak+ with POAC

is outperformed by GAC. On these benchmarks, we continue to see that the #Call-

Table 5.9: PrePeak+ with POAC techniques on select benchmarks good for GAC

PrePeak+

Algorithm GAC POAC NPOAC ∪cycPOAC
rand-2-40-19 #Instances 50 total, 49 by all, 49 by at least one

#solved 49 49 49 49∑CPU [sec] 47,461.4 48,025.7 48,039.2 47,978.2
avg. NV 723,885.4 724,891.7 724,184.7 723,548.6
#CallsPOAC - 40.3 29.1 26.6

tightness0.9 #Instances 100 total, 99 by all, 100 by at least one
#solved 100 99 100 100∑CPU [sec] 14,314.1 >15,098.2 14,424.6 14,524.9
avg. NV 19,984.6 19,825.0 19,971.9 19,778.5
#CallsPOAC - 8.1 1.8 7.3
travellingSalesman-25 #Instances 15 total, 15 by all, 15 by at least one
#solved 15 15 15 15∑CPU [sec] 4,307.4 5,245.5 4,334.2 4,275.1
avg. NV 192,353.4 226,908.7 192,505.9 188,943.0
#CallsPOAC - 33.7 2.9 4.9

sPOAC for PrePeak+ with NPOAC and ∪cycPOAC trigger is less than PrePeak+

with POAC. Thus, for these benchmarks NPOAC and ∪cycPOAC perform better

than PrePeak+ with POAC because their performance more closely matches that

109

of GAC.

We next test our hypothesis about the reward function of PrePeak+ not being

tuned properly for weaker consistencies, such as ∪cycPOAC. To that end, adjust the

reward for the common ratio r in PrePeak+. Table 5.10 shows the result of changing

the common-ratio powers from r = (−1, 2, 3), the advocated method of Chapter 4, to

r = (−1, 0, 1). Changing r to (−1, 0, 1) increases the number of calls to POAC from

Table 5.10: Changing the r reward for PrePeak+ with ∪cycPOAC

r = (−1, 2, 3) r = (−1, 0, 1)
#solved 2,273 2,248∑CPU [sec] >309,530.5 >473,716.6
avg. NV 498,492.5 471,911.0
#CallsPOAC 31.8 2,923.6
#Instances 3,525 total, 2,245 by all, 2,276 by at least one

r = (−1, 2, 3) (2,923.6 versus 31.8). However, despite calling HLC more frequently,

the reduction in the number of node visits is relatively small. Thus, triggering more

frequently cannot overcome that the consistency property is weaker.

Using neighborhoods or cycles with POAC weakens the resulting consistency prop-

erty, which is not an effective strategy to do when triggering consistency.

We could potentially strengthen ∪cycPOAC by computing the cycles dynamically

during search rather than during pre-processing, however, it will likely still be too

weak.

5.5 Cycles for Determining Singleton Tests

In the previous sections, the cycle basis was used to localize the AC filtering of each

singleton test. In this section, we propose an alternative approach to instead of

localize the singleton tests AC call to the cycles of which the singleton test is being

110

conducted, we restrict the variables that we singleton test to those that appear in a

cycle with the current instantiated variable. Empirically we find that this approach

is not strong enough because instantiating the variable already breaks many cycles,

and we need to break cycles in other areas of the CSP to get propagation. However,

we report the idea and results as a lesson learned.

5.5.1 Determine Singleton Tests

Figure 5.9 shows a search progression. Variables x1, x2, and x3 have been assigned

x5

…

x6 x7

x11 x10 x9 x8

x12
…

…

…

xn

Pa
st

Fu

tu
re

Root
x1←v1
x2←v2
x3←v3
x4←v4

Figure 5.9: Search progression’s past, current, and future variables

by search values v1, v2, and v3, respectively. The current variable being assigned

by search is x4 with value v4. The future variables are x5 . . . xn, which search is

conducting lookahead over. Our typical lookahead is GAC, which will revise all

the future variables. POAC operates by conducting a singleton test on every future

variable and running GAC. We propose a hybrid, where we singleton test only the

111

variables that appear in a cycle with the current variable (i.e., singleton test on

variables x5 . . . x12) and enforce GAC on the other variables (i.e., x13 . . . xn).

Using the approximation of computing the cycles of a variable, Section 5.3, allows

the computation of cycles of the instantiated variable to be conducted dynamically

during search. Thus, we compute the cycles in the graph induced by the current

variable and the future variables (i.e., without the past variables) to determine which

variables to singleton test in POAC.

5.5.2 Experimental Results

We set up our experiments the same as in Section 5.4.1. We compare STR2+ with

APOAC and our new method of restricting singleton test variables of APOAC to

those that appear in a cycle with the current variable, which we call APOACaround∪.

Table 5.11 shows the difference between APOAC and APOACaround∪. Overall,

Table 5.11: Lookahead with GAC, APOAC, and Localized POAC

Algorithm GAC APOAC APOACaround∪

#solved 2,277 2,132 2,151∑CPU [sec] >371,758.3 >1,106,542.7 >1,069,967.5
avg. NV 481,013.5 22,508.4 269,870.1
#Instances 3,525 total, 2111 by all, 2296 by at least one

localized POAC does slightly better than APOAC in terms of completing more in-

stances and CPU time. Of course, APOAC enforces the strongest consistency, and

has the least number of node visits.

Overall, the strategy does not work well because instantiating the variable already

breaks the cycle. Thus, singleton testing only variables in the ‘broken’ cycles does

not offer much additional filtering. Instead, we want to singleton test all variables to

allow the broken cycles of the search-instantiated variable to propagate further.

112

Summary

In this chapter, we advocate the use of cycles to improve the performance of algorithms

for enforcing POAC and provide empirical evidence of the benefit of our approach.

Future work is to extend our cycles to other consistency algorithms, such as RNIC.

113

Chapter 6

Localizing Consistency to Triangles

Chapter 5 investigated where to enforce consistency using cycles of the CSP. In this

chapter we focus on a special type of cycle: triangles. We are motivated by the con-

sistency properties Partial Path Consistency (PPC), which operates on a triangulated

primal graph of the CSP.

PPC is a staple for processing time in planning problems [Xu and Choueiry, 2003;

Planken et al., 2008] where its enforcement is able to solve the problem. For gen-

eral CSPs, the enforcement of PPC has not widely been investigated and has only

ever been evaluated as a pre-processing step to solving a CSP, largely due to its en-

forcement cost. In this chapter, we focus on the 4PPC algorithm [Reeson, 2016]

for enforcing PPC. We introduce new implementation improvements for 4PPC and

introduce various strengths of PPC by restricting its propagation queue. Finally, we

combine PPC with our triggering techniques (Chapter 4) and show that it can be

advantageous to enforce PPC during search.

Jégou [1993] introduces, for non-binary CSPs, a relational-consistency property,

called hyper-3 consistency (H3C) that is ‘symmetrical’ to path consistency for binary

CSPs. We extend H3C to a partial version, partial hyper-3 consistency (PH3C), which

114

operates on triangles of a dual graph of the CSP, and propose the first algorithm for

enforcing it based on the partial path consistency algorithm 4PPC, which we call

4PH3C. We theoretically and experimentally show that PH3C can solve the ‘dubois’

benchmark backtrack-free due to its structural configuration, which has never before

been exploited.

6.1 Revisiting 4PPC

Bliek and Sam-Haroud [1999] introduced BSH-PPC, the first algorithm for enforcing

Partial Path Consistency (PPC) on binary CSPs. It operates on a queue of edges (i.e.,

constraints) that need to be tightened to make the problem PPC. The algorithm pops

an edge ci,j from its queue and for each third variable k, such that the constraints ci,k

and cj,k exists (i.e., a triangles of three variables), it tightens the constraint ci,j by

joining and projecting these adjacent constraints, that is, ci,j ← ci,j ∩ πi,j(ci,k ./ cj,k)

The state-of-the art algorithm for enforcing PPC is Triangle Partial-Path Consis-

tency (4PPC) [Reeson, 2016]. 4PPC improves on BSH-PPC in three ways:

1. The propagation queue is a queue of triangles, Qt instead of a queue of edges.1

2. When a triangle is removed from the queue, Revise-Triangle revises all three

edges at the same time.

3. Whenever an edge is updated, all of the triangles are pushed to the queue,

except the one under consideration by the algorithm.

To ensure correctness, 4PPC propagates its filtering of relations onto the articulation

points and the cut edges in the graph.
1Processing triangles was originally exploited for Simple Temporal Problems in 4STP [Xu and

Choueiry, 2003] and P3C [Planken et al., 2008].

115

We give a detailed discussion of the 4PPC algorithm, followed by our adaptation

to using constraints represented as bit matrices, and using it to enforce different

strengths of PPC.

6.1.1 The Algorithm

We follow Reeson’s [2016] algorithm for 4PPC with two modifications:

1. Allow 4PPC to operates on any set of triangles, which are a set of three vari-

ables that are pairwise connected with a constraint in the CSP. Thus, the algo-

rithm can be used with a subset of triangles, such as existing triangles in the

primal graph for enforcing conservative path consistency, or to operate on some

subset of the triangles, as we propose in Section 6.2.

2. Allow the propagation of the filtering by the algorithm to modify the entire

CSP, rather than the articulation points and the cut edges of the graph. Our

rationale for this change is that when PPC is combined with search, the domains

of all variables need to be updated with respect to the updated relations, thus

we interleave this operation in the call to 4PPC.

We do not discuss all the technical aspects of4PPC, but instead focus on the relevant

parts to understand these two changes.

Algorithm 13 reports our adaptation of the 4PPC algorithm of Reeson [2016].

Our algorithm takes as input a set of triangles, triangles, which is a set of three

variables that pairwise have a constraint between them. For enforcing PPC, triangles

contains all of the triangles that appear in the triangulated CSP:

triangles ← {(xk, xj, xi) ∈ V|(i < j < k) ∧ (ci,j, ci,k, cj,k ∈ C ′)}

116

Algorithm 13: 4PPC(P)
Input: P = (V ,D, C): A binary CSP with a triangulated constraint graph;

triangles: A set of triangles {(xk, xj, xi)}, . . .} to enforce on.
Output: Partially path consistent P

1 Qt ← triangles
2 ProjectAndSelect(C)
3 while Qt 6= ∅ do
4 (xk, xj, xi)← Pop(Qt)
5 U ← Revise-Triangle(xk, xj, xi)
6 foreach edge ∈ U do Qt ← Qt ∪ TriangleEdge(edge) \ {(xk, xj, xi)}
7 return P

Where i < j < k is ordered by a perfect elimination ordering of the triangulated CSP

and C ′ is the set of constraints in the triangulated CSP. 4PPC uses a propagation

queue of triangles Qt to determine which triangles need to be revised because of

changes, which initially contains all triangles.

For correctness, 4PPC ensures that the articulation points and cut edges are kept

updated with the latest relation filtering. Because of the combination with search,

we instead update all variables and relations by projecting and selecting on all the

constraints by calling ProjectAndSelect (Algorithm 14). ProjectAndSelect

takes a set of constraints and checks if any domain values can be updated (i.e.,

projection of the constraints onto each variable in its scope) and propagates those

changes on affected relations (i.e., selection on relevant constraints). A queue Q is

used to process the constraints ci,j that have changed. The constraint is projected

onto both xi and xj in its scope to see if any domain value can be removed. If xi

(or xj) has been updated then all constraints that contain xi (or xj) are selected to

ensure they contain only current domain elements and re-queued to further propagate

any changes (Lines 8–12, and Lines 13–17, respectively).

After popping a triangle from the queue in4PPC, we revise it by calling Revise-

Triangle (Line 5 of Algorithm 13). We do not modify Revise-Triangle (Algo-

117

Algorithm 14: ProjectAndSelect(C)
Input: C ⊆ C
Output: U : Set of updated constraints

1 U ← ∅
2 Q ← C
3 while Q 6= ∅ do
4 ci,j ← Pop(Q)
5 U ← U ∪ {ci,j}
6 origDomi ← dom(xi)
7 origDomj ← dom(xj)
8 dom(xi)← πi(ci,j)
9 if origDomi 6= dom(xi) then

10 for c′ ∈ C such that (xi ∈ scp(c′)) ∧ (c′ 6= ci,j) do
11 c′ ← σxi∈dom(xi)(c′)
12 Q ← Q∪ {c′}

13 dom(xj)← πj(ci,j)
14 if origDomj 6= dom(xj) then
15 for c′ ∈ C such that (xj ∈ scp(c′)) ∧ (c′ 6= ci,j) do
16 c′ ← σxj∈dom(xj)(c′)
17 Q ← Q∪ {c′}

18 return U

rithm 15), from that of Reeson’s [2016], but discuss it here for completeness. Revise-

Algorithm 15: Revise-Triangle(i, j, k)
Input: i, j, k ∈ X
Output: U : Set of updated constraints

1 U ← ∅
2 U ← U ∪Revise-3(i, j, k)
3 U ← U ∪Revise-3(i, k, j)
4 U ← U ∪Revise-3(j, k, i)
5 return U

Triangle calls Revise-3(i, j, k) (Algorithm 16 for each combination of i, j, k, which

updates the relation Ri,j using variable k. We differ our Revise-3 implementation

from that of Reeson’s [2016] in that we propagate the changes of the relations onto

all variables, rather than articulation points in the graph. We accomplish this prop-

118

Algorithm 16: Revise-3(i, j, k)
Input: i, j, k ∈ X
Output: U : Set of updated constraints

1 modified ← False
2 foreach (a, b) ∈ Ri,j do
3 if 6 ∃c ∈ dom(k) such that ((a, c) ∈ Ri,k) ∧ ((b, c) ∈ Rj,k) then
4 Ri,j ← Ri,j \ {(a, b)}
5 modified ← True

6 U ← ∅
7 if modified then U ← ProjectAndSelect({ci,j})
8 return U

agation by calling ProjectAndSelect (Line 7). Any relations that are modified

by ProjectAndSelect, including ci,j, are placed in the set of updated relations U

for requeueing to Qt for 4PPC (Line 6 of Algorithm 13).

6.1.2 Bit Implementation of the Constraints

Up to this point we represent a relation for a constraint by an enumerated table

representing the constraint (i.e., a relation given in supports and extension). But, we

propose an alternative representation of the constraints using a bit matrix. We call

the version of 4PPC that utilizes a bit implementation of constraints 4PPCbit.

In the bit representation of a constraint, we use a two-dimensional bit-matrixMi,j

to represent each relation Ri,j such that the location (a, b) is true iff the tuple (a, b)

is allowed by Ri,j. In particular, we implement the Mi,j as follows.

• The rows of the matrix represent a value in the domain of variable i and the

columns represent a value in the domain of the variable j.

• A value at Mi,j[a][b] is true iff 〈a, b〉 ∈ Ri,j.

• Mi,j[a] returns a bit vector of all of the values in j that support i← a.

119

• We redundantly store the bit matrix Mxi,xj
into Mxj ,xi

for ease of accessing the

relation in both directions of xi and xj.

• For our implementation, we choose to implement Mi,j as a vector indexed by

the domain of i and M [a] as a reversible sparse bit-set (RSparseBitSet) [De-

meulenaere et al., 2016]. A reversible sparse bit-set allows tuples to be restored

in constant time when search backtracks.

Revise-3bit (Algorithm 17) is the updated pseudo-code of Revise-3 which utilizes

the bit presentation of the constraints in 4PPCbit. In Line 3, we obtain all the

Algorithm 17: Revise-3bit(i, j, k)
Input: i, j, k ∈ X
Output: Td the set of removed tuples from Ri,j

1 Td ← ∅
2 foreach a ∈ dom(i) do
3 foreach b ∈Mi,j[a] do
4 if Ri,k[a]&Rj,k[b] = false then
5 Ri,j[a][b]← false
6 Td ← Td ∪ {(a, b)}

7 return Td

indices where Ri,j[a] is true. This operation can be accomplished in constant time

by counting the number of trailing 0s in the bit vector,2 resulting in the index of the

least significant bit. To find the next bit, the least significant bit is set to false and

the process repeats itself until the bit vector is empty.

6.1.3 Variations of PPC

Our PPC algorithm is based on first triangulating the graph of a binary CSP, perhaps

by applying the MinFill heuristic (Fig. 4.4 [Dechter, 2003b]). We organize the
2Counting the trailing 0s can be accomplished in constant time by using a CPU an instruction

to count the number of trailing 0s, or if not available, a lookup table.

120

vertices along a Perfect Elimination Ordering (PEO). We denote as elimination order

the traversal of the vertices from bottom to top and as instantiation order the traversal

of the vertices from top to bottom (see Figure 6.1). We use the PEO to identify the

sequence of triangles in the elimination order as the triangles (i, j, k) where i < j < k

sorted by first the largest value of k, then the largest value of j, then the largest value

i as shown in Figure 6.2.

k

j

i

In
st

an
tia

tio
n

or
de

r
El

im
in

at
io

n
or

de
r

Figure 6.1: MinFill adds the edge (i, j)
because of the existing edges (i, k) and
(j, k)

V4

V1

V3

V2

V5

V6

Figure 6.2: The sequence of triangles
along the PEO of a triangulated graph

We investigate the following variations of PPC by restricting propagation in the

identified triangles and limiting iteration over the propagation queue:

• Directional Path Consistency (DPC) [Dechter and Pearl, 1988] iterates through

the triangles following the PEO along the elimination order (i.e., from bottom

to top). DPC traverses the triangles only once and updates only the edge (i, j)

in each triangle (i, j, k) such that i < j < k. Note that the edge (i, j) can be

either an existing edge or is added by MinFill.

121

• Directional Partial Path Consistency (DPPC) iterates only once over the tri-

angles following the PEO in the elimination order, updating all three edges of

each triangle at each step.

• P3C [Planken et al., 2008] traverses twice the list of triangles: first in the

elimination order then in the instantiation order. In the first traversal, it applies

DPC, that is, updates the edge (i, j) in each triangle (i, j, k) such that i < j < k.

Then, when traversing the triangles in the instantiation order, it updates the

two edges (i, k) and (j, k).

• Two-swipes Directional Partial Path Consistency (2DPPC) applies DPPC twice,

once following the elimination order and then following the instantiation order.

(It goes through the sequence of triangles updating all three edges first following

the elimination order then following the instantiation order.)

• PPC repeatedly iterates through the sequence of triangles up and down the PEO,

starting from the elimination order and repeating until reaching a fixpoint. For

each triangle, it updates all three edges.3

The Hasse diagram of the pruning effectiveness of the five listed algorithms is

shown in Figure 6.3 with the weakest at the bottom and the strongest at the top.

Notice that these queue strategies provide a natural ‘how much’ strategy for enforcing

PPC. We refer the adaptation of 4PPC by limiting the queue as: 4PPC, 42DPPC,

4DPPC, 4P3C, 4DPC.

Reeson [2016] implements an ordered propagation queue for following the PEO

ordering by processing all the triangles in a linear up and down ordering and using

a ‘flag’ to determine if a triangle is in the propagation queue. Thus, processing the
3Reeson [2016] present this queue strategy as the algorithm σ-4PPC.

122

DPC

PPC

DPPC

2DPPC

P3C

Figure 6.3: Pruning strengths of the proposed PPC-based consistencies

one direction of the queue involves |triangles| checks of the flag, rather than iterating

only through elements in the queue. We improve on this implementation to allow

constant time access to the next element in the queue.

We continue to use a flag to determine if an element is present in the queue, but

use two priority queues to iterate through only elements in the:

1. a forward queue where the priority of a triangle is its position in the PEO,

2. and a backward queue where the priority of a triangle is its position from the

end of the PEO.

We use a flag to indicate what queue to pop elements from, initially indicating that

the forward queue is to be used. Elements are popped from the flagged direction’s

queue until it is empty, at which point the flag changes, indicating that the other

queue is to be popped from. This process continues until both queues are empty.

When inserting an element the priority of the element is compared with the priority

of the last popped element to determine which queues it is inserted into using the

ordering of the currently-flagged queue. If the element to be inserted has a priority

123

after the previously element, its added to the flagged queue, otherwise it is added to

the non-flagged queue.

Maintaining two priority queue is beneficial when the queue has few elements in

it. Rather than checking a flag on all the triangles, the queue can be accessed directly.

6.2 Generating Triangulated Edge Constraints

Partial Path Consistency (PPC) operates on triangles of the triangulated primal

graph, generating new constraints for the triangulated edges. Although generating

the triangulated edges is less effort than enforcing on a complete graph (i.e., Path

Consistency), generating additional edges may not always be worthwhile. Indeed,

generating these new edges can be costly in terms of CPU time and memory. In this

section we propose a method for selecting a subset of triangles to operate on, and

thus, a subset of triangulated edges to generate. Operating on a subset of triangles

introduces a new consistency properly strictly stronger than CPC but strictly weaker

than PPC. In particular, we advocate utilizing a tree decomposition of the CSP to

determine the subset triangles.

6.2.1 Using the Separators of a Tree Decomposition

The separators between clusters identifies the variables that propagate changes from

one cluster to another. We propose to identify only triangles that have a certain

number of variables in the separator. Three strategies can be derived:

1. The triangle has at least one variable in the separator, corresponding to selecting

triangles that at least ‘touches’ the separator.

124

2. The triangle has at least two variables in the separator, corresponding to se-

lecting triangles that have an edge in the separator.

3. The triangle has all three variables in the separator, corresponding to selecting

triangles completely contained in the separator.

Using the separators in this manner does not allow us to easily discriminate which

triangles should be selected in the case that many of the triangles appear in separators.

In the next section, we instead investigate looking at where the triangles appear in

the clusters of a tree decomposition.

6.2.2 Using the Clusters of a Tree Decomposition

Triangles that appear in many clusters allow it to communicate changes across the

CSP easily. Thus, we enumerate all of the triangles of a graph (e.g., the triangulated

primal graph in the case of PPC) counting how many clusters of the tree decom-

position the triangle appears in.4 We start selecting triangles, which may be either

an existing triangle or contains a triangulated edge, starting with the triangles that

appear in the most number of clusters. We select some threshold θ4 of the number of

triangles to accept. We include all the triangles that appear in the same number of

clusters as the θ4th triangle to account for ties. After this point, we add all existing

triangles in the original, un-triangulated, graph, some of which may have already

been

Example 6 Figure 6.4 the primal graph of an example CSP. Figure 6.5 shows the
4The number of separators the triangle appears in is always one fewer than the number of clusters

a triangle appears in. However, we argue that the clusters provides a more accurate measure given
that it can distinguish between triangles that appear in one cluster (i.e., in no separators) and those
that appear no clusters.

125

A B

C

E

D

F

H

G

Figure 6.4: The primal graph

A B

C

E

D

F

C1

C2

C3

C4

C5H

G

Figure 6.5: Triangulated primal graph and
its maximal cliques

triangulated primal graph and its maximal cliques. Figure 6.6 shows a tree decompo-

sition for this example. There are twelve triangles in the triangulated primal graph:

{A,B,C,D},
{AB,BC,CD,AD,AC}

{A,C,G},
{AC,AG}

{A,B,D,F},
{AB,BD,AD,AF,BF}

{C,G,H},
{GH,HC}

{B,D,E,F},
{BD,BE,BF,DE,EF}

C1

C2

C3

C4

C5

Figure 6.6: A tree decomposition of the CSP in Figure 6.4

(A,B,C), (A,B,D), (A,B, F), (A,C,D), (A,C,G), (A,D, F), (B,C,D), (B,D,E),

(B,D, F), (B,E, F), (C,G,H), (D,E, F). The triangles (A,B,D) and (B,D, F)

appears in two cliques of the tree decomposition, while the other triangles appear in

one clique. For θ4 = 1 or 2 the triangles (A,B,D) and (D,B, F) are accepted. For

θ4 ≥ 3 all twelve triangles are accepted.

In practice, we set θ4 = 2n, where n is the number of variables. We justify this

126

choice of θ4 because it allows each variable to have two triangles associated with it,

either containing triangulated or original constraints.

6.2.3 Implementing Triangle Generation

The constraint definition of a triangulated edges in the primal graph is a universal

constraints (i.e., allowing all combinations of values between the two variables). En-

forcing PPC may tighten these constraint. By generating the constraints through

a single operation of PPC, that is, by joining two adjacent relations and projecting

onto the scope, reduces both the memory consumption of the program and the time

to iterate through the resulting relations. Following a perfect elimination ordering

(PEO) allows us to generate the relations in just this fashion. The definition of PEO

ensures that two adjacent relations will already exist, or have already been generated,

when doing this operation.

Algorithm 18 generate the triangulated edges by joining and projection existing

edges following a perfect elimination ordering. The join of relations Ri,k and Rk,j in

Line 8 will be either existing or previously generated relations because of the definition

of a perfect elimination order.

If a subset of triangles are to be generated, as discussed in Sections 6.2.1 and 6.2.2,

not all the triangulated edges may need to be generated. In such a situation generating

a new constraint in Line 8 of Algorithm 18 may require the join with a non-generated

relation, and thus, the resulting generated constraint is a universal constraints. In

practice we find that generating these universal constraints is wasteful in memory

consumption and that, for some problem instances, generating the selected universal

constraints consumes more memory than generating all the triangulated edges fol-

lowing Algorithm 18 and discarding the not required constraints at the end of the

127

Algorithm 18: GenerateEdges(P, peo)
Input: P = (V ,D, C): A binary CSP; peo = (|V|, . . . , 1): a perfect

elimination ordering on V
Output: A triangulated CSP P ′ = (V ,D,C ′) and a set of triangles triangles

1 C ′ ← C
2 triangles ← ∅
3 for k ← |V| down to 3 by −1 do
4 for j ← k − 1 down to 2 by −1 do
5 for i← j − 1 down to 1 by −1 do
6 if Ci,k ∈ C ′ and Ck,j ∈ C ′ then
7 if Ci,j /∈ C ′ then
8 Ri,j ← πi,j(Ri,k ./ dom(xk) ./ Rk,j)
9 C ′ ← Ci,j

10 triangles ← triangles ∪ {(xk, xj, xi)}

11 return ((V ,D,C ′), triangles)

operation.

Algorithm 19 avoids such situations by determining all the temporary and perma-

nent edges to be generated for a given subset of triangles. The algorithm operates by

recording the triangles that create a triangulated edge following the PEO ordering.

The three for loops of Lines 5–7 finds when the edges are first found (i.e., generated)

and stores them in edgeGeneratedFrom, which is a stack of edges generated. The

for loop of Line 13 goes in the reverse order of generated edges determining if the

generated edge appears in a triangle in Line 15, needs to be temporarily generated

(i.e., the edge will be used for generating another edge) in Line 17, or if the edge

does not need to be generated (ignored). The for loop of Line 19 goes through all

of edgeGeneratedFrom in the order of generation, generating edges if they are either

required in Line 22 or required temporarily in Line 25. Finally, in Line 27 all of the

temporary edges are removed.

128

Algorithm 19: GenerateSomeEdges(P, peo, tri)
Input: P = (V ,D, C): A binary CSP; peo = (|V|, . . . , 1): a perfect

elimination ordering on V ; tri: An set of triangles {{k, j, i}, . . .} to
be generated where i < j < k in peo

Output: P ′ = (V ,D,C ′)
1 C ′ ← C
2 Ctemp ← ∅
3 foundEdges = ∅
4 edgeGeneratedFrom = []
5 for k ← |V| down to 3 by −1 do
6 for j ← k − 1 down to 2 by −1 do
7 for i← j − 1 down to 1 by −1 do
8 if Ci,k ∈ C ′ and Ck,j ∈ C ′ and Ci,j /∈ foundEdges and Ci,j /∈ C ′

then
9 PushBack((k, j, i), edgeGeneratedFrom)

10 foundEdges ← foundEdges ∪ {i, j}

11 requiredEdges = ∅
12 requiredEdgesTemp = ∅
13 for t← |edgeGeneratedFrom| down to 1 by −1 do
14 (k, j, i)← edgeGeneratedFrom[t]
15 if {k, j, i} ∈ tri then
16 requiedEdges ← requiredEdges ∪ {(i, j), (i, k), (j, k)}
17 else if (i, j) ∈ requiedEdges or (i, j) ∈ requiedEdgesTemp then
18 requiredEdgesTemp ← requiredEdgesTemp ∪ {(i, j), (i, k), (j, k)}

19 for t← 1 upto |edgeGeneratedFrom| do
20 (k, j, i)← edgeGeneratedFrom[t]
21 if (i, j) ∈ requiedEdges then
22 Ri,j ← πi,j(Ri,k ./ dom(k) ./ Rk,j)
23 C ′ ← Ci,j
24 else if (i, j) ∈ requiedEdgesTemp then
25 Ri,j ← πi,j(Ri,k ./ dom(xk) ./ Rk,j)
26 Ctemp ← Ci,j

27 Ctemp ← ∅
28 return (V ,D,C ′)

129

6.2.4 Decision Tree for Selecting Triangles for PC

On some problem instances, it is ill-advised to triangulate the graph and generate

new constraints. On the one end of the spectrum, the constraint graph is so dense

that AC guarantees ‘quick’ propagation and is thus sufficient for search. In less dense

graphs, it is sufficient to run a PPC algorithm on only the existing triangles in the

graph. On the other hand of the spectrum, we do need to consider triangles that are

formed as a result of triangulating the graph.

We propose the selection policy shown in Figure 6.7 to determine which triangles

our PPC-based algorithms should operate on given the density dp of the primal graph.5

The goal of this deliberation is to adjust the strength of PPC to the topology of the

No

No

Yes

Yes
dp ≥ 50%

≤ 2 dp

AC

Triangles of Gp

Start

dp ≥ 25%

No

Triangles of Gp

Yes

2n triangles from
+ Triangles of Gp

Gtri
p

dtri
p

1

2

3 4

Figure 6.7: Selecting the triangles for PPC

primal graph. Paraphrasing the content of Figure 6.7:

• We consider that, at a density of the primal graph of 50% or more (i.e., dp ≥

50%), AC fully propagates the impact of a variable instantiation. HLC typically
5This decision tree is similar to the one we advocated for RNIC [Woodward et al., 2011b].

130

yields only overhead but no further filtering. For this reason, we choose to

simply enforce AC (see leaf 1 in Figure 6.7).

• In the remaining cases, we choose to always exploit the existing triangles from

the graph and sometimes we maybe need to add a few more triangles.

• If the density of the primal graph is greater than 25% (i.e., dp ≥ 25%), there

is enough communication in the primal graph, and we choose to exploit only

existing triangles from the graph (i.e., Triangles of Gp in leaf 2 in Figure 6.7).

• Otherwise, we examine the triangulated primal graph.

• If triangulated primal graph Gtri
p more than doubles the number of edges (i.e.

dtri
p > 2dp), then the number of the additional triangles resulting from trian-

gulation can be overwhelming and may cause a serious overhead. We estimate

that the existing triangles are numerous enough to ‘carry the propagation’ over

the primal graph. For this reason, we choose to operate only on the existing

triangles in the original primal graph (see leaf 4 in Figure 6.7).

• When primal-graph triangulation does not prohibitively add to the density of

the primal graph (i.e., dtri
p ≤ 2dp), then we estimate that the triangulated

primal graph is not too dense and that the advantage of boosting propagation

outweighs the overhead of increasing the number of triangles to process. In this

case,

1. We choose first the 2n ‘most critical’ triangles from the triangulated pri-

mal graph. By critical, we mean those triangles that appear in the largest

number of clusters in some tree decomposition of the triangulated primal

graph (i.e, 2n triangles of Gtri
p in leaf 3 of Figure 6.7). The chosen triangles

131

may either be a triangle from the original primal graph or contain triangu-

lated edges. Further, we include all the triangles that appear in the same

number of clusters as the 2nth triangle (i.e., we include all ties).

2. After this point, we add all existing triangles in the original primal graph

unless they are already added.

The decision is illustrated as leaf 3 in Figure 6.7.

6.2.5 Watching Memory Usage

Although our proposed strategy attempts to reduce the number of triangles generated

(Section 6.2.4) and avoids generating universal constraints (Section 6.2.3), generating

additional constraints may still cause the program to go over its memory limit. For

this reason, we watch the memory usage as our code program is generating each new

constraint. If the memory usage is within 1GB of our threshold,6 we stop generating

new constraints, remove any added constraints, and default to only using existing

triangles (i.e., leaf 4 in Figure 6.7).

To accomplish this, we add a check after Line 20 of Algorithm 19 (Section 6.2.3) to

compare the current memory usage with our memory limit. If it is over our threshold,

we terminate the algorithm after clearing all generated constraints.

Importantly, this mechanism for watching memory usage when generating new

constraints is general. It is orthogonal and applicable beyond the usage of a decision

tree.
6In our experiments, we limit the memory usage to 8GB.

132

6.3 Experimental Evaluation of 4PPC

In this section, we evaluate the effectiveness of 4PPC, which has never before been

evaluated during search. To this end, we consider the problem of finding a single

solution to a CSP using backtrack search, the dom/wdeg variable ordering heuristic

[Boussemart et al., 2004], and real-full lookahead [Haralick and Elliott, 1980].

We first discuss our experimental setup. We then validate our approach in four

directions:

1. We evaluate the different variations of PPC proposed in Section 6.1.3, showing

that the variation of P3C performs best. The remaining directions are thus

conducted over the P3C variant.

2. We demonstrate the good performance of our decision tree for selecting the

triangles to use, Section 6.2.4, during pre-processing.

3. We next show the performance of using the decision tree for selecting the tri-

angles as real-full lookahead. Again, we insist that PPC-based algorithms have

never before been evaluated during search.

4. We compare triggering 4PPC using the strategies PrePeak, BTWatch, and

PP-BTWatch of Chapter 4.

6.3.1 Experimental Setup

We set up our experiments as follows. We use GAC2001 [Bessière et al., 2005] as the

GAC algorithm, which is always maintained during search. We use GAC2001 instead

of STR2+ as we find that it performs better than STR algorithms on binary CSPs.7

7Table E.2 in Appendix E compares the search performance using GAC2001 and STR2+ on
binary CSPs.

133

We use the 4PPC algorithm for enforcing PPC using the directional queue. The

variations of PPC provide a ‘how much’ strategy for terminating the PPC early, thus

we do not use the how much strategy of Section 4.2. We compare the performance of

4PPC with that of sCDC1 [Lecoutre et al., 2007], which enforces a stronger property

than PPC and does not require generating new constraints.

For all ordering heuristics, we do not allow the constraints added by MinFill to

change the degree of a variable. Further, we do not allow AC to operate on the added

constraints and use them for further propagation. We deliberately choose to prevent

such interaction between AC and our PPC algorithms in order to more precisely

assess the actual impact of PPC.

We use the benchmark problems available from Lecoutre’s website,8 including all

binary benchmarks with at least one instance with a primal graph of density less than

50%, resulting in 50 benchmarks with 2,622 instances used in our experiments.9 We

use a time limit of 60 minutes per instance and 8GB of memory.

In the tables that summarize our results, we report for each algorithm, where

applicable:

• The number of instances solved in a given benchmark (#solved).

• The number of node visits averaged over the instances completed by all algo-

rithms (avg. NV).

• The sum of the CPU time in seconds of the run time of an algorithm for all

the instances in a benchmark completed by any of the compared algorithms

(∑CPU). When an algorithm does not terminate within the allocated time, we
8www.cril.univ-artois.fr/~lecoutre/benchmarks.html
9Table E.1 in Appendix E list the selected benchmarks.

www.cril.univ-artois.fr/~lecoutre/benchmarks.html

134

add 3,600 seconds to the CPU time and indicate with a ‘>’ sign that the time

reported is a lower bound.

• The average number of calls to HLC over the instances completed by all algo-

rithms (#CallsHLC). GAC does not call a HLC, thus the number of calls to

HLC is reported as ‘-’.

• Finally, we highlight, with a boldface, the best value in a given row.

6.3.2 Comparison of Variations of PPC

We study the cost of enforcing the five variations of PPC introduced in Section 6.1.3.

We compare the performance on dom/deg, shown in Table 6.1, and dom/wdeg, shown

in Table 6.2.

Table 6.1: 4PPC variants as RFL with dom/deg

Algorithm AC 4DPC 4DPPC 4P3C 42DPPC 4PPC
#Solved 1,904 1,785 1,789 1,814 1,777 1,711
#Memout 118 232 232 232 232 232∑
CPU [sec] >649,176.2 >1,724,091.6 >1,727,163.7 >1,576,772.6 >1,835,310.4 >2,111,836.4

Avg. #NV 238,828.6 15,072.8 15,072.8 3,395.6 2,099.9 1,406.8
#Instances 2,622 total, 1,582 by all, 2,015 by at least one

Table 6.2: 4PPC variants as RFL on dom/wdeg

Algorithm AC 4DPC 4DPPC 4P3C 42DPPC 4PPC
#Solved 2,079 1,831 1,794 1,824 1,707 1,774
#Memout 118 232 232 232 232 231∑
CPU [sec] >184,865.7 >1,789,327.5 >1,982,639.4 >1,790,378.9 >2,377,861.5 >2,114,243.0

Avg. #NV 22,296.0 6,660.7 6,660.7 2,653.8 1,152.7 1,780.1
#Instances 2,622 total, 1,686 by all, 2,087 by at least one

For both ordering heuristics, AC performs better than any of the PPC variations.

This result is predictable because PPC is likely to be too strong for most problem

135

instances, which we address in our experiments in Section 6.3.5. The statistical

rankings, according to a paired t-test, of the considered variations are as follows:

dom/deg: 4P3C � 4DPC ∼ 4DPPC � 42DPPC � 4PPC

dom/wdeg: 4P3C ∼ 4DPC � 4DPPC � 42DPPC � 4PPC

where A � B denotes that A is statistically better than B and A ∼ B denotes that

there are not statistically distinguishable. Because 4P3C performs statistically the

best in both ordering heuristics, we evaluate using the4P3C variant in the remainder

of this section.

6.3.3 As Pre-Processing

As a first step towards evaluating4P3C, we evaluate enforcing HLC at pre-processing

while running GAC as RFL. We evaluate 4P3C with of our three strategies for

selecting triangles: Existing, 2n New with all existing triangles (Section 6.2.2), and

using the Decision Tree (Figure 6.2.4). Table 6.3 gives the overall performance on all

the benchmarks evaluated. All 4P3C techniques solves more instances than GAC.

Table 6.3: 4P3C on subsets of triangles at pre-processing followed by GAC as RFL

4P3C
GAC Existing 2n New DT sCDC1

solved 2,081 2,082 2,085 2,089 2,064∑CPU [sec] >282,490.0 >290,102.2 >338,120.1 >264,855.9 >426,359.5
avg. NV 129,357.1 126,535.6 147,326.7 126,711.1 124,306.6

#Instances 2,622 total, 2,031 by all, 2,116 by at least one

However, ‘Existing’ and ‘2n New’ both have a larger CPU time than GAC. This

illustrates that although PPC can be helpful to solve more instances, there is an

overhead associated with it that can be detrimental to CPU time. The decision tree

(DT) helps overcome some of the CPU time overhead. Although the strongest in

136

terms of filtering, sCDC1 solves the fewest number of instances and takes the largest

CPU time.

6.3.4 As Real-Full Lookahead

We now evaluate 4P3C as real-full lookahead, which has never been evaluated before.

Table 6.4 gives the overall performance on all the benchmarks evaluated. When used

Table 6.4: The performance of enforcing consistency as RFL

4P3C
GAC Existing 2n New DT sCDC1

solved 2,081 1,951 1,915 1,988 1,790∑CPU [sec] >250,090.0 >999,926.2 >1,399,620.4 >765,926.3 >1,779,505.9
avg. NV 47,777.2 20,672.2 22,786.8 28,770.9 1,456.6

#Instances 2,622 total, 1,756 by all, 2,107 by at least one

as real-full lookahead, the sCDC1 and the 4P3C techniques solve a fewer number of

instances compared to the running at pre-processing only (Table 6.3 of Section 6.3.3).

Solving fewer instances is not surprising as these algorithms can be expensive to

enforce. This result illustrates the necessity of evaluating with a ‘when’ technique

(e.g., PrePeak), as we evaluate in Section 6.3.5.

sCDC1 has the fewest number of node visits, which is expected as it enforces a

stronger consistency than the 4P3C techniques. Among the 4P3C techniques, the

decision tree solves the most number of instances, showing it makes a good compro-

mise between existing triangles and new triangles.

In Table 6.5 we highlight the good performance of enforcing 4P3C as RFL on

certain benchmarks. These benchmarks show the promise of enforcing 4P3C during

search. For the mug benchmark, selecting 2n triangles allows 4P3C to solve the

instance backtrack-tree. For the jobShop (e0ddr1 and enddr1) and super-os-taillard-

4 benchmarks, the decision tree was able to capture the correct set of triangles to use,

137

Table 6.5: The good performance of 4P3C as RFL on select benchmarks

4P3C
GAC Existing 2n New DT sCDC1

mug #Instances 8 total, 4 by all, 8 by at least one
solved 4 5 8 8 8∑CPU >14,400.1 >11,549.1 100.3 100.3 160.8

jobShop-e0ddr1 #Instances 10 total, 4 by all, 7 by at least one
solved 5 4 7 7 4∑CPU >7,563.3 >11,248.3 1,266.0 1,210.4 >16,763.0
jobShop-enddr1 #Instances 10 total, 5 by all, 10 by at least one

solved 9 9 9 10 6∑CPU >3,750.4 >5,958.8 >5,397.5 1,860.3 >25,122.7
super-os-taillard-4 #Instances 30 total, 20 by all, 30 by at least one
solved 28 30 30 30 20∑CPU >9,151.1 7,959.4 14,167.1 7,956.4 >46,437.9

QWH-20 #Instances 10 total, 9 by all, 10 by at least one
solved 9 10 10 10 9∑CPU >4,892.5 2,838.3 3,388.3 2,879.4 >5,603.9

solving more instances than GAC and sCDC1. For the QWH-20 benchmark, all the

4P3C techniques solved 30 instances. The decision tree correctly selects the existing

triangles.

Because the decision tree performs the best, we evaluate using the decision tree

in the remainder of this section, which we denote as 4P3C+.

6.3.5 Triggering PPC

As seen in the previous section, 4P3C+ is too costly to run as RFL in general. We

combine4P3C+ with the three strategies of Chapter 4, BTWatch, PP-BTWatch,

and PrePeak, to enforce these 4P3C+ selectively (i.e., when).

Table 6.6 gives the overall performance on all the benchmarks evaluated. All three

triggering strategies solve more instances than GAC in smaller CPU time. BTWatch

performs the best, solving the most number of instances in the smallest CPU time.

138

Table 6.6: The performance of triggering 4P3C+

Algorithm GAC BTWatch PP-BTWatch PrePeak
solved 2,081 2,091 2,088 2,089∑CPU [sec] >214,090.0 >192,656.5 >195,373.9 >197,682.7
avg. NV 137,128.4 132,142.1 132,111.2 132,105.1
#CallsHLC - 7.6 6.2 10.9

#Instances 2,622 total, 2,073 by all, 2,097 by at least one

Figure 6.8 shows the cumulative number of instances completed by GAC, and

using BTWatch, PP-BTWatch, and PrePeak with PPC as time increases. From

2,000

2,010

2,020

2,030

2,040

2,050

2,060

2,070

2,080

2,090

2,100

0 300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3,600

C

om
pl

et
ed

 In
st

an
ce

s

CPU Time [sec]

GAC
BTWatch
PPBTWatch
PrePeak

Figure 6.8: Cumulative instances completed by CPU time for triggering 4P3C+

the graph, the three triggering techniques dominate GAC. The triggering techniques

are equivalent.

139

6.4 Hyper-3 Consistency

We extend the existing algorithms for CPC and PPC to Conservative and Partial

Hyper-3 Consistency.

Path consistency (also known as 3-consistency) ensures that every two variables

can be consistently extended to a third. Hyper-3 Consistency ensures that every two

relations can be consistently extended to a third.

Definition 20 Hyper-3 consistent [Jégou, 1993]: Let π and ./ be a relation projection

and join, respectively. A CSP P = (X ,D, C) is hyper-3 consistent iff ∀ci, rel(ci) 6= ∅,

∀cj, ck ∈ C, πI(rel(cj) ./ rel(ck)) ⊆ πIrel(ci), where I = (scp(cj) ∪ scp(ck)) ∩ scp(ci).

No algorithm exists for enforcing hyper-3 consistency. In this section, we extend the

definition of hyper-3 consistency to partial hyper-3 consistency (PH3C) and give an

algorithm for enforcing it.

6.4.1 Extending Hyper-3 Consistency

Conservative Path Consistency (CPC) [Debruyne, 1999] and Partial Path Consis-

tency (PPC) [Bliek and Sam-Haroud, 1999] can easily be extended to Conservative

Hyper-3 Consistency (CH3C) and Partial Hyper-3 Consistency (PH3C), respectively

by looking at the dual graph of the CSP. CH3C operates on the dual graph of the

problem and PH3C operates on the triangulated dual graph of the problem. Like

CPC and PPC, CH3C and PH3C are equivalent when the dual graph is triangulated.

We theoretically compare H3C and its variants to that of Path Consistency (PC)

on binary CSPs.

Theorem 14 On binary CSPs, Hyper-3 Consistency (H3C) is strictly stronger than

Path Consistency (PC).

140

Proof: PC extends every two variables to a third. H3C extends every two tuples

τi ∈ ci and τj ∈ cj to a third tuple τk ∈ ck. On binary CSPs |scp(ci)∩scp(cj)| ≤ 1 and

τi and τj involve either three or four variables. Thus, on binary CSPs H3C extends

every three (and four) variables to τk, which is clearly stronger than PC. �

Further, the conservative version of H3C and PC (i.e., enforce on existing triangles)

Conservative Hyper-3 Consistency (CH3C) is strictly stronger than Conservative Path

Consistency (CPC). This follows from Theorem 14.

On binary CSPs, PH3C and PPC are incomparable because of the possible differ-

ences possible triangulations on the dual and primal graph. Notice, that the trian-

gulations of the dual and primal graph will rarely result in the same set of triangles

because of the differences in the structures of the graphs. However, assuming the

same triangles are generated for PH3C and PPC (i.e., triangulating both graphs will

result in the same set of triangles), PH3C is strictly stronger than PPC, which follows

from how CH3C is strictly stronger than CPC.

The tree width of a tree decomposition can be used to characterize the complexity

of the CSP [Freuder, 1982].

Theorem 15 If the primal graph of a binary CSP P has a tree decomposition where

every cluster is a clique of size at most three (i.e., a triangle) and P is Strong Partial-

Path Consistency (sPPC), then the domains of P are minimal.

Proof: Re-phrasing of Theorem 4.5 of [Dechter, 2003a]10 to fit this framework. �

Theorem 16 If the dual graph of a CSP P has a tree decomposition where every clus-

ter is a clique of size at most three (i.e., a triangle) and is Partial Hyper-3 Consistent

then the relations of P are minimal.
10Also a re-phrasing of Theorem 2.4 of [Dechter and Pearl, 1988] and Theorem 1 of [Freuder,

1982].

141

Proof: Follows from Theorem 15. �

In the experiments section, we exploit Theorem 16 to illustrate the theoretical

rational why the ‘dubois’ benchmark is tractable.

6.4.2 Extending 4PPC to 4PH3C

Given how similar the properties of CPC and PPC are to CH3P and PH3P, we can

use the same 4PPC algorithm to enforce CH3P and PH3P. The only difference is

the input triangles, which are generated from the dual graph rather than the primal

graph. Recall that in the dual graph constraints are equality constraints. To en-

force CH3P/PH3P on the problem, we have to enumerate the equality constraints to

disallow combinations of two tuples.

Similar to the variations in the strengths of PPC in Section 6.1.3, we can apply

the same restrictions of the propagation queue to obtain different strengths of PH3C:

• Directional Hyper-3 Consistency (DH3C), iterating through the triangles in the

same fashion as DPC.

• Directional Partial Hyper-3 Consistency (DPH3C) iterates in the same fashion

as DPPC.

• P3H3C iterates through the triangles in the same fashion as P3C.

• Two-swipes Directional Partial Hyper-3 Consistency (2DH3CC) iterates through

the triangles in the same fashion as 2DPPC.

• PH3C iterates through all the triangles until reaching a fixpoint.

142

6.4.3 Bit Implementation for 4PH3C

Empirical evaluations of 4PH3C shows that enumerating the equality constraints

requires too much memory to store and too much time to be useful in practice.

However, choosing a different representation of the constraints allows us to solve the

problem.

4PH3C has a problem of using too much memory when enumerating the equality

constraints. We ran 1,135 benchmark instances with 8GB of memory, and found that

473 instances ran out of memory to run only pre-processing on the CSP. We propose

to change the representation of these generated equality constraints from a list of

tuples to a bit matrix reduces the number of instances that ran out of memory to

387. We do so by following the same technique of extending 4PPCbit to 4PH3Cbit,

by changing the representation of the equality constraints.

6.4.4 Decision Tree for Selecting Triangles for H3C

In Section 6.2.4 introduces a policy for choosing the triangles PPC should consider

using the density of a primal graph. H3C operates on the dual graph, and such a

policy ignores the differences between the two graphs. Figure 6.9 shows the decision

tree we use for selecting triangles for H3C. Paraphrasing the content of Figure 6.9:

• We consider that, at a density of the primal graph of 50% or more (i.e., dp ≥

50%), AC fully propagates the impact of a variable instantiation. HLC typically

yields only overhead but no further filtering. For this reason, we choose to

simply enforce AC (see leaf 1 in Figure 6.9).

• In the remaining cases we choose to always exploit:

143

No

No

Yes

Yes

≥ 50%

≤ 2

GAC

Triangles of
+ 2n triangles from

Gd

Start

> 15%

No

Triangles of
+ 2n triangles from

cycles of

Yes

Triangles of
+ 2n triangles from

Gtri
mind

Gmind

Gmind
dminddtri

mind

dd

dp

Gmind

1

2

3 4

Gmind

Figure 6.9: Selecting the triangles for PH3C

1. the existing triangles from a minimum dual graph Gmind. The triangles

that appear inGmind are analogous to the existing triangles for PPC as they

are somewhat ‘core’ to the problem as redundant edges cannot transmit

information.

2. 2n promising triangles that appear in the largest number of clusters in the

tree decomposition (Section 6.2.2), generating the triangles on some version

of the graph. For PH3C, the triangles are a combination of three relations,

generated by triangulating the dual CSP. However, the tree decomposition

is generated from the primal graph. To count the number of clusters

a triangle appears in, we utilize each cluster not only contains a set of

variables, but a set of relations.

• If the density of the dual graph is greater than 15% (i.e., dd ≥ 15%), there is

enough communication in the dual graph, and we choose to exploit 2n promising

triangles from the dual graph (i.e., Triangles of Gd in leaf 2 in Figure 6.9).

144

• Otherwise we examine the triangulated minimal dual graph Gtri
mind.

• When Gtri
mind does not prohibitively add to the density of the minimal dual

graph (i.e., dtrimind ≤ 2dmind), then we estimate that the triangulated minimal

dual graph is not too dense and that the advantage of boosting propagation

outweighs the overhead of increasing the number of triangles to process (i.e.,

Triangles of Gtri
mind in Figure 6.9)

• If Gtri
mind more than doubles the number of edges (i.e., dtrimind > 2dmind), then the

number of additional triangles resulting from triangulation can be overwhelm-

ing and may cause a serious overhead. We instead attempt to triangulate a

minimal dual graph locally by first computing the minimum cycle basis, using

our BFSC technique for finding approximation the union of cycles a graph node

appears in (Section 5.3), and ‘locally’ triangulate the graph by triangulating the

subproblem induced by the graph node and the returned cycles from BFSC. We

select the subproblems from largest to smallest induced density. These triangles

are called the triangles from the cycles of Gmind (i.e., Triangles from cycles of

Gmind in Figure 6.9).

6.5 Empirical Evaluation of 4PH3Cbit

In this section, we evaluate the effectiveness of4PH3Cbit. To this end, we consider the

problem of finding a single solution to a CSP using backtrack search, the dom/wdeg

variable ordering heuristic [Boussemart et al., 2004], and real-full lookahead [Haralick

and Elliott, 1980].

We first discuss our experimental setup. We then empirically study PH3C in three

directions:

145

1. We compare the filtering strength of PH3C and PPC on binary CSPs.

2. We show the usefulness of the decision tree for selecting the triangles to use.

3. We compare the filtering strengths of PH3C.

Finally, we evaluate triggering 4PH3C using the when strategies PrePeak, BT-

Watch, and PP-BTWatch of Chapter 4. Importantly, we show the usefulness of

enforcing 4PH3C during search.

6.5.1 Experimental Setup

We set up our experiments as follows. We use STR2+ [Lecoutre, 2011] as the GAC

algorithm, which is always maintained during search. We use the4PH3Cbit algorithm

for enforcing PH3C, which we denote as 4PH3Cbit for simplicity.

We use the benchmark problems available from Lecoutre’s website,11 including all

benchmarks with at least one instance with a primal graph of density less than 50%.12

Indeed, on high density networks, the impact of an instantiation on a future variable

is immediately propagated by GAC while HLC typically yields no further filtering

but costs predictable data-setup overhead. This selection results in 137 benchmarks

with 3,525 instances used in our experiments. The selected 137 benchmarks have a

mixture of instances with densities ≥ 50% and < 50%, however, only 139 instances

of the 3,525 instances included have densities ≥ 50%. We setup our decision tree

(Section 6.2.4) to first compute the density of an instance. If the density is ≥ 50%,

we enforce GAC. Otherwise, we execute the PH3C algorithm on the selected triangles.

Our results include this computation time. We use a time limit of 60 minutes per

instance and 8GB of memory.
11www.cril.univ-artois.fr/~lecoutre/benchmarks.html
12Table E.1 in Appendix E list the selected benchmarks.

www.cril.univ-artois.fr/~lecoutre/benchmarks.html

146

In the tables that summarize our results, we report for each algorithm, where

applicable:

• The number of instances solved in a given benchmark (#solved).

• The number of node visits averaged over the instances completed by all algo-

rithms (avg. NV).

• The sum of the CPU time in seconds of the run time of an algorithm for all

the instances in a benchmark completed by any of the compared algorithms

(∑CPU). When an algorithm does not terminate within the allocated time, we

add 3,600 seconds to the CPU time and indicate with a ‘>’ sign that the time

reported is a lower bound.

• Finally, we highlight, with a boldface, the best value in a given row.

6.5.2 PH3C versus PPC on Binary CSPs

In Section 6.4.1, the definition of Hyper-3 Consistency (H3C) was extended to Con-

servative Hyper-3 Consistency (CH3C) and Partial Hyper-3 Consistency (PH3C) and

were shown to be incomparable. We attempt to empirically quantify the strengths of

PH3C and CH3C to PPC and CPC on binary CSPs by investigating the amount of

tuples and values filtered at pre-processing. We report the number of instances that

were found inconsistent at pre-processing (#Inconsistent). We report the difference

in the filtering for each algorithm from the filtering of STR2+ (Tuples Rem. and

Values Rem., respectively).

Table 6.7 compares the filtering of CH3C and PH3C on the dual graph, to that of

CH3C and PH3C on a minimal dual graph, and to that of CPC and PPC. Although

PH3C on the dual graph is the strongest, and thus filters the largest number of tuples

147

Table 6.7: Comparing the filtering obtained from PPC and PH3C

Dual Graph Minimal Dual Graph Primal Graph
CH3C PH3C CH3C PH3C CPC PPC

#Solved 1,995 525 2,445 1,305 2,487 2,388∑CPU >1,897,317.2 >7,475,744.5 >226,548.9 >5,524,262.8 >120,314.2 >564,148.1
#Inconsistent 330 150 28 212 345 359
Avg. Tuples 2,579.0 10,336.2 2.0 8,127.6 1,065.8 14,236.1
Avg. Values 55.9 172.3 0.0 147.3 22.1 30.0

#Instances 2,776 total, 518 by all, 2,503 by at least one

and values, it is able to complete the least number of instances (525). It is too

powerful to be used in its full strength. On the other hand, reducing the property to

filter on existing triangles of a minimum dual graph reduces the strength too much,

filtering a surprisingly few number of tuples (2.0) and values (0.0).

Both PPC and CPC find more inconsistent instances than the H3C-type consis-

tencies. This can partially be explained by the larger number of instances solved

by CPC and PPC. Looking at the average number of values filtered, the dual-graph

H3C techniques and PH3C on a minimal dual graph filter more values than PPC.

However, PPC filters more tuples than these H3C techniques. Thus, the incompati-

bility between the techniques is prevalent and no one technique can be ruled better,

in terms of strength.

6.5.3 Decision Tree for Selecting Triangles for PH3C

As shown in the previous section, there is a trade off between the CPU time and

filtering power of PH3C and CH3C on the dual graph, as well as PH3C on a minimal

dual graph. Thus, in this section, we evaluate the decision tree of Section 6.4.4.

To that end, we enforce the resulting algorithm from each part of the decision tree

at pre-processing, followed by search using GAC as RFL and the dom/deg ordering

heuristic. We record the filtering on the search space by the reduction in the number

148

of node visits. That is, we evaluate selecting 2n of the triangles from: the dual graph

(2n Gd), a triangulated minimal dual graph (2n Gtri
mind), and the cycles of a minimal

dual graph (2n Gcycle
mind), and compare it against GAC and using the decision tree (DT).

PH3C is enforced in all cases using the directional variant of PH3C (i.e., DPH3C).

The choice of this variant is kept constant as a control, as the goal of this experiment

is to assess the usefulness of the decision tree, not the various strengths.

Table 6.8 gives the overall performance on all the benchmarks evaluated. DPH3C

Table 6.8: Enforcing the decision tree selections of PH3C at pre-processing followed by
GAC as RFL

DPH3C
GAC DT 2n Gcycle

mind 2n Gd 2n Gtri
mind

#Solved 2,026 1,946 1,917 2,052 1,665∑CPU [sec] >658,795.3 >1,078,761.1 >1,227,892.8 >569,544.0 >2,231,068.9
Avg. #NV 1,312,010.0 317,650.0 317,983.8 1,023,497.4 283,113.7

#Instances 3,241 total, 1,595 by all, 2,088 by at least one

using 2n Gd solved the largest number of instances (2,052), which is the only DPH3C

technique to solve more than GAC (2,026). However, it is the DPH3C technique

with the smallest reduction in node visits from GAC. DPH3C using 2n Gtri
mind had

the largest reduction in node visits from GAC, but at the cost of the fewest number

of instances solved.

Of the instances that the decision tree solved (1,946), 64 were found inconsistent

by GAC at pre-processing, thus, the decision tree did not make a decision. On the

remaining instances, the decision tree selected 2n Gcycle
mind 1,573 times (83.6% of the

time) 2n Gd 256 times (13.6%), and 2n Gtri
mind 53 times (2.8%). Thus, the decision tree

emphasizes selecting the ‘middle’ strength (i.e., 2n Gcycle
mind), but occasionally selects

the stronger (i.e., 2n Gtri
mind) or weaker (i.e., 2n Gd) strength. We evaluate using the

decision tree in the remainder of this section, which we denote as 4PH3C+.

149

6.5.4 Selecting PH3C Strength

We compare the various strengths of 4PH3C+ (Section 6.4.2 by limiting the propa-

gation queue and using the decision tree.

Table 6.9 shows the performance of running the4PH3C+ variants at pre-processing,

while Table 6.10 shows the performance of running the 4PH3C+ variants as RFL.

Table 6.9: 4PH3C+ variants as pre-processing with dom/deg

Algorithm GAC 4DH3C+ 4DPH3C+ 4P3H3C+ 42DPH3C+ 4PH3C+

#Solved 2,026 1,942 1,946 1,945 1,954 1,947
#Memout 734 756 756 756 756 756∑CPU [sec] >633,595.3 >1,070,904.7 >1,053,561.1 >1,055,859.6 >1,032,102.7 >1,039,284.2
Avg. #NV 1,193,844.1 363,057.2 355,957.0 357,255.8 355,931.5 355,793.4

#Instances 3,780 total, 1,895 by all, 2,081 by at least one

Table 6.10: 4PH3C+ variants as RFL with dom/deg

Algorithm GAC 4DH3C+ 4DPH3C+ 4P3H3C+ 42DPH3C+ 4PH3C+

#Solved 2,026 1,758 1,773 1,769 1,760 1,769
#Memout 734 756 756 757 758 756∑CPU [sec] >608,395.3 >1,905,784.7 >1,887,383.1 >1,877,515.6 >1,898,658.9 >1,892,971.1
Avg. #NV 1,184,435.0 147,688.6 142,873.1 145,231.5 148,256.6 142,751.5

#Instances 3,780 total, 1,673 by all, 2,074 by at least one

For both pre-processing and RFL, GAC performs better than any of the PH3C

variations. This result is predictable given that PH3C is likely too strong for most

problems, which we address in our triggering experiments in Section 6.5.5. The

statistical rankings, according to a paired t-test, of the considered variations are as

follows:

pre-processing: 42DPH3C+ � 4PH3C+ ∼ 4DPH3C+ � 4P3H3C+ ∼ 4DH3C+

RFL: 4P3H3C+ ∼ 4DPH3C+ ∼ 42DPH3C+ ∼ 4PH3C+ � 4DH3C+

where A � B denotes that A is statistically better than B and A ∼ B denotes that

there are not statistically distinguishable.

150

6.5.5 4PH3C+ with PrePeak

We evaluate the use of PrePeak to trigger 4DH3C+ using the decision tree (Sec-

tion 6.4.4), and using the variation of DPH3C to iterate through the triangles only

once (i.e., as a how much strategy). Table 6.11 compares the performance of DPH3C

with GAC. 4DPH3C solves more instances than GAC in faster CPU time. Although

Table 6.11: Comparing GAC and PrePeak with 4DPH3C+

GAC 4DPH3C+

#Solved 1,254 1,252
#MemOut 58 85∑CPU [sec] >215,914.2 >213,326.7
Avg. #NV 823,350.7 225,780.4
#Instances 2,126 total, 1,241 by all, 1,265 by at least one

it does have a few more memouts, the approach of using the decision tree and watching

for memouts helps avoid them.

Table 6.12 highlights two exemplary benchmark for 4DPH3C: dubois and mug.

The dual graph of the dubois benchmark is a ladder graph, thus by Theorem 16 it can

Table 6.12: Benchmarks where PrePeak with 4DPH3C+ performs well

GAC 4DPH3C+

dubois #Instances 13 total, 6 by all, 13 by at least one
#Solved 6 13
#MemOut 0 0∑CPU [sec] >29,484.0 0.5
Avg. #NV 123,405,942.7 0

mug #Instances 8 total, 4 by all, 8 by at least one
#Solved 6 13
#MemOut 0 0∑CPU [sec] >14,400.1 721.3
Avg. #NV 94.0 94.0

be solved backtrack free if partial hyper-3 consistency is enforced. This observation

provides a graphical justification for why the benchmark is tractable. Dubois is already

151

known to be a tractable benchmark by looking at its constraint semantics, meaning

the definition of the constraint, as because all of the constraints can be re-written as

implication constraints (i.e., ⇔) [Ostrowski et al., 2002]. As for the mug benchmark,

DPH3C is not able to solve the instance backtrack free, but it must search. However,

the high strength of 4DPH3C was able to shrink the search space to allow all of the

instances of mug to be solved.

As for the other benchmarks, 4DPH3C performs similarly to GAC, provided

it does not memout. Indeed, PrePeak triggers 4DPH3C few times as it filters

relatively few domain-values given the amount of effort it takes to enforce it. This

result can be explained by that 4DPH3C not only needs to filter both the equality

constraints, and the CSP constraints, before it is able to filter any domain values.

The amount of ‘indirection’ between the equality constraints and the CSP variables

hinders its ability to filter many values.

Summary

In this chapter we studied a special form of cycles: triangles. Partial Path Consis-

tency (PPC) takes advantage of triangles, especially the 4PPC algorithm, thus we

empirically evaluate 4PPC as lookahead, which has never been studied. Further, we

presented the first algorithm for enforcing Partial Hyper-3 Consistency (PH3P) by

adapting 4PPC to 4PH3P and empirically evaluate it as lookahead. We notice that

the dubois benchmark can be determined inconsistent at pre-processing by PH3P, and

identify the structural property (Theorem 16 of Chapter 5) to explain its tractability.

152

Chapter 7

Conclusions and Future Work

This chapter concludes the dissertation by summarizing our contributions and giving

directions for future research.

7.1 Summary of Contributions

Constraint Satisfaction Problems (CSPs) are usually solved with search. To reduce

the size of the search space, backtrack search is typically interleaved with constraint

propagation. Stronger consistency algorithms can filter larger portions of the search

space at the cost of an increased CPU time.

The research presented in this dissertation addresses the question of enforcing

high-level consistency during search. We offer a new perspective that characterizes

the various possible approaches in term of when, where, and how much of a higher-

level consistency to enforce during search.

Figure 7.1 gives an overview of the different when, where, and how much strategies

advocated for in this thesis. In particular, Chapter 4 introduces PrePeak as a

strategy for determining where to enforce higher-level consistency (HLC) depending

153

When?

Where?

How much?

HLC PREPEAK

PREPEAK+

PREPEAK
Cycles or

Triangles

PREPEAK+
Cycles or

Triangles

Cycles or
Triangles

Figure 7.1: The dimensions of enforcing consistency investigated in this dissertation

on the number of backtracks. PrePeak+ combines this ‘where strategy’ with a how

much strategy to interrupt the consistency algorithm after processing a given number

of elements in the algorithm’s propagation queue or after a given CPU time has passed.

Chapter 5 and Chapter 6 localize the operations of the consistency algorithms to cycle

structures of the CSP and to triangles, respectively. They also combine the resulting

new consistencies with PrePeak and PrePeak+.

In summary, this dissertation introduces a framework for enforcing higher-level

consistency on a CSP that adapts its filtering to the problem at hand.

7.2 Directions for Future Research

Below we identify directions for further research, which are beyond the scope of this

dissertation:

1. Adjusting triangles using the clusters of a tree decomposition to include all vari-

ables: The strategy for selecting triangles depending on the number of clusters

of a tree decomposition they appear in (Section 6.2.2) may allow for a variable

154

to not participate in any selected triangles. We propose to add an additional

step after selecting the triangles to check whether or not a variable appears

in at least one selected triangle. If it does not, but the variable appears in

some non-generated triangle, we will accept that triangle too. This process will

ensure that every variable appears in some selected triangle.

2. Dynamically adjusting powers of r in PrePeak: In Section 4.1.2 we advocate

for using (rw, rf , rn) = (r−1, r2, r3). However, we may want to adjust the values

of these powers depending on the progress of search. For example, we may have

the following ‘policies:’

• A = (1/r, 1, r),

• B = (1/r, r, r2),

• C = (1/r, r2, r3)

We start search using policy A, which is the most aggressive and will apply

HLC a lot. We can detect the deepest depth that search reaches, and change to

policy B at some point, possibly looking at the total cumulative time of HLC

and HLC switching once HLC takes more time than GAC. Repeat running with

policy B, comparing the maximum depth reached in this policy to determine

if we should return to policy A, or go down to policy C, which is the more

conservative.

3. Applying trigger for other consistencies: We have validated the trigger strategy

in the context of GAC versus POAC (which is a variable-based consistency), and

GAC versus PPC and GAC versus PH3C (which are relational consistencies).

We can extend our approach to other high-level consistencies, in particular,

RNIC [Woodward et al., 2011b].

155

4. Extending cycles to (Relational) Neighborhood Inverse Consistency: Woodward

et al. [2011b] proposed four strengths of Relational Neighborhood Inverse Con-

sistency (RNIC), where the neighborhood of a variable is adjusted depending on

the dual graph used (i.e., the dual graph, a minimal dual graph, the triangulated

dual graph, or a triangulated minimal dual graph). The neighborhood could

be determined by using a minimal cycle basis. Such a selection of the neigh-

borhood may also be useful for Neighborhood Inverse Consistency [Freuder and

Elfe, 1996].

5. Applications of counting backtracks: Epstein et al. [2002] studied the use of dif-

ferent variable and value-ordering heuristics at different depths of the search

tree. They identify three static categorizations of the location of search, de-

pending on the amount of variables assigned:

a) early in search tree, fewer than 20% of the variables assigned,

b) middle of the search tree, at least 20% but no more than 80% of the

variables assigned, and

c) late in the search tree, more than 80% of the variables assigned.

Instead of relying of static percentages to determine the levels for switching

heuristics, we propose to use the count the number of backtracks per depth

(BpD).

6. Improving variable ordering using ghost constraints: In the experimental anal-

ysis of PPC (Section 6.3), we do not allow the added constraints to adjust the

degree of a variable in dom/(w)deg. We propose to study using the added con-

straints by MinFill, which we call adding ‘ghost’ constraints, in a new degree-

based ordering heuristic. Indeed, we found out that, for some benchmarks,

156

ghost constraints are extremely useful for improving the ordering heuristic. For

example, jobShop is one particular benchmark where ghost constraints are ef-

fective. Allowing AC to operate on the added constraints, filtered by PPC, has

benefits, but not as dramatic as when used with the ordering heuristic.

Another way of looking at ghost constraints in the context of dom/wdeg is that

the ghost constraints provide a sort of initialization of the ‘wdeg.’ Because the

ghost constraints are not apart of the problem, they cannot cause a wipeout,

and thus, cannot have their ‘ghost’ weight updated.

7. Combining hyper-3 consistency with pair-wise consistency: Hyper-3 Consistency

(H3C) modifies the dual constraints in the dual CSP. Pair-wise consistency

(PWC) exploits the dual constraints in filtering the constraints of the CSP.

Because PWC is cheaper to enforce than H3C, it may be advantageous to exploit

running PWC prior to enforcing H3C. However, current PWC algorithms exploit

the equality property of the dual constraints and H3C algorithms ‘break’ this

equality. Either a new PWC algorithm should be created to exploit the filtering

of H3C, or the PWC would run ignoring the filtering of H3C, possibly reducing

the effectiveness of the PWC algorithm.

8. Conservative dual consistency-like algorithm for hyper-3 consistency: Develop

a Conservative Dual Consistency (CDC)-like property and algorithm for enforc-

ing a Hyper-3 Consistency (H3C)-like consistency on a CSP (i.e., run a CDC

algorithm on the dual CSP). On a binary CSP, CDC looks at the two vvp’s

(Vi, a), (Vj, b) and requires

(Ci,j /∈ C) ∨ ((Vj, b) ∈ AC(P |Vi = a) ∧ (Vi, a) ∈ AC(P |Vj = b))

157

AC() would mean PWC() for the dual CSP. But, then we need a way to

enforce PWC using the ‘filtered’ equality constraints, because it operates only by

enforcing PWC (otherwise the filtered constraints are never used for anything).

Note that such an algorithm cannot use a PWC algorithm that exploits the

piecewise functionality of the equality constraints of the dual CSP. Maybe one

could use the CT GAC-algorithm [Demeulenaere et al., 2016] on the dual graph

to that end.

9. New heuristics for prioritizing singleton tests: Adaptive POAC is a strategy for

early termination of the POAC-1 algorithm depending on the effectiveness of

the singleton tests [Balafrej et al., 2014]. The variables to singleton test are

prioritize using the variable ordering heuristic dom/wdeg. The heuristics of

Stergiou [2008] for switching between GAC and maxRPC for binary CSPs and

Paparrizou and Stergiou [2012] between GAC and maxRPWC for nonbinary

CSPs could be used for prioritizing variables. In particular, the variables on

which they enforce maxRPC/maxRPWC could be the variables used for doing

the singleton test. The use of different heuristics for ordering the singleton tests

for POAC also impacts the use of PrePeak+ with POAC, as it only visits part

of the propagation queue.

In conclusion, this dissertation has positively answered our original question to

provide a strategy to determine where, when, and how much of a higher-level consis-

tency to enforce during search. Further, it has opened up new directions for further

research.

158

Appendix A

Weight-Based Variable Ordering in

the Context of High-Level

Consistency

Dom/wdeg is one of the most effective heuristics for dynamic variable ordering in

backtrack search [Boussemart et al., 2004]. As originally defined, this heuristic incre-

ments the weight of the constraint that causes a domain wipeout (i.e., a dead-end)

when enforcing arc consistency during search. “The process of weighting constraints

with dom/wdeg is not defined when more than one constraint lead to a domain

wipeout [Vion et al., 2011].” In this chapter, we investigate how weights should be

updated in the context of two high-level consistencies, namely, singleton (POAC)

and relational consistencies (RNIC). We propose, analyze, and empirically evaluate

several strategies for updating the weights. We statistically compare the proposed

strategies and conclude with our recommendations.

159

A.1 Motivation

Variable-ordering heuristics are critical for the effectiveness of backtrack search to

solve Constraint Satisfaction Problems (CSPs). Common heuristics implement the

fail-first principal, choosing the most constrained variable as the next variable to

assign. One such heuristic is dom/ddeg, which selects the variable with the smallest

ratio of its current domain to its future degree. A more recent heuristic, dom/wdeg,

uses the weighted degree of a variable by assigning a weight, initially set to one, to each

constraint, and incrementing this weight whenever the constraint causes a domain

wipeout [Boussemart et al., 2004]. Recently, higher-level consistencies (HLC) have

shown promise as lookahead for solving difficult CSPs [Bennaceur and Affane, 2001;

Woodward et al., 2011b; Woodward et al., 2012; Balafrej et al., 2014].

Because HLC algorithms typically consider more than one constraint at the same

time, updating the weights of the constraints in dom/wdeg is currently an open ques-

tion [Vion et al., 2011]. This chapter focuses on answering this question in the context

of two high-level consistencies, namely, Partition-One Arc-Consistency (POAC) [Ben-

naceur and Affane, 2001] and Relational Neighborhood Inverse Consistency (RNIC)

[Woodward et al., 2011b]. Our study focuses on these two consistencies because they

have both been shown to be beneficial when used for lookahead during search.

For POAC and RNIC we introduce four and three strategies, respectively, to

increment the weights of the constraints. For both consistencies we find that a baseline

strategy corresponding to the original dom/wdeg proposal is statistically the worst

of the proposed strategies. We conclude the high-level consistency should influence

the weights. For POAC we find that the proposed strategy AllS is statistically the

best. For RNIC the two non-baseline strategies are statistically equivalent.

Other popular variable-ordering heuristics include Impact-Based Search [Refalo,

160

2004] and Activity-Based Search [Michel and Van Hentenryck, 2012]. These heuris-

tics rely on information about the domain filtering resulting from enforcing a given

consistency. Because they ignore the operations of the consistency algorithm, it is

not clear how these heuristics could be used to order the propagation queue of the

consistency algorithm [Wallace and Freuder, 1992; Balafrej et al., 2014]. Further, it is

also not clear how to apply them in the context of consistency algorithms that filter

the relations [Woodward et al., 2011b; Woodward et al., 2012].

In this chapter, we introduce our weighting schemes for POAC and RNIC and

then empirically evaluate them.

A.2 Weighting Schemes

We introduce weighting schemes first in the context of singleton consistencies, namely

Partition-One Arc-Consistency (POAC), and then in that of relational consistencies,

namely Relational Neighborhood Inverse Consistency (RNIC).

Enforcing a high-level consistency (HLC) property is typically costlier than en-

forcing GAC, but typically yields more powerful pruning. Further, it is often more

effective, in terms of CPU time, to run a GAC before an HLC algorithm [Debruyne

and Bessière, 1997b], as we choose to do in this chapter.

A.2.1 Partition-One Arc-Consistency (POAC)

We first investigate the case of POAC, which operates by initially running a GAC

algorithm then applying the following operation to each variable until no change

occurs. For a given variable, it applies a singleton test to each value in the domain

of the variable. A singleton test assigns the value to the variable and enforces GAC

on the problem. We propose four strategies to increment weights during POAC:

161

Old: We allow only the GAC call before POAC to increment the weight of the

constraint that causes a domain wipeout. That is, POAC is not allowed to

alter the weights. This strategy is the simplest and it is a direct application of

the original proposal [Boussemart et al., 2004]. In our experiments we use this

strategy as a baseline and show it does not perform well in practice.

AllS: In addition to incrementing the weights according the above strategy (i.e.,

Old), we allow every singleton test to increment the weight of a constraint

whenever enforcing GAC on this constraint during the singleton test directly

wipes out the domain of a variable. This update is made at most once for each

singleton test. Under this strategy, all constraints that caused domain wipeouts

are affected, thus, we call it AllS. Notice that the weight of more than one

constraint may be updated even though search does not have to backtrack. This

behavior differs from the original proposal [Boussemart et al., 2004].

LastS: In addition to incrementing the weights according to Old, we increment the

weight of the constraint causing a domain wipeout at the last singleton test on

a given variable if and only if all previous singleton tests on the values of this

variable have failed. Thus, we only increment the weight of a single constraint

and do so only when search has to backtrack, which conforms to the spirit of

the original heuristic. Notice, the order of values singleton tested affects this

strategy.

Var: This strategy encapsulates Old as a first step and increments the weight of

the variable on which all singleton tests have failed (thus forcing search to

backtrack). In order to implement this strategy we add a counter for the weight

of each variable wv, initially zero. When a variable fails all of its singleton

tests during propagation the counter wv for that variable is incremented by one.

162

We propose to integrate wv with the weighted degree function of dom/wdeg as

follows:

αVar
wdeg(xi) = wv(xi) +

∑
(c∈Cf)∧(xi∈scp(c))

wc(c) (A.1)

where Cf ⊆ C is the set of constraints with at least two future variables. The ra-

tionale behind this strategy is the following. The goal of the heuristic dom/wdeg

is to identify the conflicts in the problem and address them earlier, rather than

later, in the search. Var puts the blame on the variable that first caused the

failure of POAC.

A.2.2 Relational Neighborhood Inverse Consistency

(RNIC)

The relational consistency property RNIC is equivalent to enforcing Neighborhood

Inverse Consistency (NIC) on the dual graph of the CSP [Freuder and Elfe, 1996;

Woodward et al., 2011b]. The RNIC property ensures that every tuple in every

relation can be extended to a solution in the subproblem induced on the dual graph of

the CSP by the relation and its neighboring relations. The RNIC algorithm operates

on table constraints and removes, from a given relation, all the tuples that do not

appear in a solution in the induced (dual) CSP of its neighborhood [Woodward et

al., 2011b]. We propose three strategies to increment weights when RNIC is used for

lookahead during search:

Old: As in POAC in Section A.2.1, we allow only the GAC call (preceding the call to

RNIC) to increment the weight of the constraint that causes domain wipeout.

AllC: This strategy encapsulates Old as a first step. During lookahead, RNIC is

called on each constraint with two or more future variables. When the RNIC al-

163

gorithm removes all the tuples of a given relation, AllC increments the weights

of all the relations in the induced (dual) CSP. The rationale being that this con-

sidered combination of relations (which is the relation and its neighborhood in

the dual graph) is ‘collectively’ responsible for the ‘relation’ wipeout.

Head: This strategy is similar to AllC, except that we increment only the weight

of the constraint whose relation was emptied by the RNIC algorithm and do

not increment the weights of its neighborhood in the dual graph.

A.3 Experimental Evaluation

We evaluate the effectiveness of the strategies proposed for POAC and RNIC in

Sections A.3.2 and A.3.3, respectively.

A.3.1 Experimental Setup

We consider the problem of finding a single solution to a CSP using backtrack search

with some lookahead, d-way branching, dom/wdeg dynamic variable-ordering heuris-

tic [Boussemart et al., 2004], and lexicographic value ordering. We use STR2+ for

enforcing GAC [Lecoutre, 2011], APOAC for enforcing POAC [Balafrej et al., 2014],1

and selRNIC for enforcing RNIC [Woodward et al., 2011b]. We use the benchmark

problems available from Lecoutre’s website.2 Benchmarks are selected separately for

POAC and RNIC. For a given consistency level, if any instance is solved by any of the

weighing schemas of the considered consistency within the time limit of 60 minutes
1Using the terminology of Balafrej et al. [Balafrej et al., 2014], we use the following parameters

and their recommended values for APOAC maxK = n, last drop with β = 0.05, and 70%-PER.
Where maxK indicates the number of processed items in the propagation queue, β is the threshold
of search-space reduction during the learning phase and 70%-PER is the percentile for learning the
value of maxK.

2www.cril.univ-artois.fr/~lecoutre/benchmarks.html

www.cril.univ-artois.fr/~lecoutre/benchmarks.html

164

and memory limit of 8GB, then the entire benchmark is included in the experiment.

For benchmarks in intension we convert the instance to extension prior to solving

and do not include the time for conversion.3 From the 254 benchmark problems

(total 8,549 instances) available on Lecoutre’s website, our results are reported on

144 benchmarks (total 4,233 instances) for POAC and 132 (total 3,869 instances) for

RNIC.

We summarize the results of these experiments in Tables A.2–A.7 and Figures A.1

and A.2. For each strategy, we report in Tables A.2–A.7:

• The number of completions (# Completions) with the total number of instances

in parenthesis.

• The sum of the CPU time in seconds (∑CPU sec.) computed over instances

where at least one algorithm terminated (given in parenthesis). When an algo-

rithm does not terminate within 60 minutes, we add 3,600 seconds to the CPU

time and indicate with a > sign that the time reported is a lower bound. We

boldface the smallest CPU time.

• The average number of node visits (Average NV) computed over the instances

where all strategies completed (given in parenthesis).

Figures A.1 and A.2 plot the number of instances solved by each strategy (Y-axis) as

the CPU time increases (X-axis).

In addition to the above experiment, we also conduct a statistical analysis of the

relative performance of the proposed strategies. We compare pairwise the strategies

corresponding to each higher-level consistency (i.e., POAC and RNIC) in order to
3In a study not reported we found that STR2+ is faster at solving CSP instances than running

GAC on the original intension constraints because STR explores the satisfying tuples instead of valid
tuples. As STR and RNIC algorithms require table constraints we pre-convert the instances. The
conversion time is the same for each algorithm and can safely be ignored.

165

determine whether or not a statistical difference exists between the strategies. Be-

cause search may fail to complete within the time limit, we consider our results to

be right-censored and analyze them using a nonparameterized Wilcoxon signed-rank

test [Wilcoxon, 1945]. The test operates by comparing the rank of the differences

of the paired data. Differences of zero have no effect on the test and are safely dis-

carded before ranking. Further, given the clock precision, we discard data points

where the CPU difference is less than one second. We assume a one-tailed distribu-

tion and significance level of p = 0.05.4 In the presence of censored data, we adopt

the following procedure to generate the data for each pairwise test. First, we run

each strategy on each instance for the time limit (i.e., 60 minutes). If both strategies

solve the instance, the data is included in the analysis. If neither strategy solves the

instance, the instance is excluded from the analysis (i.e., the difference is zero and

discarded). If one strategy completes within the time threshold and the other does

not, we re-run the second strategy with double the time limit (i.e., 120 minutes),

recording this limit as the completion time in case search does not terminate earlier.

By allowing the additional time, the censored data no longer affects the significance

of the analysis [Palmieri et al., 2016].5 The results obtained with the doubled time

limit are used only for the statistical analysis ranking the relative performance of the

strategies (Table A.1 and Expression (A.2)), but not used for the results reported in

Tables A.2–A.7.
4Check Palmieri et al. [Palmieri et al., 2016] for an overview of the Wilcoxon signed-rank test

and the adopted methodology.
5Our approach is similar to that of Palmieri et al. [Palmieri et al., 2016] except that we exclude

instances that neither strategy completes with the original time limit.

166

Table A.1: Statistical analysis of weighting schemes for POAC

Benchmark Ranking

All benchmarks, put together AllS > LastS ≡ Var > Old

‘QCP/QWH,’ ‘BQWH’
LastS > Old > AllS ≡ Var

(quasi-group completion)

‘Graph Coloring’ Var > AllS > LastS > Old

‘RAND’ (random) Var > AllS ≡ LastS ≡ Old

‘Crossword’ Var > AllS ≡ LastS ≡ Old

A.3.2 Partition-One Arc-Consistency

Based on the statistical analysis comparing the relative performance for Old, AllS,

LastS, and Var for POAC, we conclude that overall (Table A.1):

• AllS outperforms all others strategies

• LastS and Var are equivalent

• Old exhibits the worst performance of the four strategies, showing that it is

important for dom/wdeg to increment the weights with POAC, which justifies

our investigations.

However, a careful study of the individual benchmarks shows that LastS on many

quasi-group completion benchmarks and Var are competitive on many, but not all,

graph coloring, random, and crossword benchmarks.6 Re-running the statistical anal-

ysis on each group of those benchmarks yields the results shown in the last four rows

of Table A.1. Again, we insist that even when considering individual benchmarks,

the performance of AllS remains globally the most robust and consistent of all four

strategies.
6Using the categories identified on Lecoutre’s website.

167

Table A.2 summarizes the experiments’ results on the 144 tested benchmarks.

In terms of the number of completed instances and the CPU time, AllS is the

Table A.2: Overall results of experiments for POAC

Old AllS LastS Var

Completion (4,233) 2,804 2,822 2,814 2,811∑CPU sec. (2,846) >1,139,552 >1,033,699 >1,075,640 >1,065,547

Average NV (2,775) 19,181 16,712 16,503 21,875

best (with 2,822 instances and >1,033,699 seconds) and Old is the worst (with 2,804

instances and >1,139,552 seconds) of the four proposed strategies. In terms of the

average number of nodes visited (i.e., reduction of the search space), LastS visits the

least amount of nodes on average (16,503), followed by AllS (16,712), Old (19,181),

and Var (21,875).7

Table A.3 summarizes individual benchmark results for the quasi-group comple-

tion category. Compared to the quasi-group completion analysis in Table A.1, the

benchmarks typically follow the statistical trend with LastS performing the best on

the QCP-15 and QWH-20 benchmarks. However, although LastS was statistically

the best, on bqwh-15-106, AllS was the fastest.

Table A.4 summarizes individual benchmarks for graph coloring, random, and

crossword benchmarks. For these categories of benchmarks the statistical analysis of

Table A.1 shows that Var performs the best. Indeed, for full-insertion, tightness0.8,

and wordsVg Var has the smallest CPU time of the strategies. However, individual
7We offer the following hypothesis as to why Var has the largest average of nodes visited. The

heuristic dom/wdeg is a ‘conflict-directed’ heuristic in that it attempts to select the variable that
participates in the largest number of ‘wipeouts.’ By incrementing the weight of the variable being
singleton-tested, Var perhaps increases the importance of a variable that ‘sees’ the conflict rather
than those variables that ‘cause’ the conflict. This hypothesis deserves a more thorough investigation.

168

Table A.3: Examples of quasi-group completion benchmark for POAC

Benchmark Old AllS LastS Var
Where LastS performs best

QCP-15
Completion (15) 15 15 15 15∑CPU sec. (15) 3,920 5,480 3,214 6,083
Average NV (15) 30,488 38,641 23,963 33,589

QWH-20
Completion (10) 9 9 9 9∑CPU sec. (9) 6,625 7,329 5,631 12,337
Average NV (9) 57,453 58,623 45,095 63,225

. . . but AllS can still win on such benchmarks

bqwh-15-106
Completion (100) 100 100 100 100∑CPU sec. (100) 196 167 189 211
Average NV (100) 599 433 531 507

Table A.4: Examples of graph coloring, random, crossword benchmarks for POAC

Benchmark Old AllS LastS Var
Where Var performs best

full-insertion
Completion (41) 28 28 28 29∑CPU sec. (29) >12,720 >10,055 >10,182 7,238
Average NV (28) 16,725 12,676 13,312 8,749

tightness0.8
Completion (100) 98 97 97 99∑CPU sec. (99) >59,907 >53,042 >56,945 41,848
Average NV (97) 1,213 1,085 1,196 1,315

wordsVg
Completion (65) 55 56 54 59∑CPU sec. (59) >24,376 >24,190 >28,533 17,913
Average NV (54) 298 391 411 250
. . . but AllS can still win on such benchmarks

sgb-book
Completion (26) 20 20 20 20∑CPU sec. (20) 9,677 8,315 8,455 8,565
Average NV (20) 143,653 148,055 148,985 134,099

tightness0.1
Completion (100) 100 100 100 100∑CPU sec. (100) 46,926 43,766 44,971 69,974
Average NV (100) 10,347 9,762 9,948 12,457

ukVg
Completion (65) 29 31 28 30∑CPU sec. (31) >19,466 19,040 >20,961 >19,119
Average NV (28) 141 411 133 139

benchmarks may vary despite the identified statistical groupings. For example, AllS

performs best on the tightness0.1, sgb-book, and ukVg benchmark, respectively.

169

We conclude that, unless we know enough about the problem instance under

consideration, we should use AllS in conjunction with POAC, as the overall analysis

shows us.

Figure A.1 shows the cumulative number of instances completed by each strategy

as CPU time increases. For easy instances (< 100 seconds), the completions of the

1400	

1600	

1800	

2000	

2200	

2400	

2600	

2800	

0	
10
0	

20
0	

30
0	

40
0	

50
0	

60
0	

70
0	

80
0	

90
0	

10
00
	

11
00
	

12
00
	

13
00
	

14
00
	

15
00
	

16
00
	

17
00
	

18
00
	

19
00
	

20
00
	

21
00
	

22
00
	

23
00
	

24
00
	

25
00
	

26
00
	

27
00
	

28
00
	

29
00
	

30
00
	

31
00
	

32
00
	

33
00
	

34
00
	

35
00
	

36
00
	

C

om
pl

et
io

ns

CPU Time

ALLS

LASTS

VAR

OLD

2500	

2550	

2600	

2650	

2700	

2750	

2800	

10
00
	

11
00
	

12
00
	

13
00
	

14
00
	

15
00
	

16
00
	

17
00
	

18
00
	

19
00
	

20
00
	

21
00
	

22
00
	

23
00
	

24
00
	

25
00
	

26
00
	

27
00
	

28
00
	

29
00
	

30
00
	

31
00
	

32
00
	

33
00
	

34
00
	

35
00
	

36
00
	

Figure A.1: Cumulative number of instances completed by CPU time for POAC

strategies are similar. As the time limit increases Old becomes dominated by the

other three strategies. To better compare AllS, LastS, and Var we examine the

hard instances, zooming the chart on the cumulative CPU time solved between 1,000

and 3,600 seconds. Although Var performs well on smaller CPU time (Var contends

with AllS for the most completed instances between 1,000 and 1,700 seconds) it

170

becomes dominated by AllS and LastS on the harder instances. AllS clearly

dominates all other strategies. These curves confirm the results of the statistical

analysis given in Table A.1.

A.3.3 Relational Neighborhood Inverse Consistency

The statistical analysis compares the relative performance for Old, AllC, and Head

for RNIC. It shows that, overall, AllC and Head are equivalent and Old has the

worst performance. The following holds in general for all benchmarks:

AllC ≡ Head > Old (A.2)

The fact that Old is the worst demonstrates that RNIC’s contribution to the weights

of dom/wdeg should not be ignored, thus justifying our investigations.

Table A.5 summarizes the experiments’ results on all the 132 tested benchmarks.

AllC is the best strategy on all measures while Old is the worst.

Table A.5: Results of experiments for RNIC

Old AllC Head

Completion (3,869) 2,420 2,427 2,423∑CPU sec. (2,416) >1,032,130 >1,010,221 >1,014,635

Average NV (2,432) 77,067 45,696 45,803

We were not able to uncover meaningful categories of benchmarks to distinguish

between AllC and Head. Table A.6 summarizes individual benchmark results for

the Dimacs category. Within the category, either AllC or Head perform the best

by all measures on different benchmarks. Similar results are obtained on the graph

coloring category, shown in Table A.7. Having such different results between AllC

171

and Head explains why the statistical analysis found them to be equivalent. Regard-

less, either AllC or Head performs better than Old in a statistically significant

manner.

Figure A.2 shows the cumulative number of instances completed by each strategy

as CPU time increases. As was the case for POAC, on easy instances (< 100 seconds),

1200	

1400	

1600	

1800	

2000	

2200	

2400	

0	
10
0	

20
0	

30
0	

40
0	

50
0	

60
0	

70
0	

80
0	

90
0	

10
00
	

11
00
	

12
00
	

13
00
	

14
00
	

15
00
	

16
00
	

17
00
	

18
00
	

19
00
	

20
00
	

21
00
	

22
00
	

23
00
	

24
00
	

25
00
	

26
00
	

27
00
	

28
00
	

29
00
	

30
00
	

31
00
	

32
00
	

33
00
	

34
00
	

35
00
	

36
00
	

C

om
pl

et
io

ns

CPU Time

ALLC HEAD OLD

2350	

2360	

2370	

2380	

2390	

2400	

2410	

2420	

2430	
23
00
	

23
50
	

24
00
	

24
50
	

25
00
	

25
50
	

26
00
	

26
50
	

27
00
	

27
50
	

28
00
	

28
50
	

29
00
	

29
50
	

30
00
	

30
50
	

31
00
	

31
50
	

32
00
	

32
50
	

33
00
	

33
50
	

34
00
	

34
50
	

35
00
	

35
50
	

36
00
	

Figure A.2: Cumulative number of instances completed by CPU time for RNIC

Table A.6: Examples of Dimacs benchmarks where AllC and Head perform best

Benchmark Old AllC Head

pret
Completion (8) 4 4 4
ΣCPU (4) 196 28 61
Average NV (4) 1,285,234 125,793 273,736

dubois
Completion (13) 6 9 11
ΣCPU (6) >22,041 >10,088 1,348
Average NV (11) 11,222,349 1,522,902 382,329

172

Table A.7: Two graph coloring benchmarks where AllC and Head perform best

Benchmark Old AllC Head

mug
Completion (8) 8 8 8
ΣCPU (8) 5,098 548 2,819
Average NV (8) 1,501,379 189,595 883,130

leighton-15
Completion (26) 5 5 5
ΣCPU (5) 2,219 1,493 1,222
Average NV (5) 25,014 12,461 4,972

the completions of the strategies are similar. Focusing on harder instances, solved

between 2,300 and 3,600 seconds, Old becomes dominated by AllC and Head. The

curves of AllC and Head remain close to one another. These curves confirm the

ranking in Equation A.2.

Summary

This chapter introduces four strategies for incrementing the weight in dom/wdeg

for singleton consistencies (POAC) and three strategies for relational consistencies

(RNIC). For both consistencies, Old is the worst strategy and a weighting schema

involving the higher-level consistency is necessary. We show that for POAC the best

method is AllS, which increments the weights at every singleton test. For RNIC,

we show AllC and Head are statistically equivalent. Our work is a first step in

the right direction, especially given the importance of higher-level consistencies in

solving difficult CSPs. Future work may need to investigate more complex strategies

for these and other consistencies.

173

Appendix B

Adaptive Parameterized

Consistency for Non-Binary CSPs

by Counting Supports

Determining the appropriate level of local consistency to enforce on a given instance of

a Constraint Satisfaction Problem (CSP) is not an easy task. However, selecting the

right level may determine our ability to solve the problem. Adaptive parameterized

consistency was recently proposed for binary CSPs as a strategy to dynamically select

one of two local consistencies (i.e., AC and maxRPC). In this chapter, we propose

a similar strategy for non-binary table constraints to select between enforcing GAC

and pairwise consistency. While the former strategy approximates the supports by

their rank and requires that the variables domains be ordered, our technique removes

those limitations. We empirically evaluate our approach on benchmark problems to

establish its advantages. This work has been published [Woodward et al., 2014].

174

B.1 Introduction

There is an abundance of local consistency techniques of varying cost and pruning

power to apply to a Constraint Satisfaction Problem (CSP), but choosing the right

one for a given instance remains an open question. In a portfolio approach [Xu et al.,

2008; Kadioglu et al., 2011; Geschwender et al., 2013], we typically choose a single

consistency level and enforce it on the entire problem (or a subproblem). Heuristic-

based methods have been proposed to dynamically switch, at various stages of search

and depending on the constraint, between a weak and a strong level of consistency,

AC and maxRPC for binary CSPs [Stergiou, 2008] and GAC and maxRPWC for

non-binary CSPs [Paparrizou and Stergiou, 2012]. The above-mentioned approaches

do not allow us to enforce different levels of consistency on the values in the domain

of the same variable. To this end, Balafrej et al. introduced adaptive parameterized

consistency, which selects, for each value in the domain of a variable, one of two

consistency levels based on the value of a parameter [Balafrej et al., 2013]. That

parameter is determined by the rank of the support of the value in a constraint

(assuming a fixed total ordering of the variables’ domains), and updated depending on

the weight of the constraint [Boussemart et al., 2004]. Their study targeted enforcing

AC and maxRPC on binary CSPs.

In this chapter, we extend their mechanism to enforcing GAC and pairwise-

consistency on non-binary CSPs with table constraints. Our approach is based on

counting the number of supporting tuples, which is automatically provided by the

algorithms that we use. Thus, we remove the restriction on maintaining ordered

domains and the approximation of a support’s count by its rank. We establish em-

pirically the advantages of our approach.

175

B.1.1 Local Consistency Properties

CSPs are typically solved with backtrack search. To reduce the severity of the com-

binatorial explosion, CSPs are usually filtered by enforcing a given local consistency

property [Bessiere, 2006].

A variable-value pair 〈xi, vi〉 has an arc-consistent support (AC-support) 〈xj, vj〉

if the tuple (vi, vj) ∈ Rij where scope(Rij) = {xi, xj} [Mackworth, 1977; Bessière et

al., 2005]. A CSP is arc consistent if every variable-value pair has an AC-support

in every constraint. Generalized Arc Consistency (GAC) generalizes arc consistency

to non-binary CSPs [Mackworth, 1977]. 〈xi, vi〉 has a GAC-support in constraint

cj if ∃τ ∈ Rj such that τ [xi] = vi. A CSP is GAC if every 〈xi, vi〉 has a GAC-

support in every constraint in cons(xi). GAC can be enforced by removing domain

values that have no GAC-support, leaving the relations unchanged. Simple Tabular

Reduction (STR) algorithms not only enforce GAC on the domains, but also remove

all tuples τ ∈ Rj where ∃xi ∈ scope(Rj) such that τ [xi] /∈ dom(xi) [Ullmann, 2007;

Lecoutre, 2011; Lecoutre et al., 2012].

The STR and STR2(+) algorithms use two data-structures to maintain the alive

set of tuples in a constraint ci, currentLimits[ci], and position[ci]. These data struc-

tures allow easy restoration of tuples upon backtrack during search [Lecoutre, 2011;

Ullmann, 2007]. In STR3, unnecessary traversals of the relation is avoided by record-

ing for each 〈xi, vi〉 the tuples τ where τ [xi] = vi [Lecoutre et al., 2012].

A CSP is m-wise consistent if, every tuple in a relation can be extended to ev-

ery combination of m − 1 other relations in a consistent manner [Gyssens, 1986;

Janssen et al., 1989]. Keeping with relational-consistency notations, Karakashian et

al. denoted m-wise consistency by R(∗,m)C, and proposed a first algorithm for en-

forcing it [Karakashian et al., 2010]. Their implementation finds an extension (i.e.,

176

support) for a tuple by conducting a backtrack search on the other m − 1 relations,

and removes the tuples that have no support. After all relations are filtered, they

are projected onto the domains of the variables. Pairwise consistency (PWC) corre-

sponds to m=2, R(∗,2)C≡PWC. Lecoutre et al. introduced the algorithm extended

STR (eSTR) [Lecoutre et al., 2013], which enforces PWC on a CSP using the STR

mechanism [Ullmann, 2007]. eSTR maintains counters on the intersections of two

constraints to determine if a tuple is pairwise consistent or not. In this chatper,

we enforce PWC using the algorithm for R(∗,2)C [Karakashian et al., 2010], and not

eSTR, because it is prohibitively expensive to continuously maintain the counters of

eSTR in a strategy where PWC is only selectively enforced.

B.2 Adaptive Parameterized Consistency

Balafrej et al. introduced the distance to the end of value vi for variable xi as:

∆(xi, vi) = |dom
o(xi)| − rank(vi, domo(xi))

|domo(xi)|

where domo(xi) is the original, unfiltered domain of xi, and rank(vi, domo(xi)) is

the position of vi in the ordered set domo(xi) [Balafrej et al., 2013]. In Figure B.1,

borrowed from [Balafrej et al., 2013], ∆(x2, 1) = 0.75, ∆(x2, 2) = 0.50, ∆(x2, 3) =

0.25, and ∆(x2, 4) = 0.00.

Further, for a given parameter p, they defined 〈xi, vi〉 to be p-stable for AC for cij

where scope(cij) = {xi, xj} if there exists an AC-support 〈xj, vj〉 with ∆(xj, vj) ≥ p

for cij. Figure B.1 illustrates an example for the constraint x1 ≤ x2 with p = 0.25.

〈x1, 1〉,〈x1, 2〉,〈x1, 3〉 are all 0.25-stable for AC for the constraint, but 〈x1, 4〉 is not,

because its only AC-support, 〈x2, 4〉, has distance 0.

177

x1

1

2

3

4

x2

1

2

3

4

p=0.25

ac support

(4-1)/4 = 0.75

(4-2)/4 = 0.50

(4-3)/4 = 0.25

(4-4)/4 = 0.00

Δ (x2,vi)

Figure B.1: The constraint x1 ≤ x2. 〈x1, 4〉 is not 0.25-stable for AC.

The parameterized strategy p-LC [Balafrej et al., 2013] enforces, on each variable-

value pair, either AC or some local consistency (LC) property strictly stronger than

AC depending on the value of the parameter p. The idea is to enforce LC only on the

variable-value pairs with few supports, approximated with the rank (< p) of the first

found AC-support. We focus on the constraint-based version, pc-LC, where 〈xi, vi〉 is

pc-LC if for every constraint cj ∈ cons(xi), 〈xi, vi〉 is p-stable for AC on cj or 〈xi, vi〉

is LC on cj. In pc-LC, the value of p is given as input. In the adaptive version, apc-

LC, it is dynamically determined for each constraint cj using the weight of cj, w(cj),

which is the number of times cj caused a domain wipe-out like in the variable-ordering

heuristic dom/wdeg [Boussemart et al., 2004]:

p(cj) = w(cj)−minck∈C(w(ck))
maxck∈C(w(ck))−minck∈C(w(ck)) + 1 . (B.1)

In [Balafrej et al., 2013], apc-maxRPC was experimentally shown to outperform AC

and maxRPC [Debruyne and Bessière, 1997a].

178

B.3 Modifying apc-LC for Non-Binary CSPs

For binary CSPs, p-stability for AC of 〈xi, vi〉 estimates how many supports are left

for 〈xi, vi〉 in other constraints using the rank of the AC-support in the corresponding

domain. This estimate should not directly applied to non-binary table constraints

because the GAC-support of 〈xi, vi〉 is a tuple in a relation that is unsorted, which

would make the estimate way too imprecise. Consider the example with 〈xi, vi〉 and

a relation Rj of 100 tuples. Assume that the only tuple τ ∈ Rj supporting 〈xi, vi〉

appears at the top of the table of Rj. The estimate would indicate that there are

many supports for 〈xi, vi〉 because there are 99 tuples that appear after it. However, in

reality, 〈xi, vi〉 has a unique support. Below, we introduce p-stability for GAC, which

counts the number of supports for each variable-value pair. Then, we introduce a

mechanism to compute p-stability for GAC, and finally give an algorithm for enforcing

apc-LC, which adaptively enforces STR or LC. In this chapter, we study R(∗,2)C as

LC, and discuss the implementation of apc-R(∗,2)C.

B.3.1 p-stability for GAC

We say that 〈xi, vi〉 is p-stable for GAC if for every constraint cj ∈ cons(xi),

|σxi=vi
(Rj)|

|Ro
j |

≥ p(cj),

where σxi=vi
(Rj) selects the tuples in Rj where 〈xi, vi〉 appears, and Ro

j is the original,

unfiltered relation. A CSP is p-stable for GAC if every variable-value pair is p-stable

for GAC for every constraint that applies to it.

Figure B.2 gives the relation for the constraint x1 ≤ x2. 〈x1, 1〉 and 〈x1, 2〉 are 0.25-

stable for GAC. Indeed, σx1=1 returns four rows {0, 1, 2, 3} in the table, and 〈x1, 1〉

179

is 0.25-stable: 4
10 ≥ 0.25. Similarly, 〈x1, 2〉 also is 0.25-stable: 3

10 ≥ 0.25. 〈x1, 3〉 and

〈x1, 4〉 are not 0.25-stable, because 2
10 6≥ 0.25 and 1

10 6≥ 0.25. This example illustrates

how, on binary constraints, and for a given p, p-stable for AC does not guarantee

p-stable for GAC. (Recall that 〈x1, 3〉 is 0.25-stable for AC in Figure B.1).

x1 x2
0 1	
 1	

1 1	
 2	

2 1	
 3	

3 1	
 4	

4 2	
 2	

5 2 3
6 2 4
7 3 3
8 3 4
9 4 4

gacSupports[Rj](〈x1,1〉)={0,1,2,3}
gacSupports[Rj](〈x1,2〉)={4,5,6}
gacSupports[Rj](〈x1,3〉)={7,8}
gacSupports[Rj](〈x1,4〉)={9}

gacSupports[Rj](〈x2,1〉)={0}
gacSupports[Rj](〈x2,2〉)={1,4}
gacSupports[Rj](〈x2,3〉)={2,5,7}
gacSupports[Rj](〈x2,4〉)={3,6,8,9}

Figure B.2: The relation of x1 ≤ x2. 〈x1, 3〉 and 〈x1, 4〉 are not 0.25-stable for GAC.

B.3.2 Computing p-stability for GAC

For each constraint cj, we introduce for every 〈xi, vi〉 a set of integers indicating the

position of the tuples returned by σxi=vi
(Rj), which is similar to the data structure

in GAC4 [Mohr and Masini, 1988]. We denote this table gacSupports[Rj][〈xi, vi〉].

The check for p-stable can be verified by using |gacSupports[Rj][〈xi, vi〉]|. Figure B.2,

shows the gacSupports[Rj] for the constraint x1 ≤ x2. For each relation, the space

complexity to store each gacSupports[Rj] is O(k · t), where k is the maximum con-

straint arity and t is the maximum number of tuples in a relation. The time complexity

to generate gacSupports[Rj] is O(k · t), by iterating through every tuple.

180

B.3.3 Algorithm for Enforcing apc-LC

With the gacSupports data-structure, we can apply STR by verifying, for each con-

straint cj, that every variable xi ∈ scope(cj) and vi ∈ dom(xi) has a non-zero

|gacSupports[Rj][〈xi, vi〉]|. Living-STR (Algorithm 20) does precisely this opera-

tion (ignoring Lines 4 and 5, which apply to the apc-LC operation introduced next).

past(P) denotes the variables of the CSP P already instantiated by search, and

delTuples(Rk, S, level) deletes all the tuples in the subset S ⊆ Rk, and marks their

removal level at the level of search level. When deleting a tuple from the relation

Rk, ck’s neighboring constraints, neigh(ck), should be re-queued to be processed with

Living-STR. Initially, all constraints are in the queue. Living-STR is similar to

STR3 in that it iterates over variable-value pairs rather than over tuples. However,

it does not use as much book-keeping for optimizing the number of STR checks

as STR3 [Lecoutre et al., 2012]. Instead, Living-STR uses the same data struc-

tures as STR and STR2(+) to manage tuple deletions in a relation [Lecoutre, 2011;

Ullmann, 2007].

Including Lines 4 and 5 in Algorithm 20 yields apc-LC, which adaptively applies

LC. The adaptive level p(cj) is defined by Balafrej et al. [Balafrej et al., 2013] and

recalled in Equation (B.1). The local consistency technique used here is the im-

plementation of R(∗,2)C [Karakashian et al., 2010], apc-R(∗,2)C. Apply-R(∗,2)C

(Algorithm 21) takes as input the list of tuples of a constraint on which R(∗,2)C

must be enforced. SearchSupport(Ri, τ, {Rj}) on Line 3 of Algorithm 21 searches

for a support for the tuple τ ∈ Ri, the pairwise check [Karakashian et al., 2010].

Theoretical analysis: Let k be the maximum constraint arity, d the maximum domain

size, and δ the maximum number of neighbors of a constraint. The time complexity

of Algorithm 20 is O(k · d). Algorithm 21 is O(δ · t2) because it makes O(δ · t) calls

181

Algorithm 20: Living-STR(ci): set of variables
Input: cj : a constraint of P
Output: Set of variables in scope(cj) whose domains have been modified

1 Xmodified ← ∅
2 foreach xi ∈ scope(cj) | xi /∈ past(P) do
3 foreach vi ∈ dom(xi) do
4 if |gacSupports[Rj](〈xi, vi〉)| 6= 0 and |gacSupports[Rj](〈xi,vi〉)|

|Ro
j |

6≥ p(cj) then
5 Apply-LC(Rj , gacSupports[Rj](〈xi, vi〉))
6 if |gacSupports[Rj](〈xi, vi〉)| = 0 then
7 foreach ck ∈ cons(xi) do
8 delTuples(ck, gacSupports[Rk](〈xi, vi〉), |past(P)|)
9 dom(xi)← dom(xi) \ {vi}

10 if dom(xi) = ∅ then throw INCONSISTENCY
11
12 Xmodified ← Xmodified ∪ {xi}

13 return Xmodified

Algorithm 21: Apply-R(∗,2)C(ci, tuples)
Input: ci: a constraint; tuples: a set of tuples from the constraint ci
Output: The tuples are either R(∗,2)C or deleted

1 foreach τ ∈ tuples do
2 foreach cj ∈ neigh(ci) do
3 if SearchSupport(Ri, τ, {Rj}) returns inconsistent then
4 delTuples(ci, {τ}, |past(P)|)

to SearchSupport, which is O(t) in our context. The correctness of Algorithms 20

and 21 can be shown in straightforward manner by contradiction.

B.4 Empirical Evaluations

The goal of our experimental analysis is to assess if apc-R(∗,2)C effectively selects

when to apply STR and R(∗,2)C when used in a pre-processing step and in a real full

lookahead strategy [Haralick and Elliott, 1980] during backtrack search to find the

first solution to a CSP. In our experiments, we use the variable ordering dom/wdeg

182

[Boussemart et al., 2004]. The experiments are conducted on the benchmarks of the

CSP Solver Competition1 with a time limit of two hours per instance and 8 GB of

memory. Because STR and R(∗,2)C enforce the same level of consistency on binary

CSPs [Bessière et al., 2008], we focus our experiments on 21 non-binary benchmarks2

consisting of 623 CSP instances. We chose these benchmarks because they are given in

extension and at least one algorithm completed 5% of the instances in the benchmark.

Table B.1 summarizes the results in terms of number of instances solved. Impor-

Table B.1: Number of instances completed by the tested algorithms

STR R(∗,2)C apc-R(∗,2)C
1 #instances completed by 504 550 552
2 #instances completed only by 10 5 0
3 #instances solved by STR, but missed by 0 18 11
4 #instances solved by R(∗,2)C, but missed by 64 0 6
5 #instances solved by apc-R(∗,2)C, but missed by 59 8 0
Average CPU time (sec.) over 458 instances 328.41 378.12 313.31
Median CPU time (sec.) over 458 instances 7.23 17.35 7.21

tantly, apc-R(∗,2)C completes the largest number of instances (552). Considering the

instances solved by all algorithms (485 instances), apc-R(∗,2)C has the smallest aver-

age and median CPU time. Row 3 indicates the number of instances STR solved but

R(∗,2)C and apc-R(∗,2)C did not solve (18 and 11 instances, respectively), thus show-

ing that apc-R(∗,2)C, although it may have enforced R(∗,2)C too often, outperformed

R(∗,2)C and missed fewer instances than it (11 vs. 18). Row 4 exhibits similar results

showing the number of instances that R(∗,2)C could solve, but that were missed by

STR and apc-R(∗,2)C (64 and 6 instances, respectively). Here, apc-R(∗,2)C did not

enforce R(∗,2)C often enough, but managed to outperform STR missing significantly

fewer instances than STR (6 vs. 64).
1http://www.cril.univ-artois.fr/CPAI08/
2aim-(50,100,200), allIntervalSeries, dag-rand, dubois, jnh(Sat/Unsat), lexVg, modifiedRenault,

pret, rand-10-20-10, rand-3-20-20(-fcd), rand-8-20-5, ssa, travellingSalesman-20, travellingSalesman-
25, ukVg, varDimacs, wordsVg

http://www.cril.univ-artois.fr/CPAI08/

183

Table B.2 gives a finer analysis of the data, showing the number of completions

and average and median CPU time per benchmark. Averages computed over only

the instances completed by all techniques are shown in the column All. We split

Table B.2: Results of the experiments per benchmark, organized in four categories

#Completed Average CPU time (sec) Median CPU time (sec)

Benchmark #
In
st
an

ce
s

ST
R

R
(∗
,2
)C

a
p
c-
R
(∗
,2
)C

A
ll

ST
R

R
(∗
,2
)C

a
p
c-
R
(∗
,2
)C

ST
R

R
(∗
,2
)C

a
p
c-
R
(∗
,2
)C

a) apc-R(∗,2)C is the best
aim-50 24 24 24 24 24 0.04 0.07 0.04 0.02 0.04 0.03
allIntervalSeries 25 22 22 22 22 7.09 141.85 6.00 0.13 0.31 0.12
jnhSat 16 16 16 16 16 13.07 357.66 11.74 8.15 142.24 7.21
modifiedRenault 50 50 50 50 50 6.39 11.17 6.29 7.24 8.79 6.98
rand-3-20-20 50 31 43 41 31 1,666.10 939.88 932.77 1,211.50 822.54 811.74

b) apc-R(∗,2)C is competitive
aim-100 24 24 24 24 24 0.38 0.26 0.41 0.18 0.25 0.16
aim-200 24 22 24 24 22 414.48 6.52 286.27 2.39 1.37 2.60
jnhUnsat 34 34 34 34 34 13.61 294.77 13.95 10.74 153.50 9.78
lexVg 63 63 63 63 63 69.81 341.87 338.74 0.50 1.38 0.89
pret 8 4 4 4 4 117.89 347.03 136.04 115.81 354.82 145.70
rand-3-20-20-fcd 50 39 48 47 39 928.06 546.84 615.23 501.30 422.24 464.00
rand-8-20-5 20 9 20 20 9 2,564.94 355.57 372.76 1,987.35 314.26 261.68
rand-10-20-10 20 12 12 12 12 6.72 1.67 2.76 6.40 1.66 2.75
ssa 8 6 5 6 5 64.60 100.64 69.59 1.51 1.60 1.58
TSP-25 15 13 10 13 10 232.38 1,072.72 743.33 69.00 211.41 131.69
ukVg 65 37 31 34 31 166.82 796.90 421.35 36.29 54.65 30.39
varDimacs 9 6 6 6 6 89.23 587.55 319.20 1.56 6.43 2.94
wordsVg 65 65 58 58 58 119.76 532.05 400.22 0.39 0.95 0.59

c) apc-R(∗,2)C is the worst
dubois 13 7 8 6 6 1,000.54 451.91 1,456.01 552.13 255.25 779.57
TSP-20 15 15 15 15 15 101.20 318.37 335.13 23.32 61.55 46.34

d) Not solved by STR
dag-rand 25 0 25 25 0 - 123.70 149.64 - 124.47 151.33

the table into four categories based on the average CPU time of apc-R(∗,2)C: a) apc-

R(∗,2)C performs the best (5 benchmarks); b) apc-R(∗,2)C is competitive, performing

between STR and R(∗,2)C (13 benchmarks); c) apc-R(∗,2)C performs the worst (2

benchmarks); and d) STR does not solve the benchmark but R(∗,2)C and apc-R(∗,2)C

do (1 benchmark). The best average CPU time appears in bold face in the corre-

sponding column. The median CPU time of apc-R(∗,2)C is bold faced when its rank

differs from that of the average CPU time (on which the four categorized are based).

184

On TSP-20, apc-R(∗,2)C ranks bottom on average CPU time but between STR and

R(∗,2)C on median CPU time. On aim-100, jnhUnsat, rand-8-20-5, and ukVg, apc-

R(∗,2)C is between STR and R(∗,2)C for average CPU time, but best for median

CPU time.

Table B.3 shows the average number of STR and R(∗,2)C checks that apc-R(∗,2)C

performs per benchmark. In allIntervalSeries, no calls are made to R(∗,2)C because

Table B.3: Number of calls to STR and R(∗,2)C by benchmark

Benchmark STR checks R(∗,2)C checks Benchmark STR checks R(∗,2)C checks
a) apc-R(∗,2)C is the best b) apc-R(∗,2)C is competitive

aim-50 456,823 39,491 aim-100 7,731,585 894,353
allIntervalSeries 38,281,694 0 aim-200 1,160,334,482 163,177,907
jnhSat 22,119,135 599,080 jnhUnsat 51,688,166 1,918,781
modifiedRenault 4,618,778 601,641 lexVg 564,010,457 2,180,503,026
rand-3-20-20 489,441,126 3,480,216,943 pret 422,987,946 13,973,748

rand-3-20-20-fcd 455,664,100 2,956,467,994
c) apc-R(∗,2)C is the worst rand-8-20-5 77,470,561 184,764,543

dubois 3,343,830,604 4,668,288 rand-10-20-10 72,608 3,972
TSP-20 622,949,698 991,590,957 ssa 156,631,370 11,689,961

TSP-25 2,903,953,315 3,947,391,769
ukVg 341,565,892 1,002,334,753

d) Not solved by STR varDimacs 720,843,958 84,123,204
dag-rand 359,248 21,870 wordsVg 514,840,737 2,052,367,934

the instance is solved backtrack free with STR alone. For apc-LC, no call to LC

is done during pre-processing because the weights of all the constraints are set to 1

(giving p(cj) = 0 for all cj ∈ C) and updated only during search. For dag-rand, there

is a smaller number of R(∗,2)C calls than STR calls (21,870 vs. 359,248). However,

those few calls allow us to solve all the instances of this benchmark whereas STR

alone could not solve any instance. This result is a glowing testimony of the ability

of apc-R(∗,2)C to apply the appropriate level of consistency where needed.

Summary

In this chapter, we extend the notion of p-stability for AC to GAC, and provide a

mechanism for computing it. We give an algorithm for enforcing apc-R(∗,2)C on non-

185

binary table constraints, which adaptively enforces GAC and R(∗,2)C. We validate

our approach on benchmark problems. Future work is to investigate other adaptive

criteria for selecting the level of consistency to apply, in particular one that operates

during both pre-processing and search. To apply our approach to constraints defined

in intension and other global constraints, we could use techniques that approximate

the number of solutions in those constraints [Pesant et al., 2012].

186

Appendix C

Witness-Based Search for Solution

Counting

Counting the exact number of solutions of a Constraint Satisfaction Problem (CSP) is

an important but difficult task. To overcome this difficulty, the techniques proposed

in the literature organize the search process along a tree decomposition of the CSP,

where all the extensions of a given partial solution over different branches of the tree

are first independently counted in each branch before their numbers can be multiplied.

We observe that this count is zero when any of the branches has no solution. We

propose witness-based search, which first ensures the existence of a solution (i.e.,

witness) in each branch before starting the counting. We empirically establish the

benefits of our technique in the context of the BTD and AND/OR search graphs.

C.1 Introduction

Counting the number of solutions of a Constraint Satisfaction Problem (CSP), an

important task in verification and automated reasoning, is known to be #P-complete

187

[Valiant, 1979]. Current techniques for solving this problem exploit some tree structure

of the constraint network of the CSP in order to reduce the search and counting efforts

[Dechter and Pearl, 1988; Gogate and Dechter, 2008; Favier et al., 2009].

Indeed, in a tree-structured problem, the number of solutions at any node in the

tree is computed by simple algebraic operations (i.e., summation and product) from

the number of solutions of the children of the node and information at the node itself,

following a pre-order traversal. In a non-parallel implementation, all the solutions in

one branch of the tree are counted before the solutions in another branch with the

same parent. In case the latter branch has no solution, the effort spent counting the

solutions in the first branch are wasted. We propose to first find a witness solution

in every branch of a given node in the tree before proceeding to counting the number

of solutions in any given branch. We call this scheme witness-based search.

Further, tree-structured methods typically and heavily exploit a caching mecha-

nism. This mechanism maintains, at some nodes of the search space, results that were

derived during search in order to reduce the amount of repetitive and redundant work

done during search. The information cached includes (portions of) partial solutions

that yielded inconsistencies (i.e., nogoods) and also those that yielded solutions (i.e.,

goods) along with the count of solutions found.

We apply witness-based search to two solution-counting methods, namely, the

Backtrack Search with Tree Decomposition (BTD) [Jégou and Terrioux, 2003] and

the AND/OR search tree [Dechter and Mateescu, 2004]. Our empirical evaluations

show a reduction of the search effort, and, importantly, the space used for caching,

which is a major bottleneck in those techniques.

This chapter is structured as follows. Section C.2 recalls main concepts and def-

initions. Section C.3 discusses solution-counting methods based on tree structures.

Section C.4 describes and discusses witness-based solution counting. Section C.5

188

describes our experiments.

C.2 Main Definitions

We first summarize the main concepts and definitions used.

C.2.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined by (X ,D, C), where X is a set

of variables, D is a set of domains, and C is a set of constraints. Each variable in X

has a finite domain in D, and is constrained by a subset of the constraints in C. Each

constraint Ci ∈ C is defined by a relation Ri specified over the scope of the constraint,

scope(Ci), which are the variables to which the constraint applies, as a subset of the

Cartesian product of the domains of those variables. A tuple ti∈Ri is a combination

of values for the variables in the scope of the constraint that is either allowed (i.e.,

support) or forbidden (i.e., conflict). A solution to the CSP is an assignment to each

variable of a value taken from its domain such that all the constraints are satisfied.

In general, finding a solution to a CSP is NP-complete, and counting its number of

solutions is #P-complete.

Backtrack search is a sound and complete algorithm commonly used to solve CSPs.

To improve the performance of search and reduce the severity of the combinatorial

explosion, we enforce a given local consistency level. One common such property

is Generalized Arc Consistency (GAC). A CSP is GAC iff for every constraint, any

value in the domain of any variable in the scope of the constraint can be extended to

a tuple satisfying the constraint.

Several graphical representations of a CSP exist. In the hypergraph, the vertices

represent the variables of the CSP, and the hyperedges represent the scopes of the

189

constraints (see Figure C.1). In the primal graph, the vertices represent the CSP

variables, and the edges connect every two variables that appear in the scope of some

constraint (see Figure C.2).

A B C

E

D

FGH

I J K

M L

N
R4R2

R3

R1

R5R6

R7

Figure C.1: A hypergraph

A

B

C E
D

F

G

H

I

J

K
M

L

N

Figure C.2: The primal graph

C.2.2 Backtrack Search with Tree Decomposition

A tree decomposition of a CSP is a tree embedding of its constraint network. The

tree nodes are clusters of variables and constraints from the CSP. The set of variables

of a cluster cl is denoted χ(cl) ⊆ X , and the set of constraints ψ(cl) ⊆ C. A tree

decomposition must satisfy two conditions:

1. Each constraint appears in at least one cluster and the variables in its scope

must appear in this cluster; and

2. For every variable, the clusters where the variable appears induce a connected

subtree.

Many techniques for generating a tree decomposition of a CSP exist [Dechter and

Pearl, 1989; Jeavons et al., 1994; Gottlob et al., 2000]. We use here the tree-clustering

technique [Dechter and Pearl, 1989]. First, we triangulate the primal graph of the

190

CSP using the min-fill heuristic [Kjærulff, 1990]. Second, using the perfect elimina-

tion ordering given by the MaxCardinality algorithm [Tarjan and Yannakakis,

1984], we identify the maximal cliques in the resulting chordal graph using the Max-

Cliques algorithm [Golumbic, 1980], and use the identified maximal cliques to form

the clusters of the tree decomposition. Figure C.3 shows a triangulated primal graph

of the example in Figure C.1. The dotted edges (B,H) and (A,I) in Figure C.3

A
B

C

E

D

F

G

H

I

J

K
M

L

N

C1

C2

C7

C3

C4

C5
C6

C8

C9 C10

Figure C.3: Triangulated primal graph and its maximal cliques

{A,B,C,N},{R1}

{A,I,N},{} {B,C,D,H},{R6}

{I,M,N},{R2} {B,D,F,H},{}

C1
C2

C3

C7

C8
{A,I,K},{}

C4

{I,J,K},{R3}
C5

{A,K,L},{R4}
C6

{B,D,E,F},{R5}
C9

{F,G,H},{R7}
C10

Figure C.4: A tree decomposition of the CSP in Figure C.1

are fill-in edges generated by the triangulation algorithm. The ten maximal cliques

of the triangulated graph are highlighted with ‘blobs.’ Third, we build the tree by

connecting the clusters using the JoinTree algorithm [Dechter, 2003a]. While any

191

cluster can be chosen as the root of the tree, we choose the cluster that minimizes the

longest chain from the root to a leaf. Figure C.4 shows the tree after connecting the

maximal cliques of Figure C.3. Finally, we determine the variables and constraints

of each cluster as follows: a) The variables of a cluster cl, χ(cl), are the variables

in the maximal clique that yields the cluster; and b) The constraints of a cluster cl,

ψ(cl), are all the constraints Ri, such that scope(Ri) ⊆ χ(cl). Figure C.4 shows a tree

decomposition for the example of Figure C.1. Note that we may end up with clusters

with no constraints (e.g., C2, C4 and C8). A separator of two adjacent clusters is the

set of variables that are associated with both clusters.

C.2.3 AND/OR Tree Search

AND/OR tree search was proposed by Dechter [2004] as a generalization of search

in graphical models. AND/OR tree search exploits (in)dependencies in the model

to exponentially reduce the search effort, binding it exponentially by, instead of the

number of variables, the depth of a pseudo-tree [Freuder and Quinn, 1987], which

is a tree spanning of the model. Dechter also extended the AND/OR search space

from a tree to a graph, further reducing the time effort albeit at the cost of increased

memory space [2004]. The detailed definitions and characterizations are accessible in

the original papers; below we illustrate this process with a simple example.

Consider a CSP with the constraint graph shown in Figure C.5. The domain of

the variable Y is {2, 3}. The domains of W,X,Z, T,R are {1, 2}. The constraints are

as follows: W = Z, W = R, W ≥ X, 0 ≤ T −X ≤ 1, and X < Y . The constraint

between Y and T forbids only the tuple 〈(Y, 2), (T, 1)〉. Similarly, the constraint be-

tween Y and R forbids only the tuple 〈(Y, 2), (R, 1)〉). Figure C.6 gives a pseudo-tree

of this CSP where the dependencies between variables are shown as the tree edges

192

WX

ZY
T

R

Figure C.5: A constraint graph

W
X Z
Y

T R

Figure C.6: A pseudo-tree of the example
from Figure C.5

(full lines) and back-edges (dotted lines). Figure C.7 shows the AND/OR search tree

of the example in Figure C.5 using the pseudo-tree of Figure C.6. An AND/OR

W

21

X Z X Z

1 1 1 2

Y Y

2 3 2

T R T R T R

2 1 2 1 2 2

OR

AND

OR

AND

3

T R

1 22

2

Y

3

T R

22

OR

AND

OR

AND

Figure C.7: An AND/OR search tree of the example from Figure C.5

search tree alternates between OR nodes (variables) and AND nodes (variable as-

193

signments). The structure of the AND/OR search tree is based on the pseudo-tree.

The root of the AND/OR search tree is an OR node for the variable at the root of

the pseudo-tree. The children of an OR node are AND nodes corresponding to the

value assignments of the variable of the OR node. The children of an AND node are

OR nodes, corresponding to the variables that are the children of the AND node’s

variable in the pseudo-tree.

The parents of an OR node V are the ancestors of V in the pseudo-tree that are

connected in the constraint graph to V or to descendants of V . The parent-separator

of an OR node V (or an AND node 〈V, v〉) is the set containing V and its ancestors

in the pseudo-tree that are connected in the original graph to descendants of V . The

context of an AND node is the assignments of the variables in the node’s parent-

separator. The context of an OR node is the assignments of the variables in the

node’s parents. Two nodes can be merged together if their context is the same, thus

yielding a search graph. Figure C.8 shows the AND/OR search graph of our example

using OR context-merging. Note that we could merge nodes on both the OR context

and AND context; however, merging with one context makes the other unnecessary

[Dechter and Mateescu, 2006].

C.3 Tree-Based Solution Counting

Below, we discuss solution-counting methods and provide a pseudo-code that op-

erates on binary tree-structured CSPs, the BTD, and AND/OR search graphs. In

Section C.4, we modify this pseudo-code to incorporate our witness mechanism. Our

pseudo-code is specified recursively for readability, but our implementation is itera-

tive. Further, the pseudo-code relies on back-checking for extending consistent partial

solutions, whereas our implementation uses look-ahead.

194

W

21

X Z X Z

1 1 1 2

Y Y
2 3 2

T R T R R
2 1 2 1 2

OR

AND

OR

AND

3

R
2

2

Y
3

T
2

OR

AND

OR

AND

Figure C.8: The AND/OR search graph by merging OR contexts

C.3.1 Solution Counting in a Tree-Structured Binary CSP

Dechter and Pearl [1988] noted that the number of solutions in a tree-structured

binary CSP can be computed in O(nd2) where n is the number of variables and d the

maximum domain size. It computes the number of solutions of a given CSP variable

from the number of solutions of its children in the tree. In summary,

1. the number of solutions rooted at a given variable in the tree-structured CSP is

the summation of the number of solutions ‘rooted’ at each value in the domain

of the variable; and,

2. the number of solutions at a given value of the domain is the product of the

numbers of solutions of the value’s consistent extensions in each of the children

195

of the variable.

We wrote Algorithm 22 to loosely accommodate all three solution methods dis-

cussed in this section. The algorithm is started by running #Sols(root,∅), where

root is the root of the tree. SolCache(child,A) is the cache of a node given a partial

assignment A, and stores, when bound, the number of solutions rooted at the node.

ntotal stores the number of solutions at the root, and nc stores the number of solutions

rooted at the assignment root ← v. Whenever nc = 0 within the loop of Lines 4–

11, we exit the loop. This test is omitted for readability. The original procedure of

Dechter and Pearl [1988] is easily obtained by ignoring the cache (Lines 5, 6, 7, 9,

and 10).

Algorithm 22: #Sols(root,A)
Input: root of a tree structure of a CSP

A: A current partial solution
Output: Number of solutions at root

1 ntotal ← 0
2 foreach v ∈ Domain(root) s.t. v is consistent with A do
3 nc ← 1; Acur ← A∪ {root ← v}
4 foreach child ∈ Children(root) do
5 if SolCache(child,Acur) is bound then
6 cache ← SolCache(child,Acur)
7 else
8 cache ← #Sols(child, Acur)
9 SolCache(child,Acur)← cache

10 Cache good, no-good
11 nc ← nc × cache
12 ntotal ← ntotal + nc

13 return ntotal

196

C.3.2 Solution Counting in the BTD

In the case of the BTD, Algorithm 22 operates on a tree decomposition of the CSP.

Line 2 is called on the last unassigned variable in the root cluster as root. The child

in Line 4 is the first unassigned variable in a child cluster. Before the recursive call

in Line 8 is done on the last unassigned variable in the child cluster, we must first

consistently extend the partial solution over the unassigned variables in the child

cluster except for one variable.

When search succeeds, the BTD caches the instantiation of the variables at the

separators as a ‘good’ along with the number of solutions rooted at this instantiation.

Otherwise, the instantiations at the separator is cached as a ‘no-good.’

C.3.3 Solution Counting in an AND/OR Search Tree

In the case of an AND/OR search tree, Algorithm 22 operates on the pseudo-tree. To

count the solutions, the AND nodes multiply the numbers of solutions of their children

(leaf AND nodes are considered to have one solution); OR nodes add the number of

solutions of their children (leaf OR nodes are considered to have 0 solutions).

The cached information is similar to that cached by the BTD, except that it is

for the instantiations of the variables in the contexts (not at the separators). The

performance of this method is improved by the detection of dead-caches, which are

caches that will never be hit [Darwiche, 2001; Marinescu and Dechter, 2006], and,

thus, need not be recorded. In the presence of a dead-cache, the assignment of

SolCache(child,A) in Line 9 is not executed, and goods/no-goods are not stored in

Line 10. Note that, the space needed for caching is a major bottleneck in tree-based

solution-counting methods. Other techniques for dealing with this bottleneck exist

(e.g., naive-caching and adaptive-caching [Marinescu and Dechter, 2006]) and are

197

orthogonal to our approach.

C.4 Solution Counting in Witness-Based Search

The idea of our witness-based search is to refrain from counting solutions in any

branch off a node in a tree structure before ensuring that the current partial solution

at the node1 can be consistently extended over the variables in each branch off the

node. Indeed, if the solution fails to extend consistently over the variables of a single

branch, then all the counting effort in the branches is wasted by multiplication by 0.

C.4.1 A Generic Pseudo-Code for Witness-Based Search

We specify witness-based search in the generic pseudo-code of Algorithm 23, and

claim that it is applicable to any tree-based solution-counting method. Our technique

interacts too tightly with the solution-counting strategies for it to be implemented as

a separate component of a Constraint Solver. Indeed, the caching information stored

by the various solution-counting strategies depend on the strategy itself. Based on our

experience with two such strategies (i.e., BTD and AND/OR tree search), we found

that the code of such strategies must be directly modified to incorporate witness-based

search.

Algorithm 23 differs from Algorithm 22 by the use of a switch variablemode, which

takes one of two values sat or count to determine whether search should check for

satisfiability (i.e., find a witness) or do solution counting, respectively. The algorithm

is started by running W#Sols(root,∅,count), where root is the root of the tree. In

Line 2, the algorithm examines all the children, either finding a witness in the cache

(Line 5) or doing the search to find a witness (Line 8). If mode=sat, then 1 is
1An AND node in the case of an AND/OR search tree.

198

Algorithm 23: W#Sols(root,A,mode)
Input: root of a tree structure of a CSP

A: A current partial solution
mode: Either sat for satisfiability or count for solution counting

Output: If mode=count, number of solutions at root. Otherwise
(mode=sat), 1 if a witness was found, 0 otherwise

1 ntotal ← 0
2 foreach v ∈ Domain(root) s.t. v is consistent with A do
3 nc ← 1; Acur ← A∪ {root ← v}
4 foreach child ∈ Children(root) do
5 if SolWitnessCache(child,Acur) is bound then
6 cache ← SolWitnessCache(child,Acur)
7 else
8 cache ← W#Sols(child, Acur, sat)
9 SolWitnessCache(child,Acur)← cache

10 Cache good, no-good
11 nc ← nc × cache
12 if mode=sat and nc > 0 then return 1
13

14 if mode=count and nc > 0 then
15 nc ← 1
16 foreach child ∈ Children(root) do
17 if SolCache(child,Acur) is bound then
18 cache ← SolCache(child,Acur)
19 else
20 cache ← W#Sols(child, Acur, count)
21 SolCache(child,Acur)← cache
22 Cache good
23 nc ← nc × cache
24 ntotal ← ntotal + nc

25 return ntotal

returned (Line 12). If mode=count and a witness is found, the algorithm proceeds to

counting the number of solutions (Lines 14 to 23). Comparing Line 10 and Line 22

only goods are cached when mode=count because satisfiability is guaranteed by the

witness mechanism.

199

C.4.2 Analysis of Witness-Based Search

In order to save on the search effort, the implementation of the algorithm should

preserve the state of the search space in a branch where a witness is found so that,

when the same branch is revisited again to count the remaining solutions, the effort

to find the first solution is not repeated and the search can proceed from the witness.

Below, we discuss two implementation strategies for handling the state of the search

space where a witness solution was found. The first strategy does not always preserve

the state of this space, whereas the second does.

In the first implementation strategy, after finding a witness in a branch bri, we

maintain the instantiations of the variables in this branch (i.e., freeze the search

space in bri) while checking on the other branches (which are independent of bri).

Thus, the recursive call in Line 20 to count solutions in bri can continue from the

current (frozen) state of the search. However, when backtracking occurs in the search

above bri, the variables in bri and up to the backtrack level are uninstantiated (i.e.,

the search space in bri is reset). When search resumes, and if the current path

‘conditions’ bri in the same way as it did earlier,2 we know, because of the stored

good, that bri has a witness. However, the state of the search space in bri was reset

because of backtracking. Thus, solution counting will have to restart from scratch.

The advantage of this implementation is that it does not add to the memory space

requirements. Its disadvantage is that, upon backtracking, the effort to find this

first-solution has to be repeated.

The second implementation strategy is similar to the first, except that the caching

is enhanced to also store the variable-value assignments of the witness (i.e., the first

solution in bri). Thus, upon backtracking, the state of the search space in bri is

restored and search can continue from that state when counting the number of solu-
2Determined by the instantiations of the variables in the separators/contexts.

200

tions in bri (Line 20). The advantage of this strategy is that the effort to find the

first-solution need not be repeated. However, the storage size for each cached good

is increased linearly in the number of the variables in the branch.

While the first implementation strategy cannot guarantee that witness-based search

does not increase the number of nodes visited by search, the second strategy does.

We implemented both strategies: the first for the BTD, and the second for AND/OR

tree search. We found them both to be advantageous on the tested instances despite

the occasional and slight increase in the number of nodes visited by the witness-based

BTD.

C.5 Empirical Evaluations

Our experiments assess the improvement brought about by the witness mechanism

on solution-counting methods. We show that adding witness to both the BTD and

AND/OR tree search results in significant improvements of both time and space on

both unsatisfiable and satisfiable CSP instances.

C.5.1 Experimental Set-Up

We integrate GAC (GAC2001 [Bessière et al., 2005]) in all our search algorithms as a

real full look-ahead strategy. We find the pseudo-tree using the technique described

by Bayardo and Mirankar [1996]. We instantiate the variables in the order of the

pseudo-tree.

The experiments are conducted on the benchmarks of the CSP Solver Competi-

tion3 with a time limit of two hours per instance and 8 GB of memory. We provide

plenty of time and memory, to the extent possible, to avoid tainting our experiments
3http://www.cril.univ-artois.fr/CPAI08/

http://www.cril.univ-artois.fr/CPAI08/

201

with censored data. We use benchmarks4 that are difficult for BTD and AND/OR

tree search to illustrate the advantage of using the witness technique in a challenging

context. We split our analysis on the 479 unsatisfiable and 200 satisfiable instances

tested.

It is not our goal to compare the performances of BTD with AND/OR tree search,

but to evaluate the improvement brought about by witness-based search on each of

them. For each of the two solution-counting methods, we focus our analysis on

instances that were completed by search with and without the witness technique. Of

the original 679 instances, the number of those instances is 308 for BTD and 239

for AND/OR search tree.5 Further, we ignore the instances where the performance

did not change in terms of nodes visited (on those instances the CPU time difference

was within less than 0.1% and they used the same caching space). We end up with

106 instances for BTD and 95 instances for AND/OR search tree.6 We analyze

the performance by reporting the following measurements: a) the number of nodes

visited, b) the CPU run time in seconds, and c) the space requirement in terms of

number of goods and no-goods stored. The information about the witness needed to

restore the state of the search space is included in the goods measurement. We show

that witness-based search is advantageous by all three measurements.

C.5.2 Comparing Witness-BTD with BTD

In Tables C.1-C.3, we abbreviate Witness-BTD as W-BTD.
4aim-(50, 100, 200), composed-(25-10-20, 25-1-2, 25-1-25, 25-1-40, 25-1-80, 75-1-2, 75-1-25,

75-1-40, 75-1-80), dag-rand, dubois, graphColoring-(hos, mug, register-mulsol, register-zeroin, sgb-
book, sgb-games, sgb-miles, sgb-queen), hanoi, modifiedRenault, QCP-15, rand-(10-20-10, 8-20-5),
rlfap(GraphsMod, Scens11, ScensMod), ssa, and tightness0.9

5For BTD: 197 unsatisfiable, 111 satisfiable. For AND/OR search tree: 155 unsatisfiable, 84
satisfiable.

6For BTD: 69 unsatisfiable, 37 satisfiable. For AND/OR search tree: 59 unsatisfiable, 36 satis-
fiable.

202

Number of nodes visited: Table C.1 shows the number of instances that a given

technique visits fewer nodes than the other, and the average number of nodes visited

by each algorithm. Note that BTD never outperforms Witness-BTD on unsatisfiable

Table C.1: Number of instances with fewest #NV, and average #NV

BTD W-BTD
Fewest #NV

UNSAT (69) 0 69
SAT (37) 8 29

Average #NV
UNSAT (69) 1,431,275.77 616,502.46
SAT (37) 8,235,685.41 8,166,271.57

instances. On satisfiable instances, Witness-BTD wins more often than BTD (29

instances). However, there are instances where BTD visits fewer nodes than Witness-

BTD (8 instances). The reason is because the implementation of Witness-BTD does

not restore the search space for cached witnesses, but instead searches again for

the first solution, as discussed in Section C.4.2. Witness-BTD clearly outperforms

BTD on unsatisfiable instances, showing substantial savings of not searching partial

solutions that never participate in a global solution. On satisfiable instances, the

difference is not as significant, albeit it shows an improvement. Notice, that although

some search effort was wasted in our implementation of Witness-BTD (BTD visited

fewer nodes on 8 instances than Witness-BTD), Witness-BTD still always saves on

average on the number of nodes visited.

Run time: The savings in the number of nodes visited match those exhibited by

the CPU time. Table C.2 reports the number of instances on which a given algorithm

completed fastest within the CPU clock-resolution of 100 ms (thus, with occasional

ties), and the average CPU time. On unsatisfiable instances, Witness-BTD solves

more instances fastest than BTD and has a smaller average CPU time. On satisfiable

203

Table C.2: #Instances completed fastest and average time

#Fastest Avg. time (sec.)
BTD W-BTD BTD W-BTD

UNSAT (69) 21 55 135.28 110.01
SAT (37) 21 17 724.51 723.97

instances, BTD is fastest on more instances than Witness-BTD (21 vs. 17 instances).

However, the average CPU time is slightly less for the Witness-BTD. Thus, Witness-

BTD yields savings (on unsatisfiable instances) while causing no significant overhead

(on satisfiable instances).

Space requirements: Table C.3 gives the average number of stored goods and no-

goods. Notice that the number of no-goods for Witness-BTD and BTD are almost

Table C.3: Average number of goods and no-goods stored

BTD W-BTD
Average #no-goods

UNSAT(69) 43,675.77 43,675.74
SAT(37) 449,633.21 449,516.29

Average #goods
UNSAT(69) 24,104.52 10,611.10

SAT(37) 160,025.63 148,739.58

identical, which is to be expected given that Witness-BTD finds the same no-goods,

only earlier. However, the number of goods stored is significantly reduced by Witness-

BTD. This fact illustrates how Witness-BTD avoids storing partial solutions that

cannot be completed to global solutions, which is exactly our intended design.

In summary, Witness-BTD achieves its goal: it saves on the number of nodes

visited, time, and space, and never yields any overheads. It is a safe and robust

strategy to implement in all circumstances, and clearly improves BTD. Therefore, it

can be safely applied at all times.

204

C.5.3 Comparing Witness-AND/OR with AND/OR Tree

Search

In Tables C.4-C.6, we abbreviate AND/OR tree search as AO and witness-AND/OR

tree-search as W-A/O.

Number of nodes visited: As stated in Section C.4.2, Witness-AND/OR tree

search is guaranteed to never visit more nodes than AND/OR tree search does. The

variable-value assignments of the witness are cached so that the state of the search

space can be restored to allow solution counting to resume from the witness. Table C.4

gives the average number of nodes visited by each strategy and shows a large reduction

on both satisfiable and unsatisfiable instances.

Table C.4: Average #NV

A/O W-A/O
UNSAT (59) 580,762.02 537,552.56
SAT (36) 24,314,616.44 19,521,667.08

Run time: Once again, the reduction of the nodes visited directly translates into

CPU time savings. Table C.5 shows the number of instances on which a given algo-

rithm completed the fastest (within the CPU clock-resolution) and the average CPU

time. AND/OR tree search did complete a few instances fastest (19 unsatisfiable and

Table C.5: #Instances completed fastest and average time

#Fastest Avg. time (sec.)
A/O W-A/O A/O W-A/O

UNSAT (59) 19 59 110.56 102.96
SAT (36) 10 29 693.16 569.73

10 satisfiable). However, note that the 19 unsatisfiable instances that AND/OR tree

205

search completed fastest tie with Witness-AND/OR tree search. Indeed, Witness-

AND/OR tree search was fastest on all 59 unsatisfiable instances. Looking at the

average CPU time, Witness-AND/OR outperformed AND/OR tree search on both

satisfiable and unsatisfiable instances.

Space requirements: Table C.6 gives the average number of stored goods and no-

goods by AND/OR and Witness-AND/OR tree search. As discussed for the case of

Table C.6: Average number of goods and no-goods stored

A/O W-A/O
Average #no-goods

UNSAT(59) 9,645.76 9,645.66
SAT(36) 725,561.92 711,190.75

Average #goods
UNSAT(59) 8,103.34 5,783.95

SAT(36) 103,506.00 47,470.53

BTD, there are roughly the same number of no-goods stored for Witness-AND/OR

and AND/OR tree search. However, the average number of goods stored is signifi-

cantly reduced on both satisfiable and unsatisfiable instances. Because witness-based

search dramatically reduces the space needed for caching, it directly benefits adap-

tive caching schemes to maintain more information cached than it would otherwise

be possible [Marinescu and Dechter, 2006].

In summary, Witness-AND/OR tree search is a beneficial strategy to implement

and use in all circumstances and clearly improves AND/OR tree search.

C.5.4 An example with extreme benefits

While the average values of the results reported above show a clear advantage of the

witness-based search, we explore below a situation where an extreme saving can be

206

obtained.

Inspired by the experiments reported by Otten and Dechter [2012], we manually

create an instance of a CSP that has a very large search space but is unsolvable. We

show how Witness-AND/OR search can yield extreme gains. In practice, we proceed

as follows. We connect a large search space many solutions to another search space

with no solutions as illustrated in Figure C.9. To this end, we generate the pseudo-tree

>>#Sol

0 #Sol
Figure C.9: Connecting a tree with no solution to a tree with many solutions

of each problem independently. We identify the root node of the barren search space.

In the pseudo-tree of the solvable instance, we identify a variable that appears at

the ‘middle height’ of the tree. Then, we add an arbitrary binary constraint between

the two identified variables, thus linking the two CSP instances. We solve the newly

formed instance with both AND/OR and Witness-AND/OR.

We generated one such problem by connecting an unsatisfiable aim-50 instance

(normalized-aim50-1-6-unsat1.xml) to a pseudo-garden instance (normalized-g-9x9.xml)

by adding an equality constraint between two variables (V53 of pseudo-garden to V1

of aim-50). The results were as follows:

1. AND/OR search expanded 2,657,758 nodes and detected unsolvability in 31.61

207

seconds.

2. Witness-AND/OR search reduces the effort by over 90%, visiting 63,476 nodes

for a total of 2.25 seconds CPU time.

This example illustrates the significant advantage witness-based techniques can pro-

vide. Again, as stated earlier, this advantage does not cause any overhead.

Summary

In this chapter, we proposed witness-based search as a strategy to improve the time

and space performance of solution-counting methods that operate on a tree structure.

We empirically showed that our technique benefit solution-counting methods based

on the BTD and AND/OR tree search improving performance by all measurements,

especially the space needed for caching, which is a major bottleneck in such methods.

As future work, we plan to extend our approach to approximate solution counting

[Gogate and Dechter, 2008]. We believe that the space savings obtained by our witness

strategy will allow us to achieve better approximations.

208

Appendix D

Assigning Blame when Triggering

HLC

When search backtracks, the changes that the consistency algorithm made on the

problem has to be undone. When a consistency algorithm is enforced uniformly at

ever level of search, we can use the level of search to determine when that change

was made. However, when a consistency algorithm is enforced selectively, the level of

search does not accurately determine when the change was made.

We first present an example illustrating such a situation. Then, we propose two

strategies for how to correctly assign blame. The first being an exact strategy, which

will precisely determine where the blame occurs, and the second an approximation.

D.1 A Simple Motivating Example

We present motivating example to illustrate the situation where selectively applying

higher-level consistency can lead to repeated work being done.

Example 7 Consider that a high-level consistency (HLC) algorithm was ran at pre-

209

processing. Search chooses to instantiate A ← 1, but HLC was not enforced at this

step. Search can then instantiate variables B ← 1 and C ← 1 through a domino effect

(i.e., B and C only had one value in their domain). At this point HLC is enforced

for a second time and determines that D cannot take value 1. However, because B

and C were instantiated using a domino effect the removal of 1 from D is attributed

to the instantiation of A for backtracking purposes.

Assigning the blame to the correct level is important because upon backtracking,

all of the values removed by consistency are restored. In the situation of selectively

running a consistency algorithm, determining the appropriate level of where to assign

the blame, which may appear at a shallower depth in the search tree, saves on repeated

work.

D.2 Apply Consistency at Each Step

The simplest approach to determining the correct depth of the search tree when a

higher-level consistency could remove a value is to run the higher-level consistency at

every depth of the search tree. In the case of selectively enforcing an HLC, restore

the CSP to the state in which the HLC was last enforced. Re-apply the conditioning

steps of search while enforcing the HLC algorithm at every step.

Such an approach has the advantage that the removal of values is attributed to

the depth of search where the HLC first removed the value, but at the cost of many

calls to the HLC algorithm.

210

D.3 An Approximation of Blame

We propose to use a single application of HLC and a heuristic to determine the level

of search that could have caused the change, which we refer to as the ‘blame.’ The

heuristic remains correct, meaning that it does not attribute the blame to a level

prior to when it could be determined.

Our heuristic for assigning blame for a given change in the problem is by tracking

the deepest level in search that caused every reduction. We break our discussion first

on variable-based consistencies and then relational-based consistencies.

D.3.1 Variable-Based Consistencies

We address variable-based consistencies in the following manner. Each future variable

is assigned a ‘blame’ variable that specifies the deepest variable that last modified

the variable. Initially no variables are assigned, so the blame of every variable is none

as no variable. Assigned variables are given a blame value of themselves. When a

value is removed from a variable, the set of constraints that caused the removal are

considered. The union of all of their scopes are considered, and the deepest blame

variable from the union of scopes is then assigned to this removal. The blame variable

of the variable is updated to the found blame variable.

The blame variable is similar to Prosser’s [1993] ‘past-fc[·]’ data-structure in For-

ward Checking and Conflict-Directed Backjumping (FC-CBJ), which stores a set of

assigned variables that are responsible for the modification of a future variable. In

our situation, we are storing the blame of variable x deepest variable of past-fc[x].

211

D.3.2 Relational-Based Consistencies

We address relation-based consistencies in the following manner. Each relation is

assigned a ‘blame’ variable. Initially no variables are assigned and no values have

been removed, thus the blame of every relation is none. When a tuple is removed

from a relation, the set of constraints that caused the removal are considered. The

union of all of their scopes are considered, and the deepest blame variable from the

union of scopes is recorded as the blame variable for the relation.

D.3.3 Considering Both Relational and Variable-Based

Consistencies

We address consistencies that are both relational and variable-based in the following

manner. When considering the set of constraints that caused a removal, the deepest

blame variable both the relations and the union of variables in the scopes should be

considered.

It can easily be noticed that these techniques are only approximative of where the

blame is to be assigned. The techniques over-approximate where the blame is to be

assigned, and in certain situations could be placed earlier in the tree. However, they

do not under-approximate, so the blame should not have appeared later. Further,

the order of values removed can affect the location of the approximation.

Theorem 17 The approximation when using variable-based consistencies is correct.

Proof: (By contradiction) Assume that the approximation is not correct. That is,

at search level i the consistency algorithm determines that the removal of X ← v

through the consideration of the constraints C = {c1, c2, . . . , cm} is attributed to

level j < i, but the real level is j < k < i.

212

Consider S = ∪cl∈Cscp(cl). The blame of each of these variables in S at search

level i will be ≤ j. The variables were not modified between levels j and i. Thus, the

information at level j could find the change, which contradicts that the level should

be k. �

Theorem 18 The approximation when using relational-based consistencies is correct.

Proof: Follows by the same argument as Theorem 17. �

Theorem 19 The approximation when using both relational and variable-based con-

sistencies is correct.

Proof: Follows by the same argument as Theorem 17. �

Notice, for POAC all of the variables are considered at any given time, thus, the

blame will always be the current level.

Summary

In this chapter we introduced a strategy for determining the depth of search that

filtering can be attributed to when using a triggering strategy. In particular, we

identified an exact strategy and an approximation.

213

Appendix E

Benchmark Information

In this appendix, we provide information about the benchmarks from Lecoutre’s

website1 used in this thesis. In particular, we report the primal graph density of the

benchmarks and then report the performance of searching using GAC2001 [Bessière

et al., 2005] or STR2+ [Lecoutre, 2011] as RFL.

E.1 Primal Density of Benchmarks

Table E.1 shows the average, min, and max primal density for each benchmark. If

the average density is greater less than 50%, the density is shown in gray to indicate

that it is included in the experiments.

Table E.1: Primal densities for benchmark instances

B
en

ch
m

ar
k

M
ax

A
ri

ty

#
In

st
an

ce
s

#
M

em
ou

t Primal Density

M
in

M
ax

A
ve

ra
ge

Summary 5,998 9,549 5,484 0.1% 100.0% 36.8%
aim-100 3 24 0 7.2% 24.9% 12.4%

1www.cril.univ-artois.fr/~lecoutre/benchmarks.html

www.cril.univ-artois.fr/~lecoutre/benchmarks.html

214

. . . continued

B
en

ch
m

ar
k

M
ax

A
ri

ty

#
In

st
an

ce
s

#
M

em
ou

t Primal Density

M
in

M
ax

A
ve

ra
ge

aim-200 3 24 0 3.7% 15.3% 6.8%
aim-50 3 24 0 14.0% 45.4% 23.2%
allIntervalSeries 3 25 2 50.9% 66.7% 55.6%
allsquares 38 37 37 - - -
allsquaresUnsat 38 37 37 - - -
bddLarge 15 35 0 100.0% 100.0% 100.0%
bddSmall 18 35 0 100.0% 100.0% 100.0%
BH-4-13 2 7 0 19.8% 19.8% 19.8%
BH-4-4 2 10 0 22.1% 22.1% 22.1%
BH-4-7 2 20 0 20.7% 20.7% 20.7%
bibd10-11 12 6 6 - - -
bibd12-13 132 7 7 - - -
bibd6 100 10 10 - - -
bibd7 98 14 14 - - -
bibd8 98 7 7 - - -
bibd9 12 10 10 - - -
bibdVariousK 21 29 29 - - -
bmc/ 53 24 24 - - -
bqwh-15-106 2 100 0 11.6% 11.6% 11.6%
bqwh-18-141 2 100 0 9.8% 9.8% 9.8%
cabinet 14 40 40 - - -
chessboardColoration 4 20 2 100.0% 100.0% 100.0%
cjss 3 10 10 - - -
classes 9 100 100 - - -
coloring 2 22 0 5.7% 53.3% 19.2%
compet02 2 20 20 - - -
compet08 24 16 16 - - -
composed-25-1-2 2 10 0 42.4% 42.4% 42.4%
composed-25-1-25 2 10 0 46.8% 46.8% 46.8%
composed-25-1-40 2 10 0 49.6% 49.6% 49.6%
composed-25-1-80 2 10 0 57.2% 57.2% 57.2%

215

. . . continued

B
en

ch
m

ar
k

M
ax

A
ri

ty

#
In

st
an

ce
s

#
M

em
ou

t Primal Density

M
in

M
ax

A
ve

ra
ge

composed-25-10-20 2 10 0 11.4% 11.4% 11.4%
composed-75-1-2 2 10 0 18.3% 18.3% 18.3%
composed-75-1-25 2 10 0 19.0% 19.0% 19.0%
composed-75-1-40 2 10 0 19.5% 19.5% 19.5%
composed-75-1-80 2 10 0 20.6% 20.6% 20.6%
costasArray 2 11 11 - - -
cril 11 8 0 1.7% 100.0% 37.2%
domino 2 24 10 0.1% 2.0% 0.7%
driver 2 7 0 8.3% 11.2% 9.9%
dubois 3 13 0 1.3% 6.7% 4.9%
ehi-85 2 100 0 9.3% 9.4% 9.3%
ehi-90 2 100 0 8.8% 8.9% 8.9%
fapp01-05/fapp01 2 11 11 - - -
fapp01-05/fapp02 2 11 11 - - -
fapp01-05/fapp03 2 11 11 - - -
fapp01-05/fapp04 2 11 11 - - -
fapp01-05/fapp05 2 11 11 - - -
fapp06-10/fapp06 2 11 11 - - -
fapp06-10/fapp07 2 11 11 - - -
fapp06-10/fapp08 2 11 11 - - -
fapp06-10/fapp09 2 11 11 - - -
fapp06-10/fapp10 2 11 11 - - -
fapp11-15/fapp11 2 11 11 - - -
fapp11-15/fapp12 2 11 11 - - -
fapp11-15/fapp13 2 11 11 - - -
fapp11-15/fapp14 2 11 11 - - -
fapp11-15/fapp15 2 11 11 - - -
fapp16-20/fapp16 2 11 11 - - -
fapp16-20/fapp17 2 11 11 - - -
fapp16-20/fapp18 2 11 11 - - -
fapp16-20/fapp19 2 11 11 - - -

216

. . . continued

B
en

ch
m

ar
k

M
ax

A
ri

ty

#
In

st
an

ce
s

#
M

em
ou

t Primal Density

M
in

M
ax

A
ve

ra
ge

fapp16-20/fapp20 2 11 11 - - -
fapp21-25/fapp21 2 11 11 - - -
fapp21-25/fapp22 2 11 11 - - -
fapp21-25/fapp23 2 11 11 - - -
fapp21-25/fapp24 2 11 11 - - -
fapp21-25/fapp25 2 11 11 - - -
fapp26-30/fapp26 2 11 11 - - -
fapp26-30/fapp27 2 11 11 - - -
fapp26-30/fapp28 2 11 11 - - -
fapp26-30/fapp29 2 11 11 - - -
fapp26-30/fapp30 2 11 11 - - -
fapp31-35/fapp31 2 11 11 - - -
fapp31-35/fapp32 2 11 11 - - -
fapp31-35/fapp33 2 11 11 - - -
fapp31-35/fapp34 2 11 11 - - -
fapp31-35/fapp35 2 11 11 - - -
fapp36-40/fapp36 2 11 11 - - -
fapp36-40/fapp37 2 11 11 - - -
fapp36-40/fapp38 2 11 11 - - -
fapp36-40/fapp39 2 11 11 - - -
fapp36-40/fapp40 2 11 11 - - -
fischer 3 121 121 - - -
frb30-15 2 10 0 47.8% 49.9% 48.7%
frb35-17 2 10 0 43.7% 45.9% 44.5%
frb40-19 2 10 0 39.5% 41.8% 41.1%
frb45-21 2 10 0 37.3% 39.8% 38.3%
frb50-23 2 10 0 34.9% 37.2% 35.8%
frb53-24 2 10 0 34.1% 34.5% 34.4%
frb56-25 2 10 0 33.2% 34.1% 33.5%
frb59-26 2 10 0 31.5% 32.7% 32.1%
geom 2 100 0 27.7% 45.3% 34.4%

217

. . . continued

B
en

ch
m

ar
k

M
ax

A
ri

ty

#
In

st
an

ce
s

#
M

em
ou

t Primal Density

M
in

M
ax

A
ve

ra
ge

golombRulerArity3 3 14 0 71.4% 79.0% 75.1%
golombRulerArity4 4 14 12 100.0% 100.0% 100.0%
graphs-valiente 64 793 775 100.0% 100.0% 100.0%
half 7 25 0 97.0% 99.7% 98.3%
hanoi 2 5 0 1.6% 33.3% 11.8%
haystacks 2 51 17 2.6% 22.5% 6.5%
hos/ 2 14 5 0.7% 2.8% 1.7%
insertion/full-insertion 2 41 4 1.6% 23.0% 7.0%
insertion/k-insertion 2 32 0 1.0% 10.8% 4.3%
jnhSat 14 16 0 84.0% 89.9% 85.5%
jnhUnsat 11 34 0 83.9% 88.4% 86.3%
jobShop-e0ddr1 2 10 0 21.6% 21.6% 21.6%
jobShop-e0ddr2 2 10 0 21.6% 21.6% 21.6%
jobShop-enddr1 2 10 0 21.6% 21.6% 21.6%
jobShop-enddr2 2 6 0 21.6% 21.6% 21.6%
jobShop-ewddr2 2 10 0 21.6% 21.6% 21.6%
knights 2 19 19 - - -
langford 2 4 0 100.0% 100.0% 100.0%
langford2 2 24 1 100.0% 100.0% 100.0%
langford3 2 24 2 100.0% 100.0% 100.0%
langford4 2 24 4 100.0% 100.0% 100.0%
lard 2 10 0 100.0% 100.0% 100.0%
largeQueens 2 5 5 - - -
latinSquare 12 10 10 - - -
leighton/leighton-15 2 28 0 8.1% 16.6% 12.3%
leighton/leighton-25 2 32 0 8.2% 17.2% 12.7%
leighton/leighton-5 2 8 0 5.7% 9.7% 7.7%
lexHerald 34 47 47 - - -
lexPuzzle 2 22 21 100.0% 100.0% 100.0%
lexVg 20 63 0 10.7% 40.0% 19.4%
magicSquare 4 18 18 - - -

218

. . . continued

B
en

ch
m

ar
k

M
ax

A
ri

ty

#
In

st
an

ce
s

#
M

em
ou

t Primal Density

M
in

M
ax

A
ve

ra
ge

marc 2 11 0 100.0% 100.0% 100.0%
medium 2 5 5 - - -
mknap 15 6 4 100.0% 100.0% 100.0%
modifiedRenault 10 50 0 8.7% 9.6% 9.0%
mug/ 2 8 0 3.4% 3.8% 3.6%
myciel 2 16 0 13.0% 36.4% 20.4%
nengfa 10 10 5 1.4% 100.0% 39.2%
ogdHerald 46 50 50 - - -
ogdPuzzle 2 22 21 100.0% 100.0% 100.0%
ogdVg 20 65 0 10.7% 40.0% 19.1%
ortholatin 4 9 9 - - -
os-gp-sat 2 10 10 - - -
os-gp-unsat 2 10 10 - - -
pigeons_glb 5 19 19 - - -
pigeons 2 25 0 100.0% 100.0% 100.0%
pret 3 8 0 2.7% 6.8% 4.7%
primes-10 5 32 30 9.1% 38.1% 23.6%
primes-15 3 32 31 38.1% 38.1% 38.1%
primes-20 3 32 31 38.1% 38.1% 38.1%
primes-25 3 32 31 38.1% 38.1% 38.1%
primes-30 3 32 31 38.1% 38.1% 38.1%
pseudo/aim 3 48 0 1.4% 16.9% 5.8%
pseudo/chnl 20 21 16 11.0% 17.4% 14.0%
pseudo/circuits 20 7 4 19.6% 52.2% 40.6%
pseudo/course 22 4 4 - - -
pseudo/fpga 20 36 15 7.5% 15.4% 11.5%
pseudo/garden 5 7 1 4.8% 100.0% 35.7%
pseudo/ii 10 41 27 0.5% 5.9% 1.5%
pseudo/jnh 14 16 0 37.2% 43.8% 38.7%
pseudo/logic-synthesis 18 17 16 1.6% 1.6% 1.6%
pseudo/mps 19 49 43 3.7% 100.0% 60.8%

219

. . . continued

B
en

ch
m

ar
k

M
ax

A
ri

ty

#
In

st
an

ce
s

#
M

em
ou

t Primal Density

M
in

M
ax

A
ve

ra
ge

pseudo/mpsReduced 5,998 106 106 - - -
pseudo/niklas 3,861 19 19 - - -
pseudo/par 3 30 30 - - -
pseudo/ppp 29 6 6 - - -
pseudo/primesDimacs 18 11 11 - - -
pseudo/radar 27 12 12 - - -
pseudo/routing 35 15 15 - - -
pseudo/ssa 5 8 8 - - -
pseudo/ttp 36 8 8 - - -
pseudo/uclid 25 39 39 - - -
pseudoGLB 7 384 384 - - -
QCP-10 2 15 0 18.2% 18.2% 18.2%
QCP-15 2 15 0 12.5% 12.5% 12.5%
QCP-20 2 15 0 9.5% 9.5% 9.5%
QCP-25 2 15 0 7.7% 7.7% 7.7%
QG3/ 18 7 6 57.4% 57.4% 57.4%
QG4/ 18 7 6 57.4% 57.4% 57.4%
QG5/ 9 7 3 13.6% 25.4% 18.7%
QG6/ 18 7 6 48.8% 48.8% 48.8%
QG7/ 18 7 6 48.8% 48.8% 48.8%
queenAttacking 2 10 3 88.9% 98.2% 95.2%
queens 2 14 5 100.0% 100.0% 100.0%
queensKnights 2 18 5 100.0% 100.0% 100.0%
QWH-10 2 10 0 18.2% 18.2% 18.2%
QWH-15 2 10 0 12.5% 12.5% 12.5%
QWH-20 2 10 0 9.5% 9.5% 9.5%
QWH-25 2 10 0 7.7% 7.7% 7.7%
radar-8-24-3-2 19 50 50 - - -
radar-8-30-3-0 22 50 50 - - -
radar-9-28-4-2 24 50 50 - - -
ramsey3 3 8 0 15.4% 36.4% 23.9%

220

. . . continued

B
en

ch
m

ar
k

M
ax

A
ri

ty

#
In

st
an

ce
s

#
M

em
ou

t Primal Density

M
in

M
ax

A
ve

ra
ge

ramsey4 3 8 0 8.7% 15.4% 11.7%
rand-10-20-10 10 20 0 73.7% 88.2% 79.1%
rand-10-60-20 10 50 0 52.0% 58.3% 54.4%
rand-2-23 2 10 0 100.0% 100.0% 100.0%
rand-2-24 2 10 0 100.0% 100.0% 100.0%
rand-2-25 2 10 0 100.0% 100.0% 100.0%
rand-2-26 2 10 0 100.0% 100.0% 100.0%
rand-2-27 2 10 0 100.0% 100.0% 100.0%
rand-2-30-15-fcd 2 50 0 47.8% 52.9% 51.1%
rand-2-30-15 2 50 0 47.8% 52.9% 51.1%
rand-2-40-19-fcd 2 50 0 41.7% 45.0% 43.4%
rand-2-40-19 2 50 0 41.7% 45.0% 43.4%
rand-2-50-23-fcd 2 50 0 37.1% 39.6% 38.1%
rand-2-50-23 2 50 0 37.1% 39.6% 38.1%
rand-3-20-20-fcd 3 50 0 55.8% 67.4% 61.3%
rand-3-20-20 3 50 0 55.8% 67.4% 61.3%
rand-3-24-24-fcd 3 50 0 52.2% 60.5% 56.4%
rand-3-24-24 3 50 0 52.2% 60.5% 56.4%
rand-3-28-28-fcd 3 50 0 48.9% 56.9% 52.6%
rand-3-28-28 3 50 0 48.9% 56.9% 52.6%
rand-5-12-12 5 50 0 100.0% 100.0% 100.0%
rand-8-20-5 8 20 0 91.1% 96.8% 94.8%
rand 15 25 0 99.6% 100.0% 100.0%
rcpsp 25 39 39 - - -
rcpspTighter 25 39 39 - - -
register/fpsol 2 37 7 13.2% 32.3% 19.6%
register/inithx 2 32 10 9.0% 13.9% 9.9%
register/mulsol 2 49 0 25.8% 41.5% 30.1%
register/zeroin 2 31 0 28.9% 52.1% 38.6%
renault 10 2 0 10.0% 10.0% 10.0%
rlfapGraphs 2 14 0 1.1% 5.7% 2.7%

221

. . . continued

B
en

ch
m

ar
k

M
ax

A
ri

ty

#
In

st
an

ce
s

#
M

em
ou

t Primal Density

M
in

M
ax

A
ve

ra
ge

rlfapGraphsMod 2 12 0 0.4% 100.0% 17.9%
rlfapScens11 2 12 0 1.8% 1.8% 1.8%
rlfapScens 2 11 0 1.7% 6.6% 3.1%
rlfapScensMod 2 13 0 0.9% 6.2% 3.0%
school 2 8 0 24.8% 26.9% 25.8%
schurrLemma 3 10 0 97.0% 99.7% 98.7%
sgb/book 2 26 0 1.1% 12.7% 7.4%
sgb/games 2 4 0 8.9% 8.9% 8.9%
sgb/miles 2 42 0 7.8% 64.0% 37.8%
sgb/queen 2 50 0 19.4% 53.3% 28.1%
si2-bvg 2 360 360 - - -
si2-m4D 259 120 120 - - -
si2-rand 12 120 120 - - -
si4-bvg 4 360 360 - - -
si4-m4D 518 120 120 - - -
si4-rand 24 120 120 - - -
si6-bvg 6 360 360 - - -
si6-m4D 777 120 120 - - -
si6-rand 36 120 120 - - -
small 19 5 5 - - -
socialGolfers 24 12 6 1.1% 2.0% 1.5%
ssa/ 6 8 1 0.3% 16.2% 3.8%
subs 2 9 0 45.0% 83.1% 67.2%
super-jobShop-e0ddr1 2 10 0 17.1% 17.1% 17.1%
super-jobShop-e0ddr2 2 10 0 17.1% 17.1% 17.1%
super-jobShop-enddr1 2 10 0 17.1% 17.1% 17.1%
super-jobShop-enddr2 2 6 0 17.1% 17.1% 17.1%
super-jobShop-ewddr2 2 10 0 17.1% 17.1% 17.1%
super-js-taillard-15 2 30 30 - - -
super-js-taillard-20-15 2 30 30 - - -
super-js-taillard-20 2 30 30 - - -

222

. . . continued

B
en

ch
m

ar
k

M
ax

A
ri

ty

#
In

st
an

ce
s

#
M

em
ou

t Primal Density

M
in

M
ax

A
ve

ra
ge

super-os-taillard-10 2 30 30 - - -
super-os-taillard-15 2 30 30 - - -
super-os-taillard-20 2 30 30 - - -
super-os-taillard-4 2 30 0 32.3% 32.3% 32.3%
super-os-taillard-5 2 30 0 26.5% 26.5% 26.5%
super-os-taillard-7 2 30 30 - - -
super-queens 2 14 6 75.3% 78.6% 76.2%
tdsp 6 42 42 - - -
test01-04/test01 2 11 11 - - -
test01-04/test02 2 11 11 - - -
test01-04/test03 2 11 11 - - -
test01-04/test04 2 11 11 - - -
tightness0.1 2 100 0 96.5% 96.5% 96.5%
tightness0.2 2 100 0 53.1% 53.1% 53.1%
tightness0.35 2 100 0 32.1% 32.1% 32.1%
tightness0.5 2 100 0 23.1% 23.1% 23.1%
tightness0.65 2 100 0 17.3% 17.3% 17.3%
tightness0.8 2 100 0 13.2% 14.5% 13.2%
tightness0.9 2 100 0 10.8% 11.8% 10.8%
travellingSalesman-20 3 15 0 14.8% 14.8% 14.8%
travellingSalesman-25 3 15 0 14.0% 14.0% 14.0%
ukHerald 38 50 50 - - -
ukPuzzle 2 22 21 100.0% 100.0% 100.0%
ukVg 20 65 0 10.7% 40.0% 19.1%
varDimacs 10 9 0 0.5% 28.6% 15.5%
wordsHerald 38 49 49 - - -
wordsPuzzle 2 22 21 100.0% 100.0% 100.0%
wordsVg 20 65 0 10.7% 40.0% 19.1%

223

E.2 Performance of GAC2001 and STR2+ on

Binary CSPs

Table E.2 report the performance of searching using GAC2001 [Bessière et al., 2005]

or STR2+ [Lecoutre, 2011] as RFL.

Table E.2: Performance of GAC2001 and STR2+ on Binary CSPs

B
en

ch
m

ar
k

#
In

st
an

ce
s #Solved

∑
CPU

#
N

V

G
A

C
20

01

ST
R

2+

G
A

C
20

01

ST
R

2+

Summary 2,125 1,750 1,725 114,565.6 >303,622.2 108,758.7
BH-4-4 10 10 10 419.6 723.6 428,832.0
QCP-10 15 15 15 3.6 4.7 520.2
QCP-15 15 15 15 668.7 1,310.0 235,194.5
QCP-20 15 5 4 2,103.3 >5,328.7 770,529.5
QCP-25 15 1 1 21.9 25.8 4,295.0
QWH-10 10 10 10 1.8 2.1 327.6
QWH-15 10 10 10 22.9 34.4 6,814.1
QWH-20 10 9 9 1,292.5 2,581.3 532,566.1
QWH-25 10 0 0 - - -
bqwh-15-106 100 100 100 32.9 56.6 3,185.0
bqwh-18-141 100 100 100 425.4 814.0 42,308.0
coloring 22 22 22 397.4 734.1 343,874.5
composed-25-1-2 10 10 10 1.0 1.6 517.9
composed-25-1-25 10 10 10 1.1 1.8 446.1
composed-25-1-40 10 10 10 1.2 2.0 418.4
composed-25-1-80 10 10 10 1.3 2.2 258.8
composed-25-10-20 10 10 10 2.2 3.2 663.8
composed-75-1-2 10 10 10 2.7 4.6 1,106.4
composed-75-1-25 10 10 10 3.0 5.1 1,026.1
composed-75-1-40 10 10 10 3.1 5.3 869.3
composed-75-1-80 10 10 10 3.1 4.8 511.8
domino 24 14 12 2,823.8 >7,916.3 600.0

224

. . . continued

B
en

ch
m

ar
k

#
In

st
an

ce
s #Solved

∑
CPU

#
N

V

G
A

C
20

01

ST
R

2+

G
A

C
20

01

ST
R

2+

driver 7 7 7 55.6 83.8 6,825.1
ehi-85 100 100 100 250.6 360.6 1,397.9
ehi-90 100 100 100 263.2 369.8 1,235.4
frb30-15 10 10 10 15.0 36.5 3,607.8
frb35-17 10 10 10 149.9 383.9 32,255.6
frb40-19 10 10 10 1,295.4 3,347.9 253,514.0
frb45-21 10 8 7 6,151.3 >17,642.0 1,268,086.4
frb50-23 10 2 2 625.7 1,622.8 477,914.0
geom 100 100 100 2,439.1 7,254.3 27,235.8
hanoi 5 5 5 30.6 2.4 47.6
hos 14 12 11 1,060.0 >4,728.6 3,830.6
insertion/full-insertion 41 32 32 1,979.3 3,923.3 65,648.6
insertion/k-insertion 32 16 16 206.1 355.2 367,761.6
jobShop-e0ddr1 10 5 5 363.3 2,683.0 57,132.0
jobShop-e0ddr2 10 6 4 2,480.7 >7,244.6 50.0
jobShop-enddr1 10 9 9 150.4 196.9 2,009.3
jobShop-enddr2 6 4 3 1,601.4 >3,637.0 50.0
jobShop-ewddr2 10 10 10 235.6 129.9 50.0
knights 19 0 0 - - -
leighton/leighton-25 32 6 6 95.8 109.1 286.7
leighton/leighton-5 8 8 8 45.1 54.2 495.5
mug 8 4 4 .1 .1 94.0
myciel 16 13 13 1,817.2 3,161.1 985,349.7
rand-2-30-15-fcd 50 50 50 96.8 232.2 5,054.8
rand-2-30-15 50 50 50 169.8 415.9 8,999.1
rand-2-40-19-fcd 50 50 49 10,098.7 >25,093.2 332,287.0
rand-2-40-19 50 50 49 20,323.0 >51,055.4 723,885.4
rand-2-50-23-fcd 50 7 2 9,922.5 >23,212.3 1,359,944.0
rand-2-50-23 50 4 0 6,827.1 >14,400.0 -
register/fpsol 37 5 5 79.0 84.9 298.2
register/inithx 32 5 5 160.6 174.7 376.2

225

. . . continued

B
en

ch
m

ar
k

#
In

st
an

ce
s #Solved

∑
CPU

#
N

V

G
A

C
20

01

ST
R

2+

G
A

C
20

01

ST
R

2+

register/mulsol 49 10 10 83.9 88.3 294.9
rlfapGraphs 14 14 14 154.2 136.4 344.4
rlfapGraphsMod 12 12 12 138.9 394.3 12,350.0
rlfapScens11 12 6 5 2,282.2 >6,076.0 59,473.6
rlfapScens 11 11 11 140.3 130.4 514.5
rlfapScensMod 13 13 13 80.7 165.1 2,637.2
school 8 3 3 80.3 85.7 363.7
sgb/book 26 23 22 5,052.1 >10,337.2 1,367,470.9
sgb/games 4 4 4 230.0 600.8 882,427.3
sgb/queen 50 15 14 3,146.9 >9,312.9 189,142.9
super-os/super-os-taillard-4 30 28 28 1,951.1 7,647.2 6,713.1
super-os/super-os-taillard-5 30 12 9 5,359.5 >22,771.1 7,153.8
tightness0.35 100 100 100 3,067.4 7,547.1 80,978.6
tightness0.5 100 100 100 4,264.9 11,562.0 100,557.5
tightness0.65 100 100 100 3,402.3 10,056.7 62,131.6
tightness0.8 100 100 100 3,352.5 10,839.2 36,255.3
tightness0.9 100 100 100 4,557.2 14,314.1 25,658.8

226

Appendix F

Detailed Results for Chapter 4

Table F.1 shows detailed results for Chapter 4.

227

Table F.1: All benchmark data sorted by PrePeak+ CPU time gain over STR

solved by
∑

CPU [sec] # Calls POAC

B
en

ch
m
ar
k

#
In
st
an

ce
s

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

pseudo-ii 41 9 14 14 13 12 >18,619.8 2,481.9 2,088.4 >5,273.4 >8,749.7 18,202.9 0.0 0.0 0.0

dubois 13 6 11 10 7 8 >22,289.1 2,550.8 >13,143.0 >17,855.7 >16,627.1 201,177.3 53,286.3 67,505.2 39,506.2

mug 8 4 6 5 5 6 >7,200.1 2,974.8 >4,291.2 >4,095.1 3,249.7 86.0 0.0 0.0 0.0

QCP-20 15 4 4 5 4 4 >5,328.7 >4,861.0 2,762.9 >5,090.7 >5,711.3 11,245.5 603.3 688.0 16.3

nengfa 10 4 4 5 5 5 >3,820.6 >4,235.9 2,321.0 2,331.4 2,612.5 1,959.0 0.0 0.0 0.0

frb45-21 10 7 0 8 7 7 >17,642.0 >28,800.0 16,239.8 >17,047.1 >17,055.2 - - - -

k-insertion 32 16 17 17 17 16 >3,955.2 3,550.0 2,903.5 3,028.9 >3,932.3 7,883.3 1,745.8 2,050.3 729.9

pseudo-aim 48 48 48 48 48 48 868.1 222.2 296.0 406.7 448.3 1,954.5 224.8 410.8 343.8

QWH-20 10 9 9 9 9 9 2,581.3 1,870.9 2,102.9 2,097.4 2,349.2 8,049.3 145.7 7.6 4.8

pseudo-fpga 36 2 2 2 2 2 2,047.9 3,011.9 1,937.9 1,717.3 1,799.0 2,897,334.0 98,490.5 214.0 134.5

ssa 8 7 7 7 7 7 180.8 62.9 79.0 89.4 89.6 1,699.3 40.1 20.6 20.4

QCP-15 15 15 15 15 15 15 1,310.0 1,248.4 1,213.5 1,119.1 1,182.1 6,349.3 302.9 7.5 6.6

bqwh-18-141 100 100 100 100 100 100 814.0 772.5 772.2 899.2 815.1 955.4 50.1 15.7 26.3

sgb-queen 50 14 12 14 14 14 5,712.9 >9,969.6 5,692.0 5,728.2 5,703.2 15,033.3 9.3 3.7 3.8

aim-200 24 24 24 24 24 24 49.5 18.2 34.3 37.2 34.8 773.1 90.1 106.4 77.3

rand-3-24-24 50 5 0 5 5 5 11,650.2 >18,000.0 11,638.9 11,638.0 11,638.1 - - - -

coloring 22 22 22 22 22 22 734.1 1,545.2 725.8 809.2 866.3 37,397.0 4.2 3.8 3.4

super-os-taillard-5 30 9 1 9 9 7 11,971.1 >28,924.3 11,969.8 11,983.0 >14,219.0 1.0 0.0 0.0 0.0

driver 7 7 7 7 7 7 83.8 248.8 83.5 90.0 89.7 52.0 0.0 0.0 0.0

228

. . . continued

solved by
∑

CPU [sec] # Calls POAC
B
en

ch
m
ar
k

#
In
st
an

ce
s

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

super-jobShop-e0ddr1 10 2 0 2 2 2 55.3 >7,200.0 55.2 55.4 55.4 - - - -

pseudo-circuits 7 3 3 3 3 3 11.0 32.7 11.0 11.0 11.0 24.0 0.0 0.0 0.0

QWH-25 10 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

bqwh-15-106_glb 100 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

bqwh-18-141_glb 100 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

cjss 10 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

compet02 20 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

compet08 16 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

costasArray 11 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

fischer 121 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

frb53-24 10 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

frb56-25 10 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

frb59-26 10 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

haystacks 51 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

knights 19 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

largeQueens 5 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

latinSquare 10 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

magicSquare 18 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

medium 5 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

ogdHerald 50 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

229

. . . continued

solved by
∑

CPU [sec] # Calls POAC
B
en

ch
m
ar
k

#
In
st
an

ce
s

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

ortholatin 9 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

os-gp-sat 10 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

os-gp-unsat 10 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

rand-2-50-23 50 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

rcpsp 39 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

rcpspTighter 39 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

small 5 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

super-jobShop-e0ddr2 10 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

tdsp 42 0 0 0 0 0 .0 .0 .0 .0 .0 - - - -

jobShop-enddr2 6 3 0 3 3 3 37.0 >10,800.0 37.0 37.1 37.2 - - - -

primes-15 32 1 1 1 1 1 .0 .0 .0 .0 .0 140.0 0.0 0.0 0.0

primes-20 32 1 1 1 1 1 .0 .0 .0 .0 .0 139.0 0.0 0.0 0.0

primes-25 32 1 1 1 1 1 .0 .1 .0 .0 .0 141.0 0.0 0.0 0.0

primes-30 32 1 1 1 1 1 .0 .1 .0 .0 .0 140.0 0.0 0.0 0.0

renault 2 2 2 2 2 2 1.9 47.3 1.9 1.9 1.9 21.0 0.0 0.0 0.0

ramsey3 8 2 2 2 2 2 .1 .1 .1 .1 .1 48.5 0.0 0.0 0.0

primes-10 32 2 2 2 2 2 .6 5.1 .6 .6 .6 125.5 0.0 0.0 0.0

composed-25-1-80 10 10 10 10 10 10 2.2 2.5 2.2 2.2 2.2 1.0 0.0 0.0 0.0

jobShop-e0ddr2 10 4 0 4 4 4 44.6 >14,400.0 44.6 44.8 44.7 - - - -

pseudo-garden 7 6 6 6 6 6 .1 .2 .1 .2 .2 42.3 0.0 0.0 0.0

230

. . . continued

solved by
∑

CPU [sec] # Calls POAC
B
en

ch
m
ar
k

#
In
st
an

ce
s

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

composed-25-1-2 10 10 10 10 10 10 1.6 5.6 1.7 1.7 1.7 1.0 0.0 0.0 0.0

composed-25-1-25 10 10 10 10 10 10 1.8 5.4 1.9 1.9 1.9 1.0 0.0 0.0 0.0

composed-25-1-40 10 10 10 10 10 10 2.0 4.5 2.1 2.1 2.1 1.0 0.0 0.0 0.0

ramsey4 8 1 1 1 1 1 1.0 2.1 1.1 1.3 1.3 251.0 0.0 0.0 0.0

hanoi 5 5 5 5 5 5 2.4 2.5 2.5 2.5 2.5 1.0 0.0 0.0 0.0

jobShop-enddr1 10 9 9 9 9 9 196.9 17,936.8 197.0 197.2 197.2 112.7 0.0 0.0 0.0

composed-75-1-80 10 10 10 10 10 10 4.8 4.5 4.9 5.1 5.1 1.0 0.0 0.0 0.0

composed-25-10-20 10 10 10 10 10 10 3.2 26.3 3.3 3.5 3.5 46.6 0.0 0.0 0.0

QWH-10 10 10 10 10 10 10 2.1 4.0 2.2 2.5 2.5 29.4 0.0 0.0 0.0

super-jobShop-ewddr2 10 6 0 6 6 6 260.1 >21,600.0 260.2 260.9 260.9 - - - -

jobShop-ewddr2 10 10 0 10 10 10 129.9 >36,000.0 130.0 130.2 130.3 - - - -

aim-50 24 24 24 24 24 24 .6 .7 .7 .8 .8 24.7 0.0 0.0 0.0

composed-75-1-40 10 10 10 10 10 10 5.3 13.1 5.4 5.6 5.6 1.0 0.0 0.0 0.0

pseudo-logic-synthesis 17 1 1 1 1 1 17.5 57.5 17.6 18.0 17.9 916.0 0.0 0.0 0.0

composed-75-1-25 10 10 10 10 10 10 5.1 15.8 5.3 5.4 5.4 1.0 0.0 0.0 0.0

composed-75-1-2 10 10 10 10 10 10 4.6 18.8 4.8 4.9 4.9 1.0 0.0 0.0 0.0

register-zeroin 31 6 5 6 6 6 56.4 >6,752.3 56.6 57.4 57.4 155.2 0.0 0.0 0.0

sgb/miles 42 10 8 10 10 10 130.2 >7,829.8 130.4 131.0 131.1 597.5 0.0 0.0 0.0

QCP-10 15 15 15 15 15 15 4.7 9.2 4.9 5.3 5.4 78.2 0.0 0.0 0.0

super-jobShop-enddr2 6 2 0 2 2 2 201.2 >7,200.0 201.4 201.5 201.5 - - - -

231

. . . continued

solved by
∑

CPU [sec] # Calls POAC
B
en

ch
m
ar
k

#
In
st
an

ce
s

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

QCP-25 15 1 1 1 1 1 25.8 54.9 26.0 28.4 28.4 1,587.0 0.0 0.0 0.0

pseudo-mps 49 7 7 7 7 7 2,412.2 2,485.9 2,412.5 2,414.1 2,414.1 159.7 0.0 0.0 0.0

rlfapScens 11 11 10 11 11 11 130.4 >7,693.9 130.8 136.3 136.4 124.7 0.0 0.0 0.0

rlfapScensMod 13 13 13 13 13 13 165.1 2,344.7 165.5 168.2 168.2 338.5 0.0 0.0 0.0

modifiedRenault 50 50 50 50 50 50 70.9 456.1 71.3 71.5 71.5 21.9 0.0 0.0 0.0

aim-100 24 24 24 24 24 24 4.0 3.5 4.5 4.7 4.7 206.4 2.8 1.1 1.0

register-mulsol 49 10 8 10 10 10 88.3 >12,275.8 88.8 90.9 90.9 251.3 0.0 0.0 0.0

school 8 3 3 3 3 3 85.7 4,654.0 86.2 90.8 91.1 95.7 0.0 0.0 0.0

rlfapGraphs 14 14 11 14 14 14 136.4 >16,309.8 136.9 144.6 144.4 108.8 0.0 0.0 0.0

leighton-leighton-25 32 6 6 6 6 6 109.1 3,602.4 109.7 117.7 117.9 202.3 0.0 0.0 0.0

register-fpsol 37 5 3 5 5 5 84.9 >7,430.6 85.5 89.9 89.7 86.0 0.0 0.0 0.0

QWH-15 10 10 10 10 10 10 34.4 39.5 35.0 37.0 37.0 248.7 0.0 0.0 0.0

leighton-leighton-5 8 8 8 8 8 8 54.2 171.1 54.8 62.2 62.1 51.0 0.0 0.0 0.0

bqwh-15-106 100 100 100 100 100 100 56.6 80.6 57.4 59.6 59.5 145.9 0.1 0.1 0.1

domino 24 12 12 12 12 12 716.3 717.7 717.1 718.9 718.9 1.0 0.0 0.0 0.0

register-inithx 32 5 3 5 5 5 174.7 >7,663.6 175.5 186.2 186.3 86.0 0.0 0.0 0.0

pseudo-jnh 16 16 16 16 16 16 22.9 43.4 23.7 24.6 24.6 71.6 0.0 0.0 0.0

rlfapGraphsMod 12 12 12 12 12 12 394.3 2,044.6 395.8 402.7 402.8 1,082.4 0.0 0.0 0.0

rand-3-28-28-fcd 50 2 0 2 2 2 2,670.8 >7,200.0 2,672.7 2,671.7 2,671.7 - - - -

leighton-leighton-15 28 6 6 6 6 6 695.1 2,717.2 697.5 705.1 707.3 7,404.2 0.0 0.0 0.0

232

. . . continued

solved by
∑

CPU [sec] # Calls POAC
B
en

ch
m
ar
k

#
In
st
an

ce
s

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

frb30-15 10 10 10 10 10 10 36.5 162.5 39.5 37.4 37.2 364.4 3.2 1.6 1.3

rlfapScens11 12 5 3 5 5 5 2,476.0 >8,394.1 2,479.4 2,482.8 2,482.4 898.0 0.0 0.0 0.0

super-jobShop-enddr1 10 2 0 2 2 2 569.7 >7,200.0 573.6 570.1 570.2 - - - -

rand-2-30-15 50 50 50 50 50 50 415.9 2,007.0 420.1 417.9 418.0 908.1 2.3 1.9 1.9

rand-2-30-15-fcd 50 50 50 50 50 50 232.2 1,080.0 236.8 234.1 233.9 525.5 1.7 1.4 1.2

rand-3-28-28 50 1 0 1 1 1 1,275.4 >3,600.0 1,280.1 1,276.4 1,289.8 - - - -

ehi-85 100 100 100 100 100 100 360.6 218.2 365.7 399.2 399.2 1.0 0.0 0.0 0.0

ehi-90 100 100 100 100 100 100 369.8 242.0 374.9 412.2 412.1 1.0 0.0 0.0 0.0

socialGolfers 12 1 1 1 1 1 275.6 93.2 284.2 287.7 288.5 11,214.0 0.0 0.0 0.0

sgb-games 4 4 4 4 4 4 600.8 2,096.2 621.2 620.8 621.1 364,279.3 4.8 3.5 3.5

BH-4-4 10 10 10 10 10 10 723.6 2,365.1 744.7 742.7 743.8 79,646.0 21.0 15.0 15.0

travellingSalesman-20 15 15 15 15 15 15 276.5 1,426.9 298.6 286.0 271.3 963.2 10.3 11.8 8.2

super-os-taillard-4 30 28 22 28 28 28 7,647.2 >33,042.7 7,675.5 7,674.5 7,674.4 13.9 0.3 5.2 5.2

frb50-23 10 2 0 2 2 2 1,622.8 >7,200.0 1,653.3 1,643.2 1,654.4 - - - -

frb35-17 10 10 10 10 10 10 383.9 1,846.7 414.8 394.9 398.4 3,074.8 25.2 12.0 12.2

cril 8 4 6 4 4 4 >12,655.6 >4,199.3 >12,706.3 >12,713.7 >12,702.2 73,552.3 52.3 59.7 37.7

full-insertion 41 32 30 32 32 32 3,923.3 >11,585.6 3,978.1 3,952.8 3,956.1 11,443.2 0.2 0.2 0.2

frb40-19 10 10 8 10 10 10 3,347.9 >12,051.4 3,443.0 3,396.8 3,388.1 8,541.3 47.6 23.9 19.6

ukVg 65 36 34 36 36 36 7,047.1 >18,255.8 7,142.1 7,067.8 7,079.0 153.8 0.6 0.9 0.4

sgb-book 26 22 20 22 22 22 6,737.2 >13,243.4 6,832.9 6,674.5 6,693.2 131,233.5 6.2 5.2 5.1

233

. . . continued

solved by
∑

CPU [sec] # Calls POAC
B
en

ch
m
ar
k

#
In
st
an

ce
s

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

G
A
C

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

A
P
O
A
C

P
re

P
ea

k+

B
T

W
at

ch
+

P
P

-B
T

W
at

ch
+

pret 8 4 4 4 4 4 387.3 152.9 485.8 486.7 493.5 218,033.5 108.8 74.3 84.0

myciel 16 13 12 13 12 13 3,161.1 >7,115.9 3,270.1 >5,212.7 3,214.9 90,943.1 11.4 12.8 9.3

ogdVg 65 41 35 41 40 41 12,075.4 >32,198.1 12,191.9 >13,136.9 12,839.8 57.6 0.3 0.2 0.2

geom 100 100 98 100 100 100 7,254.3 >28,365.6 7,372.8 7,318.0 7,316.1 2,694.0 5.4 2.9 2.9

tightness0.9 100 100 97 100 100 100 14,314.1 >58,017.9 14,446.9 14,442.9 14,460.2 222.2 8.5 7.5 7.2

rand-2-50-23-fcd 50 2 0 1 1 2 5,212.3 >7,200.0 >5,434.7 >5,408.8 5,254.6 - - - -

lexVg 63 63 63 63 63 63 2,153.9 9,345.0 2,383.8 2,194.5 2,182.6 968.6 29.4 6.0 5.4

travellingSalesman-25 15 15 13 15 15 15 4,307.4 >11,339.7 4,590.6 5,270.8 4,511.1 3,068.2 51.8 39.8 20.1

tightness0.35 100 100 100 100 100 100 7,547.1 32,155.0 7,942.3 7,672.5 7,671.6 7,287.0 43.7 17.5 14.8

rand-2-40-19-fcd 50 49 40 49 49 49 21,493.2 >84,563.9 21,987.0 21,696.4 21,688.0 19,613.8 63.7 30.0 23.4

tightness0.8 100 100 99 100 100 100 10,839.2 >47,401.1 11,425.3 10,961.4 10,957.2 1,157.5 30.0 13.7 12.2

rand-3-24-24-fcd 50 14 4 14 15 14 >22,545.4 >44,910.1 >23,441.4 21,886.8 >23,302.7 5,061.3 5.0 5.0 5.0

tightness0.5 100 100 100 100 100 100 11,562.0 50,109.6 12,473.3 11,716.7 11,684.1 7,327.3 61.5 19.4 18.3

jobShop-e0ddr1 10 5 4 4 4 4 2,683.0 >10,728.2 >3,633.3 >3,633.4 >3,633.4 37.3 0.0 0.0 0.0

varDimacs 9 9 8 8 9 9 2,702.0 >3,931.3 >3,811.3 2,872.4 2,879.3 67,760.4 11.4 11.9 11.5

tightness0.65 100 100 100 100 100 100 10,056.7 40,771.5 11,455.9 10,167.7 10,199.7 4,151.2 64.6 19.4 15.3

rand-2-40-19 50 49 22 48 47 48 47,455.4 >134,187.4 >49,360.7 >50,492.6 >49,033.7 35,268.0 88.7 35.3 26.4

hos 14 11 10 10 10 10 1,128.6 >4,331.7 >3,973.0 >3,994.2 >3,994.1 576.1 0.0 0.0 0.0

wordsVg 65 65 61 64 65 65 8,399.7 >34,672.3 >15,901.7 8,501.6 8,502.2 1,478.3 168.3 5.3 4.0

234

Bibliography

[Amaldi et al., 2010] Edoardo Amaldi, Claudio Iuliano, and Romeo Rizzi. Effi-

cient Deterministic Algorithms for Finding a Minimum Cycle Basis in Undirected

Graphs. In Integer Programming and Combinatorial Optimization (IPCO 2010),

volume 6080 of LNCS, pages 397–410, 2010.

[Balafrej et al., 2013] Amine Balafrej, Christian Bessiere, Remi Coletta, and El-

Houssine Bouyakhf. Adaptive Parameterized Consistency. In Proceedings of 19 th

International Conference on Principle and Practice of Constraint Programming

(CP’13), volume 8124 of LNCS, pages 143–158. Springer, 2013.

[Balafrej et al., 2014] Amine Balafrej, Christian Bessiere, El-Houssine Bouyakhf, and

Gilles Trombettoni. Adaptive Singleton-Based Consistencies. In Proceedings of

AAAI-2014, pages 2601–2607, Quebec City, Quebec, 2014.

[Balafrej et al., 2015] Amine Balafrej, Christian Bessière, and Anastasia Paparrizou.

Multi-Armed Bandits for Adaptive Constraint Propagation. In Proceedings of

the 24 th International Joint Conference on Artificial Intelligence, pages 290–296,

Buenos Aires, Argentina, 2015.

[Baptiste et al., 2006] Philippe Baptiste, Philippe Labori, Claude Le Pape, and Wim

Nuijten. Handbook of Constraint Programming, chapter Constraint-Based Schedul-

ing and Planning, pages 761–799. Elsevier, 2006.

235

[Bayardo and Mirankar, 1996] Roberto J. Bayardo and Daniel P. Mirankar. A Com-

plexity Analysis of Space-Bound Learning Algorithms for the Constraint Satisfac-

tion Problem. In Proceedings of the Thirteen National Conference on Artificial

Intelligence (AAAI 1996), pages 298–304, 1996.

[Bayer et al., 2006] Ken Bayer, Josh Snyder, and Berthe Y. Choueiry. An Interactive

Constraint-Based Approach to Minesweeper. In Proceedings of AAAI-2006, pages

1933–1934, Boston, MA, 2006.

[Bennaceur and Affane, 2001] Hachemi Bennaceur and Mohamed-Salah Affane.

Partition-k-AC: An Efficient Filtering Technique Combining Domain Partition and

Arc Consistency. In Proceedings of 7 th International Conference on Principle and

Practice of Constraint Programming (CP’01), volume 2239 of LNCS, pages 560–

564. Springer, 2001.

[Bessière and Régin, 1996] Christian Bessière and Jean-Charles Régin. MAC and

Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Prob-

lems. In Proceedings of 2 nd International Conference on Principle and Practice of

Constraint Programming (CP’96), volume 1118 of LNCS, pages 61–75. Springer,

1996.

[Bessière et al., 2005] Christian Bessière, Jean-Charles Régin, Roland H.C. Yap, and

Yuanlin Zhang. An Optimal Coarse-Grained Arc Consistency Algorithm. Artificial

Intelligence, 165(2):165–185, 2005.

[Bessière et al., 2008] Christian Bessière, Kostas Stergiou, and Toby Walsh. Domain

Filtering Consistencies for Non-Binary Constraints. Artificial Intelligence, 172:800–

822, 2008.

236

[Bessiere, 2006] Christian Bessiere. Handbook of Constraint Programming, chapter

Constraint Propagation, pages 29–83. Elsevier, 2006.

[Bitner and Reingold, 1975] James R. Bitner and Edward M. Reingold. Backtrack

Programming Techniques. Communications of the ACM, 18(11):651–656, Novem-

ber 1975.

[Bliek and Sam-Haroud, 1999] Christian Bliek and Djamilla Sam-Haroud. Path Con-

sistency for Triangulated Constraint Graphs. In Proceedings of the 16 th Interna-

tional Joint Conference on Artificial Intelligence, pages 456–461, Stockholm, Swe-

den, 1999.

[Borrett et al., 1996] James E. Borrett, Edward P.K. Tsang, and Natasha R. Walsh.

Adaptive Constraint Satisfaction: The Quickest First Principle. In Proceedings of

the 12 th European Conference on Artificial Intelligence, pages 160–164, Budapest,

Hungary, 1996.

[Boussemart et al., 2004] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre,

and Lakhdar Sais. Boosting Systematic Search by Weighting Constraints. In Pro-

ceedings of the 16 th European Conference on Artificial Intelligence, pages 146–150,

2004.

[Carro and Hermenegildo, 1998] Manuel Carro and Manuel Hermenegildo. Some De-

sign Issues in the Visualization of Constraint Logic Program Execution. In In

AGP’98 Joint Conference on Declarative Programming, pages 71–86, 1998.

[Carro and Hermenegildo, 2000] Manuel Carro and Manuel Hermenegildo. Tools for

Constraint Visualisation: The VIFID/TRIFID Tool. In Analysis and Visualization

Tools for Constraint Programming: Constraint Debugging, volume 1870 of LNCS,

pages 253–272. Springer, 2000.

237

[Cohen and Jeavons, 2017] David A. Cohen and Peter G. Jeavons. The Power of

Propagation: when GAC is Enough. Constraints, 22(1):3–23, Jan 2017.

[Darwiche, 2001] Adnan Darwiche. Recursive Conditioning. Artificial Intelligence,

126(1-2):5–41, 2001.

[Davis and Putnam, 1960] Martin Davis and Hilary Putnam. A Computing Proce-

dure for Quantification Theory. J. ACM, 7(3):201–215, July 1960.

[Debruyne and Bessière, 1997a] Romuald Debruyne and Christian Bessière. From

Restricted Path Consistency to Max-Restricted Path Consistency. In Proceedings of

3 rd International Conference on Principle and Practice of Constraint Programming

(CP’97), volume 1330 of LNCS, pages 312–326. Springer, 1997.

[Debruyne and Bessière, 1997b] Romuald Debruyne and Christian Bessière. Some

Practicable Filtering Techniques for the Constraint Satisfaction Problem. In Pro-

ceedings of the 15 th International Joint Conference on Artificial Intelligence, pages

412–417, 1997.

[Debruyne, 1999] Romuald Debruyne. A Strong Local Consistency for Constraint

Satisfaction. In Proceedings of the IEEE 11 th International Conference on Tools

with Artificial Intelligence, pages 202–209, 1999.

[Dechter and Mateescu, 2004] Rina Dechter and Robert Mateescu. The Impact of

AND/OR Search Spaces on Constraint Satisfaction and Counting. In Proceedings

of 10 th International Conference on Principle and Practice of Constraint Program-

ming (CP’04), volume 3258 of LNCS, pages 731–736. Springer, 2004.

[Dechter and Mateescu, 2006] Rina Dechter and Robert Mateescu. AND/OR Search

Spaces for Graphical Models. Artificial Intelligence, 171(2-3):73–106, 2006.

238

[Dechter and Pearl, 1988] Rina Dechter and Judea Pearl. Network-Based Heuristics

for Constraint-Satisfaction Problems. Artificial Intelligence, 34:1–38, 1988.

[Dechter and Pearl, 1989] Rina Dechter and Judea Pearl. Tree Clustering for Con-

straint Networks. Artificial Intelligence, 38:353–366, 1989.

[Dechter, 2003a] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[Dechter, 2003b] Rina Dechter. Constraint Processing, chapter Directional Consis-

tency, page 89. Morgan Kaufmann, 2003.

[Dechter, 2004] Rina Dechter. AND/OR Search Spaces for Graphical Models. Tech-

nical report, University of California, Irvine, 2004.

[Demeulenaere et al., 2016] Jordan Demeulenaere, Renaud Hartert, Christophe

Lecoutre, Guillaume Perez, Laurent Perron, Jean-Charles Régin, and Pierre

Schaus. Compact-Table: Efficiently Filtering Table Constraints with Reversible

Sparse Bit-Sets. In Proceedings of 22 nd International Conference on Principle

and Practice of Constraint Programming (CP’16), volume 9892 of LNCS, pages

207–223. Springer, 2016.

[Eén and Biere, 2005] Niklas Eén and Armin Biere. Effective Preprocessing in SAT

Through Variable and Clause Elimination. In Proceedings of Theory and Applica-

tions of Satisfiability Testing: 8th International Conference (SAT 2005), volume

3569 of LNCS, pages 61–75. Springer, 2005.

[Epstein et al., 2002] Susan L. Epstein, Eugene C. Freuder, Richard Wallace, Anton

Morozov, and Bruce Samuels. The Adaptive Constraint Engine. In Proceedings of

8 th International Conference on Principle and Practice of Constraint Programming

(CP’02), volume 2470 of LNCS, pages 525–540. Springer, 2002.

239

[Epstein et al., 2005] Susan L. Epstein, Eugene C. Freuder, Richard M. Wallace, and

Xingjian Li. Learning Propagation Policies. In Second International Workshop on

Constraint Propagation and Implementation, Volume I held in conjunction with

CP 2005, pages 1–15, 2005.

[Favier et al., 2009] Aurélie Favier, Simon de Givry, and Philippe Jégou. Exploiting

Problem Structure for Solution Counting. In Proceedings of the International Con-

ference on Principles and Practice of Constraint Programming (CP 09), volume

5732 of LNCS, pages 335–343, 2009.

[Freuder and Elfe, 1996] Eugene C. Freuder and Charles D. Elfe. Neighborhood In-

verse Consistency Preprocessing. In Proceedings of AAAI-96, pages 202–208, Port-

land, Oregon, 1996.

[Freuder and Quinn, 1987] Eugene C. Freuder and Michael J. Quinn. The Use of

Lineal Spanning Trees to Represent Constraint Satisfaction Problems. Technical

Report 87-41, University of New Hampshire, 1987.

[Freuder and Wallace, 1991] Eugene C. Freuder and Richard J. Wallace. Selective

Relaxation For Constraint Satisfaction Problems. In Proceedings of the IEEE 3 rd

International Conference on Tools with Artificial Intelligence, pages 332–339, 1991.

[Freuder, 1982] Eugene C. Freuder. A Sufficient Condition for Backtrack-Free Search.

JACM, 29 (1):24–32, 1982.

[Fulkerson and Gross, 1965] D. R. Fulkerson and O. A. Gross. Incidence Matrices

and Interval Graphs. Pacific Journal of Mathematics, 15 (3):835–855, 1965.

[Geschwender et al., 2013] Daniel Geschwender, Shant Karakashian, Robert Wood-

ward, Berthe Y. Choueiry, and Stephen D. Scott. Selecting the Appropriate Con-

240

sistency Algorithm for CSPs Using Machine Learning Techniques. In Pre-PhD

Student Abstract and Poster Program, Proceedings of the 27th Conference on Arti-

ficial Intelligence (AAAI 2013), pages 1611–1612, 2013.

[Geschwender et al., 2016] Daniel J. Geschwender, Robert J. Woodward, Berthe Y.

Choueiry, and Stephen D. Scott. A Portfolio Approach for Enforcing Minimality

in a Tree Decomposition. In Doctoral Program of the International Conference on

Principles and Practice of Constraint Programming (CP 2016), pages 1–10, 2016.

[Gogate and Dechter, 2008] Vibhav Gogate and Rina Dechter. Approximate Solution

Sampling (and Counting) on AND/OR Spaces. In Proceedings of 14 th International

Conference on Principle and Practice of Constraint Programming (CP’08), volume

5202 of LNCS, pages 534–538. Springer, 2008.

[Golumbic, 1980] Martin C. Golumbic. Algorithmic Graph Theory and Perfect

Graphs. Academic Press Inc., New York, NY, 1980.

[Gottlob et al., 2000] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A

Comparison of Structural CSP Decomposition Methods. Artificial Intelligence,

124(2):243–282, 2000.

[Gyssens, 1986] M. Gyssens. On the Complexity of Join Dependencies. ACM Trans.

Database Systems, 11(1):81–108, 1986.

[Haralick and Elliott, 1980] Robert M. Haralick and Gordon L. Elliott. Increasing

Tree Search Efficiency for Constraint Satisfaction Problems. Artificial Intelligence,

14:263–313, 1980.

241

[Hentenryck et al., 1992] Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng.

A Generic Arc Consistency Algorithm and its Specializations. Artificial Intelli-

gence, 57:291–321, 1992.

[Horton, 1987] Joseph D. Horton. A Polynomial-Time Algorithm to Find the Shortest

Cycle Basis of a Graph. SIAM Journal on Computing, 16(2):358–366, 1987.

[Howell et al., 2018a] Ian Howell, Robert J. Woodward, Berthe Y. Choueiry, and

Christian Bessiere. Solving Sudoku with Consistency: A Visual and Interactive

Approach. In Proceedings of the 27 th International Joint Conference on Artificial

Intelligence, pages 5829–5831, Stockholm, Sweden, 2018.

[Howell et al., 2018b] Ian Howell, Robert J. Woodward, Berthe Y. Choueiry, and

Hongfeng Yu. A Qualitative Analysis of Search Behavior: A Visual Approach.

In Proceedings of the 2 nd Workshop on Explainable Artificial Intelligence, pages

65–71, Stockholm, Sweden, 2018.

[Janssen et al., 1989] P. Janssen, Philippe Jégou, B. Nougier, and M.C. Vilarem.

A Filtering Process for General Constraint-Satisfaction Problems: Achieving

Pairwise-Consistency Using an Associated Binary Representation. In IEEE Work-

shop on Tools for AI, pages 420–427, 1989.

[Järvisalo et al., 2012] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. In-

processing Rules. In Automated Reasoning: 6th International Joint Conference

(IJCAR 2012), volume 7364 of LNCS, pages 355–370. Springer, 2012.

[Jeavons et al., 1994] Peter G. Jeavons, David A. Cohen, and Marc Gyssens. A Struc-

tural Decomposition for Hypergraphs. Contemporary Mathematics, 178:161–177,

1994.

242

[Jégou and Terrioux, 2003] Philippe Jégou and Cyril Terrioux. Hybrid Backtracking

Bounded by Tree-Decomposition of Constraint Networks. Artificial Intelligence,

146:43–75, 2003.

[Jégou, 1993] Philippe Jégou. On the Consistency of General Constraint-Satisfaction

Problems. In AAAI 1993, pages 114–119, 1993.

[Kadioglu et al., 2011] Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst

Samulowitz, and Meinolf Sellmann. Algorithm Selection and Scheduling. In Pro-

ceedings of 17 th International Conference on Principle and Practice of Constraint

Programming (CP’11), volume 6876 of LNCS, pages 454–469. Springer, 2011.

[Karakashian et al., 2010] Shant Karakashian, Robert Woodward, Christopher Ree-

son, Berthe Y. Choueiry, and Christian Bessiere. A First Practical Algorithm for

High Levels of Relational Consistency. In Proceedings of AAAI-2010, pages 101–

107, Atlanta, GA, 2010.

[Karakashian et al., 2013] Shant Karakashian, Robert Woodward, and Berthe Y.

Choueiry. Improving the Performance of Consistency Algorithms by Localizing

and Bolstering Propagation in a Tree Decomposition. In Proceedings of AAAI-

2013, pages 466–473, Bellevue, WA, 2013.

[Kavitha et al., 2007] Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail.

New Approximation Algorithms for Minimum Cycle Bases of Graphs. In Sym-

posium on Theoretical Aspects of Computer Science (STACS 2007), volume 4393

of LNCS, pages 512–523, 2007.

[Kjærulff, 1990] U. Kjærulff. Triagulation of Graphs - Algorithms Giving Small Total

State Space. Research Report R-90-09, Aalborg University, Denmark, 1990.

243

[Lecoutre et al., 2007] Christophe Lecoutre, Stéphane Cardon, and Julien Vion. Con-

servative Dual Consistency. In Proceedings of AAAI-2007, pages 237–242, 2007.

[Lecoutre et al., 2011] Christophe Lecoutre, Stéphane Cardon, and Julien Vion.

Second-Order Consistencies. JAIR, 40:175–219, 2011.

[Lecoutre et al., 2012] Christophe Lecoutre, Chavalit Likitvivatanavong, and Roland

H. C. Yap. A Path-Optimal GAC Algorithm for Table Constraints. In Proc. of

ECAI 2012, pages 510–515, 2012.

[Lecoutre et al., 2013] Christophe Lecoutre, Anastasia Paparrizou, and Kostas Ster-

giou. Extending STR to a Higher-Order Consistency. In Proceedings of AAAI-2013,

pages 576–582, Bellevue, WA, 2013.

[Lecoutre, 2009] Christophe Lecoutre. Constraint Networks: Techniques and Algo-

rithms. ISTE Ltd & Wiley Press, 2009.

[Lecoutre, 2011] Christophe Lecoutre. STR2: Optimized Simple Tabular Reduction

for Table Constraints. Constraints, 16(4):341–371, 2011.

[Lim et al., 2004] Ryan Lim, Venkata Praveen Guddeti, and Berthe Y. Choueiry. An

Interactive System for Hiring and Managing Graduate Teaching Assistants. In

Conference on Prestigious Applications of Intelligent Systems (ECAI 04), pages

730–734, Valencia, Spain, 2004.

[Mackworth, 1977] Alan K. Mackworth. Consistency in Networks of Relations. Arti-

ficial Intelligence, 8:99–118, 1977.

[Marinescu and Dechter, 2006] Radu Marinescu and Rina Dechter. Memory Intensive

Branch-and-Bound Search for Graphical Models. In Proceedings of the Twenty-

244

First National Conference on Artificial Intelligence (AAAI 2006), pages 1200–1205,

2006.

[Mehlhorn and Michail, 2009] Kurt Mehlhorn and Dimitrios Michail. Minimum Cycle

Bases: Faster and Simpler. ACM Trans. Algorithms, 6(1):1–13, December 2009.

[Michel and Van Hentenryck, 2012] Laurent Michel and Pascal Van Hentenryck.

Activity-Based Search for Black-Box Constraint Programming Solvers. In Proc.

of CPAIOR 2012, volume 7298, pages 228–243. Spring, 2012.

[Mohr and Masini, 1988] Roger Mohr and Gérald Masini. Good Old Discrete Relax-

ation. In Proceedings of the Eigthth European Conference on Artificial Intelligence,

pages 651–656, Munich, Germany, 1988.

[Montanari, 1974] Ugo Montanari. Networks of Constraints: Fundamental Properties

and Application to Picture Processing. Information Sciences, 7:95–132, 1974.

[Nadel, 1989] Bernard A. Nadel. Constraint Satisfaction Algorithms. Computational

Intelligence, 5:188–224, 1989.

[Ostrowski et al., 2002] Richard Ostrowski, Éric Grégoire, Bertrand Mazure, and

Lakhdar Saïs. Recovering and Exploiting Structural Knowledge from CNF Formu-

las. In Proceedings of 8 th International Conference on Principle and Practice of

Constraint Programming (CP’02), volume 2470 of LNCS, pages 185–199. Springer,

2002.

[Otten and Dechter, 2012] Lars Otten and Rina Dechter. Anytime AND/OR Depth-

first Search for Combinatorial Optimization. AI Communications, 25(3):211–227,

2012.

245

[Palmieri et al., 2016] Anthony Palmieri, Jean-Charles Régin, and Pierre Schaus.

Parallel Strategies Selection. In Proceedings of 22 nd International Conference on

Principle and Practice of Constraint Programming (CP’16), volume 9892 of LNCS,

pages 388–404. Springer, 2016.

[Paparrizou and Stergiou, 2012] Anastasia Paparrizou and Kostas Stergiou. Evalu-

ating Simple Fully Automated Heuristics for Adaptive Constraint Propagation. In

Proceedings of the IEEE 24 th International Conference on Tools with Artificial

Intelligence, pages 880–885, 2012.

[Paparrizou and Stergiou, 2016] Anastasia Paparrizou and Kostas Stergiou. Strong

Local Consistency Algorithms for Table Constraints. Constraints, 21(2):163–197,

Apr 2016.

[Paparrizou and Stergiou, 2017] Anastasia Paparrizou and Kostas Stergiou. On

Neighborhood Singleton Consistencies. In Proceedings of the 26 th International

Joint Conference on Artificial Intelligence, pages 736–742, Melbourne, Australia,

2017.

[Pesant et al., 2012] Gilles Pesant, Claude-Guy Quimper, and Alessandro Zanarini.

Counting-Based Search: Branching Heuristics for Constraint Satisfaction Prob-

lems. JAIR, 43:173–210, 2012.

[Planken et al., 2008] Léon Planken, Mathijs de Weerdt, and Roman van der

Krogt. P3C: A New Algorithm for the Simple Temporal Problem. In Proceed-

ings of the 18th International Conference on Automated Planning & Scheduling

(ICAPS 2008), pages 256–263, 2008.

[Prosser, 1993] Patrick Prosser. Hybrid Algorithms for the Constraint Satisfaction

Problem. Computational Intelligence, 9 (3):268–299, 1993.

246

[Reeson et al., 2007] Christopher G. Reeson, Kai-Chen Huang, Kenneth M. Bayer,

and Berthe Y. Choueiry. An Interactive Constraint-Based Approach to Sudoku. In

Proceedings of AAAI-2007, pages 1976–1977, Vancouver, British Columbia, 2007.

[Reeson, 2016] Christopher G. Reeson. On Path Consistency for Binary Constraint

Satisfaction Problems. Master’s thesis, University of Nebraska-Lincoln, 2016.

[Refalo, 2004] Philippe Refalo. Impact-Based Search Strategies for Constraint Pro-

gramming. In Proceedings of 10 th International Conference on Principle and Prac-

tice of Constraint Programming (CP’04), volume 3258 of LNCS, pages 557–571.

Springer, 2004.

[Rish and Dechter, 2000] Irina Rish and Rina Dechter. Resolution versus Search:

Two Strategies for SAT. Journal of Automated Reasoning, 24(1):225–275, Feb

2000.

[Rossi et al., 1990] Francesca Rossi, Charles Petrie, and Vasant Dhar. On the Equiv-

alence of Constraint Satisfaction Problems. In Proceedings of the Ninth European

Conference on Artificial Intelligence, pages 550–556, 1990.

[Rossi et al., 2006] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Hand-

book of Constraint Programming. Elsevier, 2006.

[Schulte et al., 2015] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Mod-

eling and Programming with Gecode, 2015.

[Schulte, 1996] Christian Schulte. Oz Explorer: A Visual Constraint Programming

Tool. In International Symposium on Programming Language Implementation and

Logic Programming, pages 477–478. Springer, 1996.

247

[Seidel, 1981] Raimund Seidel. A New Method for Solving Constraint Satisfaction

Problems. In Proceedings of the Seventh International Joint Conference on Artifi-

cial Intelligence, pages 338–342, 1981.

[Shishmarev et al., 2016] Maxim Shishmarev, Christopher Mears, Guido Tack, and

Maria Garcia de la Banda. Visual Search Tree Profiling. Constraints, 21(1):77–94,

2016.

[Simonis and Aggoun, 2000] Helmut Simonis and Abder Aggoun. Search-Tree Visu-

alisation. In Analysis and Visualization Tools for Constraint Programming: Con-

straint Debugging, volume 1870 of LNCS, pages 191–208. Springer, 2000.

[Simonis and O’Sullivan, 2011] Helmut Simonis and Barry O’Sullivan. Almost Square

Packing. In Proceedings of 8 th International Conference on the Integration of

Constraint Programming, Artificial Intelligence, and Operations Research Principle

and Practice of Constraint Programming (CPAIOR 2011), volume 6697, pages 196–

209. Springer, 2011.

[Simonis et al., 2000] Helmut Simonis, Abder Aggoun, Nicolas Beldiceanu, and Eric

Bourreau. Complex Constraint Abstraction: Global Constraint Visualisation. In

Analysis and Visualization Tools for Constraint Programming: Constraint Debug-

ging, volume 1870 of LNCS, pages 299–317. Springer, 2000.

[Simonis et al., 2010] Helmut Simonis, Paul Davern, Jacob Feldman, Deepak Mehta,

Luis Quesada, and Mats Carlsson. A Generic Visualization Platform for CP. In

Proceedings of 16 th International Conference on Principle and Practice of Con-

straint Programming (CP’10), volume 6308 of LNCS, pages 460–474. Springer,

2010.

248

[Stergiou, 2008] Kostas Stergiou. Heuristics for Dynamically Adapting Propagation.

In Proceedings of the 18 th European Conference on Artificial Intelligence, pages

485–489, 2008.

[Subbarayan and Pradhan, 2005] Sathiamoorthy Subbarayan and Dhiraj K. Prad-

han. NiVER: Non-increasing Variable Elimination Resolution for Preprocessing

SAT Instances. In Theory and Applications of Satisfiability Testing: 7th Interna-

tional Conference (SAT 2004), volume 3542 of LNCS, pages 276–291. Springer,

2005.

[Swearingn et al., 2011] Amanda Swearingn, Berthe Y. Choueiry, and Eugene C.

Freuder. A Reformulation Strategy for Multi-Dimensional CSPs: The Case Study

of the Set Game. In Ninth International Symposium on Abstraction, Reformula-

tion and Approximation (SARA 2011), pages 107–116. AAAI Press, 2011.

[Tarjan and Yannakakis, 1984] Robert Endre Tarjan and Mihalis Yannakakis. Simple

Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hyper-

graphs, and Selectively Reduce Acyclic Hypergraphs. SIAM Journal on Computing,

13(3):566–579, 1984.

[Tsang, 1993] Edward Tsang. Foundations of Constraint Satisfaction. Academic

Press, London, UK, 1993.

[Ullmann, 2007] Julian R. Ullmann. Partition Search for Non-binary Constraint Sat-

isfaction. Information Sciences, 177(18):3639–3678, September 2007.

[Valiant, 1979] Leslie G. Valiant. The Complexity of Computing the Permanent.

Theoretical Computer Science, 8:189–201, 1979.

249

[Vion et al., 2011] Julien Vion, Thierry Petit, and Narendra Jussien. Integrating

Strong Local Consistencies into Constraint Solvers. In 14th Annual ERCIM In-

ternational Workshop on Constraint Solving and Constraint Logic Programming,

CSCLP 2009, volume 6080 of LNAI, pages 90–104. Springer, 2011.

[Wallace and Freuder, 1992] Richard J. Wallace and Eugene C. Freuder. Ordering

Heuristics for Arc Consistency Algorithms. In AI/GI/VI 92, pages 163–169, 1992.

[Wallace, 2015] Richard J. Wallace. SAC and Neighbourhood SAC. AI Communica-

tions, 28(2):345–364, January 2015.

[Walsh, 1999] Toby Walsh. Search in a Small World. In Proceedings of the 16 th Inter-

national Joint Conference on Artificial Intelligence, pages 1172–1177, Stockholm,

Sweden, 1999.

[Wilcoxon, 1945] Frank Wilcoxon. Individual Comparisons by Ranking Methods.

Biometrics Bulletin, 1(6):80–83, 1945.

[Woodward and Choueiry, 2017] Robert J. Woodward and Berthe Y. Choueiry.

Weight-Based Variable Ordering in the Context of High-Level Consistencies. ArXiv

e-prints, November 2017.

[Woodward et al., 2011a] Robert Woodward, Shant Karakashian, Berthe Y.

Choueiry, and Christian Bessiere. Adaptive Neighborhood Inverse Consistency as

Lookahead for Non-Binary CSPs. In Proceedings of AAAI-2011, pages 1830–1831,

San Francisco, CA, 2011.

[Woodward et al., 2011b] Robert Woodward, Shant Karakashian, Berthe Y.

Choueiry, and Christian Bessiere. Solving Difficult CSPs with Relational Neigh-

250

borhood Inverse Consistency. In Proceedings of AAAI-2011, pages 112–119, San

Francisco, CA, 2011.

[Woodward et al., 2011c] Robert J. Woodward, Shant Karakashian, Berthe Y.

Choueiry, and Christian Bessiere. Reformulating the Dual Graphs of CSPs to

Improve the Performance of Relational Neighborhood Inverse Consistency. In

Ninth International Symposium on Abstraction, Reformulation and Approximation

(SARA 2011), pages 140–148. AAAI Press, 2011.

[Woodward et al., 2012] Robert J. Woodward, Shant Karakashian, Berthe Y.

Choueiry, and Christian Bessiere. Revisiting Neighborhood Inverse Consistency

on Binary CSPs. In Proceedings of 18 th International Conference on Principle

and Practice of Constraint Programming (CP’12), volume 7514 of LNCS, pages

688–703. Springer, 2012.

[Woodward et al., 2014] Robert J. Woodward, Anthony Schneider, Berthe Y.

Choueiry, and Christian Bessiere. Adaptive Parameterized Consistency for Non-

Binary CSPs by Counting Supports. In Proceedings of 20 th International Confer-

ence on Principle and Practice of Constraint Programming (CP’14), volume 8656

of LNCS, pages 755–764. Springer, 2014.

[Woodward et al., 2016a] Robert J. Woodward, Berthe Y. Choueiry, and Christian

Bessiere. Cycle-Based Singleton Local Consistencies. Technical Report TR-UNL-

CSE-2016-0004, Department of Computer Science and Engineering, University of

Nebraska-Lincoln, Lincoln, NE, 2016.

[Woodward et al., 2016b] Robert J. Woodward, Shant Karakashian, Berthe Y.

Choueiry, and Christian Bessiere. Witnessing Solution Counting in Tree-Structured

Methods for CSPs. Technical Report TR-UNL-CSE-2016-0006, Department of

251

Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE,

2016.

[Woodward et al., 2017] Robert J. Woodward, Berthe Y. Choueiry, and Christian

Bessiere. Cycle-Based Singleton Local Consistencies. In Proceedings of AAAI-

2017, pages 5005–5006, San Francisco, CA, 2017.

[Woodward et al., 2018] Robert J. Woodward, Berthe Y. Choueiry, and Christian

Bessiere. A Reactive Strategy for High-Level Consistency During Search. In Pro-

ceedings of the 27 th International Joint Conference on Artificial Intelligence, pages

1390–1397, Stockholm, Sweden, 2018.

[Wotzlaw et al., 2013] Andreas Wotzlaw, Alexander van der Grinten, and Ewald

Speckenmeyer. Effectiveness of pre- and inprocessing for CDCL-based SAT solv-

ing. Technical report, Institut für Informatik, Universität zu Köln, Köln, Germany,

2013.

[Xu and Choueiry, 2003] Lin Xu and Berthe Y. Choueiry. A New Efficient Algorithm

for Solving the Simple Temporal Problem. In Mark Reynolds and Abdul Sattar,

editors, 10th International Symposium on Temporal Representation and Reasoning

and Fourth International Conference on Temporal Logic (TIME-ICTL 03), pages

212–222. IEEE Computer Society Press, 2003.

[Xu et al., 2008] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.

SATzilla: Portfolio-Based Algorithm Selection for SAT. JAIR, 32:565–606, 2008.

[Yvars, 2008] Pierre-Alain Yvars. Using Constraint Satisfaction for Designing Me-

chanical Systems. International Journal on Interactive Design and Manufcturing

(IJIDeM), 2(3):161–167, 2008.

Abstract

Determining whether or not a Constraint Satisfaction Problem (CSP) has a solution is
NP-complete. CSPs are solved by inference (i.e., enforcing consistency), conditioning (i.e.,
doing search), or, more commonly, by interleaving the two mechanisms. The most common
consistency property enforced during search is Generalized Arc Consistency (GAC). In
recent years, new algorithms that enforce consistency properties stronger than GAC have
been proposed and shown to be necessary to solve difficult problem instances.

We frame the question of balancing the cost and the pruning effectiveness of consistency
algorithms as the question of determining where, when, and how much of a higher-level con-
sistency to enforce during search. To answer the ‘where’ question, we exploit the topological
structure of a problem instance and target high-level consistency where cycle structures ap-
pear. To answer the ‘when’ question, we propose a simple, reactive, and effective strategy
that monitors the performance of backtrack search and triggers a higher-level consistency as
search thrashes. Lastly, for the question of ‘how much,’ we monitor the amount of updates
caused by propagation and interrupt the process before it reaches a fixpoint. Empirical
evaluations on benchmark problems demonstrate the effectiveness of our strategies.

Résumé

Déterminer si un problème de satisfaction de contraintes (CSP) admet ou non une
solution est NP-complet. Les CSP sont résolus par inférence (c’est-à-dire, en appliquant
un algorithme de cohérence), par énumeration (c’est-à-dire en effectuant une recherche avec
retour sur trace ou backtracking), ou, plus souvent, en entrelaçant les deux mécanismes.
La propriété de cohérence la plus couramment appliquée en cours du backtracking est GAC
(Generalized Arc Consistency). Au cours des dernières années, de nouveaux algorithmes
pour appliquer des cohérences plus fortes que GAC ont été proposés et se sont avérés
nécessaires pour résoudre les problèmes difficiles.

Nous nous attaquons à la question de balancer d’une part le coût des algorithmes de
cohérence et, d’autre part, leur pouvoir d’élagage et posons cette problématique comme
étant celle de déterminer où, quand, et combien une cohérence doit-elle être appliquée en
cours de backtracking. Pour répondre à la question « où », nous exploitons la structure
topologique d’une instance du problème et focalisons la cohérence forte là où des structures
cycliques apparaissent. Pour répondre à la question « quand », nous proposons une stratégie
simple, réactive et efficace qui surveille la performance du backtracking puis déclenche une
cohérence forte lorsque le nombre des pas de backtracking devient alarmant. Enfin, pour la
question du « combien », nous surveillons les mises à jour provoquées par la propagation des
contraintes et interrompons le processus dès qu’il devient inactif ou coûteux même avant
qu’il n’atteigne un point fixe. Des évaluations empiriques sur des problèmes de référence
établissent l’efficacité de nos stratégies.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Claims
	Approach
	Visualizing Search and Consistency Costs
	`When:' Reactive Strategies for Enforcing HLC
	`How Much:' Monitoring Constraint Propagation
	`Where:' Channel HLC along Cycles

	Contributions
	Outline of Dissertation

	Background
	Constraint Satisfaction Problem (CSP)
	Solving a CSP
	Representation
	Elimination Ordering and Graph Triangulation
	Tree Decomposition

	Consistency Properties and Algorithms
	Variable-Based Consistency
	Relation-Based Consistency
	Comparing Consistency Properties

	Minimum Cycle Basis
	Related Literature
	Where
	When
	How much
	Where and when
	Where and how much

	Visualizing Search
	Previous Approaches to Visualizing Search
	Analyzing Search Effectiveness
	Backtracks per Depth
	Calls per Depth

	Comparing Different Consistency Algorithms
	Implementing the Visualization
	Real-Time Feedback
	Running Multiple Consistencies

	A Reactive Strategy for High-Level Consistency During Search
	When HLC: A Trigger-Based Strategy
	PrePeak
	Update Strategies for
	Initializing the threshold

	How Much HLC: Monitoring Propagation
	Other Reactive Triggering Strategies
	BTWatch
	Scheduled Enforcement of HLC

	Empirical Evaluation on POAC
	Experimental Setup
	Comparing with BTWatch
	Triggering Cannot be Scheduled
	Putting together `When' and `How Much'
	PrePeak+ versus GAC and APOAC
	Visualizing Search Performance
	Comparison to Multi-Armed Bandits

	Restricting Consistency to Cycles
	New Conditions for Tractability
	Terminology
	Binary CSPs
	Binary and Non-Binary CSPs

	Localizing POAC
	NPOAC: Localization to Neighborhoods
	cycPOAC: Localization to MCBs
	NPOACQ: A Variable-Based Algorithm
	cycPOACQ: A Variable-Based Algorithm
	Extension to Relations
	Practical Improvement of Algorithms

	Approximating a Minimum Cycle Basis
	Minimum Cycle Basis Evaluation
	Approximation Cycles Using a Breath-First Search
	Comparing Cycles Found by BFSC and MCB

	Empirical Evaluation
	Experimental Setup
	Localizing Adaptive POAC
	Combining PrePeak+ and Localized POAC

	Cycles for Determining Singleton Tests
	Determine Singleton Tests
	Experimental Results

	Localizing Consistency to Triangles
	Revisiting PPC
	The Algorithm
	Bit Implementation of the Constraints
	Variations of PPC

	Generating Triangulated Edge Constraints
	Using the Separators of a Tree Decomposition
	Using the Clusters of a Tree Decomposition
	Implementing Triangle Generation
	Decision Tree for Selecting Triangles for PC
	Watching Memory Usage

	Experimental Evaluation of PPC
	Experimental Setup
	Comparison of Variations of PPC
	As Pre-Processing
	As Real-Full Lookahead
	Triggering PPC

	Hyper-3 Consistency
	Extending Hyper-3 Consistency
	Extending PPC to PH3C
	Bit Implementation for PH3C
	Decision Tree for Selecting Triangles for H3C

	Empirical Evaluation of PH3Cbit
	Experimental Setup
	PH3C versus PPC on Binary CSPs
	Decision Tree for Selecting Triangles for PH3C
	Selecting PH3C Strength
	PH3C+ with PrePeak

	Conclusions and Future Work
	Summary of Contributions
	Directions for Future Research

	Weight-Based Variable Ordering in the Context of High-Level Consistency
	Motivation
	Weighting Schemes
	Partition-One Arc-Consistency (POAC)
	Relational Neighborhood Inverse Consistency (RNIC)

	Experimental Evaluation
	Experimental Setup
	Partition-One Arc-Consistency
	Relational Neighborhood Inverse Consistency

	Adaptive Parameterized Consistency for Non-Binary CSPs by Counting Supports
	Introduction
	Local Consistency Properties

	Adaptive Parameterized Consistency
	Modifying apc-LC for Non-Binary CSPs
	p-stability for GAC
	Computing p-stability for GAC
	Algorithm for Enforcing apc-LC

	Empirical Evaluations

	Witness-Based Search for Solution Counting
	Introduction
	Main Definitions
	Constraint Satisfaction Problem
	Backtrack Search with Tree Decomposition
	AND/OR Tree Search

	Tree-Based Solution Counting
	Solution Counting in a Tree-Structured Binary CSP
	Solution Counting in the BTD
	Solution Counting in an AND/OR Search Tree

	Solution Counting in Witness-Based Search
	A Generic Pseudo-Code for Witness-Based Search
	Analysis of Witness-Based Search

	Empirical Evaluations
	Experimental Set-Up
	Comparing Witness-BTD with BTD
	Comparing Witness-AND/OR with AND/OR Tree Search
	An example with extreme benefits

	Assigning Blame when Triggering HLC
	A Simple Motivating Example
	Apply Consistency at Each Step
	An Approximation of Blame
	Variable-Based Consistencies
	Relational-Based Consistencies
	Considering Both Relational and Variable-Based Consistencies

	Benchmark Information
	Primal Density of Benchmarks
	Performance of GAC2001 and STR2+ on Binary CSPs

	Detailed Results for Chapter 4
	Bibliography

