
RELATIONAL NEIGHBORHOOD INVERSE CONSISTENCY FOR
CONSTRAINT SATISFACTION: A STRUCTURE-BASED APPROACH FOR

ADJUSTING CONSISTENCY & MANAGING PROPAGATION

by

Robert J. Woodward

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

December, 2011

RELATIONAL NEIGHBORHOOD INVERSE CONSISTENCY FOR

CONSTRAINT SATISFACTION: A STRUCTURE-BASED APPROACH FOR

ADJUSTING CONSISTENCY & MANAGING PROPAGATION

Robert J. Woodward, M. S.

University of Nebraska, 2011

Adviser: Berthe Y. Choueiry

Freuder and Elfe [1996] introduced Neighborhood Inverse Consistency (NIC) as a local

consistency property defined on the values in the variables’ domains of a Constraint

Satisfaction Problem (CSP). Debruyne and Bessière [2001] showed that enforcing NIC

on binary CSPs is ineffective on sparse graph and too costly on dense graphs. In this

thesis, we propose Relational Neighborhood Inverse Consistency (RNIC), an exten-

sion of NIC defined as a local consistency property on the tuples of the relations of a

CSP. We characterize RNIC for both binary and non-binary CSPs, and propose an al-

gorithm for enforcing it whose complexity is bounded by the degree of the dual graph

on which the algorithm is applied. We propose to reduce the computational cost of

our algorithm by reformulating the dual graph of the CSP. We present two reformu-

lation techniques and their combinations, and discuss their effects on the consistency

property enforced by the algorithm. We also describe a selection policy for choosing

an appropriate reformulation technique, tying together the various components of our

approach, which we show to outperforms, in a statistically significant manner, other

common approaches for solving benchmark problems. Finally, we study the effect

of the structure of the dual graph on the ordering of the propagation queue of our

algorithm when applied as a preprocessing step to backtrack search and also as a

lookahead strategy during search. We conclude, empirically, that the most effective

ordering is the one that follows the tree decomposition of the dual graph.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Berthe Y. Choueiry, for her continued support

and encouragement. I am also thankful to the members of the committee, Dr. Chris-

tian Bessiere, Dr. Sebastian Elbaum, and Dr. Peter Revesz for their invaluable feed-

back that allowed me to improve the analysis and presentation of my work. I am

especially indebted to Dr. Bessiere for many stimulating discussions about the fun-

damental ideas in this thesis, for his support and enthusiasm, and for his substantial

input to the theoretical proofs and counterexamples.

I am especially grateful to Shant Karakashian for creating an extensive, flexible,

and reliable solver framework that I exploited to build, test, and evaluate my algo-

rithms. Shant and I first started collaborating on the R(∗,m)C property, which I had

originally designed in a constraint-based system for solving the Minesweeper puzzle.

Shant generalized the concept to arbitrary CSPs, and designed and implemented ad-

vanced data structures that made the algorithm competitive and the concept a reality.

I learned a lot from working with Shant, both for the design and implementation of

advanced software as well as for conducting research. He has contributed to the re-

search presented in Chapter 4 of this thesis. Further, Shant has been a real friend to

me since I started doing research at the University of Nebraska-Lincoln (UNL) by sup-

porting my ideas and always being available to listen and help. Christopher Reeson

implemented the algorithm for computing the minimal dual graphs of a Constraint

Satisfaction Problem (CSP), which is a key component of the various methods pro-

posed in this thesis. I would like to thank Elizabeth Claassen and Dr. David B. Marx

of the Department of Statistics at UNL for their help with designing the statistical

analysis.

My first steps in research in Computer Science as an undergraduate student under

iv

the supervision of Dr. Choueiry would not have been easy or perhaps even possible

without the two awards that I received from the Undergraduate Creative Activities

and Research Experiences (UCARE) program. The careful mentoring of Dr. Laura

Damuth, Director of Undergraduate Research and Fellowship Advisor at UNL, and

her generosity have allowed me to realize my aspirations and enabled me to apply to

and receive the nationally competitive Barry M. Goldwater Scholarship.

Finally, I am grateful to my loving family, who encouraged me to pursue my

passion of Computer Science. I am especially grateful to my wife, Allison, who

lovingly and patiently puts up with my late nights spent on research.

This research was partially supported by a National Science Foundation (NSF) Grad-

uate Research Fellowship grant number 1041000 and NSF Grant No. RI-111795. Ex-

periments were conducted on the equipment of the Holland Computing Center at UNL.

v

Contents

Contents v

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.2.1 Relational Neighborhood Inverse Consistency 4

1.2.2 Enforcing RNIC . 4

1.2.3 RNIC variations . 4

1.2.4 Dual graph selection . 5

1.2.5 Evaluation of RNIC . 5

1.2.6 Queue management . 5

1.3 Outline of Thesis . 5

2 Background 7

2.1 Constraint Satisfaction Problem (CSP) 8

2.2 Graphical Representations . 10

vi

2.2.1 Constraint graph, hypergraph, and primal graph 11

2.2.2 Dual encoding . 12

2.3 Reformulation Strategies . 13

2.3.1 Triangulation . 13

2.3.2 Redundancy removal . 15

2.4 Consistency: Properties & Algorithms 15

2.4.1 Domain consistency properties 16

2.4.2 Relational consistency properties 17

2.4.3 Comparing consistency properties 18

2.5 Solving CSPs . 18

2.6 Related Work . 19

2.6.1 For binary CSPs . 20

2.6.2 For non-binary CSPs . 20

3 Relational Neighborhood Inverse Consistency & Dual Graphs 22

3.1 Defining RNIC . 23

3.2 Comparing RNIC and R(∗,m)C . 24

3.3 Comparing RNIC and Domain Filtering 26

3.4 Structure of the Dual Graph of a Binary CSP 28

3.4.1 Binary CSP with a complete constraint graph 28

3.4.2 Binary CSP with a non-complete constraint graph 33

3.5 RNIC on a Binary CSPs . 34

3.5.1 Comparing RNIC and NIC . 34

3.5.2 Effects of the dual-graph’s structure on RNIC 35

4 Enforcing RNIC 38

4.1 An Algorithm for RNIC . 38

vii

4.1.1 SearchSupport . 40

4.1.2 Complexity analysis . 41

4.2 Enforcing RNIC versus R(∗,m)C . 42

4.3 Reformulating the Dual Graph . 43

4.3.1 Removing redundant edges: wRNIC 44

4.3.2 Triangulating the dual graph: triRNIC 46

4.3.3 Triangulate a minimal dual graph: wtriRNIC 47

4.3.4 Select the appropriate RNIC: selRNIC 47

5 Evaluating RNIC 50

5.1 Experimental Setup . 50

5.1.1 Measured parameters . 51

5.1.2 Method for statistical analysis 52

5.2 Global Rankings . 53

5.3 Detailed Analysis . 59

5.3.1 The aim-100 & aim-200 benchmarks 59

5.3.2 The dag-rand benchmark . 60

5.3.3 The modifiedRenault benchmark 61

5.3.4 The lexVg benchmark . 61

5.3.5 All other results . 63

6 Propagation-Queue Management 64

6.1 Queue-Management Strategies . 65

6.1.1 Exact strategies . 66

6.1.2 Lazy strategies . 67

6.2 Experimental Setup . 68

6.3 Pre-Processing: Empirical Evaluations 70

viii

6.3.1 Enforcing triRNIC . 70

6.3.2 Enforcing wtriRNIC . 71

6.4 Lookahead: Empirical Evaluations . 72

6.4.1 Enforcing triRNIC . 72

6.4.2 Enforcing wtriRNIC . 74

7 Conclusions and Future Work 76

7.1 Summary of Contributions . 76

7.2 Directions for Future Research . 78

7.3 Final Note . 80

A Data Sets 81

A.1 Binary CSPs . 81

A.2 Non-Binary CSPs . 93

B Code Documentation 98

B.1 Data Structures . 98

B.1.1 constraint graph Struct Reference 99

B.1.2 constraint graph edge Struct Reference 99

B.1.3 constraint graph node Struct Reference 100

B.1.4 htable Struct Reference . 101

B.1.5 light stack Struct Reference 104

B.1.6 light stack node Struct Reference 104

B.1.7 llist Struct Reference . 104

B.1.8 llist node Struct Reference . 105

B.1.9 s node Struct Reference . 106

B.1.10 set Struct Reference . 106

ix

B.1.11 tree map Struct Reference . 107

B.1.12 tree map node Struct Reference 107

B.1.13 tuple tag Struct Reference . 108

B.2 File Documentation . 110

B.2.1 nic2.c File Reference . 110

B.2.2 nicprocedures.c File Reference 137

Bibliography 141

x

List of Figures

2.1 A graph coloring problem [Dechter, 2003]. 9

2.2 The CSP of the crypto-arithmetic puzzle SEND + MORE = MONEY [Dechter,

2003]. 9

2.3 The hypergraph of a small CSP. 11

2.4 The primal graph of a small CSP. 11

2.5 The dual graph of a small CSP. 12

2.6 Triangulating a dual graph. 14

2.7 A minimal dual graph. 15

3.1 The dual graph of a small CSP. 23

3.2 Comparing RNIC with R(∗,m)C. 25

3.3 Configurations illustrating Theorem 4. 26

3.4 The CSP is RNIC+DF but not SGAC. 27

3.5 The CSP is SGAC but not RNIC+DF. 27

3.6 Some domain filtering properties. 28

3.7 A complete constraint graph of n vertices. 28

3.8 The dual graph corresponding to the CSP in Figure 3.7. 28

3.9 The path for the constraints over variables Vi≥2 of the grid of Figure 3.8. . . . 29

3.10 A complete constraint graph with 3 variables. 30

xi

3.11 The dual graph of a complete constraint graph with 3 variables. 30

3.12 A complete constraint graph with k variables. 31

3.13 The dual graph of a complete constraint graph with k variables. 31

3.14 A complete constraint graph with k + 1 variables. 31

3.15 The dual graph of a complete constraint graph with k + 1 variables. 31

3.16 A complete constraint graph with 5 variables. 33

3.17 A redundancy-free dual graph of a complete constraint graph with five variables,

which does not form a grid structure. 33

3.18 A complete constraint graph with 5 variables. 34

3.19 The redundancy-free dual graph of a the constraint graph with 5 variables. . . 34

3.20 The binary CSP is NIC but not RNIC+DF. 34

3.21 Binary CSP is RNIC+DF but not NIC. 34

3.22 A redundancy-free configuration of four binary constraints. 36

3.23 One possible labeling of the edges incident to C1. 36

3.24 The other possible labeling of the edges incident to C1. 36

4.1 Variations of RNIC. 44

4.2 A minimal dual graph. 45

4.3 Relating RNIC, wRNIC, R(∗,m)C, and wR(∗,m)C. 46

4.4 Triangulating a dual graph. 46

4.5 Triangulating a minimal dual graph. 47

4.6 Relating RNIC, R(∗,m)C, and their studied variations. 48

4.7 Selecting a dual graph for selRNIC. 48

6.1 A triangulated dual graph (left) along with a perfect elimination ordering (cen-

ter) and a maximal cliques ordering (right) where the orderings proceed from

bottom to top. 65

xii

List of Tables

5.1 Overview of the binary benchmarks tested (Part A). 55

5.2 Overview of the binary benchmarks tested (Part B). 56

5.3 Overview of the non-binary benchmarks tested. 57

5.4 RNIC/selRNIC completes the largest number of instances, and solves, backtrack

free, the largest number of instances. 60

5.5 Despite the high density, RNIC is able to perform well. 61

5.6 RNIC is hindered by the high density of the dual graph, but its weakened

versions outperform all others. 62

5.7 GAC is best on CPU, triRNIC/selRNIC is best on #BF. 62

6.1 Proposed queue management strategies. 68

6.2 Pre-processing: QMSs for enforcing triRNIC. 71

6.3 Pre-processing: QMSs for enforcing triRNIC on solvable instances. 71

6.4 Pre-processing: QMSs for enforcing triRNIC on unsolvable instances. 71

6.5 Pre-processing: QMSs for enforcing wtriRNIC. 72

6.6 Pre-processing: QMSs for enforcing wtriRNIC on solvable instances. 72

6.7 Pre-processing: QMSs for enforcing wtriRNIC on unsolvable instances. 72

6.8 Lookahead: QMSs for enforcing triRNIC. 73

6.9 Lookahead: QMSs for enforcing triRNIC on solvable instances. 73

xiii

6.10 Lookahead: QMSs for enforcing triRNIC on unsolvable instances. 73

6.11 Lookahead: QMSs for enforcing wtriRNIC. 74

6.12 Lookahead: QMSs for enforcing wtriRNIC on solvable instances. 74

6.13 Lookahead: QMSs for enforcing wtriRNIC on unsolvable instances. 74

A.1 Statistical analysis of the composed-25-1-25 benchmark. 82

A.2 Statistical analysis of the composed-25-1-2 benchmark. 82

A.3 Statistical analysis of the composed-25-1-40 benchmark. 83

A.4 Statistical analysis of the composed-25-1-80 benchmark. 83

A.5 Statistical analysis of the composed-25-10-20 benchmark. 83

A.6 Statistical analysis of the composed-75-1-25 benchmark. 83

A.7 Statistical analysis of the composed-75-1-2 benchmark. 84

A.8 Statistical analysis of the composed-75-1-40 benchmark. 84

A.9 Statistical analysis of the composed-75-1-80 benchmark. 84

A.10 Statistical analysis of the ehi-85 benchmark. 85

A.11 Statistical analysis of the ehi-90 benchmark. 85

A.12 Statistical analysis of the QCP-10 benchmark. 85

A.13 Statistical analysis of the driver benchmark. 85

A.14 Statistical analysis of the frb35-17 benchmark. 86

A.15 Statistical analysis of the frb40-19 benchmark. 86

A.16 Statistical analysis of the frb45-21 benchmark. 86

A.17 Statistical analysis of the geom benchmark. 86

A.18 Statistical analysis of the langford benchmark. 87

A.19 Statistical analysis of the marc benchmark. 87

A.20 Statistical analysis of the QCP-15 benchmark. 87

A.21 Statistical analysis of the rand-2-23 benchmark. 87

xiv

A.22 Statistical analysis of the rand-2-24 benchmark. 88

A.23 Statistical analysis of the rand-2-30-15-fcd benchmark. 88

A.24 Statistical analysis of the rand-2-30-15 benchmark. 88

A.25 Statistical analysis of the rand-2-40-19-fcd benchmark. 89

A.26 Statistical analysis of the rand-2-40-19 benchmark. 89

A.27 Statistical analysis of the tightness0.1 benchmark. 89

A.28 Statistical analysis of the tightness0.2 benchmark. 89

A.29 Statistical analysis of the tightness0.35 benchmark. 90

A.30 Statistical analysis of the tightness0.5 benchmark. 90

A.31 Statistical analysis of the tightness0.65 benchmark. 90

A.32 Statistical analysis of the tightness0.8 benchmark. 90

A.33 Statistical analysis of the tightness0.9 benchmark. 91

A.34 Statistical analysis of the coloring benchmark. 91

A.35 Statistical analysis of the frb30-15 benchmark. 91

A.36 Statistical analysis of the hanoi benchmark. 92

A.37 Statistical analysis of the QWH-10 benchmark. 92

A.38 Statistical analysis of the QWH-15 benchmark. 92

A.39 Statistical analysis of the aim-50 benchmark. 93

A.40 Statistical analysis of the dubois benchmark. 94

A.41 Statistical analysis of the ssa benchmark. 94

A.42 Statistical analysis of the travellingSalesman-20 benchmark. 94

A.43 Statistical analysis of the travellingSalesman-25 benchmark. 94

A.44 Statistical analysis of the jnhSat benchmark. 95

A.45 Statistical analysis of the jnhUnsat benchmark. 95

A.46 Statistical analysis of the rand-3-20-20-fcd benchmark. 95

A.47 Statistical analysis of the rand-3-20-20 benchmark. 95

xv

A.48 Statistical analysis of the rand-3-24-24-fcd benchmark. 96

A.49 Statistical analysis of the ogdVg benchmark. 96

A.50 Statistical analysis of the ukVg benchmark. 96

A.51 Statistical analysis of the wordsVg benchmark. 96

A.52 Statistical analysis of the pret benchmark. 97

A.53 Statistical analysis of the rand-10-20-10 benchmark. 97

A.54 Statistical analysis of the rand-8-20-5 benchmark. 97

A.55 Statistical analysis of the varDimacs benchmark. 97

1

Chapter 1

Introduction

An important result in Constraint Processing (CP) ties the tractability1 of a Con-

straint Satisfaction Problem to the level of consistency that it satisfies. Solving dif-

ficult problems often requires enforcing higher order consistency, which typically re-

quires the use of more costly algorithms in time and/or in space. Freuder and Elfe

[1996] introduced Neighborhood Inverse Consistency (NIC) for Constraint Satisfac-

tion problems (CSPs) as a particularly promising consistency property because:

1. Enforcing it is light in terms of space requirements (inverse consistency is en-

forced by filtering the variables domains); and

2. It focuses the attention on where a variable’s value most tightly interacts with

the problem, namely its neighborhood.

Despite its promise and filtering effectiveness, NIC remains relatively unexploited

because the algorithm for enforcing it is too costly in terms of processing time, which

prevented its use on dense networks or in a lookahead scheme during backtrack search.

1The tractability of a problem is the ability to solve it in time polynomial in the size of the

input, which, in the case of the CSP, is the number of variables.

2

In [Woodward et al., 2011b], we generalized NIC to Relational Neighborhood Con-

sistency (RNIC) for filtering relations. Although, Bacchus et al. [2002] had already

identified the same property as RNIC to hold when the arc-consistency property holds

in on the dual graph2 of the CSP, they do not provide a practical algorithm for en-

forcing it, study its usefulness in practice, or compare to any consistency properties

other than arc consistency, all of which we examine in this thesis.

1.1 Motivation

Scalability is one of the biggest challenges in computing from the theoretical point

of view and also, importantly, in practice. CSPs are in general NP-complete, and

backtrack search is the only known sound and complete algorithm for solving them.

The goal of consistency algorithms is to remove, from the problem or from the search

tree, those components (i.e., variables values, constraint tuples, and subtrees) that

are inconsistent with the constraints, and thus cannot participate in a solution. The

higher the consistency level enforced by a consistency algorithm, the stronger the

pruning and the lesser the search effort. However, higher consistency levels also take

more time/space to enforce.

Having a CSP solver dynamically determine the amount of consistency to enforce,

either over the whole CSP or determining parts of the CSP to enforce a consistency on,

is the ideal goal. Dynamically determining the consistency level allows for enforcing

the higher, more expensive, consistency levels in areas of the problem where the efforts

are required, but in the other parts of the problem, where the higher consistency levels

is not required, to be filtered by the lower, cheaper, levels of consistency. To date,

most of the research is conducted on improving algorithms for enforcing low-levels of

2The dual graph is defined in Section 2.2.

3

consistency, little research is conducted on higher-levels of consistency or algorithms

that adopt the consistency level to the problem.

1.2 Contributions

In this thesis, we focus on the relation-filtering property RNIC, introduce variations of

the property based on the dual graph RNIC enforces on, and study its performance

to characterize and improve their behavior on benchmark problems. Preliminary

work on the RNIC property and the algorithm for enforcing it was published in

[Woodward et al., 2011b; 2011a], a detailed description of the reformulations was

given in [Woodward et al., 2011c], and these works were combined in [Woodward et

al., 2011d]. We present six main contributions:

1. Introduce RNIC, a new consistency property that operates by on the relations of

the CSP and characterize it on both binary and non-binary CSPs, see Chapter 3.

2. Give an algorithm for enforcing RNIC and compare its filtering power to other

consistency methods, see Chapter 4.

3. Describe three variations of RNIC and classify the resulting filtering power of

each variation.

4. We propose a strategy for automatically choosing the appropriate property to

enforce, which is empirically evaluated to outperform other techniques compared

in a statistically significant manner.

5. We compare the performance of RNIC and its variations to other common local

consistency techniques on difficult benchmark problems, see Chapter 5.

4

6. Propose and evaluate four new queue-management strategies for RNIC, see

Chapter 6.

Below, we briefly discuss each of these contributions and summarize our results.

1.2.1 Relational Neighborhood Inverse Consistency

We introduce a new consistency property, Relational Neighborhood Inverse Consis-

tency (RNIC). RNIC is an extension of NIC on the tuples of the relations of a CSP,

rather than on the values in the variables’ domains. The benefit of RNIC is that it

adapts to the topology of its neighborhood. Further, it does not require introducing

new relations to the CSP, but filters existing relations. We also characterize RNIC

filtering power compared to other common consistency methods, and on binary and

non-binary CSPs.

1.2.2 Enforcing RNIC

RNIC can be enforced by ensuring that every tuple in every relation has a valid

support in its neighborhood, and removing those that do not. The complexity is

polynomial in the number of relations for a fixed degree dual graph.

1.2.3 RNIC variations

We propose to reduce the computation cost and/or strength propagation by reformu-

lating the dual graph of the CSP. The reformulations are using a minimal dual graph

(removing redundant edges in the dual graph), and/or triangulating the considered

dual graph.

5

1.2.4 Dual graph selection

We introduce a selection criteria to select which of the four dual graphs (the original,

minimal, triangulated, and triangulated minimal) to enforce RNIC on, which is shown

to be statistically advantageous.

1.2.5 Evaluation of RNIC

We evaluate RNIC and its variations when compared to other commonly used local

consistency techniques on the CSP Solver Competition benchmark problems. Fur-

ther, we identify situations where RNIC performs well, in structured problems, and

situations where RNIC does not perform well, in random problems.

1.2.6 Queue management

We propose four new propagation-queue strategies (two exact and two approximate)

for RNIC. We empirically compare the different heuristics of the queue for both

pre-processing and lookahead. We conclude that the best strategy is full lookahead

following the structure of the tree decomposition.

1.3 Outline of Thesis

This thesis is structured as follows. Chapter 2 reviews background information about

CSPs. Chapter 3 introduces RNIC, characterizes it with other consistency techniques

and on binary and non-binary CSPs. Chapter 4 describes an algorithm for enforcing

RNIC on the dual encoding of the CSP. It also discusses three variations of dual graphs

for RNIC to use, and a strategy for deciding which of the four properties to enforce.

Chapter 5 discusses our experimental results, where we compare the performance of

6

the resulting mechanisms on difficult benchmark problems. Chapter 6 discusses queue

management strategies for RNIC, and evaluates a strategy to use. Chapter 7 discusses

the extension of our approach to relations specified as conflicts or in intension and

concludes this document with directions for future research. Finally, Appendix A

gives the complete data sets discussed in Chapter 5, and Appendix B documents the

C code used to empirically evaluate RNIC.

7

Chapter 2

Background

Constraint Satisfaction Problems (CSPs) can be used to model a wide range of prob-

lems. One type of problems are scheduling problems, such as the assignment of teach-

ing assistants to courses [Lim, 2006]. Another use is in constraint database [Revesz,

2001]. Puzzle games, such as Sudoku1, Minesweeper2, and the Game of Set3 can all

be modeled and solved as CSPs. These are just a few examples of the uses of CSPs,

but almost any problem can be modeled as a CSP.

In this chapter, we review some background information about Constraint Satis-

faction problems (CSPs) and their different representations. We present two graph

reformulations. We review common domain and relational consistency properties,

and introduce how to compare different properties. And finally, we give related work.

1http://sudoku.unl.edu
2http://minesweeper.unl.edu
3http://gameofset.unl.edu

8

2.1 Constraint Satisfaction Problem (CSP)

Definition 1 (Constraint Satisfaction Problem) A Constraint Satisfaction Prob-

lem (CSP) is given by a tuple P = (V ,D, C), defined as follows:

• V = {V1, V2, . . . , Vn} is a set of variables.

• D = {D1, D2, . . . , Dn} is a set of domains. Each variable Vi ∈ V has a finite

domain Di ∈ D.

• C = {C1, C2, . . . , Ce} is a set of constraints, which constrains the possible as-

signment of values to variables.

Each constraint Ci ∈ C is specified by a relation Ri defined on a subset of the variables,

called the scope of the relation and denoted scope(Ri), and the arity of the constraint

is the size of the scope. Given a relation Ri, a tuple τi ∈ Ri is a vector of allowed

values for the variables in the scope of Ri. Solving a CSP corresponds to finding an

assignment of a value to each variable such that all the constraints are satisfied. The

task can be to determine if a solution exists, find one solution, or find all solutions.

A constraint that has arity equal to two is called a binary constraint and a con-

straint that has arity equal to one is called a unary constraint. A binary CSP is

a CSP where all of the constraints are binary or unary. In a non-binary CSP, the

constraints can be of any arity. The constraint density of a binary CSP is equal to

2e
n(n−1)

, where e is the number of constraints and n the number of variables.

An example of a binary CSP is the graph coloring problem, such as the one

illustrated in Figure 2.1 [Dechter, 2003]. The formulation of this CSP:

• V = {X1, X2, X3, X4, X5, X6}

• DX1 = DX2 = DX3 = DX4 = DX5 = DX6 = {red, blue, green}

9

X1 X2 X3

X4

X6 X5

Figure 2.1: A graph coloring problem [Dechter, 2003].

• A constraint for each dotted line, which represents that two variables cannot

share the same value.

One possible solution is when X1 = red,X2 = blue,X3 = red,X4 = green,X5 =

red,X6 = green.

An example of a non-binary CSP is an crypto-arithmetic puzzles, such as SEND

+ MORE = MONEY [Dechter, 2003]. In the crypto-arithmetic puzzle, each letter

represents a different digit such that the arithmetic equation is satisfied. Figure 2.2

shows an CSP for SEND + MORE = MONEY. The formulation of this CSP:

S	
 R	
 Y	
 O	
 N	
 M	
 D	
 E	

C6	

X4	
 X3	
 X1	
 X2	

C1	
 C4	
 C2	
 C3	
 C5	

Figure 2.2: The CSP of the crypto-arithmetic puzzle SEND + MORE = MONEY [Dechter,
2003].

10

• V = {D,E,M,N,O,R, S, Y,X1, X2, X3, X4}, whereX1 is the carry from adding

D and E, X2 is the carry from adding N and R, etc.

• The domains of the carries are: DX1 = DX2 = DX3 = DX4 = {0, 1}. The

domains for the letters are: DD = DE = DM = DN = DO = DR = DS = DY =

{0, 1, . . . , 9}.

• C = {C1, C2, C3, C4, C5, C6}:

C1 : Y + 10X1 = D + E

C2 : E + 10X2 = X1 +N +R

C3 : N + 10X3 = X2 +O + E

C4 : O + 10X4 = X3 + S +M

C5 : M = X4

C6 : D 6= E 6= M 6= N 6= O 6= R 6= S 6= Y

The constraint Ci∈[1,5], ensures the addition at the ith place in the equation.

The constraint C6, ensures that none of the digits are repeated.

One possible solution is when D = 7, E = 5,M = 1, N = 6, O = 0, R = 8S = 9, Y =

2, then SEND=9567, MORE=1085, and MONEY=10652.

2.2 Graphical Representations

There are multiple ways to graphically represent a CSP. The first way is representing

the variables of the CSP as vertices, and the constraints as edges. An alternative way

of representing a CSP is by the dual encoding.

11

2.2.1 Constraint graph, hypergraph, and primal graph

A binary CSP is represented by its constraint graph where the vertices are the vari-

ables of the CSP and the edges represent the constraints. A non-binary CSP is sim-

ilarly represented by its hypergraph where the hyperedges represent the non-binary

constraints. Figure 2.3 illustrates the hypergraph of a small non-binary CSP where

mathcalV = {A, . . . , F} and the relations are R1, . . . , R6.

R3

A B

C D

E

F
R1

R4
R2 R5

R6

Figure 2.3: The hypergraph of a small CSP.

A B

C D
E
F

Figure 2.4: The primal graph of a small CSP.

Another graphical representation of a non-binary CSP is the primal graph where

the vertices are the CSP variables and edges connect every two vertices corresponding

to variables in the scope of a relation [Dechter, 2003]. Figure 2.4 illustrates the primal

graph of the same small non-binary CSP. Neigh(Vi) denotes the set of variables that

are adjacent to Vi in the constraint graph of a binary CSP and the primal graph of a

non-binary CSP. For the example of Figures 2.3 and 2.4, the neighborhoods of each

variable is listed below:

1. Neigh(A) = {B,D,E}.

2. Neigh(B) = {A,C, E, D}.

3. Neigh(C) = {B,D,F}.

4. Neigh(D) = {A,B, C, E}.

5. Neigh(E) = {A,B, D, F}.

12

6. Neigh(F) = {C,E}.

2.2.2 Dual encoding

The dual encoding of a CSP P , denoted PD, is a binary CSP whose variables are the

relations of P , their domains are the tuples of those relations, and the constraints

enforce equalities over the shared variables. The representation as a graph of this

encoding is the dual graph of the CSP. Figure 2.5 illustrates the dual graph of the

same small non-binary CSP. Neigh(Ri) denotes the set of relations adjacent to a

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	

A AD B

R5

R6

Figure 2.5: The dual graph of a small CSP.

relation Ri in the dual graph. For the example of Figure 2.5, the neighborhood of

each relation is listed below:

1. Neigh(R1) = {R2, R3}.

2. Neigh(R2) = {R1, R4}.

3. Neigh(R3) = {R1, R4, R5, R6}.

4. Neigh(R4) = {R2, R3, R5, R6}.

5. Neigh(R5) = {R3, R4, R6}.

6. Neigh(R6) = {R3, R4, R5}.

13

2.3 Reformulation Strategies

Reformulation techniques are designed to automatically change the problem encoding

into an ‘easier’ problem. ‘Easier’ can be in one of two meanings:

1. The reformulated problem asymptotic running time is lower than the original

problem, or

2. The reformulated problem has advantageous properties to exploit to improve

running time, but the worst-case complexity could remain the same.

Further, these ‘easier’ problems may change the set of solutions to the original prob-

lem, either by removing or adding solutions. The two reformulations discussed below,

triangulation and redundancy removal, are used in our work to exploit properties they

introduce and do not affect the set of solutions.

2.3.1 Triangulation

Graph triangulation adds an edge (a chord) between two non-adjacent vertices in

every cycle of length four or more [Golumbic, 2004]. While minimizing the number of

edges added by the triangulation process is NP-hard, MinFill is an efficient heuristic

commonly used for this purpose [Kjærulff, 1990; Dechter, 2003]. Roughly, MinFill

operates by determining, for each vertex, the number of edges needed to fully connect

its parents (e.g., number of fill edges), and selects the vertex with the minimum

number of fill edges, and connects all of its parents. It then repeats until all the

vertices have been selected.

Notice, the dual graph of Figure 2.5 has a cycle of length four (R1, R2, R3, and

R4). One possible triangulation of the dual graph would be to add an edge from R1

to R4, as illustrated in Figure 2.6. This triangulation is not unique, and the edges

14

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	

A AD B

R5

R6 R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

AD	

R5

R6

Figure 2.6: Triangulating a dual graph.

added depends on the heuristic used.

A perfect elimination ordering on a graph, is an ordering of the vertices such that,

for each vertex v, v and the neighbors of v that occur after v in the ordering form a

clique. If a graph is triangulated, then it is guaranteed to have a perfect elimination

ordering [Fulkerson and Gross, 1965].

A tree decomposition of a CSP is a encoding of the constraint network [Dechter,

2003]. The tree decomposition is defined by a triple 〈T, χ, ψ〉 of a CSP P = (X,D,C),

where T = (V,E) is a tree, and for each vertex v ∈ V , χ is the variable labeling

function, χ(v) ⊆ X, and ψ is the relation labeling function, ψ(v) ⊆ C. These

labeling functions determine which CSP variables and constraints appear in which

nodes of the tree. The tree nodes are thus clusters of variables and constraints. A

tree decomposition must satisfy two conditions:

1. Each constraints c ∈ C appears in at least one node v ∈ V in the tree where all

of its variables are in that vertex, scope(c) ⊆ χ(v).

2. (Connectedness property) All the vertices where a variable x ∈ X appears,

{v ∈ V |x ∈ chi(v)}, induces a subtree of T .

15

2.3.2 Redundancy removal

An edge between two vertices in the dual graph is redundant if there exists an alternate

path between the two vertices such that the shared variables appear in every vertex

in the path [Janssen et al., 1989; Dechter, 2003]. Janssen et al. [1989] introduced

an efficient algorithm for computing the minimal dual graph by removing redundant

edges. Many minimal graphs may exist, but all are guaranteed to have the same

number of edges. Notice again, that Figure 2.5 has redundant edges. Figure 2.7

shows the dual graph and a minimal dual graph. Notice that in the original dual

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	

A AD B

R5

R6 R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

AD	

AD

R5

R6

Figure 2.7: A minimal dual graph.

graph, there is a path between R4, R5, and R6 where A is shared between all three.

Therefore, the edge between R5 and R6 is redundant. The same can be discovered

with B between R3, R4, and R6, and D between R3, R4, and R5.

2.4 Consistency: Properties & Algorithms

CSPs are in general NP-complete and solved by search. Because the task is to

determine if a solution exists, find one solution, or find all solutions, a sound and

complete search must be used. Backtrack search (BT) is a sound and complete

algorithm to solve CSPs.

To reduce the severity of the combinatorial explosion of search, CSPs are usually

‘filtered’ by enforcing a given local consistency property [Bessiere, 2006]. There are

16

two types of local consistency properties that we will focus on, domain consistency

properties and relational consistency properties. The reader must be careful when

reading not to confuse the consistency property and the algorithm to enforce the

consistency property. Many times, the algorithms to enforce are named the same as

the consistency property. A consistency property is a property that the CSP either

has or does not have. While, the algorithm to enforce the consistency property will

manipulate the CSP to have the property after running the algorithm. There can

also be several algorithms to enforce the same consistency property.

2.4.1 Domain consistency properties

There are many local consistency properties that operates on the constraint graph

or hypergraph. The algorithms for enforcing them typically operate by filtering the

domains of variables. One common such property is Generalized Arc Consistency

(GAC).

Definition 2 Generalized Arc Consistency [Mohr and Masini, 1988]: A CSP

is GAC iff, for every relation, any value in the domain of any variable in the scope

of the relation can be extended to a tuple satisfying the relation.

Another such local consistency property is Neighborhood Inverse Consistency

(NIC), introduced in [Freuder and Elfe, 1996].

Definition 3 Neighborhood Inverse Consistency [Freuder and Elfe, 1996]: A

CSP is NIC iff, for every variable, any value in the domain of the variable can be ex-

tended to a partial solution in the subproblem induced by the variable and the variables

in its neighborhood.

17

Our work extends the local consistency property known as Neighborhood Inverse

Consistency (NIC) introduced by Freuder and Elfe in [Freuder and Elfe, 1996] to

relational filtering.

2.4.2 Relational consistency properties

Other local consistency properties operate on the dual graph of the CSP. The al-

gorithms for enforcing them typically operate by filtering the constraint definition.

These consistency properties have not been investigated as much.

In [1997], Dechter and van Beek introduced relational m-consistency.

Definition 4 Relational m-Consistency [Dechter and van Beek, 1997]: A CSP

is relational m-consistency iff, for every set of m relations, whose scope is s =

∪i∈mscope(Ri), then every consistent partial solution of length |s|− 1 can be extended

to a consistent partial solution of length |s|.

Relational m-consistency requires adding new constraints to the CSP.

In [2010], Karakashian et al. introduced the property R(∗,m)C with m ≥ 2.

Unlike relational m-consistency, R(∗,m)C does not require adding new constraints to

the CSP and is the first work on relational consistency that filters existing constraints.

Definition 5 R(∗,m)C [Karakashian et al., 2010]: A CSP is R(∗,m)C iff, for every

relation, every tuple in the relation can be extended in a consistent assignment to every

combination of m− 1 relations in the problem.

Pairwise consistency [Janssen et al., 1989] is equivalent to R(∗,2)C [Karakashian et

al., 2010].

18

2.4.3 Comparing consistency properties

In order to compare the various consistency properties discussed in this document

we use the terminology introduced by Debruyne and Bessière in [1997]. Given two

consistency properties p and p′,

• p is stronger than p′ if, in any CSP where p holds, p′ also holds.

• p is strictly stronger than p′ if p is stronger than p′ and there exists at least one

CSP in which p′ holds but p does not.

• p and p′ are equivalent when p is stronger than p′ and vice versa.

• Finally, p and p′ are incomparable when there exists at least one CSP in which

p holds but p′ does not, and vice versa.

In practice, when a consistency property is stronger (respectively, weaker) than an-

other, enforcing the former never yields less (respectively, more) pruning than enforc-

ing the latter on the same problem.

2.5 Solving CSPs

A CSP can be solved by search. A simple search procedure is backtrack search,

which is a systematic, exhaustive exploration of the search space, which is made of all

possible combinations of assignments of values to variables. Backtrack search explores

the search space in a depth-first manner so that the space requirement remains linear

in the number of variables in the CSP.

The ordering of variables during search is known to drastically affect the perfor-

mance of the search process. The most constrained variables are commonly instanti-

ated first in order to reduce the branching factor of the search tree. Many different

19

heuristics for variable ordering exit as an implementation of this general principle.

Other variable-ordering heuristics exploit the structure of the CSP, such as the width

of the constraint graph [Freuder, 1982], its induced width [Dechter and Pearl, 1987a],

or its bandwidth [Zabih, 1990].

To reduce the size of the search space, we enforce a consistency property on the

instance in a pre-processing step before running search. Alternatively, we typically

interleave backtrack search with constraint propagation, in what is called a lookahead

schema. More specifically, whenever a variable is instantiated during search, the ef-

fects of this assignment are propagated over the uninstantiated variables by removing

from their domains values that do not agree with this new assignment. Lookahead

schemas can either be partial (e.g., forward checking updates only the variables adja-

cent to the instantiated variable) or full, which enforces a given consistency property

on uninstantiated variables.

2.6 Related Work

Consistency properties and their algorithms are central to CP, and perhaps best

distinguish this discipline from other fields that study the same problems. Research

has focused on:

• Defining new properties,

• Proposing new algorithms,

• Improving the performance of known ones, and

• Theoretically characterizing the relationship between the consistency level and

the tractability of the CSP.

We first discuss the work done on binary CSPs, then on non-binary CSPs.

20

2.6.1 For binary CSPs

NIC was proposed by Freuder and Elfe in [1996] and evaluated by them and others on

binary CSPs. Debruyne and Bessière [2001] showed that NIC is ineffective on sparse

graph and too costly on dense graphs.

2.6.2 For non-binary CSPs

Bacchus et al. [2002] denotes nic(dual) for applying NIC to the dual encoding of a

CSP. As stated in the introduction, it is identical to RNIC. However, the paper does

not go beyond stating that nic(dual) is strictly stronger than ac(dual) (i.e., RNIC is

strictly stronger than R(∗,2)C). More generally, relational consistency properties were

formalized by Dechter and van Beek in [1997] as relational m-consistency and rela-

tional (i,m)-consistency . Enforcing those properties may require adding constraints

to the problem, modifying its topology.

Most of the research on consistency for non-binary CSPs has focused on filtering

the variables’ domains, such as the study of ‘variable-based’ NIC [Gent et al., 2000;

Stergiou, 2007]. In contrast, our study focuses on the filtering of the relations (i.e.,

the constraints’ definitions). As for relation-filtering properties, m-wise consistency

was proposed in relational databases [Gyssens, 1986]. Janssen et al. [1989] showed

that arc consistency on the dual encoding of a CSP enforces pairwise consistency.

Algorithms for R(∗,m)C, which is equivalent to m-wise consistency, were proposed

for arbitrary m ≥ 2 and evaluated by Karakashian et al. in [2010]. One limitation

of the algorithm for R(∗,m)C is the need to manually select m and generate all com-

binations of m relations that form a connected graph. The number of combinations

grows exponentially with m, causing space limitations. In comparison, RNIC requires

storing for each relation R a unique combination of constraints {R} ∪ Neigh(R) and

21

the size of this combination varies with the connectivity of R in the dual graph. Given

the space requirement for storing all combinations of m relations, Karakashian et al.

[2010] proposed to enforce R(∗,m)C on minimal dual graphs only, namely wR(∗,2)C,

wR(∗,3)C, and wR(∗,4)C. The support structures used in ProcessQ (Algorithm 1

in Section 4.1) are similar to those proposed in by Bessière et al. in [2005].

Finally, the insight that breaking cycles yields trees in a search space (i.e., tree, or

dangle, identification in SearchSupport, Section 4.1) can be related to the Cycle-

Cutset method [Dechter and Pearl, 1987b].

Summary

In this chapter, we gave background information on CSPs. We also described two

reformulation strategies of the dual graph of a CSP: by triangulation and redundancy

removal. We introduced some common consistency properties and reviewed how they

can be compared. Finally, we stated connections to prior work.

22

Chapter 3

Relational Neighborhood Inverse

Consistency & Dual Graphs

The algorithm for enforcing NIC on CSPs of [Freuder and Elfe, 1996] was tested on

binary CSPs in a preprocessing step to backtrack search on instances whose con-

straint density did not exceed 4.25%. Despite its pruning power and light space

overhead, NIC received relatively little attention in the literature, likely because of

the prohibitive cost of the algorithm for enforcing it. Below, we introduce RNIC as

a generalization of NIC and characterize this new property in terms of other known

consistency properties. Indeed, the former is a property that applies to the tuples

of the relations of the CSP, while the latter applies to the values in the variables’

domains (which are, in fact, unary relations). We then compare RNIC with R(∗,m)C

and domain filter properties. We also investigate the structure of binary CSPs, and

the effect of enforcing RNIC on binary CSPs.

23

3.1 Defining RNIC

Definition 6 A relation Ri is said to be RNIC iff every tuple in Ri can be extended

to the variables in
⋃

Rj∈Neigh(Ri)
scope(Rj) \ scope(Ri) in an assignment that simulta-

neously satisfies all the relations in Neigh(Ri). A network is RNIC iff every relation

is RNIC.

Informally, every tuple τi in every relation Ri can be extended to a tuple τj in each

Rj ∈ Neigh(R) such that together all those tuples are consistent with all the relations

in Neigh(Ri). Like R(∗,m)C, RNIC can be enforced by filtering the existing relations

and without introducing any new relations to the CSP. A straightforward algorithm

for enforcing RNIC applies the following operation to every relation Ri in the problem

until quiescence:

Ri ← πscope(Ri)(onRj∈{Ri}∪Neigh(Ri) Rj) (3.1)

where π and on are the relational operators project and join, respectively. The space

requirement of this algorithm is prohibitive in practice because it requires storing

the join of Ri ∪ Neigh(Ri), which is not necessary as we argue in Chapter 4. For

the example of Figure 3.1, RNIC examines the six subproblems induced on the dual

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	

A AD B

R5

R6

Figure 3.1: The dual graph of a small CSP.

graph by each relation and its neighborhood as listed below:

1. For R1, Neigh(R1) = {R2, R3}.

2. For R2, Neigh(R2) = {R1, R4}.

24

3. For R3, Neigh(R3) = {R1, R4, R5, R6}.

4. For R4, Neigh(R4) = {R2, R3, R5, R6}.

5. For R5, Neigh(R5) = {R3, R4, R6}.

6. For R6, Neigh(R6) = {R3, R4, R5}.

Generally speaking, the number of induced subproblems to be considered is equal

to e, where e is the number of relations in the CSP; and the size of the largest

subproblem is equal to δ + 1, where δ is the degree of the dual graph.

3.2 Comparing RNIC and R(∗,m)C

Karakashian et al. in [2010] introduced the property R(∗,m)C with m ≥ 2, which

ensures that every tuple in every relation can be extended in a consistent assignment

to every combination of m − 1 relations in the problem. For the example shown in

Figure 3.1, R(∗,3)C must verified on 12 combinations of two relations:

1. {R1, R2, R3}

2. {R1, R2, R4}

3. {R1, R3, R4}

4. {R1, R3, R5}

5. {R1, R3, R6}

6. {R2, R3, R4}

7. {R2, R4, R5}

8. {R2, R4, R6}

9. {R3, R4, R5}

10. {R3, R4, R6}

11. {R3, R5, R6}

12. {R4, R5, R6}

Generally speaking, the number of induced subproblems to be considered isO(em),

and the size of the largest subproblem is equal to m. We compare RNIC with

R(∗,m)C, which is defined for m ≥ 2.

Theorem 1 RNIC is strictly stronger than R(∗,m)C, m ≤ 3.

Sketch of proof: For a relation Ri, RNIC requires that each tuple of Ri and at least

one tuple from each of the relations in Neigh(Ri) be consistent, all together. R(∗,2)C

25

requires that the tuple of Ri be consistent with some tuple in each of the relations

in Neigh(Ri), taken in separation. Thus, RNIC is strictly stronger than R(∗,2)C. For

R(∗,3)C, at least one relation in each combination of three relations is such that its

neighborhood encompasses at least the other two relations. Thus, RNIC is strictly

stronger than R(∗,3)C. �

Theorem 2 R(∗,m)C with m ≥ δ + 1, where δ is the degree of the dual graph, is

strictly stronger than RNIC.

Sketch of proof: When m > δ, every set of relations considered by RNIC is a subset

of at least one set of relations on which R(∗,m)C is enforced. �

Theorem 3 For 4 ≤ m ≤ δ, R(∗,m)C and RNIC are not comparable.

Sketch of proof: If a dual graph has a chain of relations of length between four

and δ − 1, R(∗,m)C for 4 ≤ m ≤ δ can be stronger than RNIC. Conversely, if the

dual graph is a star graph of five or more vertices, Si>4, RNIC can be stronger than

R(∗,m)C for 4 ≤ m ≤ δ. �

Figure 3.2 illustrates the above first three assertions. Two interesting structures

R(*,3)C RNIC R(*,δ+1)C R(*,2)C

Figure 3.2: Comparing RNIC with R(∗,m)C.

of the dual graphs, trees and cycles, are such that several relational consistency

properties collapse to R(∗,2)C, which is the weakest of them all:

Theorem 4 RNIC, R(∗,2)C, and R(∗,m)C are equivalent on any dual graph that is

tree structured or is a cycle of length ≥ maximum(4,m+ 1).

Proof: By straightforward generalization of Theorem 3. �

26

Figure 3.3: Configurations illustrating Theorem 4.

The theorem applies for a tree of any degree. As for the cycle, it must be length

at least m + 1 for m ≥ 3. Figure 3.3 shows two such configurations. This last the-

orem is important because it identifies structural configurations where the relational

consistency properties RNIC and R(∗,m)C collapse to their weakest version, that is

R(∗,2)C. In Section 4.3 we propose reformulating the dual graph of the CSP to allow

RNIC to overcome this obstacle.

3.3 Comparing RNIC and Domain Filtering

In practice, after enforcing RNIC on a CSP (by filtering the relations), the domains

of the variables are updated accordingly in order to reduce the search effort. It

is important to note that variable domains can be updated by simply projecting the

filtered relations on the variables. Interestingly, these domain reductions do not break

the RNIC property.

Theorem 5 If a network is RNIC, domain filtering by GAC cannot enable further

constraint filtering by RNIC.

Proof: Similar to proof of Theorem 1 in [Karakashian et al., 2010]. �

Following the terminology of [Bessière et al., 2008], the property of a CSP where

RNIC holds and where the domains agree with the constraints is denoted RNIC+GAC.

Although formally correct, we find this notation confusing because it may incorrectly

27

suggest the need to enforce GAC, which is in general more expensive than (simply

and without looping) projecting the relations on the domains. For that reason, we

choose to denote this property instead RNIC+DF (i.e., RNIC followed by domain

filtering).

The singleton variation of a given consistency property guarantees that the assign-

ment of every value in the domain of a variable yields a CSP where the consistency

property holds [Debruyne and Bessière, 2001]. Singleton consistencies have been

studied mainly for arc consistency (SAC) and generalized arc consistency (SGAC).

Theorem 6 SGAC on a non-binary CSP and RNIC+DF on the corresponding dual

graph are not comparable.

Proof: In Figure 3.4, the CSP is RNIC+DF but not SGAC. SGAC empties all

1,2

1,2

1,2

1,2

C

B D

A

=

≠

=

=

Figure 3.4: The CSP is
RNIC+DF but not SGAC.

1,2

R5

R1

R3

R4

A

C

B

D

1,2,3

1,2,3 1,2

R2

R1

A B

1 2
1 3
2 1
2 2
2 3

R2

B C

1 1
1 2
1 3
2 1
2 3
3 1
3 2

R3

B D

1 1
1 2
2 1
3 2

R4

C D

1 1
1 2
2 1
3 2

R5

A C

1 2
1 3
2 1
2 2
2 3

Figure 3.5: The CSP is SGAC but not RNIC+DF.

variables domains. In Figure 3.5, taken from [Debruyne and Bessière, 2001], the CSP

is SGAC but not RNIC+DF. RNIC removes {(2, 3), (3, 2)} from R2, {(1, 2), (1, 3)}

from R1, and {(1, 2), (1, 3)} from R5. Therefore, RNIC+DF removes the value 1

from A. �

Figure 3.6 shows the relationships between the domain-filtering properties dis-

cussed above.

28

GAC
R(*,2)C+DF
SGAC

RNIC+DF

Figure 3.6: Some domain filtering properties.

3.4 Structure of the Dual Graph of a Binary CSP

We first discuss the case of a binary CSP whose constraint graph is complete, then

the case of a binary CSP whose constraint graph is not complete.

3.4.1 Binary CSP with a complete constraint graph

Theorem 7 The n(n−1)
2

vertices of the dual graph of a binary CSP of n variables

whose constraint graph is complete such as the one shown in Figure 3.7 (i.e., forms

a clique of n vertices, Kn), can be arranged in an (n − 1) × (n − 1) triangle-shaped

grid where:

V1

V2

V3

Vn-1

Vn

Figure 3.7: A complete con-
straint graph of n vertices.

uh

uv

C1,i	

Vn Cn-­‐1,n	
 C1,n	

V1 Vn-1

Vn Vn C3,n	
 C2,n	

V2 V3

V5 V5 V5

C1,2	

C2,3	
 C1,3	

C3,4	
 C1,4	
 C2,4	

C4,5	
 C1,5	

V1

C3,5	
 C2,5	

V1

V1 V2

V2

V2

V3 V3

V4

V3 V4

V4

V5 V2 V3 V4 V1

V1

Figure 3.8: The dual graph corresponding to the CSP
in Figure 3.7.

1. The n− 1 vertices on the diagonal of the triangle correspond to the constraints

over the variable V1. They are denoted C1,i where i ∈ [2, n] and completely

29

connected. The connecting edges are labeled with V1.

2. The n−1 vertices corresponding to the constraints over variable Vi≥2 are located

along the path in the grid shown in Figure 3.9 and specified as follows:

Ci-­‐2,i	
 C1,i	

Vi Vi

C3,i	
 C2,i	

Ci,i+1	

Ci,n-­‐1	

Ci,n	

Vi

Vi

Vi

Vi

(i-2) vertices

(n
-i)

 v
er

tic
es

Vi

Vi

Vi

uh

uv

C1,i	

Figure 3.9: The path for the constraints over variables Vi≥2 of the grid of Figure 3.8.

• Considering the coordinate system defined by the horizontal and vertical

unit vectors ~uh, ~uv and centered on C1,i,

• i− 2 vertices are lined up along the horizontal axis ~uh, and

• n− i vertices are lined up along the vertical axis ~vh.

• Those n − 1 vertices are completely connected, and the connecting edges

are labeled with Vi. (For the sake of clarity, Figure 3.8 does not show all

the edges of the dual graph: only all the edges labeled V1 are shown on the

diagonal of the grid.)

Proof: (By induction of number of variables.)

Base Step: Stated for n = 3.

30

For n = 3, the constraint graph is shown in Figure 3.10 and the corresponding

dual graph in Figure 3.11. The dual graph is obviously a triangle.

C2,3

C1,2

C1,3

V1	
 V2	

V3	

Figure 3.10: A complete constraint
graph with 3 variables.

C1,2	

C2,3	
 C1,3	

V1 V2

V3

Figure 3.11: The dual graph of a com-
plete constraint graph with 3 variables.

• The two vertices corresponding to the constraints over the variable V1 form the

diagonal.

• The two vertices corresponding to the constraints over V2 start at C1,2 and

have 0 vertices along the horizontal axis, and one vertex along the vertical axis.

Also, the two vertices corresponding to the constraints over V3 start at C1,3

have 0 vertices along the horizontal axis, and one vertex along the vertical axis.

Inductive Step: Assume that the theorem holds for a CSP with k variables (inductive

hypothesis). We want to show the theorem holds for a CSP with k + 1 variables

(inductive step).

Consider the complete constraint graph of a CSP with k variables, which is the

clique Kk, show in Figure 3.12. By the inductive hypothesis, the dual graph can be

arranged in the triangle-shaped grid shown in Figure 3.13. Now, add the variable Vk+1

to the CSP. In order to connect Vk+1 to all k variables, k constraints are added to the

constraint graph of the CSP, as shown in Figure 3.14. Namely, these k constraints

are Ci,k+1,∀i ≤ k. Place the dual variables as follows, going from right to left in

Figure 3.15:

• Ci,k+1, i ∈ [2, k − 1] is placed above Ci,k,

31

V1

V2

V3

Vk-1

Vk

Figure 3.12: A complete con-
straint graph with k variables.

uh

uv

C1,i	

Vk Ck-­‐1,k	
 C1,k	

V1 Vk-1

Vk Vk C3,k	
 C2,k	

V2 V3

V5 V5 V5

C1,2	

C2,3	
 C1,3	

C3,4	
 C1,4	
 C2,4	

C4,5	
 C1,5	

V1

C3,5	
 C2,5	

V1

V1 V2

V2

V2

V3 V3

V4

V3 V4

V4

V5 V2 V3 V4 V1

V1

Figure 3.13: The dual graph of a complete constraint
graph with k variables.

V1

V2

V3

Vk-1

Vk

Vk+1

Figure 3.14: A complete con-
straint graph with k + 1 vari-
ables.

uh

uv

C1,i	

Ck,k+1	
 C1,k+1	

Vk

Ck-­‐1,k+1	
 C3,k+1	
 C2,k+1	

V1 Vk-1 V3 V2

Vk+1 Vk+1 Vk+1 Vk+1

Vk Ck-­‐1,k	
 C1,k	

V1 Vk-1

Vk Vk C3,k	
 C2,k	

V2 V3

V5 V5 V5

C1,2	

C2,3	
 C1,3	

C3,4	
 C1,4	
 C2,4	

C4,5	
 C1,5	

V1

C3,5	
 C2,5	

V1

V1 V2

V2

V2

V3 V3

V4

V3 V4

V4

V5 V2 V3 V4 V1

V1

Figure 3.15: The dual graph of a complete constraint
graph with k + 1 variables.

• Ck,k+1 is placed above C1,k, and

• Ck+1,1 is placed to the left of Ck,k+1.

This arrangement yields a dual graph that is a triangle-shaped grid because:

• The vertices corresponding to the constraints over the variable V1 are located

on the diagonal of the triangle because Ck+1,1 is to the left of Ck+1,k,

32

• The coordinate system for centered on C1,i∈[2,k] increases by one vertical unit

for vertex Ck+1,i and labeled with variable Vi.

• The coordinate system for centered on C1,k+1 has (k + 1) − 2 = k − 1 vertices

on the horizontal axis and 0 vertices in the vertical axis. The k vertices on the

top row of the triangle form a clique whose edges are labeled with Vk+1 (shown

partially, for readability).

Consequently, this new dual graph of a complete constraint graph of k + 1 variables

has the topology of a triangle-shaped grid. �

Corollary 1 After the removal of redundant edges, the dual graph of a binary CSP

of n variables whose constraint graph is complete can be arranged in a (n−1)×(n−1)

triangle-shaped grid, where every CSP variable annotates the edges of a chain of length

n− 2.

Proof: Let’s consider the n− 1 vertices corresponding to the constraints that apply

on variable Vi and the coordinate system defined by the horizontal and vertical unit

vectors ~uh, ~uv and centered on C1,i. All edges between the i − 2 horizontal vertices

and the n − i vertical vertices that link two non-consecutive vertices are redundant

and can be removed, leaving a path linking the n − 1 vertices along the horizontal

and vertical axis. As for V1, a similar operation can be applied to the vertices along

the diagonal of the triangle. �

Because redundancy removal is not unique, not all redundancy-free dual graphs

necessarily yield a triangle-shaped grid as we show using a counter-example. One

possible redundancy-free dual graph for the complete constraint graph of five vertices

of Figure 3.16 is shown in Figure 3.17. In this example, there is a cycle of size six in

33

V1	

V2	

V3	
 V4	

C10

V5	
 C9 C8

C7 C1

C3

C4

C6

C2

C5

Figure 3.16: A complete con-
straint graph with 5 variables.

C1	

C2	

C3	

C5	

C6	

C4	

V1
V1

V2

V2

V3 V3

V4

V4 V5
C7	

C10	

C8	

C9	

V4

V2

V5

V5

V4

V3

Figure 3.17: A redundancy-free dual graph of a com-
plete constraint graph with five variables, which does
not form a grid structure.

the dual graph, indicated by the bold lines in Figure 3.17. Thus, the dual graph is

not a grid. Further, the variable V2 does not annotate a chain, but a star, as indicated

by the dotted lines in the dual graph.

3.4.2 Binary CSP with a non-complete constraint graph

In a binary CSP with a non-complete constraint graph, the dual graph can be thought

of as the complete binary constraint graph with some missing vertices and edges. Be-

cause, in the dual graph of a complete constraint graph, all the vertices corresponding

to the constraints that apply to a given CSP variable are completely connected, it is

always possible to form a chain connecting those vertices that effectively appear in the

dual graph. For example, consider the binary CSP with n = 5 variables given in Fig-

ure 3.18. A redundancy-free dual graph for that binary CSP is given in Figure 3.19,

which was constructed from the dual graph for the complete CSP by removing the

vertices corresponding to the constraints that are not in the CSP.

34

V1	

V2	

V3	
 V4	

C1,4

V5	

C2,5

C3,5

C1,2 C1,5

C2,3

C3,4

Figure 3.18: A complete con-
straint graph with 5 variables.

C1,2	

C2,3	

C3,4	
 C1,4	

C1,5	

V1

C3,5	
 C2,5	

V1

V2

V2

V3

V3
V4

V5 V5

Figure 3.19: The redundancy-free dual graph of a the
constraint graph with 5 variables.

3.5 RNIC on a Binary CSPs

We first compare RNIC to NIC on binary CSPs, then discuss how the structure of

the dual graph affects RNIC.

3.5.1 Comparing RNIC and NIC

The filter power of NIC and RNIC+DF are not comparable.

Theorem 8 NIC (on a binary CSP) and RNIC+DF (on the dual graph of the same

binary CSP) are not comparable.

Proof: In Figure 3.20, the CSP is NIC but not RNIC+DF. RNIC removes the tuples

0,1,2

0,1,2

0,1,2

0,1,2

R0 R1 R3

R2

R4 A

B

C

D

R1

B C

0 0
0 2
1 1
2 0
2 1

R0

A B

0 2
1 1
1 2
2 0
2 2

R2

B D

0 1
0 2
1 0
1 2
2 1

R3

C D

0 1
0 2
1 0
1 2
2 1

R4

A C

0 1
1 0
1 1
2 1
2 2

Figure 3.20: The binary CSP is NIC but not RNIC+DF.

0,1,2

0,1,2

0,1,2

0,1,2

B

C D

A

≠

≠

≠
r

r r

r = {0,1,2}2 – {(0,0)}

Figure 3.21: Binary CSP
is RNIC+DF but not NIC.

in {(0, 2), (2, 2)} from R0, {(0, 0), (1, 2)} from R1, {(0, 2)} from R2, {(0, 2)} from R3,

35

and {(0, 1), (2, 1)} from R4. Therefore, RNIC+DF removes the value 0 from A. In

Figure 3.21, the CSP is RNIC+DF but not NIC. NIC removes the value 0 from D. �

Empirically, it was shown that enforcing RNIC+DF on random binary CSPs yeilds

stronger filtering in almost all cases than NIC [Luchtel, 2011].

3.5.2 Effects of the dual-graph’s structure on RNIC

The redundancy-free dual graph an arbitrary binary CSP can contain the following

configurations:

1. A cycle of length four, on a grid-shaped dual graph

2. A cycle of length larger than four as shown in Figure 3.17.

3. A triangle along the diagonal.

On the first two cases above, RNIC is equivalent to 2-wise consistency by Theorem 4.

On the third case, RNIC is equivalent to R(∗,3)C.

Theorem 9 After the removal of redundant edges in the dual graph of a binary CSP,

RNIC is never stronger than R(∗,3)C.

Proof: (By Contradiction) Assume that, after redundancy removal, RNIC is stronger

than R(∗,3)C, assume it to be R(∗,4)C. Therefore, there must be a configuration of

the dual graph where a given constraint, C1, has three adjacent constraints C2, C3,

and C4, and where C1 is not an articulation point (otherwise, the argument must

be applied recursively on the biconnected components). The only redundancy-free

configuration is the one shown in Figure 3.22. We show that this configuration is not

possible.

36

C1	

C3	

C2	
 C4	

Figure 3.22: A
redundancy-free con-
figuration of four binary
constraints.

C1	

C3	

C2	
 C4	

V1 V1

V2

V3

Figure 3.23: One possible
labeling of the edges inci-
dent to C1.

C1	

C3	

C2	
 C4	

V1 V2

V1

V3

Figure 3.24: The other
possible labeling of the
edges incident to C1.

1. Given the topology of the graph shown in Figure 3.22, the three edges incident to

C1 cannot have the same labeling, for example variable V1, because C1 becomes

a unary constraint. They cannot three different labeling, for example variables

V1, V2, and V3, otherwise C1 becomes a ternary constraint. Thus, they must be

labeled with two variables, V1 and V2, as shown in Figures 3.23 and 3.24.

2. In Figure 3.23, the edge between C2 and C3 cannot be labeled V1 (otherwise, C2

becomes a unary constraint); cannot be labeled V2 (otherwise, the scopes of C2

and C1 become equal, and we assume that the CSP is normalized); therefore,

it must be labeled V3. The edge between C3 and C4 cannot be labeled V1 or V4

(otherwise, C3 becomes a ternary constraint); cannot be labeled V2 (otherwise,

the scopes of C1 and C3 become equal); cannot be labeled V3 (otherwise, the

scopes of C2 and C4 become equal). Therefore, no possible labeling for the edge

between C3 and C4 exists, and this configuration is impossible.

3. In Figure 3.24, the edge between C2 and C3 cannot be labeled V1 (otherwise,

C2 would be a unary constraint); cannot be labeled V2 (otherwise, the scopes

of C1 and C2 become equal); cannot be labeled V3 (otherwise, the scopes of C2

and C3 become equal). Therefore, no possible labeling for the edge between C2

37

and C3 exist, and this configuration is impossible.

Consequently, no redundancy-free dual graph of a binary CSP can have a configura-

tion of its vertices for enforcing R(∗,4)C. �

Using an algorithm for enforcing RNIC to enforce R(∗,2)C is wasteful of resources.

Indeed, the former executes more consistency-checking operations than needed to

enforce R(∗,2)C given that the neighborhoods considered by the former are supersets

of those considered by the latter.

Summary

In this chapter, we introduced RNIC and theoretically compared RNIC to the some

previously known local consistency techniques. We also discussed the structure of

binary CSPs on the dual graph and RNIC’s filtering power on binary CSPs.

38

Chapter 4

Enforcing RNIC

Below, we describe an algorithm for enforcing RNIC on a finite CSP, and analyze

its complexity. The algorithm has two main components: ProcessQ (Algorithm 1)

and SearchSupport. We also give three reformulating the dual graph, on which

the algorithm works:

1. Removing redundant edges of the dual graph

2. Triangulating the dual graph

3. Triangulating the redundancy-free dual graph.

Further, we give a selection strategy for picking the dual graph to enforce RNIC on.

4.1 An Algorithm for RNIC

We define Sτ , the support of a tuple τ ∈ R, to be the set of tuples that verify the

condition: ∀R′ ∈ Neigh(R),∃(τ ′ ∈ R′), (τ ′ ∈ Sτ), and the tuples in Sτ ∪ {τ} agree on

all shared variables. ProcessQ (Algorithm 1) enforces RNIC on a CSP P ensuring

39

that every tuple in every relation has a valid support. Note that the Neigh(R) is

determined by the topology of the dual graph, which we will alter in Section 4.3.

ProcessQ operates on a queue of relations QR initialized with all the relations

of P . For each relation R of P , we maintain a queue of tuples Qt(R) initialized with

all the tuples in R. The function SearchSupport(τ, R) computes Sτ as discussed

below. The function Rel(τ) returns the relation to which τ belongs. The data

structure SupportedBy(τ) maintains the list of tuples supported by τ .

ProcessQ removes from QR one relation R at a time. It iterates over the tuples

of R stored in Qt(R). For each tuple τ ∈ Qt(R), SearchSupport seeks a support

for τ . When a support is not found, τ is removed from R, and all tuples τi supported

by τ are added to the queue of their respective relations, and the corresponding

relations added to Qt. Finally, τ is removed from Qt(R). Whenever a relation is

empty, ProcessQ halts and returns false indicating that P is not consistent. When

QR is empty ProcessQ terminates successfully indicating that P is RNIC.

Algorithm 1: ProcessQ enforces RNIC
Input: QR a queue of relations, {Qt(R)} a set of queues of tuples, one for

each relation
Output: true if the problem is RNIC, false otherwise
while (QR 6= ∅) do1

R← Pop(QR)2

foreach τ ∈ Qt(R) do3

support←SearchSupport(τ, R)4

if support = false then5

Delete(τ, R)6

if R = ∅ then return false7

forall τi ∈ SupportedBy(τ) do8

Ri ←Rel(τi)9

Qt(Ri)← Qt(Ri) ∪ {τi}10

QR ← QR ∪ {Ri}11

Qt(R)← Qt(R) \ {τ}12

return true13

40

4.1.1 SearchSupport

SearchSupport(τ, R) operates by conducting a backtrack search on PD
R the sub-

problem induced by {R}∪Neigh(R) on the dual encoding of P . The variables of PD
R

are the relations {R}∪Neigh(R). Their domains are the tuples of the relations except

for the variable corresponding to R, which is assigned the tuple τ . A solution to PD
R is

{τ}∪Sτ . The search stops at the first solution, or returns false if no solution is found.

The process uses forward checking and dynamic variable ordering (domain/degree).

Two major mechanisms significantly contributed to the success of this search process

by improving its running time:

1. The use of the index-tree data structure to determine whether or not two tuples

of two relations adjacent in the dual graph are consistent. This data structure

was proposed in [Karakashian et al., 2010].

2. The dynamic identification, after each variable instantiation, of trees in the

graph of uninstantiated variables. The instantiation of a variable eliminates,

from the problem, the variable and the constraints that link it to the uninstan-

tiated variables, potentially breaking cycles in the graph and yielding trees. We

call those trees dangles , and apply directional arc consistency on them to en-

sure that they are solvable. If they are, we isolate them from the search process.

Otherwise, we force the search to backtrack. Dangle identification is linear in

the number of vertices and edges. Its overhead, if any, was largely compensated

by its benefits.

Note that dangle identification is a general mechanism for improving the perfor-

mance of any backtrack search. Obviously, it cannot be used in the algorithm for

enforcing GAC or R(∗,2)C (where there is no search). Further, it is not particularly

41

useful in the algorithm for enforcing R(∗,m)C because the values of m are small in

practice.

4.1.2 Complexity analysis

For our analysis, let d be the maximum domain size, k the maximum constraint arity,

e the number of relations, and δ the degree of the dual graph. The maximum number

of tuples t in a relation is bounded by O(dk).

To find the support of a tuple, SearchSupport first verifies the validity of an

existing support, then, if needed, it looks for a support by running a backtrack search

on the subproblem induced by the relation and its neighbors.

Proposition 10 The time complexity of SearchSupport is O(tδ).

Proof: Verifying the validity of an existing support costs O(δ). To build a support

for a tuple, SearchSupport executes a backtrack search on a problem with δ + 1

variables of maximum domain size t where the first variable is instantiated. The

complexity of this search is O(tδ). �

Proposition 11 The time complexity of ProcessQ is O(tδ+1eδ).

Proof: The outer loop (Line 1) iterates over the relations in QR. This loop runs

e times, the initial size of QR, plus the number of times a relation is added to QR

(Line 11). Given that a relation is adjacent to at most δ other relations, whenever a

tuple is deleted, at most δ relations are added to QR. There are O(te) tuples in P

and each tuple is deleted at most once. Thus, Line 6 is executed O(te) times, each

time enqueuing O(δ) relations. Consequently, the outer loop (Line 1) runs O(teδ)

times.

42

The loop over the queued tuples (Line 3) executes O(t) times per relation. By

Theorem 10, the complexity to find the support of a tuple is O(tδ). Thus, the time

complexity of ProcessQ is O(tδ+1eδ). �

The space complexity of ProcessQ is dominated by that of the data structures.

Theorem 12 The space complexity of ProcessQ is O(ketδ).

Proof: Supports require O(etδ) space. The index-trees require O(ketδ) [Karakashian

et al., 2010]. �

The complexity of RNIC is dominated by ProcessQ, therefore, the time and

space complexities of RNIC are O(tδ+1eδ) and O(ketδ), respectively. The time com-

plexity of the obvious algorithm based on Expression (3.1) is O(tδ+2eδ). When inter-

mediate joins are not stored, its space complexity is O(tδ+1), a major bottleneck for

its practical implementation. Thus, ProcessQ saves on both time and space.

4.2 Enforcing RNIC versus R(∗,m)C

The above summarized algorithm and that for enforcing R(∗,m)C [Karakashian et

al., 2010] are similar in that they both try to ‘complete’ [Freuder, 1991] each tuple in

each relation over one (or more) sets of relations.

The algorithm for R(∗,m)C considers every combination of m connected relations.

The number of those combinations is O(em). Further, each relation needs to be

‘checked’ against m− 1 relations in each combination where it appears.

The algorithm for enforcing RNIC does not suffer from the above drawbacks.

First, the number of combinations considered is equal to the number of relations (e),

and each relation is ‘checked’ against a unique set of relations, which is determined

by its neighborhood. Further, the size of the neighborhood is determined locally by

43

the connectivity of the relation in the dual graph. Thus, the ‘level’ of consistency

enforced is not necessarily the same on all relations of the dual graph: Lower levels

are enforced on sparser portions of the dual graph, and higher levels on the denser

portions. In particular, on a cycle of length four or more, RNIC ‘naturally’ reduces

to R(∗,2)C, see Theorem 4.

4.3 Reformulating the Dual Graph

In this section, we introduce two reformulations, and their combination, of the dual

graph and their effects on the consistency property enforced by RNIC. An adaptive

selection technique for selecting the dual graph to use is also introduced.

Two topological conditions of the dual graph can seriously hinder the performance

of ProcessQ (Algorithm 1):

1. High density of the dual graph. As the density of the dual graph increases, the

neighborhood of a given relation Ri grows, which increases the cost of enforc-

ing RNIC. To address this issue, we reformulate the dual graph by removing

redundant edges.

2. The existence of cycles of length four or more. On a cycle of length four or more,

the two adjacent relations of a given relation Ri in the cycle are prevented from

‘communicating,’ thus reducing RNIC to R(∗,2)C (see Theorem 4). To address

this issue, we propose to reformulate the dual graph by triangulation, which

eliminates cycles of length four or more.

The above two reformulations have the following effects:

• Removing redundant edges cannot strengthen the consistency property enforced

by the algorithm and cannot decrease the number of nodes visited by search.

44

• Adding edges by graph triangulation cannot weaken the consistency property

enforced and cannot increase number of nodes visited by search.

Applying ProcessQ on the dual graph reformulated by one or both of the above re-

formulations enforces three variations of RNIC, namely wRNIC, triRNIC, and wtriR-

NIC, where the prefixes ‘w’ and ‘tri’ denote the consistency properties resulting from

removing redundant edges and triangulating the dual graph, respectively. Figure 4.1

illustrates those relationships in a partial order. Naturally, the property enforced

wRNIC
RNIC

wtriRNIC
triRNIC

Figure 4.1: Variations of RNIC.

depends on the particular minimal and triangulated dual graph used.

While the set of solutions to the CSP is not affected by either reformation, it is

not straightforward to predict the effect of the above reformulations on CPU time.

To lay it out, we would like to remove enough edges from the dual graph to reduce

the running time of ProcessQ, which is O(tδ+1eδ). However, we would also like

to add enough edges to the dual graph in order to boost propagation. Furthermore,

we need a strategy to automatically select the appropriate reformulation. Below,

we discuss the two reformulations (Sections 4.3.1 and 4.3.2) and their combination

(Section 4.3.3). In Section 4.3.4, we propose a procedure to automatically select a

reformulation in a preprocessing step.

4.3.1 Removing redundant edges: wRNIC

An edge between two vertices in the dual graph is redundant if there exists an alternate

path between the two vertices such that the shared variables appear in every vertex

45

in the path [Janssen et al., 1989; Dechter, 2003]. Redundant edges can be removed

without affecting the set of solutions of the CSP. Janssen et al. [1989] introduced

an efficient algorithm for computing the minimal dual graph by removing redundant

edges. Many minimal graphs may exist, but all are guaranteed to have the same

number of edges. Figure 4.2 shows the dual graph (density 60%) and a minimal dual

graph (density 40%) of the example of Figure 2.5. Note that R(∗,2)C ≡ wR(∗,2)C

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	

A AD B

R5

R6 R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

AD	

AD

R5

R6

Figure 4.2: A minimal dual graph.

[Janssen et al., 1989]. Also, computing and storing the combinations of relations

necessary for enforcing R(∗,m)C is not possible in practice unless the redundant

edges are first removed from the dual graph [Karakashian et al., 2010].

Our experiments showed that RNIC is advantageous on dual graphs of density up

to around 15%.1 For higher density values, we propose to remove the redundant edges

in the dual graph before running ProcessQ. This operation reduces the density of

the original dual graph and the size of the induced subproblems on which Search-

Support is executed. It also results in a weakened consistency, denoted wRNIC,

that depends of the particular minimal graph used. Because wRNIC is enforced on a

minimal dual graph (i.e., a graph with no more edges than the original dual graph),

wRNIC is strictly weaker than wRNIC.

1In a related research, we studied the density of 1689 dual graphs of (binary and non-binary)

CSPs from the Solver Competition Benchmarks. We identified a sharp threshold at 15% density.

Indeed, 56.6% of the dual graphs (79.9% after redundancy removal) considered had a density less

than or equal to 15%. It is not yet clear to us how to interpret the value of this threshold.

46

Figure 4.3 integrates the above discussion in the partial order of Figure 3.2. Note

R(*,3)C

wRNIC

R(*,4)C

RNIC
R(*,δ+1)C

R(*,2)C≡
wR(*,2)C wR(*,3)C

wR(*,4)C

wR(*,δ+1)C

Figure 4.3: Relating RNIC, wRNIC, R(∗,m)C, and wR(∗,m)C.

that these results hold between the weakened properties provided they are enforced

on the same minimal dual graph.

4.3.2 Triangulating the dual graph: triRNIC

When the dual graph has only cycles of size four or more, RNIC reduces to R(∗,2)C

(see Theorem 4), which significantly hampers filtering and propagation. To rem-

edy this situation, we propose to triangulate the dual graph. This process creates

loops in the dual graph and increases the size of the induced subproblems on which

SearchSupport is executed, boosting the propagation process, but also raising the

consistency level enforced on the CSP. For example, in the dual graph of the exam-

ple of Figure 2.5, Neigh(R1) ={R2, R3}. However, Neigh(R1)={R2, R3, R4} in the

triangulated graph (density 67%) of Figure 4.4. We denote the resulting consistency

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	

A AD B

R5

R6 R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

AD	

R5

R6

Figure 4.4: Triangulating a dual graph.

property triRNIC. Similarly to wRNIC, triRNIC depends on the particular triangu-

lation of the dual graph.

47

An important feature of the triangulation process is that it operates locally , adding

edges only where cycles of length four or more need to be shortened, irrespective of

the degree of the vertices in the graph.

4.3.3 Triangulate a minimal dual graph: wtriRNIC

While using a minimal dual graph allows us to cope with the high density of difficult

benchmark instances, triangulating the minimal dual graph allows us to boost prop-

agation. We denote wtriRNIC the consistency resulting from applying ProcessQ

on the triangulated minimal dual graph. Figure 4.5 shows the dual graph (density

47%) resulting from applying both reformulations in sequence for the example of Fig-

ure 2.5. As shown in Figure 4.1, wtriRNIC is strictly stronger than wRNIC applied

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	

A AD B

R5

R6 R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

AD	

R5

R6

Figure 4.5: Triangulating a minimal dual graph.

on the same minimal dual graph, but strictly weaker than triRNIC. Further, it is

not comparable with RNIC, which is enforced on the original dual graph. Figure 4.6

summarizes the relationships between RNIC, its reformulations, and R(∗,m)C based

properties.

4.3.4 Select the appropriate RNIC: selRNIC

The algorithm summarized in Section 4.1, ProcessQ, enforces any of the four prop-

erties RNIC, triRNIC, wRNIC, and wtriRNIC on a CSP by operating on the original

dual graph or some modification of it.

48

R(*,3)C
wRNIC

R(*,4)C
RNIC

wtriRNIC
triRNIC

R(*,δ+1)C
wR(*,3)C

wR(*,4)C

wR(*,δ+1)C

R(*,2)C≡
wR(*,2)C

Figure 4.6: Relating RNIC, R(∗,m)C, and their studied variations.

• For RNIC, it uses the original dual graph (Go).

• For wRNIC, it uses a minimal dual graph (Gw).

• For triRNIC, it uses a triangulated dual graph (Gtri).

• Finally, for wtriRNIC, it uses a triangulated minimal dual graph (Gwtri).

The selection policy shown in Figure 4.7 automatically chooses the dual graph on

which to enforce RNIC by comparing the density dG of a given dual graph G. The

goal of this deliberation is to adjust the strength of propagation to the topology of

the dual graph. Paraphrasing the content of Figure 4.7, we consider the dual graph of

No Yes

No Yes Yes No

dGo ≥ 15%

dGtri ≤ 2 dGo dGwtri ≤ 2 dGw

Go Gwtri Gw Gtri

Start

Figure 4.7: Selecting a dual graph for selRNIC.

density greater than or equal 15% to be too dense to be effectively processed by Pro-

cessQ. For this reason, we choose to reformulate it by removing redundant edges.

Whenever triangulation does not increase the density of a dual graph more than two

fold, then the advantage of boosting propagation by creating loops and increasing

neighborhood sizes outweighs the drawback of increasing the cost of operating on

49

larger neighborhoods. For the example of Figure 2.5, this policy correctly chooses the

triangulated minimal dual graph (density 47%). While both operations of triangulat-

ing a dual graph and computing a minimal dual graph can be done efficiently and do

not add any perceptible overhead in our experiments, the policy of Figure 4.7 applies

each operation at most once. The resulting mechanism, which we denote selRNIC,

nicely ties together our techniques in a consistent and adaptive framework.

Summary

In this chapter, we introduced an algorithm for enforcing RNIC, gave improvements on

the algorithm, and studied the algorithm’s complexity. We formally compared RNIC

to R(∗,m)C. We introduced three reformulations to the dual graph that RNIC can be

enforced on: (1) redundancy-free, (2) triangulated, and (3) triangulated redundancy-

free. We then presented an adaptive, automatic strategy for selecting the dual graph

on which to enforce RNIC.

50

Chapter 5

Evaluating RNIC

In this chapter, we empirically evaluate the performance of RNIC as a full lookahead

schema for finding the first solution to a CSP using backtrack search. We compare

this performance with that of the most commonly used consistency algorithms. We

ran our experiments on 28751 instances with constraints defined in extension taken

from the CSP Solver Competition2 benchmarks. We limited the CPU time to one

and a half hours per instance and the memory to 7GB. In [2010], Lecoutre gives a

description of the benchmark problems.

First, we describe our experimental set-up and summarize our results. Then, we

discuss in detail the results on individual benchmarks.

5.1 Experimental Setup

We evaluate and compare the performance of the following algorithms for enforcing

consistency when used for full lookahead in a backtrack search procedure for finding

the first solution of a CSP:

1We tested 1915 binary and 960 non-binary instances, grouped in 86 benchmarks.
2http://www.cril.univ-artois.fr/CPAI08/

51

• GAC

• wR(∗,m)C for m = 2, 3, 4

• RNIC and its variations: wRNIC, triRNIC, wtriRNIC and selRNIC.

5.1.1 Measured parameters

We measured the following parameters:

• For each benchmark category, we report the number of instances in the category,

with the number completed by all algorithms in parenthesis, and the range of

the number of constraints e.

• dD: The range of the density of the dual graph on which a given algorithm

operates.

• Time: The CPU time in milliseconds. Some data points are missing because

some algorithms sometimes fail to finish within the allocated time window (90

minutes). For this reason, we consider the data to be right-censored and conduct

a survival data analysis [Lee, 1992]. The survival data analysis does not make

any assumption about the distribution of the data and yields a calculated mean

CPU time for each algorithm. A ‘-’ entry indicates that, even though the

corresponding algorithm terminated on some instances, it did not terminate on

enough instances to yield an accurate statistical mean.

• S: The equivalence classes of CPU performance. To compute the statistically

significant categories, we perform a simple effects comparison between every two

algorithms for a significance level of 0.05. This comparison requires a normal

distribution of the non-censored data. For this analysis, we assume that all

censored data points finished at the maximum cutoff time.

52

• #C: The number of instances completed by a given algorithm.

• #F: The number of instances on which the given algorithm is the fastest among

all tested ones, where ties are awarded to all parties.

• #BF: The number of instances solved by a given algorithm in a backtrack-free

manner.

• #NV: The average number of nodes visited by the corresponding search3. The

averages are computed over only the instances completed by all tested algo-

rithms, which is the number in parenthesis in the problem description. Thus,

the values reported in #NV should be considered in light of the number of

completed instances. A ‘-’ entry in this column indicates that, even if the

corresponding search completed on some instance, no instance completed by

this algorithm was completed by all others, and thus no average value can be

reported.

5.1.2 Method for statistical analysis

To compute the mean CPU time, we use the product-limit method, also called the

Kaplan-Meier method. This method computes the survival time of each algorithm.

(For us, survival means that the algorithm is still running.) It is nonparametric test:

it makes no assumption about the distribution of the data.

To compute the significance classes between the algorithms, we generate a general-

ized linear mixed-model for each algorithm on a given benchmark. While generalized

linear mixed models do not require that the data be normally distributed, they do

not take into account censored data. The models assume that random effects are

3Note that the values of nodes visited in all experiments comply with the partial order shown in

Figure 4.6.

53

normally distributed. We use those models to construct an approximate t-test be-

tween each pairs of algorithms. Even if the random effects assumption may not hold

for our data, our analyses yielded consistent results on the various benchmarks, thus

supporting the correctness of our conclusions. For computing the significance of the

CPU measurements, the CPU time of each algorithm on a given instance is given as

input to the model. We assume all censored data points finished at the maximum

cutoff time.

5.2 Global Rankings

We break the 86 benchmark studied into ten categories adapted from those by

Lecoutre,4 slightly refined to better identify structured benchmarks and results sim-

ilarity. The categories are: academic, assignment, Boolean, crossword, latin square,

quasi-random (random benchmarks that have some structure), random, TSP. We do

not report results of experiments on benchmarks that did not complete because of:

1. Insufficient memory. When the size of the relations is particularly large the

index-tree data structure for checking quickly checking the consistency of two

tuples becomes a significant overhead that is prohibitively large to store. In such

cases, our implementation of RNIC runs out of memory. Another implementa-

tion of RNIC without the index-tree data-structure may be able to overcome

this obstacle. This situation arises for the case of the following benchmarks:

bddSmall, dag-half, lard.

2. Insufficient memory. Some benchmarks are not solved by any of the algorithms

we tested in the allotted time period. Those benchmarks are: bddLarge, BH-

4The benchmark categories are given at http://www.cril.univ-artois.fr/~lecoutre/

benchmarks.htm

54

4-13, BH-4-4, BH-4-7, bqwh-15-106, bqwh-18-141, frb50-23, frb53-24, frb56-25,

frb59-26, QCP-20, QCP-25, QWH-20, QWH-25, rand-2-25, rand-2-26, rand-

2-27, rand-2-50-23-fcd, rand-2-50-23, rand-3-24-24, rand-3-28-28, rand-3-28-28-

fcd, renault.

Before summarizing the results of our experiments in Tables 5.1 and 5.2 (binary

CSPs) and Table 5.3 (non-binary CSPs), we explain the entries in those tables:

• Category denotes the category of the benchmark.

• Table indicated the table where the results of the benchmark can be found.

• #I gives the number of instances in the benchmark.

• Best CPU lists the algorithms that are statistically best in terms of CPU time.

• Fastest denotes the algorithm that solved the largest number of instances the

fastest.

• #Comp denotes the algorithms that solved the largest number of instances.

• #BT-Free denotes the algorithm that solved the largest number of instances

in a backtrack-free manner.

• ‘All’ in any column indicates that all of the algorithms are equivalent according

to that metric.

• When selRNIC chooses the same RNIC-based technique for all instances in the

benchmark, we provide, in parenthesis, the RNIC-based technique selected.

We make the following observations on the results in those tables:

55

Table 5.1: Overview of the binary benchmarks tested (Part A).

Category Benchmark Table #I Best CPU Fastest #Comp #BT-Free
A

ca
d
em

ic coloring Table A.34 22

GAC,
RNIC,
wRNIC,
selRNIC

GAC GAC triRNIC

hanoi Table A.36 5 All GAC All

langford Table A.18 4 GAC GAC
wR(∗,2)C,
GAC,
wRNIC

Assignment driver Table A.13 7
wR(∗,2)C,
GAC

GAC
wR(∗,2)C,
GAC

L
a
ti

n
sq

u
a
re

QCP-10 Table A.12 15
wR(∗,2)C,
GAC,
wRNIC

GAC GAC
selRNIC
(RNIC)

QCP-15 Table A.20 15 GAC GAC GAC

QWH-10 Table A.37 10
All except
triRNIC

GAC
All except
triRNIC

QWH-15 Table A.38 10

GAC,
selRNIC
(RNIC),
wRNIC

GAC
GAC,
selRNIC
(RNIC)

Q
u
a
si

-r
a
n
d
o
m

composed-25-1-25 Table A.1 10

wR(∗,3)C,
wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

selRNIC
(RNIC)

wR(∗,3)C,
wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

wR(∗,3)C,
wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

composed-25-1-2 Table A.2 10

wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

selRNIC
(RNIC)

wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

composed-25-1-40 Table A.3 10

wR(∗,3)C,
wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

selRNIC
(RNIC)

wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

composed-25-1-80 Table A.4 10

wR(∗,3)C,
wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

selRNIC
(RNIC)

wR(∗,4)C,
selRNIC
(RNIC)

wR(∗,4)C,
selRNIC
(RNIC)

composed-25-10-20 Table A.5 10
selRNIC
(RNIC)

GAC
selRNIC
(RNIC)

composed-75-1-25 Table A.6 10

wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

selRNIC
(RNIC)

wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

composed-75-1-2 Table A.7 10

wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

selRNIC
(RNIC)

wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

wR(∗,4)C,
selRNIC
(RNIC),
wtriRNIC

composed-75-1-40 Table A.8 10
wR(∗,4)C,
selRNIC
(RNIC)

selRNIC
(RNIC)

selRNIC
(RNIC)

selRNIC
(RNIC)

composed-75-1-80 Table A.9 10
wR(∗,4)C,
selRNIC
(RNIC)

selRNIC
(RNIC)

wR(∗,4)C,
selRNIC
(RNIC)

selRNIC
(RNIC)

ehi-85 Table A.10 100
wR(∗,4)C,
selRNIC
(RNIC)

wR(∗,4)C
wR(∗,4)C,
selRNIC
(RNIC)

selRNIC
(RNIC)

ehi-90 Table A.11 100
wR(∗,4)C,
selRNIC
(RNIC)

GAC
selRNIC
(RNIC)

selRNIC
(RNIC)

geom Table A.17 100 GAC GAC GAC

56

Table 5.2: Overview of the binary benchmarks tested (Part B).

Category Benchmark Table #I Best CPU Fastest #Comp #BT-Free

R
a
n
d
o
m

frb30-15 A.35 10
wR(∗,2)C,
GAC,
wRNIC

GAC

wR(∗,2)C,
wR(∗,3)C,
GAC,
wRNIC

frb35-17 A.14 10 GAC GAC GAC
frb40-19 A.15 10 GAC GAC GAC
frb45-21 A.16 10 GAC GAC GAC
marc A.19 10 GAC GAC GAC
rand-2-23 A.21 10 GAC GAC GAC
rand-2-24 A.22 10 GAC GAC GAC

rand-2-30-15-fcd A.23 50
wR(∗,2)C,
GAC,
wRNIC

GAC
wR(∗,2)C,
GAC,
wRNIC

rand-2-30-15 A.24 50 GAC GAC
wR(∗,2)C,
GAC,
wRNIC

rand-2-40-19-fcd A.25 50 GAC GAC GAC
rand-2-40-19 A.26 50 GAC GAC GAC
tightness0.1 A.27 100 GAC GAC GAC
tightness0.2 A.28 100 GAC GAC GAC
tightness0.35 A.29 100 GAC GAC GAC
tightness0.5 A.30 100 GAC GAC GAC
tightness0.65 A.31 100 GAC GAC GAC
tightness0.8 A.32 100 GAC GAC GAC
tightness0.9 A.33 100 GAC GAC GAC

57

Table 5.3: Overview of the non-binary benchmarks tested.

Category Benchmark Table #I Best CPU Fastest #Comp #BT-Free

A
ss

ig
n
m

en
t

modifiedRenault Table 5.6 50

wR(∗,3)C,
wR(∗,4)C,
wRNIC,
wtriRNIC,
selRNIC

wR(∗,2)C
wR(∗,4)C,
wtriRNIC

wR(∗,4)C,
wtriRNIC

B
o
o
le

a
n

aim-100 Table 5.4 24
wR(∗,4)C,
selRNIC
(RNIC)

wR(∗,2)C,
wRNIC

selRNIC
(RNIC)

wR(∗,4)C,
selRNIC
(RNIC),
triRNIC

aim-200 Table 5.4 24
selRNIC
(RNIC)

wR(∗,2)C
selRNIC
(RNIC)

selRNIC
(RNIC),
triRNIC

aim-50 Table A.39 24 All GAC All
RNIC,
triRNIC,
selRNIC

dubois Table A.40 13
wR(∗,2)C,
and RNIC
based

selRNIC
(triRNIC)

selRNIC
(triRNIC),
wtriRNIC

jnhSat Table A.44 16
wR(∗,2)C,
GAC

GAC
wR(∗,2)C,
GAC

jnhUnsat Table A.45 34
wR(∗,2)C,
GAC

GAC
wR(∗,2)C,
GAC

wR(∗,2)C,
wR(∗,3)C

pret Table A.52 8 All triRNIC All

ssa Table A.41 8

All except
wRNIC,
triRNIC,
wtriRNIC

GAC
RNIC,
selRNIC

varDimacs Table A.55 9
wR(∗,2)C,
GAC

GAC GAC

C
ro

ss
w

o
rd

lexVg Table 5.7 63 GAC GAC GAC
triRNIC,
selRNIC
(wtriRNIC)

ogdVg Table A.49 65 GAC GAC GAC
triRNIC,
selRNIC
(wtriRNIC)

ukVg Table A.50 65 GAC GAC GAC
triRNIC,
selRNIC
(wtriRNIC)

wordsVg Table A.51 65 GAC GAC GAC
triRNIC,
selRNIC
(wtriRNIC)

Quasi-random dag-rand Table 5.5 25
RNIC
based

wRNIC
RNIC
based

RNIC
based

R
a
n
d
o
m

rand-10-20-10 Table A.53 20 All wR(∗,4)C All
All except
GAC

rand-3-20-20-fcd Table A.46 50 GAC GAC GAC
rand-3-20-20 Table A.47 50 GAC GAC GAC triRNIC
rand-3-24-24-fcd Table A.48 50 GAC GAC GAC
rand-8-20-5 Table A.54 20 wR(∗,2)C wR(∗,2)C wR(∗,2)C

T
S
P travellingSalesman-20 Table A.42 15 GAC GAC GAC

travellingSalesman-25 Table A.43 15 GAC GAC GAC

58

• On the crossword, random, and TSP benchmark, GAC exhibits the best per-

formance in terms to CPU time and is able to complete the largest number

of instances. However, GAC never ranks top in terms of solving the largest

number of instances in a backtrack-free manner.

• triRNIC is the strongest form of RNIC and the strongest consistency property

considered in this thesis. Theoretically speaking, triRNIC is guaranteed to have

the smallest amount of nodes visited (and, thus, to solve the largest number

of instances in a backtrack-free manner). However, it is also the most costly

property to enforce in terms of CPU time, and often does not terminate in the

allotted time limit. For that reason, it is not frequently listed in the column

#BT-Free.

• selRNIC solves the largest number of instances (652) in a backtrack-free manner,

followed by wR(∗,4)C (466), RNIC (394), wtriRNIC (247), wR(∗,3)C (237),

triRNIC (172), wR(∗,2)C (169), GAC (151), wRNIC (126).

• RNIC and its variations outperform all other algorithms on structured bench-

marks.

• In all of our experiments, when comparing selRNIC with a random selection of

the four RNIC-based algorithms, within a 50ms error tolerance, selRNIC out-

performs all four RNIC-based algorithms in a statistically significant manner.

This result establishes that selRNIC is better than choosing any RNIC-based

algorithm in a random manner (i.e., selRNIC is better than ‘chance’).

59

5.3 Detailed Analysis

In this section, we look at the individual results from each benchmark of the non-

binary problems. The results on binary CSPs are similar to the non-binary ones

and reported in Appendix A for readability. Indeed, on binary CSPs, we know that

wRNIC is never stronger than wR(∗,3)C (Theorem 9), and, thus, their study is less

interesting.

In Section 5.3.1, we discuss our results on the aim-100 and aim-200 benchmarks

where RNIC and selRNIC perform well. In Section 5.3.2, we discuss our results on the

dag-rand benchmark where RNIC and its variations outperform all other algorithms

despite the high density of the dual graphs in the benchmark In Section 5.3.3, we

discuss our results on the modifiedRenault benchmark where the weakened versions

of the algorithms (wR(∗,3)C, wR(∗,4)C, wRNIC, wtriRNIC and selRNIC) outperform

all others. In Section 5.3.4, we discuss our results on the lexVg benchmark, that has

dense dual graphs, where GAC performs the best. Finally in Section 5.3.5, we discuss

how the other benchmark map into the four benchmark that we single out. We report

our results using the the metrics specified in Section 5.1.

5.3.1 The aim-100 & aim-200 benchmarks

Table 5.4 illustrates the usefulness of RNIC: it completes the largest number of in-

stances (column #C), and solves, backtrack free, the largest number of instances

(column #BF). A boldface value in a column indicates that the best performance

in that metric. In terms of significance ranking, GAC, triRNIC, and wRNIC are not

competitive, which can be attributed, for the case of triRNIC, to the large density of

the dual graph on which it operates (26%–70.5%), and, for the case of wRNIC, to its

small density (0.7%–2.7%). selRNIC outperforms all other algorithms in all metrics

60

Table 5.4: RNIC/selRNIC completes the largest number of instances, and solves, backtrack
free, the largest number of instances.

Algorithm dD Time #F S #C #BF #NV
aim-100: 24(11) instances, e ∈[150,570]

wR(∗,2)C
[0.7%,2.7%]

1268786 6 B 19 5 324
wR(∗,3)C 1030715 1 B 20 7 152
wR(∗,4)C 946492 0 A 20 12 127

GAC - 2045625 4 D 16 1 9286160
RNIC /

[6.3%,8.1%] 480865 5 A 22 16 100
selRNIC
triRNIC [26.0%,70.5%] 2905672 0 E 12 12 100
wRNIC [0.7%,2.7%] 1125185 6 B 20 7 179

wtriRNIC [7.1%,12.6%] 1643378 0 C 18 9 146
aim-200: 24(0) instances, e ∈[302,1169]

wR(∗,2)C
[0.4%,1.4%]

2736365 9 B 12 4 -
wR(∗,3)C 2313714 2 B 15 8 -
wR(∗,4)C 2345388 0 B 14 9 -

GAC - 3979169 0 C 8 0 -
RNIC /

[3.2%,8.5%] 1346153 6 A 19 13
-

selRNIC
triRNIC [21.1%,71.8%] 5069082 0 D 2 2 -
wRNIC [0.4%,1.4%] 2518443 2 B 13 5 -

wtriRNIC [6.4%,11.4%] 3878709 0 C 7 7 -

except for #F, where it places the second.

5.3.2 The dag-rand benchmark

Like in Table 5.4, Table 5.5 shows a benchmark where RNIC and its variations perform

the best. However, for the dag-rand benchmark, the density of the original dual graph

is 100% on all the instances. When the density of the dual graph is 100%, RNIC is

performing a backtrack search on the full dual encoding of of CSP problem, instead

of a smaller sub-problem on the neighborhood. This positive result hints that there

might be benefit to conduct search on the relations instead of a search on the variables.

61

Table 5.5: Despite the high density, RNIC is able to perform well.

Algorithm dD Time #F S #C #BF #NV
dag-rand: 25(0) instances, e ∈[16,16]

wR(∗,2)C
[89.2%,98.3%]

- - - - - -
wR(∗,3)C - - - - - -
wR(∗,4)C - - - - - -

GAC - 5359472 0 B 1 0 -
RNIC 100.0% 41238 2 A 25 25 -

triRNIC 100.0% 38741 8 A 25 25 -
wRNIC [89.2%,98.3%] 38296 15 A 25 25 -

wtriRNIC /
[95%,100%] 179299 0 A 25 25 -

selRNIC

5.3.3 The modifiedRenault benchmark

Table 5.6 illustrates the usefulness of wRNIC and wtriRNIC. As stated above, the

sheer number of relations combined with the large density in the dual graphs of

the problems in this benchmark prevents us from executing RNIC and triRNIC. This

situation demonstrates the benefits of using wRNIC and wtriRNIC, which actually are

automatically chosen by selRNIC. Note also that wtriRNIC solves, backtrack free, all

instances in this category. We cannot stress enough on the importance of this last fact:

It is indicative of the tractability of this class of problems. Notice, despite selRNIC

not having the smallest CPU time, there is not a statistically significant difference

between the mean CPU time of selRNIC and the mean CPU time of wR(∗,4)C. Once

again, GAC is in a lower significance class than selRNIC. So are RNIC and triRNIC,

which was expected given the density of the dual graph.

5.3.4 The lexVg benchmark

In Tables 5.4, 5.5, and 5.6, selRNIC largely outperforms GAC by all accounts. Even if

one was to use a high-performance GAC implementation such as the one in [Cheng and

62

Table 5.6: RNIC is hindered by the high density of the dual graph, but its weakened
versions outperform all others.

Algorithm dD Time #F S #C #BF #NV
modifiedRenault: 50(1) instances, e ∈[125,137]

wR(∗,2)C
[2.1%,2.3%]

434378 29 B 46 41 111
wR(∗,3)C 117895 0 A 49 47 111
wR(∗,4)C 34238 0 A 50 50 111

GAC - 2750326 14 C 26 5 111
RNIC [44.7%,52.4%] 4924726 0 D 17 17 111

triRNIC [45.6%,54.6%] 4868644 0 D 11 11 111
wRNIC [2.1%,2.3%] 330987 2 A 47 45 111

wtriRNIC [3.6%,5%] 239735 0 A 50 50 111
selRNIC [2.1%,4.2%] 148431 0 A 49 48 111

Yap, 2010], the number of nodes visited by GAC remains orders of magnitude larger

than that by selRNIC, and the number of instances solved backtrack-free significantly

smaller. Only in Table 5.7 does GAC outperform the other algorithms in terms

of CPU time only. Interestingly, however, on lexVg, and despite the high density

Table 5.7: GAC is best on CPU, triRNIC/selRNIC is best on #BF.

Algorithm dD Time #F S #C #BF #NV
lexVg: 63(40) instances, e ∈[8,36]

wR(∗,2)C
[48.5%,57.1%]

1001230 7 B 54 27 30
wR(∗,3)C 1889953 0 C 44 27 30
wR(∗,4)C 2129365 0 D 41 35 3

GAC - 116128 56 A 63 26 25
RNIC [48.5%,57.1%] 1791844 0 C 45 27 30

triRNIC [57.6%,78.6%] 1103317 0 B 57 57 3
wRNIC [48.5%,57.1%] 1813812 0 C 45 27 30

wtriRNIC /
[57.6%,78.6%] 1094851 0 B 57 57 3

selRNIC

([57.6%,78.6%]) of the redundancy-free triangulated dual graph, wtriRNIC/selRNIC

solves in a backtrack-free manner all but six of the instances in this set, thus hinting

to the tractability of these instances. (The last six instance hit the time threshold.)

63

5.3.5 All other results

The 186 instances reported above are representative of the results obtained in our

experiments, which were carried over 960 non-binary instances. Below, we classify the

remaining tested instances into the four qualitative categories identified by the above

four tables. The fifth category lists benchmarks that yielded inconclusive results. All

individual tables can be found in Appendix A.

1. Similar to Table 5.4: aim-50 (Table A.39), dubois (Table A.40), ssa (Table A.41)

2. Similar to Table 5.5: All benchmarks shown.

3. Similar to Table 5.6: travellingSalesman-20 (Table A.42), travellingSalesman-25

(Table A.43)

4. Similar to Table 5.7: jnhSat (Table A.44), jnhUnsat (Table A.45), ogdVg (Ta-

ble A.49), ukVg (Table A.50), wordsVg(Table A.51).

5. All Similar: pret (Table A.52), rand-10-20-10 (Table A.53), rand-8-20-5 (Ta-

ble A.54), varDimacs (Table A.55).

Summary

In this chapter, we empirically evaluated, on benchmark problems, the advantage

of enforcing RNIC and its variations and using them as full lookahead strategies for

solving CSPs. These strategies performed statistically better than previous techniques

(i.e., GAC2001 and wR(∗,m)C for m = 2, 3, 4) on assignment and quasi-random

benchmark problems. Furthermore, among the variations of RNIC, selRNIC selected

the most appropriate dual graph on which to enforce RNIC in a statistically significant

manner.

64

Chapter 6

Propagation-Queue Management

Freuder identified the importance of the width of the constraint graph (and the corre-

sponding variable ordering) for bounding the effort of solving the CSP [1982]. Dechter

and Pearl [1987a] suggested using the induced width (and the corresponding perfect

elimination ordering) obtained by some triangulation of the constraint network.1 Fur-

ther, in [Dechter and Pearl, 1989], they identified the connection of that approach

with tree-decomposition techniques.2

In this chapter, we investigate the impact of the topology of the dual graph on

the management of the propagation queue of RNIC. First, we present the five queue-

management strategies that we propose, then evaluate them during pre-processing

and as lookahead in a backtrack-search procedure for finding the first solution of a

CSP.

1A detailed discussion and a historical summary of directional and adaptive consistency methods

can be found in Chapter 4 of [Dechter, 2003].
2A detailed discussion and a historical summary of tree-decomposition methods can be found in

Chapter 9 of [Dechter, 2003].

65

6.1 Queue-Management Strategies

We explore the following three directions for ordering the relations:

1. Arbitrary ordering of the relations in the propagation queue, as in Chapter 5,

2. Using a perfect elimination ordering (PEO) of the vertices of some triangulation

of the dual graph, and

3. Using an ordering of the maximal cliques of some triangulation of the dual

graph, which corresponds to a tree-decomposition ordering (TD).

For the example of Figure 6.1, a perfect elimination ordering obtained by applying the

max-cardinality ordering is: 〈R6, R5, R3, R4, R2, R1〉 and the maximal cliques ordering

is: 〈C1, C2, C3, C4〉, where C1 = {R4, R6}, C2 = {R4, R5}, C3 = {R1, R3, R4}, and

C4 = {R1, R2, R4}. In order to triangulate the dual graph, we use the min-fill heuristic

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

AD	

R5

R6

R4

BCD	

ABDE	

CF	

EF	

AB	

R3

R1

R2

AD	
 R5

R6

R1,R2,R4	

C3

C4

R6,R4	

R5,R4	

R1,R3,R4	

C2

C1

Figure 6.1: A triangulated dual graph (left) along with a perfect elimination ordering
(center) and a maximal cliques ordering (right) where the orderings proceed from bottom
to top.

[Kjærulff, 1990; Dechter, 2003]. We use a perfect elimination ordering (PEO) obtained

by applying the max-cardinality ordering (MCO) of [Tarjan and Yannakakis, 1984]

to the triangulated dual graph. Using this PEO, we find the maximal cliques with

the algorithm of [Gavril, 1972].

66

We study the impact of the above orderings in three exact strategies and two

approximate strategies (lazy) for managing the propagation queue of the RNIC algo-

rithm in a backtrack search for finding the first solution of a CSP. We limit ourselves

to triRNIC and wtriRNIC because the five proposed strategies are based on informa-

tion obtained from the triangulation step. Below, we describe three exact strategies

and two lazy strategies.

6.1.1 Exact strategies

ProcessQ (Algorithm 1 in Section 4.1) uses two types of queues: A queue of the

relations to be revised (QR), and For each relation, a queue of tuples for which a

support must be found (Qt(R)). Note that QR is static.3 However, a relation R is

processed only when its Qt(R) is not empty. We consider the three exact following

strategies:

1. The arbitrary ordering (QMSa): The order of the relations in QR is arbitrary.

2. The perfect elimination ordering (QMSPEO): This ordering aligns the relations

in QR following the perfect elimination ordering explained above, and processes

them back and forth in that order until quiescence (i.e., until all the tuples in

the relations have appropriate supports).

3. The tree decomposition ordering (QMSTD): This strategy maintains an addi-

tional queue, QC , that is formed as follows:

• For each maximal clique, C, a queue of the relations in this clique, QR(C),

where the relations are stored in an arbitrary order.

3As in AC-1 [Mackworth, 1977] and unlike the queues of most modern consistency algorithms.

67

• Relations are listed in the queues of all the maximal cliques where they

appear.

• The queue QC is a queue of the queues of those maximal-cliques, QR(C),

aligned in the tree-decomposition ordering introduced above.

• A relation R is revised only when its queue of tuples, Qt(R), is not empty.

The cliques are processed back forth in the order they are listed in QC until

quiescence. Each time that a clique is considered, its queue is processed in an

arbitrary ordering until quiescence before we can move to the next clique in the

sequence.

Note that all three strategies above enforce the same consistency property. However,

when the problem is unsolvable, the strategies may differ in the amount of tuples

removed before discovering the problem is inconsistent.

6.1.2 Lazy strategies

The QMSTD strategy, described in Section 6.1.1 enforces RNIC, it:

1. processes each clique in the order considered,

2. iterates over the relations in the clique in an arbitrary order until quiescence,

3. then moves to the next cliques,

4. while traversing the ordering back and forth until quiescence.

In this section, we investigate if and when weakening QMSTD can reduce processing

time. We examine weakening this strategy in two different ways, resulting in two

‘lazy’ strategies:

68

1. QMSLTD: QMSLTD relaxes Step 4 above, traversing the cliques only once, from

bottom to top.

2. QMSL2TD: QMSL2TD relaxes Step 2 and 4 above, that is, it traverses the rela-

tions in the cliques only once, in a random order, and traverses the cliques also

only once, from bottom to top.

The two lazy strategies are strictly weaker than the exact strategies.

6.2 Experimental Setup

To solve a CSP instance, one can enforce a given consistency property on the instance

in a pre-processing step before running backtrack search. Enforcing consistency during

search is called lookahead, as stated earlier. We study the impact of the queue-

management strategies considered (see Table 6.1) on the CPU time to pre-process the

CSP and find the first solution of a CSP. There are a total of 25 combinations of queue-

Table 6.1: Proposed queue management strategies.

E
x
a
ct

QMSa Arbitrary ordering of the relations in the propagation queue.
QMSPEO The relations are ordered for revision using a perfect elimina-

tion ordering and the order is traversed back and forth until
quiescence.

QMSTD The propagation queue is a sequence of list of relations appearing
in the maximal cliques. The cliques are revised in sequence; each
clique is revised until quiescence; and the sequence of cliques is
revised back and forth until quiescence.

L
a
zy

QMSLTD Same as QMSTD, however, the sequence of cliques is traversed
only once.

QMSL2TD Same as QMSTD, but traversing each clique only once and the
relations in the cliques only once, in a random order.

management strategies that can be tested for pre-processing and lookahead. Instead

69

of testing all combinations of strategies, we evaluated the two steps in separation:

executing them as a pre-processing step and as a lookahead during search.

• For pre-processing, the lazy approaches consistently yield lower CPU times than

the exact strategies because they execute fewer revisions. However, they also

filter fewer tuples, and as a result, the search space they produce is also larger

than that obtained by any of the exact strategies. After some extensive testing,

we found that the saving in CPU time is insignificant compared with the loss

of filtering power. For this reason, below, we discuss only exact strategies for

the pre-processing step, among which we show that QMSTD yields the best

performance in terms of CPU time.

• For lookahead, starting from a problem where the consistency property has

been completely enforced (i.e., after pre-processing by an exact strategy), we

find that QMSTD is not only statistically equivalent to the lazy approaches on

triangulated dual graphs, but in fact statistically better on triangulated minimal

dual graphs.

The strategies were tested on the benchmark problems of the CSP Solver Compe-

tition introduced in Section 5.1 with the allocated time of one and a half hours and

memory limit of 7GB per instance. We tested 2875 instances of binary and non-binary

CSPs (1915 binary, 960 non-binary). We measured the following parameters:

• Strategy: One of the five strategies used.

• Time: The average CPU time in milliseconds for the strategy for pre-processing

or for solving the pre-processed CSP. Time is treated as right-censored data

because some experiments fail to finish within the allocated time window (90

minutes).

70

• S: A ranking in terms of equivalence classes of CPU performance. To compute

performance equivalence-classes that are statistically significant, we performed

a simple effects comparison between every two strategies for a significant level

of 0.05. Rank A indicates the best performance, and rank C indicates the worse

performance.

• %: The percent increase gained by the algorithm compared to the arbitrary

strategy (QMSa). A ‘-’ entry indicates that there was no improvement over the

arbitrary strategy.

6.3 Pre-Processing: Empirical Evaluations

We evaluated the exact strategies first on triangulated dual graphs (i.e., enforcing

triRNIC) then triangulated minimal dual graphs (i.e., enforcing wtriRNIC).

On solvable instances, the performance of all three tested strategies (i.e., QMSa,

QMSPEO, and QMSTD) for both triRNIC and wtriRNIC are equivalent on solvable

instances. However, on unsolvable instances, QMSTD for enforcing triRNIC and

QMSPEO for enforcing wtriRNIC are superior to the other two on unsolvable in-

stances, the former by a large margin and the latter by a small one. Below, we

discuss the results in details.

6.3.1 Enforcing triRNIC

Table 6.2 reports the results of the queue-management strategies for enforcing triR-

NIC (i.e., triangulated dual graphs). The boldface values indicate the best perfor-

mance. Our results indicate that QMSTD exhibits the best performance, improving

the CPU time of QMSa by 46%.

71

Table 6.2: Pre-processing: QMSs for enforcing triRNIC.

Strategy Time S %

QMSa 1,410,292 C -
QMSPEO 1,186,691 B 16%
QMSTD 765,976 A 46%

Tables 6.3 and 6.4 show the results after splitting the instances into solvable and

unsolvable instances, respectively. On solvable instances, all three strategies have

Table 6.3: Pre-processing: QMSs for en-
forcing triRNIC on solvable instances.

Strategy Time S %

QMSa 1,392,779 A -
QMSPEO 1,411,518 A -
QMSTD 1,488,632 A -

Table 6.4: Pre-processing: QMSs for en-
forcing triRNIC on unsolvable instances.

Strategy Time S %

QMSa 1,474,226 C -
QMSPEO 1,167,993 B 21%
QMSTD 564,497 A 62%

statistically equivalent performances, while QMSa shows the lowest average CPU

time. On unsolvable instances, QMSTD shows the best performance, indicating that

it detects unsatisfiable maximal cliques faster than the other strategies. This results

reinforces the common knowledge that it is advantageous to combine higher level

consistencies with the topology of the network.

6.3.2 Enforcing wtriRNIC

Table 6.5 reports the results of queue-management strategies for enforcing wtriRNIC

(i.e., on triangulated minimal dual graphs). Both strategies QMSTD and QMSPEO

show improvement on the CPU time over QMSa, but the improvement is not statis-

tically significant.

However, when separating the results on solvable (Table 6.6) and unsolvable (Ta-

ble 6.7) instances, QMSPEO exhibits the best performance in terms of CPU time in

a significant manner on unsolvable instances.

72

Table 6.5: Pre-processing: QMSs for enforcing wtriRNIC.

Strategy Time S %

QMSa 479,725 A -
QMSPEO 467,747 A 2%
QMSTD 476,604 A 1%

Table 6.6: Pre-processing: QMSs for en-
forcing wtriRNIC on solvable instances.

Strategy Time S %

QMSa 529,461 A -
QMSPEO 518,292 A 2%
QMSTD 522,313 A 1%

Table 6.7: Pre-processing: QMSs for en-
forcing wtriRNIC on unsolvable instances.

Strategy Time S %

QMSa 360,769 B -
QMSPEO 336,283 A 7%
QMSTD 370,795 B -

6.4 Lookahead: Empirical Evaluations

We study the effect of queue management during lookahead and compare the perfor-

mance all five proposed strategies in terms of average CPU time. We start from a

CSP that has been pre-processed for consistency by triRNIC or wtriRNIC.

Our results report the same parameters as in Section 6.3 over the same 2875

instances of benchmark problems of the CSP Solver Competition. However, the

Time column now denotes the average CPU time in milliseconds to solve the CSP,

treating the data like right-censored data due to the 90 minute time-limit per instance.

The CPU time does not include the time to pre-process the instance. We evaluate

enforcing both triRNIC and wtriRNIC as full lookahead strategies.

6.4.1 Enforcing triRNIC

Table 6.8 reports the results of the queue-management strategies for enforcing triR-

NIC (i.e., using the triangulated dual graphs). The lazy strategy QMSLTD shows the

smallest average CPU time with a 68% improvement over QMSa, However, QMSLTD

73

Table 6.8: Lookahead: QMSs for enforcing triRNIC.

Strategies Time S %

QMSa 1,243,917 C -
QMSPEO 900,069 B 28%
QMSTD 416,464 A 67%
QMSLTD 403,766 A 68%
QMSL2TD 434,479 A 65%

is statistically equivalent to the two other strategy based on tree decomposition,

QMSTD and QMSL2TD.

Tables 6.9, and 6.10, show the results after splitting the test cases into solvable

and unsolvable instances, respectively. On solvable instances, all of five strategies

Table 6.9: Lookahead: QMSs for enforcing
triRNIC on solvable instances.

Strategies Time S %

QMSa 722,887 A -
QMSPEO 952,471 A -
QMSTD 1,013,529 A -
QMSLTD 957,518 A -
QMSL2TD 948,261 A -

Table 6.10: Lookahead: QMSs for enforc-
ing triRNIC on unsolvable instances.

Strategies Time S %

QMSa 1,395,834 C -
QMSPEO 898,937 B 36%
QMSTD 247,049 A 82%
QMSLTD 246,914 A 82%
QMSL2TD 289,902 A 79%

are statistically equivalent. On unsolvable instances, all strategies based on tree

decomposition are statistically equivalent and the best ranking. Interestingly, these

are the same strategies that performed the best in Table 6.8.

Similar to the pre-processing results for enforcing triRNIC (Section 6.3.1), the

results of this experiments confirm that propagation queues along the tree decom-

position are able to detect unsatisfiable partial solutions quicker than an arbitrary

ordering. Finally, lazy strategies do not exhibit any statistically significant advantage.

74

6.4.2 Enforcing wtriRNIC

Table 6.11 reports the results of queue-management strategies for enforcing wtriRNIC

(i.e., triangulated minimal dual graphs). Unlike the results for enforcing triRNIC,

Table 6.11: Lookahead: QMSs for enforcing wtriRNIC.

Strategies Time S %

QMSa 628,523 C -
QMSPEO 582,629 B 7%
QMSTD 519,578 A 17%
QMSLTD 602,437 C 4%
QMSL2TD 575,277 C 8%

the two lazy strategies are are equivalent to QMSa and thus not beneficial. QMSTD

performs the best, yielding a 17% improvement in CPU time over QMSa. QMSPEO is

better than QMSa and the lazy strategies, but not better than QMSTD. Interestingly,

QMSPEO shows a higher average CPU time but a better ranking than QMSL2TD. That

result is due to the fact the variance of the results of QMSL2TD is larger than that of

QMSPEO, causing it to be in the same significant category as QMSa.

Tables 6.12 and 6.13 report the results split into solvable and unsolvable instances,

respectively. Unlike the previous results where all of the strategies performed the same

Table 6.12: Lookahead: QMSs for enforc-
ing wtriRNIC on solvable instances.

Strategies Time S %

QMSa 1.245,384 A -
QMSPEO 1,214,177 A 5%
QMSTD 1,288,581 A -
QMSLTD 1,490,597 B -
QMSL2TD 1,443,451 B -

Table 6.13: Lookahead: QMSs for enforc-
ing wtriRNIC on unsolvable instances.

Strategies Time S %

QMSa 286,561 C -
QMSPEO 232,320 B 19%
QMSTD 92,378 A 68%
QMSLTD 109,049 A 62%
QMSL2TD 92,946 A 68%

solvable instances, the lazy strategies performed the worst and the exact strategies

performed the best. On unsolvable instances, the strategies involving the tree decom-

75

position, both exact and lazy, are statistically equivalent, and rank best. Unlike the

results of the pre-processing data on wtriRNIC (Section 6.3.2), the perfect elimination

ordering, QMSPEO, was not the best on satisfiable instances, although it was signif-

icantly better than the arbitrary ordering, QMSa. These results are similar to the

results for triRNIC, where the best propagation queues are the ones based on tree

decomposition. However, when both solvable and unsolvable instances are mixed,

which is the case in practice, the lazy strategies do not perform well.

Summary

In this chapter, we investigated alternative queue-management strategies for enforcing

triRNIC and wtriRNIC, and evaluated their performance during pre-processing and

as full lookahead. The best strategy is shown to be the exact strategy exploiting the

tree decomposition, QMSTD.

76

Chapter 7

Conclusions and Future Work

Freuder and Elfe [1996] introduced Neighborhood Inverse Consistency (NIC) as a

property defined on the values in the variables’ domains of a Constraint Satisfaction

Problem (CSP). NIC was introduced as a promising consistency property because

of its light space requirement and its ability to focus attention on where a variable

most tightly interacts with the problem, its neighborhood. However, Debruyne and

Bessière [2001] showed that enforcing NIC on binary CSPs is ineffective on sparse

graph and too costly on dense graphs. By proposing to enforce NIC on the dual

graph instead of on the constraint network, we ’salvaged’ the concept of NIC. Indeed,

this shift allowed us to propose a new consistency property, Relational Neighborhood

Inverse Consistency (RNIC), which we showed to be effective for solving CSPs.

This chapter concludes the thesis and summarizes our contributions and directions

for future research.

7.1 Summary of Contributions

We have six main contributions:

77

1. We introduced a new consistency property, Relational Neighborhood Inverse

Consistency (RNIC). The benefit of RNIC is that it adapts to the topology of

its neighborhood and does not require the introduction of new relations to the

CSP, but instead filters existing relations. We also characterized RNIC on both

binary and non-binary CSPs.

2. We introduced an algorithm for enforcing RNIC. The complexity is polynomial

for dual graphs of a fixed degree.

3. We introduced two reformulations of the dual graph of the CSP, yielding three

variations of the RNIC property:

a) Removing Redundant Edges (wRNIC): Enforcing RNIC on a minimal dual

graph, a redundancy-free dual graph.

b) Triangulating the Dual Graph (triRNIC): Enforcing RNIC on a triangu-

lated dual graph, which breaks cycles of length four or more.

c) Triangulate a Minimal Dual Graph (wtriRNIC): Enforcing RNIC on a tri-

angulated minimal dual graph, which has redundant edges removed, and

then the resulting dual graph triangulated.

4. We also introduced a selection criteria to select the most appropriate of the four

dual graphs (i.e., the original, minimal, triangulated, and triangulated minimal).

5. We evaluated RNIC and its variations when compared to GAC2011 and m-wise

consistency on the CSP Solver Competition benchmark problems. We presented

situations where RNIC and its variations perform the best, and other situations

where GAC performs the best.

78

6. We proposed four new strategies (two exact and two approximate) for managing

the propagation queue of a consistency algorithm. We empirically compared

the different strategies, and concluded that the best is the exact strategy that

exploits a tree decomposition.

7.2 Directions for Future Research

Below we identify directions for further research:

1. Databases : Database systems typically operate on large-sized tables (in terms

of number of tuples). However, a join query is typically over few relations. In

contrast, CSPs have relatively smaller variables’ domains but large number of re-

lations. Consequently, the computational cost models in the two domains differ:

former is concerned with the number of access to disk whereas the latter is con-

cerned with the computational cost of the algorithms. As the technology moves

towards ‘in-memory databases,’ we conjecture that consistency techniques, es-

pecially ones that are based on filtering relations and enforcing higher levels of

consistency, will become of great importance.

2. Singleton consistency : Our approach opens the door to the investigation of a

new type of singleton consistency properties for CSPs. Instead of assigning

the value of a single variable before enforcing some level of consistency on the

CSP, as it is usually the case for Singleton Arc Consistency (SAC) [Bessiere

et al., 2011], we should investigate the effectiveness of ‘assigning a tuple to a

relation’ in the dual problem. Such an approach would yield a new class of

relational consistency properties, which could be called relation-based singleton

79

consistency properties. Note however, that, unlike RNIC, maintaining such

properties during search is prohibitive in practice [Lecoutre and Prosser, 2006].

3. Other relation definitions : Our algorithm operates on relations defined in exten-

sion as consistent tuples (supports). Relations defined in extension as conflicts

(no-goods) could be converted to supports, as we did here. Further, and also for

constraints defined in intension, we could generate support tuples after applying

GAC to the original CSP. For cases where it is important to keep all relation

definitions in intension, we claim that a similar, albeit weaker, domain pruning

can be achieved by executing RNIC on combinations of domain values that are

consistent with the relations. We propose to mitigate the loss of information

by generating new (support) constraints of some judiciously chosen scopes. We

propose to investigate this approach in the future and evaluate its effectiveness.

4. Redundancy removal : As discussed in Section 3.4.1, on binary CSPs, it is pos-

sible to remove redundant edges in the dual graph to be a triangle-shaped grid.

However, because the redundancy-free dual graphs are not unique, there are

also non-grid shaped redundancy-free dual graphs. The algorithm used in this

thesis, from [Janssen et al., 1989], for removing redundant edges generates these

triangle-shaped grids. We propose to investigate and understand why this al-

gorithm favors the triangle-shaped grids. Further, the wRNIC results from

this thesis can be compared with enforcing wRNIC using other algorithms for

removing redundant edges.

5. Propagation-queue management : In Chapter 6, we studied four new queue-

management strategies for enforcing triRNIC and wtriRNIC. These strategies

could also be studied when used with other consistency algorithms, such as

R(∗,m)C of [Karakashian et al., 2010].

80

7.3 Final Note

Consistency properties are central to the Constraint Processing endeavor. Formalizing

new such properties and developing new algorithms for enforcing them allows us to

chip away, piece by piece, the barrier posed by complexity.

81

Appendix A

Data Sets

Below are the tables summarizing experimental results omitted from Chapter 5 in

order to reduce clutter. We give the detailed analysis first for binary CSP benchmarks

then for non-binary benchmarks.

A.1 Binary CSPs

Below are the extra tables from Section 5.3, giving individual benchmark results:

• RNIC and its variations perform best: composed-25-1-25 (Table A.1), composed-

25-1-2 (Table A.2), composed-25-1-40 (Table A.3), composed-25-1-80 (Table A.4),

composed-25-10-20 (Table A.5), composed-75-1-25 (Table A.6), composed-75-

1-2 (Table A.7), composed-75-1-40 (Table A.8), composed-75-1-80 (Table A.9),

ehi-85 (Table A.10), ehi-90 (Table A.11), QCP-10 (Table A.12).

• GAC performs well: driver (Table A.13), frb35-17 (Table A.14), frb40-19 (Ta-

ble A.15), frb45-21 (Table A.16), geom (Table A.17), langford (Table A.18),

marc (Table A.19), QCP-15 (Table A.20), rand-2-23 (Table A.21), rand-2-24

82

(Table A.22), rand-2-30-15-fcd (Table A.23), rand-2-30-15 (Table A.24), rand-

2-40-19-fcd (Table A.25), rand-2-40-19 (Table A.26), tightness0.1 (Table A.27),

tightness0.2 (Table A.28), tightness0.35 (Table A.29), tightness0.5 (Table A.30),

tightness0.65 (Table A.31), tightness0.8 (Table A.32), tightness0.9 (Table A.33).

• Results are inconclusive on: coloring (Table A.34), frb30-15 (Table A.35), hanoi

(Table A.36) QWH-10 (Table A.37), QWH-15 (Table A.38).

Table A.1: Statistical analysis of the composed-25-1-25 benchmark.

Algorithm dD Time #F S #C #BF #NV
composed-25-1-25: 10(0) instances, e ∈[247,247]

wR(∗,2)C
[1.5%,1.5%]

- - - 0 0 -
wR(∗,3)C 993 0 A 10 10 -
wR(∗,4)C 6376 0 A 10 10 -

GAC - - - - 0 0 -
RNIC /

[12.3%,12.5%] 398 8 A 10 10 -
selRNIC
triRNIC [53.4%,57.1%] - - - 0 0 -
wRNIC [1.5%,1.5%] 3781896 2 B 3 2 -

wtriRNIC [6.1%,6.8%] 4828 0 A 10 10 -

Table A.2: Statistical analysis of the composed-25-1-2 benchmark.

Algorithm dD Time #F S #C #BF #NV
composed-25-1-2: 10(0) instances, e ∈[224,224]

wR(∗,2)C
[1.7%,1.7%]

- - - 0 0 -
wR(∗,3)C 1080677 0 B 8 7 -
wR(∗,4)C 5561 0 A 10 10 -

GAC - - - - 0 0 -
RNIC /

[12.7%,12.9%] 316 6 A 10 10 -
selRNIC
triRNIC [51.6%,53.9%] - - - 0 0 -
wRNIC [1.7%,1.7%] 3240059 4 C 4 4 -

wtriRNIC [5.9%,6.4%] 1695 0 A 10 10 -
selRNIC [12.7%,12.9%] 316 6 A 10 10 -

83

Table A.3: Statistical analysis of the composed-25-1-40 benchmark.

Algorithm dD Time #F S #C #BF #NV
composed-25-1-40: 10(0) instances, e ∈[262,262]

wR(∗,2)C
[1.4%,1.4%]

4860530 0 C 1 0 -
wR(∗,3)C 541675 0 A 9 6 -
wR(∗,4)C 6933 0 A 10 10 -

GAC - - - - 0 0 -
RNIC /

[12.1%,12.3%] 480 7 A 10 10 -
selRNIC
triRNIC [55.2%,57.5%] - - - 0 0 -
wRNIC [1.4%,1.4%] 3240199 3 B 4 1 -

wtriRNIC [6.2%,6.7%] 5931 0 A 10 10 -

Table A.4: Statistical analysis of the composed-25-1-80 benchmark.

Algorithm dD Time #F S #C #BF #NV
composed-25-1-80: 10(0) instances, e ∈[302,302]

wR(∗,2)C
[1.3%,1.3%]

1687824 0 B 7 0 -
wR(∗,3)C 730063 0 A 9 4 -
wR(∗,4)C 8332 0 A 10 10 -

GAC - 3848558 2 C 4 0 -
RNIC /

[11.8%,12%] 779 7 A 10 10 -
selRNIC
triRNIC [61.1%,63.6%] - - - 0 0 -
wRNIC [1.3%,1.3%] 1741182 1 B 7 0 -

wtriRNIC [5.7%,5.9%] 576111 0 A 9 6 -

Table A.5: Statistical analysis of the composed-25-10-20 benchmark.

Algorithm dD Time #F S #C #BF #NV
composed-25-10-20: 10(0) instances, e ∈[620,620]

wR(∗,2)C
[0.6%,0.6%]

2472898 0 B 6 0 -
wR(∗,3)C 2713972 0 C 6 1 -
wR(∗,4)C 1906876 0 B 7 1 -

GAC - 2179966 5 B 6 0 -
RNIC /

[4.9%,5%] 301220 3 A 10 10 -
selRNIC
triRNIC [26.5%,28.1%] - - - 0 0 -
wRNIC [0.6%,0.6%] 2504953 0 B 6 0 -

wtriRNIC [3%,3.5%] 3235090 0 D 5 2 -

Table A.6: Statistical analysis of the composed-75-1-25 benchmark.

Algorithm dD Time #F S #C #BF #NV
composed-75-1-25: 10(0) instances, e ∈[83,83]

wR(∗,2)C
[0.6%,0.6%]

4861207 0 C 1 0 -
wR(∗,3)C 1082373 0 B 8 6 -
wR(∗,4)C 18150 0 A 10 10 -

GAC - - - - 0 - -
RNIC /

[4.8%,4.9%] 1186 10 A 10 10 -
selRNIC
triRNIC [48.1%,50.2%] - - - 0 - -
wRNIC [0.6%,0.6%] 4861555 0 C 1 0 -

wtriRNIC [5.8%,6.7%] 201033 0 A 10 10 -

84

Table A.7: Statistical analysis of the composed-75-1-2 benchmark.

Algorithm dD Time #F S #C #BF #NV
composed-75-1-2: 10(0) instances, e ∈[624,624]

wR(∗,2)C
[0.6%,0.6%]

- - - 0 0 -
wR(∗,3)C 2161663 0 B 6 6 -
wR(∗,4)C 17363 0 A 10 10 -

GAC - - - - 0 0 -
RNIC /

[4.9%,5.0%] 1080 9 A 10 10 -
selRNIC
triRNIC [47%,49.9%] - - - 0 0 -
wRNIC [0.6%,0.6%] 4860070 1 C 1 1 -

wtriRNIC [5.6%,6%] 41763 0 A 10 10 -
selRNIC [4.9%,5%] 1080 9 A 10 10 -

Table A.8: Statistical analysis of the composed-75-1-40 benchmark.

Algorithm dD Time #F S #C #BF #NV
composed-75-1-40: 10(0) instances, e ∈[662,662]

wR(∗,2)C
[0.6%,0.6%]

4860197 0 D 1 0 -
wR(∗,3)C 2702992 0 C 5 2 -
wR(∗,4)C 556931 0 A 9 9 -

GAC - - - - 0 0 -
RNIC /

[4.8%,4.9%] 1257 10 A 10 10 -
selRNIC
triRNIC [48.7%,51.1%] - - - 0 0 -
wRNIC [0.6%,0.6%] 4860283 0 D 1 0 -

wtriRNIC [5.8%,6.6%] 1714948 0 B 8 8 -

Table A.9: Statistical analysis of the composed-75-1-80 benchmark.

Algorithm dD Time #F S #C #BF #NV
composed-75-1-80: 10(0) instances, e ∈[702,702]

wR(∗,2)C
[0.5%,0.5%]

3255454 0 C 4 0 -
wR(∗,3)C 1622932 0 B 7 1 -
wR(∗,4)C 216955 0 A 10 8 -

GAC - 3780016 3 C 3 0 -
RNIC /

[4.7%,4.8%] 1543 7 A 10 10 -
selRNIC
triRNIC [50.7%,53.3%] - - - 0 0 -
wRNIC [0.5%,0.5%] 3272328 0 C 4 0 -

wtriRNIC [5.5%,6.3%] 4028376 0 C 4 1 -

85

Table A.10: Statistical analysis of the ehi-85 benchmark.

Algorithm dD Time #F S #C #BF #NV
ehi-85: 100(0) instances, e ∈[4081,4137]

wR(∗,2)C
[0.1%,0.1%]

2855886 2 C 59 0 -
wR(∗,3)C 2339890 12 B 61 2 -
wR(∗,4)C 151627 38 A 100 89 -

GAC - 2930293 35 D 58 0 -
RNIC /

[2.6%,2.6%] 179562 8 A 100 100 -
selRNIC
triRNIC [36%,41.9%] - - - 0 0 -
wRNIC [0.1%,0.1%] 2654968 5 C 60 1 -

wtriRNIC [3.3%,4.1%] - - - 0 0 -

Table A.11: Statistical analysis of the ehi-90 benchmark.

Algorithm dD Time #F S #C #BF #NV
ehi-90: 100(0) instances, e ∈[4343,4400]

wR(∗,2)C
[0.1%,0.1%]

3254714 0 D 49 0 -
wR(∗,3)C 2516736 10 B 57 2 -
wR(∗,4)C 237040 31 A 99 86 -

GAC - 3106651 41 C 44 0 -
RNIC /

[2.5%,2.5%] 187288 15 A 100 100 -
selRNIC
triRNIC [36.6%,41.8%] - - - 0 0 -
wRNIC [0.1%,0.1%] 2988408 3 C 50 1 -

wtriRNIC [3.3%,4.1%] - - - 0 0 -

Table A.12: Statistical analysis of the QCP-10 benchmark.

Algorithm dD Time #F S #C #BF #NV
QCP-10: 15(0) instances, e ∈[822,822]

wR(∗,2)C
[0.5%,0.5%]

560920 0 A 14 2 -
wR(∗,3)C 1004741 0 B 13 4 -
wR(∗,4)C 1059011 0 B 13 4 -

GAC - 51615 13 A 15 4 -
RNIC /

[3.8%,3.8%] 817085 1 B 13 9 -
selRNIC
triRNIC [29.1%,38.8%] - - - 0 0 -
wRNIC [0.5%,0.5%] 648826 1 A 14 2 -

wtriRNIC [3.8%,4.2%] 2516534 0 C 9 4 -

Table A.13: Statistical analysis of the driver benchmark.

Algorithm dD Time #F S #C #BF #NV
driver: 7(1) instances, e ∈[217,17447]

wR(∗,2)C
[0%,1.5%]

2440546 0 A 6 1 71
wR(∗,3)C 3744919 0 C 3 1 71
wR(∗,4)C 3895826 0 C 2 1 71

GAC - 1801784 4 A 6 1 71
RNIC /

[1.7%,5.5%] 4628591 0 D 1 1 71
selRNIC
triRNIC [12.9%,21.3%] 4628690 0 D 1 1 71
wRNIC [0%,1.5%] 3138109 0 B 5 1 71

wtriRNIC [0.5%,3.7%] 4628586 0 D 1 1 71

86

Table A.14: Statistical analysis of the frb35-17 benchmark.

Algorithm dD Time #F S #C #BF #NV
frb35-17: 10(0) instances, e ∈[260,273]

wR(∗,2)C
[1.4%,1.4%]

2683904 0 B 9 0 -
wR(∗,3)C 4947205 0 C 1 0 -
wR(∗,4)C 5233668 0 C 1 0 -

GAC - 137656 10 A 10 0 -
RNIC /

[11.1%,11.3%] 5322187 0 C 1 0 -
selRNIC
triRNIC [56.7%,59.3%] - - - 0 0 -
wRNIC [1.4%,1.4%] 3196734 0 B 6 0 -

wtriRNIC [6.6%,7.4%] - - - 0 0 -

Table A.15: Statistical analysis of the frb40-19 benchmark.

Algorithm dD Time #F S #C #BF #NV
frb40-19: 10(0) instances, e ∈[308,326]

wR(∗,2)C
[1.2%,1.2%]

- - - 0 0 -
wR(∗,3)C - - - 0 0 -
wR(∗,4)C - - - 0 0 -

GAC - 670469 10 A 10 0 -
RNIC /

[9.6%,10%] - - - 0 0 -
selRNIC
triRNIC [55.9%,58.6%] - - - 0 0 -
wRNIC [1.2%,1.2%] - - - 0 0 -

wtriRNIC [6.4%,7.2%] - - - 0 0 -

Table A.16: Statistical analysis of the frb45-21 benchmark.

Algorithm dD Time #F S #C #BF #NV
frb45-21: 10(0) instances, e ∈[369,394]

wR(∗,2)C
[1%,1%]

- - - 0 0 -
wR(∗,3)C - - - 0 0 -
wR(∗,4)C - - - 0 0 -

GAC - 4598528 2 A 2 0 -
RNIC /

[8.6%,8.8%] - - - 0 0 -
selRNIC
triRNIC [57.1%,58.4%] - - - 0 0 -
wRNIC [1%,1%] - - - 0 0 -

wtriRNIC [6%,6.7%] - - - 0 0 -

Table A.17: Statistical analysis of the geom benchmark.

Algorithm dD Time #F S #C #BF #NV
geom: 100(0) instances, e ∈[339,555]

wR(∗,2)C
[0.7%,1.1%]

982397 1 B 86 9 -
wR(∗,3)C 1588468 0 C 77 10 -
wR(∗,4)C 2240421 0 D 69 10 -

GAC - 295277 99 A 100 19 -
RNIC /

[7.9%,8.9%] 2373910 0 D 65 57 -
selRNIC
triRNIC [25.1%,44.9%] - - - 0 0 -
wRNIC [0.7%,1.1%] 1032776 0 B 85 9 -

wtriRNIC [3.9%,5.7%] 5206957 0 E 18 4 -

87

Table A.18: Statistical analysis of the langford benchmark.

Algorithm dD Time #F S #C #BF #NV
langford: 4(1) instances, e ∈[28,528]

wR(∗,2)C
[0.7%,12.7%]

1958420 0 B 4 1 8
wR(∗,3)C 2747773 0 B 2 1 8
wR(∗,4)C 2949355 0 B 2 1 8

GAC - 140138 4 A 4 1 8
RNIC [11.8%,44.4%] 2862045 0 B 2 1 8

triRNIC [70.6%,81.5%] 4050008 0 C 1 1 8
wRNIC [0.7%,12.7%] 2246965 0 B 4 1 8

wtriRNIC [2.9%,22.2%] 4050005 0 C 1 1 8
selRNIC [11.8%,22.2%] 2862045 0 C 2 1 8

Table A.19: Statistical analysis of the marc benchmark.

Algorithm dD Time #F S #C #BF #NV
marc: 10(0) instances, e ∈[3160,4560]

wR(∗,2)C
[0%,0.1%]

- - - 0 0 -
wR(∗,3)C - - - 0 0 -
wR(∗,4)C - - - 0 0 -

GAC - 39692 10 A 10 5 -
RNIC

[8.2%,9.9%] - - - 0 0 -
selRNIC
triRNIC [68.2%,68.3%] - - - 0 0 -
wRNIC [0%,0.1%] - - - 0 0 -

wtriRNIC [0.6%,0.8%] - - - 0 0 -

Table A.20: Statistical analysis of the QCP-15 benchmark.

Algorithm dD Time #F S #C #BF #NV
QCP-15: 15(0) instances, e ∈[2519,2520]

wR(∗,2)C
[0.2%,0.2%]

- - - 0 0 -
wR(∗,3)C - - - 0 0 -
wR(∗,4)C - - - 0 0 -

GAC - 3673337 5 A 6 0 -
RNIC /

[3.7%,3.7%] 5222044 1 B 1 0 -
selRNIC
triRNIC [25.9%,30.1%] - - - 0 0 -
wRNIC [0.2%,0.2%] - - - 0 0 -

wtriRNIC [2.4%,2.7%] - - - 0 0 -

Table A.21: Statistical analysis of the rand-2-23 benchmark.

Algorithm dD Time #F S #C #BF #NV
rand-2-23: 10(0) instances, e ∈[253,253]

wR(∗,2)C
[1.5%,1.5%]

5367140 0 B 1 0 -
wR(∗,3)C - - - 0 0 -
wR(∗,4)C - - - 0 0 -

GAC - 1766384 10 A 10 0 -
RNIC [16.7%,16.7%] - - - 0 0 -

triRNIC [72.2%,72.2%] - - - 0 0 -
wRNIC [1.5%,1.5%] - - - 0 0 -

wtriRNIC [4.9%,4.9%] - - - 0 0 -
selRNIC [1.5%,1.5%] - - - 0 0 -

88

Table A.22: Statistical analysis of the rand-2-24 benchmark.

Algorithm dD Time #F S #C #BF #NV
rand-2-24: 10(0) instances, e ∈[276,276]

wR(∗,2)C
[1.4%,1.4%]

- - - 0 0 -
wR(∗,3)C - - - 0 0 -
wR(∗,4)C - - - 0 0 -

GAC - 4039559 6 A 6 0 -
RNIC [16%,16%] - - - 0 0 -

triRNIC [72%,72%] - - - 0 0 -
wRNIC [1.4%,1.4%] - - - 0 0 -

wtriRNIC [4.7%,4.7%] - - - 0 0 -
selRNIC [1.4%,1.4%] - - - 0 0 -

Table A.23: Statistical analysis of the rand-2-30-15-fcd benchmark.

Algorithm dD Time #F S #C #BF #NV
rand-2-30-15-fcd: 50(0) instances, e ∈[208,230]

wR(∗,2)C
[1.6%,1.8%]

262169 0 A 50 0 -
wR(∗,3)C 1303252 0 B 47 0 -
wR(∗,4)C 3295023 0 C 32 0 -

GAC - 10283 50 A 50 0 -
RNIC /

[12.7%,13.1%] 3617208 0 C 26 1 -
selRNIC
triRNIC [57.5%,62.4%] - - - 0 0 -
wRNIC [1.6%,1.8%] 357474 0 A 50 0 -

wtriRNIC [7.2%,8.2%] 4764364 0 D 11 0 -

Table A.24: Statistical analysis of the rand-2-30-15 benchmark.

Algorithm dD Time #F S #C #BF #NV
rand-2-30-15: 50(0) instances, e ∈[208,230]

wR(∗,2)C
[1.6%,1.8%]

439593 0 B 50 0 -
wR(∗,3)C 2338485 0 C 45 0 -
wR(∗,4)C 4563283 0 D 15 0 -

GAC - 21514 50 A 50 0 -
RNIC [12.7%,13.1%] 4634325 0 D 14 0 -

triRNIC [57.5%,62.4%] - - - 0 0 -
wRNIC [1.6%,1.8%] 552505 0 B 50 0 -

wtriRNIC [7.2%,8.2%] 5158351 0 E 4 0 -
selRNIC [12.7%,13.1%] 4634325 0 D 14 0 -

89

Table A.25: Statistical analysis of the rand-2-40-19-fcd benchmark.

Algorithm dD Time #F S #C #BF #NV
rand-2-40-19-fcd: 50(0) instances, e ∈[325,351]

wR(∗,2)C
[1.1%,1.2%]

5011099 0 B 5 0 -
wR(∗,3)C 5354294 0 B 2 0 -
wR(∗,4)C - - - 0 0 -

GAC - 1895733 45 A 45 0 -
RNIC [9.6%,9.9%] - - - 0 0 -

triRNIC [56.2%,60.1%] - - - 0 0 -
wRNIC [1.1%,1.2%] 5331479 0 B 1 0 -

wtriRNIC [5.8%,6.8%] - - - 0 0 -
selRNIC [9.6%,9.9%] - - - 0 0 -

Table A.26: Statistical analysis of the rand-2-40-19 benchmark.

Algorithm dD Time #F S #C #BF #NV
rand-2-40-19: 50(0) instances, e ∈[325,351]

wR(∗,2)C
[1.1%,1.2%]

- - - 0 0 -
wR(∗,3)C - - - 0 0 -
wR(∗,4)C - - - 0 0 -

GAC - 3445956 37 A 37 0 -
RNIC [9.6%,9.9%] - - - 0 0 -

triRNIC [56.2%,60.1%] - - - 0 0 -
wRNIC [1.1%,1.2%] - - - 0 0 -

wtriRNIC [5.8%,6.8%] - - - 0 0 -
selRNIC [9.6%,9.9%] - - - 0 0 -

Table A.27: Statistical analysis of the tightness0.1 benchmark.

Algorithm dD Time #F S #C #BF #NV
tightness0.1: 100(0) instances, e ∈[746,753]

wR(∗,2)C
[0.5%,0.5%]

5130817 0 B 11 0 -
wR(∗,3)C 5376351 0 B 2 0 -
wR(∗,4)C - - - 0 0 -

GAC - 839531 100 A 100 0 -
RNIC /

[9.8%,9.8%] - - - 0 0 -
selRNIC
triRNIC [68.8%,69.3%] - - - 0 0 -
wRNIC [0.5%,0.5%] 5146666 0 B 11 0 -

wtriRNIC [2.2%,2.5%] - - - 0 0 -

Table A.28: Statistical analysis of the tightness0.2 benchmark.

Algorithm dD Time #F S #C #BF #NV
tightness0.2: 100(0) instances, e ∈[414,414]

wR(∗,2)C
[0.9%,0.9%]

4104489 0 B 47 0 -
wR(∗,3)C 5296318 0 C 4 0 -
wR(∗,4)C - - - 0 0 -

GAC - 404025 100 A 100 0 -
RNIC /

[9.7%,10%] - - - 0 0 -
selRNIC
triRNIC [59.8%,63.8%] - - - 0 0 -
wRNIC [0.9%,0.9%] 4339907 0 B 40 0 -

wtriRNIC [4.8%,5.5%] - - - 0 0 -

90

Table A.29: Statistical analysis of the tightness0.35 benchmark.

Algorithm dD Time #F S #C #BF #NV
tightness0.35: 100(0) instances, e ∈[250,250]

wR(∗,2)C
[1.5%,1.5%]

2987884 0 B 74 0 -
wR(∗,3)C 5110330 0 D 12 0 -
wR(∗,4)C 5392481 0 E 1 0 -

GAC - 188324 100 A 100 0 -
RNIC /

[9.5%,10.1%] 5362778 0 D 1 0 -
selRNIC
triRNIC [50.3%,56.1%] - - - 0 0 -
wRNIC [1.5%,1.5%] 3545104 0 C 61 0 -

wtriRNIC [7.5%,9%] - - - 0 0 -

Table A.30: Statistical analysis of the tightness0.5 benchmark.

Algorithm dD Time #F S #C #BF #NV
tightness0.5: 100(0) instances, e ∈[180,180]

wR(∗,2)C
[2%,2%]

3313395 0 B 68 0 -
wR(∗,3)C 4986286 0 D 13 0 -
wR(∗,4)C 5340159 0 E 3 0 -

GAC - 215932 100 A 100 0 -
RNIC /

[9.4%,10.2%] 5260525 0 E 5 0 -
selRNIC
triRNIC [43.8%,49.6%] - - - 0 0 -
wRNIC [2%,2%] 4174121 0 C 41 0 -

wtriRNIC [9.2%,11%] - - - 0 0 -

Table A.31: Statistical analysis of the tightness0.65 benchmark.

Algorithm dD Time #F S #C #BF #NV
tightness0.65: 100(0) instances, e ∈[40,40]

wR(∗,2)C
[0%,2.5%]

2993901 0 B 74 0 -
wR(∗,3)C 4887847 0 D 21 0 -
wR(∗,4)C 5302422 0 E 3 0 -

GAC - 213607 100 A 100 0 -
RNIC /

[9.2%,10.3%] 5131256 0 D 11 0 -
selRNIC
triRNIC [37.1%,42.9%] - - - 0 - -
wRNIC [0%,2.5%] 3910508 0 C 48 0 -

wtriRNIC [10%,12.1%] - - - 0 - -

Table A.32: Statistical analysis of the tightness0.8 benchmark.

Algorithm dD Time #F S #C #BF #NV
tightness0.8: 100(0) instances, e ∈[103,103]

wR(∗,2)C
[0%,3.2%]

2861521 1 B 65 0 -
wR(∗,3)C 4231747 0 D 37 0 -
wR(∗,4)C 5085661 0 E 14 0 -

GAC - 552869 96 A 97 0 -
RNIC /

[9.1%,10.7%] 5116586 0 E 11 0 -
selRNIC
triRNIC [30%,36.7%] - - - 0 0 -
wRNIC [0%,3.2%] 3548849 0 C 51 0 -

wtriRNIC [10.2%,12.3%] - - - 0 0 -

91

Table A.33: Statistical analysis of the tightness0.9 benchmark.

Algorithm dD Time #F S #C #BF #NV
tightness0.9: 100(0) instances, e ∈[84,84]

wR(∗,2)C
[0%,3.8%]

2781337 3 B 71 0 -
wR(∗,3)C 3806532 0 C 44 0 -
wR(∗,4)C 4620144 0 D 22 0 -

GAC - 812311 91 A 94 0 -
RNIC /

[8.9%,10.8%] 5035376 0 E 11 0 -
selRNIC
triRNIC [24.6%,31.5%] - - - 0 0 -
wRNIC [0%,3.8%] 3819519 0 C 40 0 -

wtriRNIC [10.1%,12.3%] - - - 0 0 -

Table A.34: Statistical analysis of the coloring benchmark.

Algorithm dD Time #F S #C #BF #NV
coloring: 22(8) instances, e ∈[78,5714]

wR(∗,2)C
[0.1%,4.1%]

1675845 0 B 16 3 255
wR(∗,3)C 1804961 0 B 15 4 251
wR(∗,4)C 2066693 0 B 14 4 247

GAC - 91665 22 A 22 5 113
RNIC [1.8%,15%] 609841 0 A 20 7 19

triRNIC [23.2%,85.7%] 2216801 0 C 13 13 7
wRNIC [0.1%,4.1%] 484962 0 A 21 7 254

wtriRNIC [5.1%,32.4%] 1731333 0 B 15 9 246
selRNIC [1.8%,23.2%] 609741 0 A 20 10 15

Table A.35: Statistical analysis of the frb30-15 benchmark.

Algorithm dD Time #F S #C #BF #NV
frb30-15: 10(0) instances, e ∈[208,217]

wR(∗,2)C
[1.7%,1.8%]

173231 0 A 10 0 -
wR(∗,3)C 982760 0 B 10 0 -
wR(∗,4)C 3665867 0 C 6 0 -

GAC - 6806 10 A 10 0 -
RNIC [12.8%,12.9%] 3726715 0 C 5 0 -

triRNIC [57.8%,60.3%] - - - 0 0 -
wRNIC [1.7%,1.8%] 215756 0 A 10 0 -

wtriRNIC [7.6%,7.9%] 4680734 0 D 3 0 -
selRNIC [12.8%,12.9%] 3726715 0 C 5 0 -

92

Table A.36: Statistical analysis of the hanoi benchmark.

Algorithm dD Time #F S #C #BF #NV
hanoi: 5(5) instances, e ∈[5,125]

wR(∗,2)C
[1.6%,40%]

6912 0 A 5 5 48
wR(∗,3)C 8246 1 A 5 5 48
wR(∗,4)C 12362 0 A 5 5 48

GAC - 2282 4 A 5 5 48
RNIC [1.6%,40%] 12270 0 A 5 5 48

triRNIC [1.6%,40%] 18984 0 A 5 5 48
wRNIC [1.6%,40%] 12200 0 A 5 5 48

wtriRNIC [1.6%,40%] 19264 0 A 5 5 48
selRNIC [1.6%,40%] 18984 0 A 5 5 48

Table A.37: Statistical analysis of the QWH-10 benchmark.

Algorithm dD Time #F S #C #BF #NV
QWH-10: 10(0) instances, e ∈[756,756]

wR(∗,2)C
[0.5%,0.5%]

3005 0 A 10 1 -
wR(∗,3)C 7263 0 A 10 1 -
wR(∗,4)C 32874 0 A 10 1 -

GAC - 250 10 A 10 3 -
RNIC /

[3.9%,3.9%] 7107 0 A 10 8 -
selRNIC
triRNIC [28.8%,37.2%] - - - 0 0 -
wRNIC [0.5%,0.5%] 1985 0 A 10 1 -

wtriRNIC [4.1%,4.6%] 712606 0 A 10 1 -

Table A.38: Statistical analysis of the QWH-15 benchmark.

Algorithm dD Time #F S #C #BF #NV
QWH-15: 10(0) instances, e ∈[2324,2324]

wR(∗,2)C
[0.2%,0.2%]

1322299 0 B 9 0 -
wR(∗,3)C 2431407 0 C 7 0 -
wR(∗,4)C 3669685 0 D 4 0 -

GAC - 888310 5 A 10 0 -
RNIC /

[3.8%,3.8%] 402069 3 A 10 4 -
selRNIC
triRNIC [25.9%,29.5%] - - - 0 0 -
wRNIC [0.2%,0.2%] 1077665 2 A 9 0 -

wtriRNIC [2.6%,3%] - - - 0 0 -

93

A.2 Non-Binary CSPs

Below are the tables for the tested non-binary CSPs that were omitted from Sec-

tion 5.3:

• RNIC and its variations perform best: aim-50 (Table A.39), dubois (Table A.40),

ssa (Table A.41)

• Redundancy removal helps: travellingSalesman-20 (Table A.42), travellingSalesman-

25 (Table A.43)

• GAC performs well: jnhSat (Table A.44), jnhUnsat (Table A.45), rand-3-20-

20-fcd (Table A.46), rand-3-20-20 (Table A.47), rand-3-24-24-fcd (Table A.48),

ogdVg (Table A.49), ukVg (Table A.50), wordsVg (Table A.51).

• Results are inconclusive on: pret (Table A.52), rand-10-20-10 (Table A.53),

rand-8-20-5 (Table A.54), varDimacs (Table A.55).

Table A.39: Statistical analysis of the aim-50 benchmark.

Algorithm dD Time #F S #C #BF #NV
aim-50: 24(24) instances, e ∈[69,289]

wR(∗,2)C
[1.3%,5.4%]

850 7 A 24 7 6086
wR(∗,3)C 5207 0 A 24 13 2165
wR(∗,4)C 2581 0 A 24 18 84

GAC - 779 8 A 24 1 42938
RNIC [12.5%,16.1%] 418 7 A 24 24 33

triRNIC [34.7%,74.1%] 3844 0 A 24 24 33
wRNIC [1.3%,5.4%] 615 2 A 24 11 2318

wtriRNIC [7.8%,15.6%] 6257 0 A 24 15 709
selRNIC [1.3%,14.9%] 76 7 A 24 21 38

94

Table A.40: Statistical analysis of the dubois benchmark.

Algorithm dD Time #F S #C #BF #NV
dubois: 13(5) instances, e ∈[40,200]

wR(∗,2)C
[1.5%,7.4%]

2561245 0 A 8 0 4875876
wR(∗,3)C 3282055 0 B 7 0 4875876
wR(∗,4)C 3834642 0 B 5 0 2437937

GAC - 3391539 0 B 6 0 179830778
RNIC [1.5%,7.4%] 2509636 0 A 8 0 4875876

triRNIC /
[2%,10%] 2268505 6 A 9 0 1454897

selRNIC
wRNIC [1.5%,7.4%] 2515364 3 A 8 0 4875876

wtriRNIC [2%,10%] 2275396 0 A 9 0 1454897

Table A.41: Statistical analysis of the ssa benchmark.

Algorithm dD Time #F S #C #BF #NV
ssa: 8(6) instances, e ∈[177,22141]

wR(∗,2)C
[0%,3%]

677093 1 A 7 6 1283
wR(∗,3)C 679968 0 A 7 6 1278
wR(∗,4)C 696211 0 A 7 6 1278

GAC - 675408 5 A 7 6 2048
RNIC [0.2%,3%] 44208 1 A 8 7 1278

triRNIC [1.7%,83.6%] 952826 0 B 7 6 1197
wRNIC [0%,3%] 1352081 1 C 6 5 1165

wtriRNIC [0.1%,9.9%] 1406144 0 C 6 5 1161
selRNIC [0.2%,2%] 291744 1 A 8 7 1197

Table A.42: Statistical analysis of the travellingSalesman-20 benchmark.

Algorithm dD Time #F S #C #BF #NV
travellingSalesman-20: 15(0) instances, e ∈[230,230]

wR(∗,2)C
[1.6%,1.6%]

1368405 0 B 14 1 -
wR(∗,3)C 2839793 0 C 10 1 -
wR(∗,4)C 3420639 0 C 6 1 -

GAC - 211698 15 A 15 1 -
RNIC /

[14.6%,14.6%] 3502673 0 D 6 1 -
selRNIC
triRNIC [59.8%,59.8%] - - - 0 0 -
wRNIC [1.6%,1.6%] 1421642 0 B 14 1 -

wtriRNIC [5.1%,5.1%] 4366787 0 E 5 1 -

Table A.43: Statistical analysis of the travellingSalesman-25 benchmark.

Algorithm dD Time #F S #C #BF #NV
travellingSalesman-25: 15(0) instances, e ∈[350,350]

wR(∗,2)C
[1.1%,1.1%]

3430739 0 B 6 0 -
wR(∗,3)C 4458430 0 C 5 0 -
wR(∗,4)C 5236257 0 D 1 0 -

GAC - 1722287 12 A 12 0 -
RNIC /

[12.4%,12.4%] - - - 0 0 -
selRNIC
triRNIC [61.7%,61.7%] - - - 0 0 -
wRNIC [1.1%,1.1%] 3490410 0 B 6 0 -

wtriRNIC [3.9%,3.9%] - - - 0 0 -

95

Table A.44: Statistical analysis of the jnhSat benchmark.

Algorithm dD Time #F S #C #BF #NV
jnhSat: 16(0) instances, e ∈[726,819]

wR(∗,2)C
[1.4%,1.7%]

350571 0 A 16 1 -
wR(∗,3)C 3766828 0 B 8 1 -
wR(∗,4)C - - - 0 0 -

GAC - 107405 16 A 16 1 -
RNIC [23.2%,26.1%] - - - 0 0 -

triRNIC [87%,90.6%] - - - 0 0 -
wRNIC /

[1.4%,1.7%] 4572006 0 C 3 0 -
selRNIC
wtriRNIC [15.1%,20.8%] - - - 0 0 -

Table A.45: Statistical analysis of the jnhUnsat benchmark.

Algorithm dD Time #F S #C #BF #NV
jnhUnsat: 34(0) instances, e ∈[714,834]

wR(∗,2)C
[1.3%,1.5%]

203864 0 A 34 2 -
wR(∗,3)C 4186059 0 B 12 2 -
wR(∗,4)C - - - 0 0 -

GAC - 45037 34 A 34 1 -
RNIC [23.2%,24.2%] - - - 0 0 -

triRNIC [100%,100%] - - - 0 0 -
wRNIC /

[1.3%,1.5%] 4893060 0 C 4 1 -
selRNIC
wtriRNIC [14.3%,17.8%] - - - 0 0 -

Table A.46: Statistical analysis of the rand-3-20-20-fcd benchmark.

Algorithm dD Time #F S #C #BF #NV
rand-3-20-20-fcd: 50(0) instances, e ∈[55,60]

wR(∗,2)C
[5.5%,6.7%]

2932041 1 B 35 0 -
wR(∗,3)C 4921784 0 C 11 0 -
wR(∗,4)C 5366204 0 D 2 0 -

GAC - 605024 49 A 50 0 -
RNIC [37.7%,43.2%] - - - 0 0 -

triRNIC [73%,81.6%] 5356726 0 D 3 3 -
wRNIC [5.5%,6.7%] 5119193 0 C 6 0 -

wtriRNIC [14%,17.4%] - - - 0 0 -
selRNIC [5.5%,6.7%] 5119193 0 C 6 0 -

Table A.47: Statistical analysis of the rand-3-20-20 benchmark.

Algorithm dD Time #F S #C #BF #NV
rand-3-20-20: 50(0) instances, e ∈[55,60]

wR(∗,2)C
[5.5%,6.7%]

3863001 0 B 26 0 -
wR(∗,3)C 5310399 0 C 3 0 -
wR(∗,4)C - - - 0 0 -

GAC - 992268 49 A 49 0 -
RNIC [37.7%,43.2%] - - - 0 0 -

triRNIC [73%,81.6%] 5349334 0 C 1 1 -
wRNIC [5.5%,6.7%] 5266419 0 C 3 0 -

wtriRNIC [14%,17.4%] - - - 0 0 -
selRNIC [5.5%,6.7%] 5266419 0 C 3 0 -

96

Table A.48: Statistical analysis of the rand-3-24-24-fcd benchmark.

Algorithm dD Time #F S #C #BF #NV
rand-3-24-24-fcd: 50(0) instances, e ∈[72,76]

wR(∗,2)C
[4.5%,5.3%]

5326646 0 B 1 0 -
wR(∗,3)C - - - 0 0 -
wR(∗,4)C - - - 0 0 -

GAC - 4784077 13 A 13 0 -
RNIC [32.5%,37.6%] - - - 0 0 -

triRNIC [72.3%,79%] - - - 0 0 -
wRNIC [4.5%,5.3%] - - - 0 0 -

wtriRNIC [12.6%,16%] - - - 0 0 -
selRNIC [4.5%,5.3%] - - - 0 0 -

Table A.49: Statistical analysis of the ogdVg benchmark.

Algorithm dD Time #F S #C #BF #NV
ogdVg: 65(0) instances, e ∈[8,36]

wR(∗,2)C
[48.5%,57.1%]

3479105 0 B 24 9 -
wR(∗,3)C 4432513 0 C 14 8 -
wR(∗,4)C 5159987 0 E 4 4 -

GAC - 2714970 36 A 36 11 -
RNIC [48.5%,57.1%] 4277079 0 C 15 9 -

triRNIC [57.6%,78.6%] 4609824 0 D 11 11 -
wRNIC [48.5%,57.1%] - - - 0 0 -

wtriRNIC /
[57.6%,78.6%] 4600512 0 D 11 11 -

selRNIC

Table A.50: Statistical analysis of the ukVg benchmark.

Algorithm dD Time #F S #C #BF #NV
ukVg: 65(0) instances, e ∈[8,36]

wR(∗,2)C
[48.5%,57.1%]

3564557 0 B 24 4 -
wR(∗,3)C 4482837 0 C 15 4 -
wR(∗,4)C 5185381 0 D 4 4 -

GAC - 2814316 34 A 34 3 -
RNIC [48.5%,57.1%] 4369614 0 C 15 4 -

triRNIC [57.6%,78.6%] 4444664 0 C 13 13 -
wRNIC [48.5%,57.1%] - - - 0 0 -

wtriRNIC /
[57.6%,78.6%] 4465829 0 C 13 13 -

selRNIC

Table A.51: Statistical analysis of the wordsVg benchmark.

Algorithm dD Time #F S #C #BF #NV
wordsVg: 65(30) instances, e ∈[8,36]

wR(∗,2)C
[48.5%,57.1%]

1461943 1 B 50 24 7
wR(∗,3)C 2344076 0 C 39 24 7
wR(∗,4)C 2788160 0 D 34 32 2

GAC - 483924 63 A 64 25 4
RNIC [48.5%,57.1%] 2292799 0 C 40 24 7

triRNIC [57.6%,78.6%] 2451473 0 C 39 39 2
wRNIC [48.5%,57.1%] 2262265 0 C 40 24 7

wtriRNIC /
[57.6%,78.6%] 2475434 0 C 38 38 2

selRNIC

97

Table A.52: Statistical analysis of the pret benchmark.

Algorithm dD Time #F S #C #BF #NV
pret: 8(4) instances, e ∈[40,100]

wR(∗,2)C
[3%,7.7%]

2755360 0 A 4 0 6852604
wR(∗,3)C 2789194 0 A 4 0 3791356
wR(∗,4)C 2918613 0 A 4 0 3791356

GAC - 2719468 0 A 4 0 12198226
RNIC /

[3%,7.7%] 2733806 0 A 4 0 3791356
selRNIC
triRNIC [6.5%,15.9%] 2716555 4 A 4 0 473596
wRNIC [3%,7.7%] 2732806 0 A 4 0 3791356

wtriRNIC [6.5%,15.9%] 2716838 0 A 4 0 473596

Table A.53: Statistical analysis of the rand-10-20-10 benchmark.

Algorithm dD Time #F S #C #BF #NV
rand-10-20-10: 20(12) instances, e ∈[5,5]

wR(∗,2)C
[80%,100%]

2160147 1 A 12 12 0
wR(∗,3)C 2160132 4 A 12 12 0
wR(∗,4)C 2160126 7 A 12 12 0

GAC - 2165543 0 A 12 0 210
RNIC [100%,100%] 2160207 0 A 12 12 0

triRNIC [100%,100%] 2160203 0 A 12 12 0
wRNIC [80%,100%] 2160192 0 A 12 12 0

wtriRNIC /
[80%,100%] 2160841 0 A 12 12 0

selRNIC

Table A.54: Statistical analysis of the rand-8-20-5 benchmark.

Algorithm dD Time #F S #C #BF #NV
rand-8-20-5: 20(0) instances, e ∈[18,18]

wR(∗,2)C
[47.1%,59.5%]

2846233 12 A 15 0 -
wR(∗,3)C - - - 0 0 -
wR(∗,4)C - - - 0 0 -

GAC - 3494000 4 B 13 0 -
RNIC [98%,100%] 5287209 0 C 3 3 -

triRNIC [99.3%,100%] 5262199 0 C 2 2 -
wRNIC [47.1%,59.5%] - - - 0 0 -

wtriRNIC /
[68%,84.3%] - - - 0 0 -

selRNIC

Table A.55: Statistical analysis of the varDimacs benchmark.

Algorithm dD Time #F S #C #BF #NV
varDimacs: 9(4) instances, e ∈[133,1737]

wR(∗,2)C
[0%,2.9%]

1254343 0 A 7 4 43257
wR(∗,3)C 1736946 0 B 7 4 43257
wR(∗,4)C 2206924 0 C 6 4 43257

GAC - 739091 8 A 8 4 33469
RNIC [0.5%,10%] 1859209 0 B 6 3 43298

triRNIC [1.9%,83.3%] 2617127 0 D 5 2 8357
wRNIC [0%,2.9%] 1876991 0 B 6 2 44475

wtriRNIC [1.4%,83.3%] 2454323 0 C 5 2 43296
selRNIC [0.5%,19.9%] 1863079 0 B 6 3 40611

98

Appendix B

Code Documentation

This documentation gives an overview to the solver used to generate the experimental

results. It gives an overview to the data structures and algorithms used. Further, it

describes how to install and run the solver.

Below, the additional source files used to implement RNIC to the scsp-code pack-

age created by Shant Karakashian are documented. The code repository is located

on the Computer Science and Engineering department of the University of Nebraska-

Lincoln SVN server located at: https://cse.unl.edu/svn/scsp. First we give an

overview of the data structures, then the methods added.1

B.1 Data Structures

Below is the documentation to the data structures used.

1The documentation is generated using Doxygen, http://www.doxygen.org/.

99

B.1.1 constraint graph Struct Reference

Public Attributes

• constraint ∗ root

• int constraint node count

• int edge count

• int cgn i size

• constraint graph node ∗∗ cgn i

• llist ∗ node list

• constraint graph edge ∗∗ cge i

• llist ∗ edge list

• constraint graph edge ∗∗∗ matrix

• llist ∗ left deep list

• int fill edges count

• int max arity

The documentation for this struct was generated from the following file:

• query graph.h

B.1.2 constraint graph edge Struct Reference

Public Attributes

• int id

• constraint graph node ∗ node1

• constraint graph node ∗ node2

• int weight

100

• htable ∗ table

• q node ∗ query node

• llist ∗ common vars

The documentation for this struct was generated from the following file:

• query graph.h

B.1.3 constraint graph node Struct Reference

Public Attributes

• constraint ∗ constr

• set ∗ neighbours

• int color

• char ∗ name

• htable ∗ hash table

• int table changed after suspend

• int id

• int generation

• int pgeneration

• int combinations removed

• llist ∗ children

• llist ∗ parents

• int out of order

• int peo

• int fill in

101

• int heap pos

The documentation for this struct was generated from the following file:

• query graph.h

B.1.4 htable Struct Reference

Public Attributes

• int capacity

• int total hight

• int last pos

last free position

• int width

• int id

• int tmpid

• char ∗ name

• char ∗ short name

• int is first

• int join cutoff

• char ∗∗ col names

• llist ∗ col names l

• int ∗ vars

The variables the hashtable is involved in, position 0 is the count.

• int clustered1

• int clustered2

102

• int ∗∗ table

• llist ∗ tuple list

• llist node ∗∗ tuple list array

• llist ∗∗ tuple pointed at from

• llist ∗∗ supports

list of supports that the tuple supports.

• llist node ∗∗ deleted time node

the node in deleted times lists list that corrosponds to this tuple

• llist ∗ deleted times

list of lists, each list for list of tuples deleted at time t. the ibody is the time

• struct htable ∗ next

• struct htable ∗ prev

• struct htable ∗ last

• struct histogram ∗ histo

• llist ∗ tree maps

• int complete

• int incomplete i

• int incomplete j

• int incomplete clustereda

• int incomplete clusteredb

• int in tree

• int no destroy

• constraint ∗ constr

• llist ∗ in combinations

103

• llist ∗ in combinations hashed

• llist ∗ index of ht in combinations

• int deleted

• int iterator

• hashmap ∗ htiterator

• int ∗ com cols with next in order

• struct tree node ∗ tn

• struct constraint graph node ∗ cgn

• hashmap ∗ jthm

• struct htable ∗ jthmht

• int ∗ jtcolpos

• llist ∗∗ neighbour list per tupple

• int context

• llist ∗ comb datas

• int tuple lost

• double ∗ tuple values

• int problemtable

• int flag

• int markgeneration

• struct tuple tag ∗∗ table tags

table tags that RNIC uses, once for each tuple (corresponds to the same entries in

the table)

• set ∗ needs tags support

The queue of tuples that need support.

104

• llist ∗ clusters

Clusters that the hash table is involved with.

The documentation for this struct was generated from the following file:

• hashtable.h

B.1.5 light stack Struct Reference

Public Attributes

• struct light stack node ∗ head

The documentation for this struct was generated from the following file:

• llist.h

B.1.6 light stack node Struct Reference

Public Attributes

• int value

• void ∗ body

• struct light stack node ∗ next

The documentation for this struct was generated from the following file:

• llist.h

B.1.7 llist Struct Reference

Stores the llist.

105

Public Attributes

• struct llist node ∗ head

The head of the llist.

• struct llist node ∗ tail

The tail of the llist.

• struct llist node ∗ min

• struct llist node ∗ max

• int id

The ID of the list.

• int count

How many elements are in the list.

B.1.7.1 Detailed Description

Stores the llist.

The documentation for this struct was generated from the following file:

• llist.h

B.1.8 llist node Struct Reference

Stores an element in the llist.

Public Attributes

• void ∗ body

The body of the node.

• int ibody

106

The integer value of the node.

• struct llist node ∗ next

The next element in the list (NULL if none)

• struct llist node ∗ previous

The previous element in the list (NULL if none)

• struct llist ∗ list

A pointer back to the list where this node appears.

B.1.8.1 Detailed Description

Stores an element in the llist.

The documentation for this struct was generated from the following file:

• llist.h

B.1.9 s node Struct Reference

Public Attributes

• int key

• void ∗ body

The documentation for this struct was generated from the following file:

• set.h

B.1.10 set Struct Reference

Public Attributes

• llist ∗ list

107

• char ∗ map

• llist node ∗∗ element ptrs

• int last removed

• int size

The documentation for this struct was generated from the following file:

• set.h

B.1.11 tree map Struct Reference

Public Attributes

• llist ∗ indexed cols

• htable ∗ htto

• llist ∗ lists

• int id

• int count

• int deleted

The documentation for this struct was generated from the following file:

• tree map.h

B.1.12 tree map node Struct Reference

Public Attributes

• int id

• llist ∗ nexts

108

• int full

• int object id

The documentation for this struct was generated from the following file:

• tree map.h

B.1.13 tuple tag Struct Reference

Public Attributes

• int id

Id.

• htable ∗ hash table

Store the tuple and the relation.

• int location

Store the tuple location.

• struct tuple tag ∗∗ supports

List of supports that are currently being used by this tuple (In the same order as

the neighbors of the node)

• llist ∗ supported by

List of tuples that are supported by this tuple.

• llist ∗∗∗ pair common cols

List of common columns.

• llist ∗∗ this common cols

List of common columns with this tuple.

• int ∗∗ pair common cols twisted

109

If the pair common columns are twisted (If the [0] and the [1] need to be reversed)

• int ∗ this common cols twisted

If the pair common columns are twisted with this tuple (If the [0] and the [1] need

to be reversed)

• tree map ∗∗∗ pair tms

Trees maps between two nodes.

• tree map ∗∗ this tms

Trees maps with this tuple.

• llist ∗ neighbours

A list of the neighbours of this tuple. (Those that are within the distance require-

ment). This is a list of constraint graph edge’s.

• llist ∗ nodes

The set of nodes that this tuple has.

• int ∗ deg count

The degree count for all of the nodes.

• llist ∗ futureVars

List of future vars (Should always be set the the list of nodes...)

• int visitCount

How many times this tuple has been visited.

B.1.13.1 Detailed Description

The data to track for a tuple

The documentation for this struct was generated from the following file:

• nic.h

110

B.2 File Documentation

Below is the documentation for the two C files added to the scsp-code package.

B.2.1 nic2.c File Reference

Functions

• llist ∗∗ iNeighborsFilterAll (constraint graph ∗cg, int distance, float filter-

cutoff)

• llist ∗ iNeighborsFilter (constraint graph node ∗cgn, int distance, float

filter cutoff, constraint graph ∗cg)

• void iNeighborsFilterLevelParent (llist ∗∗nodesByLevel, int currentDistance,

llist ∗returnNodes, int maxSize, constraint graph node ∗child)

• void iNeighborsFilterLevelSingle (llist ∗∗nodesByLevel, int currentDistance,

llist ∗returnNodes, int maxSize, constraint graph node ∗child)

• llist ∗∗ iNeighborsAll (constraint graph ∗cg, int distance)

• llist ∗ iNeighbors (constraint graph node ∗cgn, int distance, constraint-

graph ∗cg)

• void destroyTupleTagsTri (constraint graph ∗cg)

• int createTupleTagsTri (constraint graph ∗cg)

• tuple tag ∗ createTupleTag (constraint graph node ∗cgn, int location,

llist ∗∗∗pair common cols, int ∗∗pair common cols twisted, llist ∗∗this common-

cols, int ∗this common cols twisted, tree map ∗∗∗pair tms, tree map ∗∗this-

tms, llist ∗neighbours, llist ∗nodes, llist ∗futureVars, int ∗deg count)

• int filterNICTri (set ∗lost support set, int num tuples, int time, set ∗undo -

set)

111

• int filterNICTriRelation (set ∗relationQueue, int time, set ∗undo set, int

useCluster)

• int filterNICTriCluster (set ∗lost support set, int num tuples, int time, set

∗undo set)

• int filterNICTriClusterTree (set ∗lost support set, int num tuples, int time,

set ∗undo set)

• int find supports tuple7Set (tuple tag ∗tuple)

• void cleanup test (tuple tag ∗tuple, llist node ∗curVar, int searchDone)

• int find supports label7Set (tuple tag ∗startTuple, int curLoc, llist node

∗curVar, set ∗∗∗tuples, llist ∗futureVars, llist ∗∗pastVars, llist ∗∗undoDeg)

• int tuple tag forwardcheck5Set (tuple tag ∗startTuple, int curLoc, llist -

node ∗curVar, int curTuple, set ∗∗∗tuples, llist ∗futureVars)

• int find supports unlabel7Set (tuple tag ∗startTuple, int curLoc, llist -

node ∗curVar, llist ∗pastVars, set ∗∗∗tuples, int lastLoc)

• int common cols ordered (llist ∗common cols, int twisted)

• llist node ∗ nic choose varSet (tuple tag ∗tuple, llist ∗remaining vars, llist

∗undo deg, int curLevel, set ∗∗∗tuples)

• llist node ∗ nic unchoose var7 (tuple tag ∗tuple, llist ∗pastVars, llist ∗undo-

deg)

• void neatoNeighborhood (llist ∗∗nodes, int number nodes)

• void neatoNeighborhoodDecomp (decomposed tree ∗root)

• void neatoNeighborhoodDecompNode (FILE ∗f, decomposed tree ∗root)

• void print supported by (tuple tag ∗tt)

• void print supports (tuple tag ∗tt)

• void nic validate tuples (int checkSupportedBy)

112

• void nic validate deg (void)

• void nic validate deg for tuple (tuple tag ∗tuple)

• llist ∗∗ nic get dual elimination ordering (constraint graph ∗cg)

• llist ∗∗ nic triangulate min deg (constraint graph ∗cg)

• llist ∗∗ nic max cardinality (constraint graph ∗cg)

• int nic count dual fill edges (char ∗∗matrix, constraint graph node ∗node,

int max nodes, char ∗∗matrix pre rr)

• void nic add dual fill edges (char ∗∗matrix, constraint graph node ∗node,

heap ∗h, llist ∗∗allNeighbors, int max nodes, char ∗∗matrix pre rr)

• llist ∗ nic dual cliques (llist ∗∗ordering, constraint graph ∗cg)

• decomposed tree ∗ nic build decomposed tree vertices (llist ∗cliques, llist

∗tree nodes, int constraint count, constraint graph ∗cg)

• int nic find danglesSet (tuple tag ∗tuple, llist node ∗curVar, int curVar-

Tuple, llist ∗futureVars, llist ∗pastVars, int curLevel, set ∗∗∗tuples, llist

∗undo deg, llist ∗neighborsList)

• void findDangleSupportsSet (tuple tag ∗tuple, llist ∗∗prevVars, llist ∗∗neighbors-

List, set ∗∗∗tuples, int lastAssign)

• int nic reviseSet (tuple tag ∗startTuple, int curLoc, llist node ∗curVar, int

curTuple, set ∗∗∗tuples, llist node ∗otherVar)

• void sortNodesBySize (llist ∗nodes)

• int copyAliveTuplesOriginal (int location, int variable)

• int copyAliveTuplesOriginal exclude (int location, int variable, int exclude-

Location)

• void requeue tuple cluster (tuple tag ∗tuple, set ∗needsClusterSupports)

• void requeue tuple clusterTree (tuple tag ∗tuple, set ∗needsClusterSupports)

113

• llist node ∗∗ computeVarShallowestClique (llist ∗cliques)

• llist ∗∗∗ computerClusterNeighborhoods (llist ∗dualCliques, llist ∗∗all-

Nodes)

• llist ∗ flattenClusters (llist ∗dualCliques)

• void print filtering (int status)

• void print filterRel (void)

• void print tupleVisitCount (void)

• void checkFutureTuples (tuple tag ∗startTuple, set ∗∗∗tuples, set ∗∗∗alive-

TuplesSet original, int lastLoc)

• void print csp info (void)

Variables

• set ∗∗∗ aliveTuplesSet = NULL

• set ∗∗∗ aliveTuplesSet original = NULL

• llist ∗∗ nicUndoDeg = NULL

• int aliveTuplesCount = 0

• llist ∗∗ nicPastVars7 = NULL

• llist ∗ nicPEO = NULL

• llist ∗∗ neighborsList = NULL

• llist ∗ cliquesOrdering = NULL

• llist node ∗∗ varShallowCliques = NULL

• set ∗∗ varCliques = NULL

• llist ∗∗∗ clusterNeighborhoods = NULL

• int tupleTag ids = 0

114

• llist ∗ pastVarsTri = NULL

• llist ∗ undoDegTri = NULL

• set ∗ needsSupports6 = NULL

• int totalFiltered = 0

• int totalLookaheadFiltered = 0

• int totalAssignedFiltered = 0

• int ∗ numberFiltered = NULL

• int ∗ numberFilteredRel = NULL

• set ∗ filteredRelSet = NULL

• int nic relationLoopCount = 0

• set ∗ needsClusterSupports = NULL

• set ∗∗ clusterQueues = NULL

• int nic clusterLoopCount = 0

• llist ∗∗ nic allNeighbors = NULL

B.2.1.1 Detailed Description

This file contains most of the code required to enforce Relational Neighborhood In-

verse Consistency (RNIC).

B.2.1.2 Function Documentation

B.2.1.3 int common cols ordered (llist ∗ common cols, int twisted)

Check to see if the common columns are ordered correctly, give if they are twisted or

not

115

Parameters

The common columns to check

If the common columns are twisted or not

Returns

If the common columns are ordered correctly

B.2.1.4 llist node∗∗ computeVarShallowestClique (llist ∗ cliques)

Computes the shallowest clique that a variable appears in (The shallowest relation

that has a variable in its scope, and the queue that it appears in).

Parameters

cliques The list of cliques

Returns

The shallowest cliques that each variable appears in

B.2.1.5 tuple tag∗ createTupleTag (constraint graph node ∗

cgn, int location, llist ∗∗∗ pair common cols, int ∗∗

pair common cols twisted, llist ∗∗ this common cols, int ∗

this common cols twisted, tree map ∗∗∗ pair tms, tree map ∗∗

this tms, llist ∗ neighbours, llist ∗ nodes, llist ∗ futureVars,

int ∗ deg count)

Creates the tuple data structures for an individual tuple

116

Parameters

cgn The relation that this tuple is in

location The location of the tuple in the table of supports

pair -

common -

cols

Pointers to the list of the common scopes between every two relations

in the neighborhood

pair -

common -

cols twisted

The order of the common scopes for pair common cols

this -

common -

cols

Pointers to the list of common scpoes between this relation and all

the relations in the neighborhood

this -

common -

cols twisted

The order of the common scopes for this common cols

pair tms The index-tree data structures for each relation in the neighborhood

this tms The index-tree data structures for this relation

nodes The list of the neighborhood

futureVars A list of the future variables to search on

deg count A list of the degree of each relation in the induced subproblem of this

relation and its neighborhood

117

Returns

The data structure used to store the tuples

B.2.1.6 int createTupleTagsTri (constraint graph ∗ cg)

Creates the data structures needed to enforce RNIC. If set, it will also triangulate

the neighborhoods.

Parameters

cg The constraint graph (dual graph) to work on

Returns

The total number of tuples in the dual graph.

B.2.1.7 void destroyTupleTagsTri (constraint graph ∗ cg)

Destroys all of the data structures that RNIC used

Parameters

cg The constraint graph (dual graph) to work on

B.2.1.8 int filterNICTri (set ∗ lost support set, int num tuples, int

time, set ∗ undo set)

Runs RNIC on the problem

118

Parameters

lost support-

set

Record all the tuples that lost a support

num tuples The total number of tuples

time The current label in search to label when tuples are deleted

undoSet A set of relations that were modified

Returns

If the CSP is consistent or not after enforcing RNIC

B.2.1.9 int filterNICTriCluster (set ∗ lost support set, int num tuples,

int time, set ∗ undo set)

Process the cluster queue of RNIC using the maximal cliques (clusters)

Parameters

lost support-

set

Record all the tuples that lost a support

num tuples The total number of tuples

time The current label in search to label when tuples are deleted

undoSet A set of relations that were modified

119

Returns

If the CSP is consistent or not after enforcing RNIC

B.2.1.10 int filterNICTriClusterTree (set ∗ lost support set, int

num tuples, int time, set ∗ undo set)

Process the cluster queue of RNIC using the tree decomposition

Parameters

lost support-

set

Record all the tuples that lost a support

num tuples The total number of tuples

time The current label in search to label when tuples are deleted

undoSet A set of relations that were modified

Returns

If the CSP is consistent or not after enforcing RNIC

B.2.1.11 int filterNICTriRelation (set ∗ relationQueue, int time, set

∗ undo set, int useCluster)

Process the relation queue of RNIC

Parameters

relation-

Queue

The queue of relations to process

120

time The current label in search to label when tuples are deleted

undoSet A set of relations that were modified

useCluster If the relationQueue is for a specific cluster or not

Returns

If the CSP is consistent or not after enforcing RNIC

B.2.1.12 int find supports label7Set (tuple tag ∗ startTuple, int

curLoc, llist node ∗ curVar, set ∗∗∗ tuples, llist ∗ futureVars,

llist ∗∗ pastVars, llist ∗∗ undoDeg)

The label procedure of a back-track search on the neighborhood of a tuple to see if it

has a valid support

Parameters

startTuple The tuple the search is being conducted on

curLoc The current level of the search

curVar The current dual variable being instantiated

tuples The set of tuples still alive in the neighborhood

futureVars The list of future variables yet to be instantiated

pastVars The list of past variables already instantiated

undoDeg List of changes to the degree of the variables after instantiation, used

to undo during backtrack.

121

Returns

If the current variable has a consistent assignment

B.2.1.13 int find supports tuple7Set (tuple tag ∗ tuple)

Conducts a back-track search on the neighborhood of a tuple to see if it has a valid

support

Parameters

tuple The tuple to check if it has a support

Returns

If the tuple has a support in its neighborhood

B.2.1.14 int find supports unlabel7Set (tuple tag ∗ startTuple, int

curLoc, llist node ∗ curVar, llist ∗ pastVars, set ∗∗∗ tuples,

int lastLoc)

The unlabel procedure of a back-track search on the neighborhood of a tuple to see

if it has a valid support

Parameters

startTuple The tuple the search is being conducted on

curLoc The current level of the search

curVar The current dual variable being instantiated

pastVars The list of past variables already instantiated

122

tuples The set of tuples still alive in the neighborhood

lastLoc The last location where we did a label/unlabel

Returns

If the current variable has a consistent assignment

B.2.1.15 void findDangleSupportsSet (tuple tag ∗ tuple, llist

∗∗ prevVars, llist ∗∗ neighborsList, set ∗∗∗ tuples, int

lastAssign)

After search, assigns a single support to each of the dangles

Parameters

tuple The tuple the search is being conducted on

pastVars The list of past variables already instantiated

neighbors-

List

The neighbors for the dangles that were discovered

tuples The set of tuples still alive in the neighborhood

lastAssign The last level where an assignment took place

B.2.1.16 llist∗ flattenClusters (llist ∗ dualCliques)

Flattens the relations inside of the cliques into a linear ordering

123

Parameters

dualCliques All of the cliques of the dual graph

A list of the flattened relations

B.2.1.17 llist∗ iNeighbors (constraint graph node ∗ cgn, int distance,

constraint graph ∗ cg)

Gets the neighborhood of a vertex (relation) in the dual graph

Parameters

cgn The vertex (relation) to find the neighborhood

distnace The neighborhood distance (1=its immediate neighborhood, 2=in-

clude all of the neighbors of the neighbors, etc.)

cg The constraint graph (dual graph) to work on

Returns

A llist of all of the neighbors of the vertex. The first node in the list is the original

relation

B.2.1.18 llist∗∗ iNeighborsAll (constraint graph ∗ cg, int distance)

Gets the neighborhood of all the vertices (relations) in the dual graph

124

Parameters

cg The constraint graph (dual graph) to work on

distnace The neighborhood distance (1=its immediate neighborhood, 2=in-

clude all of the neighbors of the neighbors, etc.)

Returns

A llist of all of the neighbors for each relation. The first node in each list is the

original relation

B.2.1.19 llist∗ iNeighborsFilter (constraint graph node ∗ cgn, int

distance, float filter cutoff, constraint graph ∗ cg)

Gets the neighborhood of a vertex (relation) in the dual graph

Parameters

cgn The vertex (relation) to find the neighborhood

distnace The neighborhood distance (1=its immediate neighborhood, 2=in-

clude all of the neighbors of the neighbors, etc.)

filter cutoff Determine how many neighbors each vertex has, and take the top

filter cutoff percent (As a decimal percent: between 0-1)

cg The constraint graph (dual graph) to work on

125

Returns

A llist of all of the neighbors of the vertex. The first node in the list is the original

relation

B.2.1.20 llist∗∗ iNeighborsFilterAll (constraint graph ∗ cg, int

distance, float filter cutoff)

Gets the neighborhood of all the vertices (relations) in the dual graph

Parameters

cg The constraint graph (dual graph) to work on

distnace The neighborhood distance (1=its immediate neighborhood, 2=in-

clude all of the neighbors of the neighbors, etc.)

filter cutoff Determine how many neighbors each vertex has, and take the top

filter cutoff percent (As a decimal percent: between 0-1)

Returns

A llist of all of the neighbors for each relation. The first node in each list is the

original relation

B.2.1.21 void neatoNeighborhood (llist ∗∗ nodes, int number nodes)

Writes to the file ‘neighborhood.neato’ in the current directory, which constructs the

dual graph of the CSP. The file can be converted to a PDF using ‘neato -Tpdf -o

neighborhood.pdf neighborhood.neato’

126

Parameters

nodes The list of neighborhoods for all of the variables

number -

nodes

The number of dual variables in the problem

B.2.1.22 void neatoNeighborhoodDecomp (decomposed tree ∗ root)

Writes to the file ‘neighborhood decomp.dot’ in the current directory, which con-

structs the tree decomposition of the dual graph. The file can be converted to a PDF

using ‘dot -Tpdf -o neighborhood decomp.pdf neighborhood decomp.dot’

Parameters

root The root of the tree

B.2.1.23 void neatoNeighborhoodDecompNode (FILE ∗ f,

decomposed tree ∗ root)

Writes to a file the nodes and connections of a single vertex of the tree decomposition.

Parameters

f The file to write to

root The root of the tree

127

B.2.1.24 void nic add dual fill edges (char ∗∗ matrix,

constraint graph node ∗ node, heap ∗ h, llist ∗∗ allNeighbors,

int max nodes, char ∗∗ matrix pre rr)

Adds the fill-in edges to a dual variable.

Parameters

matrix A matrix representation of the relations

node The node to add the fill-in edges for

h A heap ordering of the relations, sorted by the number of fill in edges

all-

Neighborhoos

A list of the current neighborhoods of all of the dual varaibles

max nodes The maximum number of nodes in the dual graph

matrix pre -

rr

The matrix representation of the relations prior to redundancy re-

moval

B.2.1.25 decomposed tree∗ nic build decomposed tree vertices (

llist ∗ cliques, llist ∗ tree nodes, int constraint count,

constraint graph ∗ cg)

Given a set of cliques, builds the tree decomposition

See also

build decomposed tree vertices

128

Parameters

cliques The set of cliques

tree nodes A linked list where the tree nodes are stored

constraint -

count

The number of constraints

cg The constraint graph (dual graph) to work on.

Returns

The root of the tree

B.2.1.26 llist node∗ nic choose varSet (tuple tag ∗ tuple, llist ∗

remaining vars, llist ∗ undo deg, int curLevel, set ∗∗∗ tuples

)

Chooses the next dual variable to assign using a deg/domain heuristic

Parameters

tuple The tuple the search is being conducted on

remaining -

vars

The remaining variables to be instantiated

out undo deg The current level’s undo degree, for fast re-assignment dur-

ing an unlabel

curLevel The current level of the search

tuples The set of tuples still alive in the neighborhood

129

Returns

The next variable to assign

B.2.1.27 int nic count dual fill edges (char ∗∗ matrix,

constraint graph node ∗ node, int max nodes, char ∗∗

matrix pre rr)

Counts the number of fill-in edges for a dual variable.

Parameters

matrix A matrix representation of the relations

node The node to count the fill-in edges for

max nodes The maximum number of nodes in the dual graph

matrix pre -

rr

The matrix representation of the relations prior to redundancy re-

moval

Returns

The number of fill in edges

B.2.1.28 llist∗ nic dual cliques (llist ∗∗ ordering, constraint graph ∗ cg

)

Given a perfect eliminiation ordering, computes the maximal cliques of the dual graph.

130

Parameters

ordering A list of the nodes neighborhoods (Where the node is the first entry

in the list), sorted in the perfect elimination ordering.

cg The constraint graph (dual graph) to work on.

Returns

The maximal cliques of the dual graph

B.2.1.29 int nic find danglesSet (tuple tag ∗ tuple, llist node ∗

curVar, int curVarTuple, llist ∗ futureVars, llist ∗ pastVars,

int curLevel, set ∗∗∗ tuples, llist ∗ undo deg, llist ∗

neighborsList)

Finds the dangles and applies directional arc conssitency (2-wise-consistency) to up-

date the domains (relations)

Parameters

tuple The tuple the search is being conducted on

curVar The current dual variable being instantiated

curVarTuple The value that is being instantiated to the current dual variable

futureVars The list of future variables yet to be instantiated

pastVars The list of past variables already instantiated

curLevel The current level of the search

tuples The set of tuples still alive in the neighborhood

131

undoDeg List of changes to the degree of the variables after instantiation, used

to undo during backtrack.

neighbors-

List

The alive neighbors for the dangles that were discovered

Returns

If the problem is consistent or not

B.2.1.30 llist∗∗ nic get dual elimination ordering (constraint graph ∗

cg)

Gets the elimination ordering of the dual graph (triangulates the dual graph). This

method uses the minFill triangulation method.

Parameters

cg The constraint graph (dual graph) to work on

Returns

A list of all of the nodes with their triangulated neighborhood. The first node in

the list is the node whose neighborhood it is.

B.2.1.31 llist∗∗ nic max cardinality (constraint graph ∗ cg)

Gets the max cardinality ordering of a triangulated dual graph.

132

Parameters

cg The constraint graph (dual graph) to work on

Returns

A list of all of the nodes with their triangulated neighborhood in the max car-

dinality ordering. The first node in the list is the node whose neighborhood it

is.

B.2.1.32 int nic reviseSet (tuple tag ∗ startTuple, int curLoc,

llist node ∗ curVar, int curTuple, set ∗∗∗ tuples, llist node ∗

otherVar)

Revies another dual variable based on the current dual variable

Parameters

startTuple The tuple the search is being conducted on

curLoc The current level of the search

curVar The current dual variable being instantiated

curTuple The current tuple assigned to the current variable

tuples The set of tuples still alive in the neighborhood

otherVar The other dual variable, to be revised

133

Returns

If the problem is consistent (the other dual variable has tuples)

B.2.1.33 llist∗∗ nic triangulate min deg (constraint graph ∗ cg)

Gets the elimination ordering of the dual graph (triangulates the dual graph). This

method uses the minimum degree heuristic (Take the node with the minimum degree,

breaking ties by the minimum number of fill-in edges).

Parameters

cg The constraint graph (dual graph) to work on

Returns

A list of all of the nodes with their triangulated neighborhood. The first node in

the list is the node whose neighborhood it is.

B.2.1.34 llist node∗ nic unchoose var7 (tuple tag ∗ tuple, llist ∗

pastVars, llist ∗ undo deg)

Un-chooses the a dual variable (Placing it back in the future variables and restoring

the degree)

Parameters

tuple The tuple the search is being conducted on

pastVars The past, already instantiated, variables

undo deg The current level’s undo degree, for fast re-assignment

134

Returns

The next variable to assign

B.2.1.35 void nic validate deg (void)

Validates that the degree of each tuple is set correctly

B.2.1.36 void nic validate deg for tuple (tuple tag ∗ tuple)

Validates that the degree for an individual tuple.

B.2.1.37 void nic validate tuples (int checkSupportedBy)

Validates that all of the supports in all the tuples are there

Parameters

check-

SupportedBy

If the supportedBy structure should also be checked

B.2.1.38 void print csp info (void)

Prints to stdout information about the CSP (about clique size and dual degree).

B.2.1.39 void print supported by (tuple tag ∗ tt)

Prints to stdout all of the supported by elements of a tuple

135

Parameters

tt The tuple to print

B.2.1.40 void print supports (tuple tag ∗ tt)

Prints to stdout all of the supports of a tuple

Parameters

tt The tuple to print

B.2.1.41 void print tupleVisitCount (void)

Prints to stdout information about the the number of tuples visisted/loops taken in

RNIC.

B.2.1.42 void requeue tuple cluster (tuple tag ∗ tuple, set ∗

needsClusterSupports)

Requeues everything that used a tuple as a support into the cluster queues

Parameters

tuple The tuple that was deleted

needs-

Cluster-

Supports

The queue of all the clusters

136

B.2.1.43 void requeue tuple clusterTree (tuple tag ∗ tuple, set ∗

needsClusterSupports)

Requeues everything that used a tuple as a support into the tree decomposition cluster

queues

Parameters

tuple The tuple that was deleted

needs-

Cluster-

Supports

The queue of all the clusters

B.2.1.44 void sortNodesBySize (llist ∗ nodes)

Sort the neighborhoods of a relation by their tuple size, to save on space

Parameters

nodes The neighborhood nodes of a relation (The relation is the first element

in the list)

B.2.1.45 int tuple tag forwardcheck5Set (tuple tag ∗ startTuple, int

curLoc, llist node ∗ curVar, int curTuple, set ∗∗∗ tuples,

llist ∗ futureVars)

Forward checks a the future variables to see if the current partial assignment is con-

sistent

137

Parameters

startTuple The tuple the search is being conducted on

curLoc The current level of the search

curVar The current dual variable being instantiated

curTuple The tuple trying to be instantiated to the current variable

tuples The set of tuples still alive in the neighborhood

futureVars The list of future variables yet to be instantiated

Returns

If the current variable with the current tuple is a consistent assignment

B.2.2 nicprocedures.c File Reference

Functions

• int nic bcssp (int ccp count)

• variable ∗ nic label (variable ∗var i, int ∗consistant, int time, int ccp count)

• variable ∗ nic unlabel (variable ∗var i, int ∗consistant, main structure ∗m s)

• int nic forward check (variable ∗var, int val, int time, int ccp count)

• void nic undo reductions (variable ∗var)

• variable ∗ nic choose variable (main structure ∗m s)

B.2.2.1 Detailed Description

This file contains the backtrack search algorithm that uses RNIC as lookahead.

138

B.2.2.2 Function Documentation

B.2.2.3 int nic bcssp (int ccp count)

The backtrack search procedure, which enforces RNIC as lookahead

Parameters

ccp count The total number of tuples

Returns

The state after search

B.2.2.4 variable∗ nic choose variable (main structure ∗ m s)

A special variable selection that uses the instanation ordering returned from the

perfect eliminiation ordering

Parameters

m s the main structure about the CSP

Returns

The next variable to instantiate

B.2.2.5 int nic forward check (variable ∗ var, int val, int time, int

ccp count)

The forward check procedure for the backtrack search procedure, which enforces R-

NIC as lookahead

139

Parameters

var The variable to that we are instantiating

val The value to try instantiating the variable to

time The time to label removed tuples

ccp count The total number of tuples

Returns

If the CSP is consistent or not with that instantiation

B.2.2.6 variable∗ nic label (variable ∗ var i, int ∗ consistant, int

time, int ccp count)

The label procedure for the backtrack search procedure, which enforces RNIC as

lookahead

Parameters

var i The variable to instantiate

consistant If the CSP is consistent or not

time The time to label removed tuples

ccp count The total number of tuples

140

Returns

The next variable to label if consistent, else the current variable

B.2.2.7 void nic undo reductions (variable ∗ var)

The undo reductions procedure for the backtrack search procedure, which enforces

RNIC as lookahead. This will undo the effect of the forward checking

Parameters

var What variable’s effects to undo

B.2.2.8 variable∗ nic unlabel (variable ∗ var i, int ∗ consistant,

main structure ∗ m s)

The unlabel procedure for the backtrack search procedure, which enforces RNIC as

lookahead

Parameters

var i The variable to uninstantiate

consistant If the CSP is consistent or not

m s The main structure that holds information about the CSP

Returns

The next variable

141

Bibliography

[Bacchus et al., 2002] Fahiem Bacchus, Xinguang Chen, Peter Van Beek, and Toby

Walsh. Binary vs. Non-Binary Constraints. Artificial Intelligence, 140:1–37, 2002.

[Bessière et al., 2005] Christian Bessière, Jean-Charles Régin, Roland H.C. Yap, and

Yuanlin Zhang. An Optimal Coarse-Grained Arc Consistency Algorithm. Artificial

Intelligence, 165(2):165–185, 2005.

[Bessière et al., 2008] Christian Bessière, Kostas Stergiou, and Toby Walsh. Domain

Filtering Consistencies for Non-Binary Constraints. Artificial Intelligence, 172:800–

822, 2008.

[Bessiere et al., 2011] Christian Bessiere, Stéphane Cardon, Romuald Debruyne, and

Christophe Lecoutre. Efficient Algorithms for Singleton Arc Consistency. Con-

straints, 16 (1):25–53, 2011.

[Bessiere, 2006] Christian Bessiere. Handbook of Constraint Programming, chapter

Constraint Propagation. Elsevier, 2006.

[Cheng and Yap, 2010] Kenil C.K. Cheng and Roland H.C. Yap. An MDD-Based

Generalized Arc Consistency Algorithm for Positive and Negative Table Con-

straints and Some Global Constraints. Constraints, 15 (2):265–304, 2010.

142

[Debruyne and Bessière, 1997] Romuald Debruyne and Christian Bessière. Some

Practicable Filtering Techniques for the Constraint Satisfaction Problem. In Pro-

ceedings of the 15 th International Joint Conference on Artificial Intelligence, pages

412–417, 1997.

[Debruyne and Bessière, 2001] Romuald Debruyne and Christian Bessière. Domain

Filtering Consistencies. Journal of Artificial Intelligence Research, 14:205–230,

2001.

[Dechter and Pearl, 1987a] Rina Dechter and Judea Pearl. Network-Based Heuristics

for Constraint-Satisfaction Problems. Artificial Intelligence, 34:1–38, 1987.

[Dechter and Pearl, 1987b] Rina Dechter and Judea Pearl. The Cycle-Cutset Method

for improving Search Performance in AI Applications. In Third IEEE Conference

on AI Applications, pages 224–230, Orlando, FL, 1987.

[Dechter and Pearl, 1989] Rina Dechter and Judea Pearl. Tree Clustering for Con-

straint Networks. Artificial Intelligence, 38:353–366, 1989.

[Dechter and van Beek, 1997] Rina Dechter and Peter van Beek. Local and Global

Relational Consistency. Theoretical Computer Science, 173(1):283–308, 1997.

[Dechter, 2003] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[Freuder and Elfe, 1996] Eugene C. Freuder and Charles D. Elfe. Neighborhood In-

verse Consistency Preprocessing. In Proceedings of AAAI-96, pages 202–208, Port-

land, Oregon, 1996.

[Freuder, 1982] Eugene C. Freuder. A Sufficient Condition for Backtrack-Free Search.

JACM, 29 (1):24–32, 1982.

143

[Freuder, 1991] Eugene C. Freuder. Completable Representations of Constraint Sat-

isfaction Problems. In Second International Conference on Principles of Knowledge

Representation and Reasoning (KR 91), pages 186–195, 1991.

[Fulkerson and Gross, 1965] Delbert R. Fulkerson and O. A. Gross. Incidence Matri-

ces and Interval Graphs. Pacific Journal of Mathematics, 15 (3):835–855, 1965.

[Gavril, 1972] Fanica Gavril. Algorithms for minimum coloring, maximum clique,

minimum covering by cliques, and maximum independent set of a chordal graph.

SIAM J. Comput., 1 (2):180–187, 1972.

[Gent et al., 2000] Ian Gent, Kostas Stergiou, and Toby Walsh. Decomposable Con-

straints. Artificial Intelligence, 123 (1-2):133–156, 2000.

[Golumbic, 2004] Martin C. Golumbic. Algorithmic Graph Theory and Perfect

Graphs. Elsevier, 2004. Annals of Discrete Mathematics, Vol 75.

[Gyssens, 1986] Marc Gyssens. On the Complexity of Join Dependencies. ACM

Trans. Database Systems, 11(1):81–108, 1986.

[Janssen et al., 1989] Philippe Janssen, Philippe Jégou, B. Nougier, and Marie-

Catherine Vilarem. A Filtering Process for General Constraint-Satisfaction Prob-

lems: Achieving Pairwise-Consistency Using an Associated Binary Representation.

In IEEE Workshop on Tools for AI, pages 420–427, 1989.

[Karakashian et al., 2010] Shant Karakashian, Robert Woodward, Christopher Ree-

son, Berthe Y. Choueiry, and Christian Bessiere. A First Practical Algorithm

for High Levels of Relational Consistency. In 24th AAAI Conference on Artificial

Intelligence (AAAI 10), pages 101–107, 2010.

144

[Kjærulff, 1990] Uffe Kjærulff. Triagulation of Graphs - Algorithms Giving Small

Total State Space. Research Report R-90-09, Aalborg University, Denmark, 1990.

[Lecoutre and Prosser, 2006] Christophe Lecoutre and Patrick Prosser. Maintaining

Singleton Arc Consistency. In CPAI 06 Workshop on Symmetry in Constraint

Satisfaction Problems (SymCon 10), pages 47–61, 2006.

[Lecoutre, 2010] Christophe Lecoutre. Constraint Networks: Techniques and Algo-

rithms. Wiley, 2010.

[Lee, 1992] Elisa T. Lee. Statistical Methods for Survival Data Analysis. John Wiley

& Sons, New York, NY, second edition, 1992.

[Lim, 2006] Ryan Way Hoong Lim. GTAAP: An Online System For Managing and

Assigning Graduate Teaching Assistants to Academic Tasks. Master’s Project.

Department of Computer Science & Engineering, University of Nebraska-Lincoln,

2006.

[Luchtel, 2011] Keith Luchtel. Personal communication, 2011.

[Mackworth, 1977] Alan K. Mackworth. Consistency in Networks of Relations. Arti-

ficial Intelligence, 8:99–118, 1977.

[Mohr and Masini, 1988] Roger Mohr and Gérald Masini. Good Old Discrete Relax-

ation. In European Conference on Artificial Intelligence (ECAI-88), pages 651–656,

Munich, W. Germany, 1988.

[Revesz, 2001] Peter Revesz. Introduction to Constraint Databases. Springer-Verlag,

New York, 2001.

145

[Stergiou, 2007] Kostas Stergiou. Strong Inverse Consistencies for Non-Binary CSPs.

In Proceedings of the 19th IEEE International Conference on Tools with Artificial

Intelligence, volume 1 of ICTAI 07, pages 215–222, 2007.

[Tarjan and Yannakakis, 1984] Robert Endre Tarjan and Mihalis Yannakakis. Simple

Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hyper-

graphs, and Selectively Reduce Acyclic Hypergraphs. SIAM Journal on Computing,

13(3):566–579, 1984.

[Woodward et al., 2011a] Robert Woodward, Shant Karakashian, Berthe Y.

Choueiry, and Christian Bessiere. Adaptive Neighborhood Inverse Consistency

as Lookahead for Non-Binary CSPs. In 25th AAAI Conference on Artificial Intel-

ligence (AAAI 11), pages 1–2, 2011.

[Woodward et al., 2011b] Robert Woodward, Shant Karakashian, Berthe Y.

Choueiry, and Christian Bessiere. Solving Difficult CSPs with Relational Neigh-

borhood Inverse Consistency. In 25th AAAI Conference on Artificial Intelligence

(AAAI 11), pages 1–8, 2011.

[Woodward et al., 2011c] Robert J. Woodward, Shant Karakashian, Berthe Y.

Choueiry, and Christian Bessiere. Reformulating the Dual Graphs of CSPs to

Improve the Performance of Relational Neighborhood Inverse Consistency. In

Ninth International Symposium on Abstraction, Reformulation and Approximation

(SARA 2011), pages 1–8. AAAI Press, 2011.

[Woodward et al., 2011d] Robert J. Woodward, Shant Karakashian, Berthe Y.

Choueiry, and Christian Bessiere. Relational Neighborhood Inverse Consistency

for Constraint Satisfaction. Technical Report TR-UNL-CSE-2011-0007, Constraint

Systems Laboratory, University of Nebraska-Lincoln, Lincoln, NE, 2011.

146

[Zabih, 1990] Ramin Zabih. Some Applications of Graph Bandwidth to Constraint

Satisfaction Problems. In Proceedings of AAAI-90, pages 46–51, Boston, MA, 1990.

