
ONLINE INTERACTIVE PROBLEM-SOLVING

by

Venkateshwar Rao Thota

A PROJECT

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

December, 2004

ONLINE INTERACTIVE PROBLEM-SOLVING

Venkateshwar Rao Thota, M.S.

University of Nebraska, 2004

Advisor: Berthe Y. Choueiry

With the advent of online computer systems, we now have a new dimension in

problem-solving capabilities. Instead of simply using the power of a computer to

achieve fast turnaround, we can develop interactive systems that are user-friendly and

capable of integrating the human user into the decision loop and exploiting his/her

insight for problem solving. Interactive problem-solving can thus be defined as a

process in which a computer and a user work side-by-side to define, analyze and solve

a problem.

In this report,we describe a system we built for interactively solving the Graduate

Teaching Assistant Assignment Problem (GTAAP). We have developed a constraint-

based system that is operated through a web-based visual interface. The system

provides the manager the ability to assign GTAs to various departmental tasks by

taking various constraints into consideration. The decision-making system uses con-

sistency algorithms to maintain the overall consistency of the problem.

The system has drastically reduced the number of conflicting decisions, increased

the quality of the process and solution, and decreased the amount of time and effort

spent on generating the assignment.

ACKNOWLEDGEMENTS

First of all I would like to thank my advisor, Dr. Berthe Y. Choueiry, whose

valuable contributions and insight made this project a reality. I am grateful for her

constant support and patience during my research. I would like to thank Dr. Hong

Jiang, Dr. Fred Choobineh, and Dr. Steven Dunbar for being in my committee.

I also thank my colleagues, the members of Constraint Systems Laboratory,

especially Ryan Lim and Praveen Guddeti for their co-operation and help in making

me understand the GTA project.

I would also like to thank Ms. Deborah Derrick, who checked my report and

provided feedback on English.

I am greatly indebted to my parents, Mr. Soma Narayana Thota and Mrs.

Lalitha Thota for motivating towards Masters degree. I thank all my friends for

their help during my masters study.

I dedicate this project to my parents, Soma Narayana and Lalitha, who supported
and encouraged me during my masters study and also throughout my career.

5

Contents

1 Introduction 1
1.1 GTA assignment problem . 2
1.2 Problem-solving strategies . 2

1.2.1 General setting . 2
1.2.2 The context of the GTAAP 4

1.3 Definitions . 5
1.4 GTAAP modeled as a CSP . 7
1.5 Interactive system . 9
1.6 Organization of the report . 11

2 Methodology 12
2.1 Overall methodology . 13
2.2 System initialization . 14

2.2.1 Node-Consistency algorithm 15
2.2.2 Arc-consistency algorithm . 16

2.3 Assignment of GTAs to classes . 18
2.3.1 Assigning a GTA . 18
2.3.2 Unassigning a GTA . 19

2.4 Assignment of classes to GTAs . 21

3 Design and implementation 23
3.1 GTA assignment project . 25
3.2 Interactive system . 28
3.3 Interface for interactive selections . 29

3.3.1 Driver for user’s actions . 30
3.3.2 Assignment of GTAs to classes 32
3.3.3 Assignment of classes to GTAs 39
3.3.4 Other features . 41

3.4 Interactive solver . 45
3.4.1 Socket listener . 46
3.4.2 Consistency algorithms . 48

4 Conclusion and future work 49

Bibliography 51

A File and Data structures 54
A.1 File structure . 54
A.2 Data structures . 56

A.2.1 Assigned Courses . 56
A.2.2 Log of Assignments/Unassignments 57
A.2.3 Communication with PHP scripts 57

A.3 Variables and functions . 58
A.3.1 ac.lisp . 58
A.3.2 loadgta.lisp . 58
A.3.3 misc-funcs.lisp . 59
A.3.4 savecsp.lisp . 59
A.3.5 showgtas.lisp . 60
A.3.6 showcourses.lisp . 61
A.3.7 sock-listener.lisp . 62
A.3.8 Function calls . 62

B Communication between the web interface and the interactive solver 66

List of Figures

1.1 Problem-solving techniques: batch versus interactive. 3
1.2 A CSP represented as a graph. 7
1.3 Web interface of interactive problem-solving. 10

2.1 Overall Methodology. 13

3.1 GTA assignment project system architecture [Lim et al., 2004a]. 25
3.2 Global view of the architecture of the interactive system in GTAAP. . . . 26
3.3 Detailed view of the architecture of the interactive system. 28
3.4 Possible actions for the manager under ‘Interactive Selections.’ 30
3.5 Snapshot of perspective ‘Assign GTAs to Classes.’ 32
3.6 Domains of courses when assigning. 34
3.7 An example of a course and a list of consistent GTAs present in its domain. 35
3.8 Assignment of GTAs to Classes. 36
3.9 Options menu. 38
3.10 Snapshot of perspective ‘Assign Classes to GTAs.’ 39
3.11 An example of a GTA and a list of courses in which he/she is present. . . 40
3.12 Dual perspective for decision making. 41
3.13 Drop-down menu to save/retrieve assignments. 43

A.1 Function: ac-1. 62
A.2 Function: assign-gta. 63
A.3 Function: check-assignment. 63
A.4 Function: check-year-sem. 63
A.5 Function: clear-saved-assignments . 63
A.6 Function: display-gtas . 64
A.7 Function: display-courses . 64
A.8 Function: load-assigned-courses . 65
A.9 Function: load-initialize-csp . 65
A.10 Function: make-current . 65
A.11 Function: save-current-csp . 65
A.12 Function: start-server . 65
A.13 Function: do-command . 65

B.1 Conversion of manager’s actions into Lisp function calls. 68

List of Tables

3.1 Database table where names of alternative scenarios are stored. 42
3.2 Database table for storing the details of an alternative scenario. 42
3.3 Lisp commands and their description. 47

B.1 Global variables in Lisp environment. 68

1

Chapter 1

Introduction

The early 1990s saw a drastic increase in the development and deployment of interac-

tive decision-support systems. These programs are designed to take advantage of the

experience and intuition of the human user to solve problems. Some of the systems

attempt to maintain generality and remain applicable across domain areas. Others

focus on restricted problem area.

The Graduate Teaching Assistant Assignment Project is one such dedicated sys-

tem for solving the Graduate Teaching Assistant Assignment Problem (GTAAP). The

project is being developed at the Constraint Systems Laboratory of the Department

of Computer Science and Engineering (CSE) of the University of Nebraska-Lincoln

(UNL). One of the main features of this project is interactive problem-solving, which

allows a human manager to interactively assign GTAs to various departmental tasks

by taking various constraints into consideration.

In this chapter, we give a short description of the GTAAP and the motivating

reasons for developing an interactive system. We recall the definitions and related

terms, and summarize our contributions.

2

1.1 GTA assignment problem

As stated by Glaubius [2001]: “The GTA assignment problem can be described as

the task of assigning GTAs to courses, based on their qualifications, availability, and

preferences, to academic courses in a semester for jobs such as grading, supervising

labs and recitations, and teaching introductory classes.” Typically every semester, a

group of 25 to 40 GTAs must be assigned to 55 to 70 courses. The problem is often

tight and sometimes over-constrained. Given its size and the variety of constraints,

the problem is difficult to solve manually and usually involves various staff and faculty.

The process is tedious and error-prone, and the results tend to be less than satisfactory

[Glaubius and Choueiry, 2002c].

1.2 Problem-solving strategies

In this section, we explain the motivation for using interactive techniques for solving

the GTAAP. We explain, in general, the deficiencies involved in using automated

solvers and, more specifically, the difficulties in using them for solving the GTAAP.

1.2.1 General setting

Problem-solving techniques can be broadly divided into batch processing and interac-

tive processing [Kopfer and Schnberger, 2002]. The algorithmic flow involved in the

two techniques is shown in Figure 1.1.

In batch processing, a series of non-interactive jobs are executed all at one time.

An automatic problem solver is used to find a solution to the given problem. The

underlying algorithm used in the solver searches for a solution until it reaches a pre-

defined termination criterion. Although most real-world applications use automatic

problem-solving techniques, they have some deficiencies [Pu and Faltings, 2002]:

3

Build a model

Automated solver
Search until a solution is
found or a termination
condition is reached.

Output solution
Solution

Start

Exit

Problem instance

Is solution
found?

Yes

No

Batch processing

Build a model

Remove inconsistencies

Output solution
Solution

Start

Exit

Problem instance

Yes No

Take user input

Hints

Interactive processing

Reformulate the problem
based on user hints

Is solution found?
Or is user

satisfied with
solution so far?

Problem instance

Propagate the user hints in the problem

Figure 1.1: Problem-solving techniques: batch versus interactive.

• The process of finding one or more solution cannot be manipulated after the

algorithm has been started because new information cannot be propagated to

the solving process. The search process and its direction cannot be influenced

once the automatic search is started.

• In some complex problems, the search algorithms may not find a solution or

cannot find a solution in a reasonable amount of time. As the search proceeds,

a user might be able to provide hints for guiding the search. However, the

underlying design of these search mechanisms does not allow the user to add

his/her input during the search. The user can incorporate or implement his/her

4

hints and ideas, as additional constraints on the initial problem formulation,

only after the algorithm terminates.

• A complete problem formulation, which is the basic assumption of an automatic

search processes, may be tedious and error-prone for some problems, where

constraints are subjective and ill-formulated.

In any case, the user has to take the solution that has been generated by the algorithm

as a basis for further modifications and adaptations, and is not supported by the

search algorithms during this difficult process.

The second approach, used to overcome the problems caused by batch processing,

is interactive processing. In this case, modifications done by the human user are

recognized. The interactive algorithm continues its computational task while taking

into consideration the additional information and the hints given by the user. This

process continues until a solution is found or the user is satisfied with the solution

obtained so far. Interactive problem solvers are unique because they combine the

human’s problem knowledge and intuition for creative solving with the computational

power of a computer that can handle a large number of constraints and large amount

of data.

1.2.2 The context of the GTAAP

Various automated search algorithms have been developed and tested for solving the

GTAAP [Lim et al., 2004a]. The behavior and performance of these search strategies

with different characterizations are documented in [Zou and Choueiry, 2003a; 2003b;

Zou, 2003]. The search strategies that are developed are (deterministic) backtrack

(BT) search with various ordering heuristics [Glaubius and Choueiry, 2002a], a local

search [Zou and Choueiry, 2003a], a multi-agent based search [Zou and Choueiry,

5

2003a], and a randomized backtrack search with a new restart strategy [Guddeti

and Choueiry, 2004]. On average, the GTAAP usually consists of sixty variables and

approximately thirty values per variable. Thus, the search space (3060 possible combi-

nations with only a few valid solutions [Glaubius and Choueiry, 2002b]) of the problem

is large and general search algorithms do not terminate within a reasonable amount

of time. This is evident from the performance of BT, even though the algorithm is

theoretically sound and complete, as discussed in [Guddeti and Choueiry, 2004]. The

performance of local search is affected by local optima [Zou and Choueiry, 2003a] and

multi-agent-based search by deadlocks when the problem is over-constrained [Zou

and Choueiry, 2003a]. Multi-agent search is consistently the only technique capable

of solving tight but solvable problems.

The interactive processing of GTAAP strives to avoid these difficulties by involving

human intuition into the system. The manager, with his/her experience in solving

the problem, assigns GTAs to courses while the system continues to optimize the

problem and provides feedback to the manager. The system provides the manager

the ability to test and verify various scenarios until he/she finds a suitable assignment

to all the courses. A manager can identify various sources of conflicts that may not be

apparent to an automatic solver, and take appropriate steps. As a result, the process

decreases the overall amount of time and effort spent on making the assignment by

avoiding the generation of solutions that are not acceptable in practice.

1.3 Definitions

The GTAAP is a multi-criteria optimization problem for which we have developed

a constraint-based model. We give a brief definition of the Constraint Satisfaction

Problem (CSP) and related terms in this section.

6

Definition 1. Constraint: A constraint is a logical relation among several unknowns

(or variables), each taking a value in a given domain (e.g., A+B=C and ‘the circle is

inside the square’) [Barták, 1998].

Definition 2. Constraint satisfaction problem (CSP): Mathematically, a CSP is de-

fined as follows:

Given: P = (V, D, C), where

• V: a set of variables

V = {V1, V2, . . . , Vn}

• D: a set of variable domains (domain values)

D = {DV1
, DV2

, . . . , DVn
}

such that DVi
is the domain of variable Vi

• C: a set of constraints

C = {CV1
, CV2

, . . . , CVi,Vj ,...,Vk
, . . . , CVn

}

such that CVi,Vj ,...,Vk
= {(x, y, . . . , z)/(x ∈ DVi

)∧(y ∈ DVj
)∧. . .(x ∈ DVk

)} ⊆

DVi
×DVj

× . . .×DVk

and CVi,Vj ,...,Vk
is a constraint between variables Vi, Vj, . . . , Vk.

Query: Find a value for each variable from its domain such that all the constraints

are satisfied.

Informally, a CSP is a problem where one must choose values to a given set of

decision variables that satisfy a given set of constraints or criteria.

For any given constraint CVi,Vj ,...,Vk
the set of variables Vi, Vj, . . . , Vk is called the

constraint’s scope and the size of this set is the constraint’s arity. If the arity of a

constraint is one, then it is called a unary constraint. If the arity is two then it is

called a binary constraint.

7

A CSP can be represented as an undirected graph with nodes representing the

variables and edges representing constraints (see Figure 1.2). The edges connect

V2 V3

V1

C

V2 < V3

V1+V2 =V3

V1 > 2

V4

V1 = V4

V4 – V6 > 2

V3 > V5

V1 < V5

V6

V5

V7

V2 = V6

V1 + V5 > 6

V2 – V6 = 1

V5 + V7 < 10

Figure 1.2: A CSP represented as a graph.

variables that share a constraint. A unary constraint is represented by an arc orig-

inating and terminating at the same node. If a constraint involves more than two

variables (non-binary constraint), then a new type of node is generated to represent

the non-binary constraint and is linked to the nodes of the variables in the scope of

the constraint. Figure 1.2 shows a unary constraint V1 > 2 on node V1, a binary con-

straint V2 < V3 between nodes V2 and V3, and a non-binary constraint V1 + V2 = V3,

represented by a separate node C, between nodes V1, V2, and V3.

1.4 GTAAP modeled as a CSP

The GTAAP can naturally be formulated as a CSP [Glaubius and Choueiry, 2002c].

Courses are variables whose domains consist of the available GTAs. Constraints in the

system are based on the practical constraints drawn out from descriptions provided

by the CSE department. In this section, we list the variables, values, and constraints

in the problem. More details can be found in [Glaubius and Choueiry, 2002a].

The GTAAP as a CSP: In a given semester, given a set of GTAs, a set of courses,

and a set of constraints on allowable assignments, find an assignment of GTAs to

8

courses that is:

• Consistent : the assignment breaks no constraints.

• Satisfactory : maximize the number of courses covered (first) and the satisfaction

of the assigned GTAs (second).

Courses: Courses are modeled as variables in the CSP. There are three types of

courses offered: lectures, labs, and recitations. These courses may be offered during

the entire semester, or only during the first or last half. Lectures usually require a

GTA grader, while labs and recitations require an instructor.

Domains: GTAs make up the domains of the variables. A GTA may serve as an

instructor if he/she has International Teaching Assistant (ITA) certification. Each

GTA may specify a preference value on a scale of 0 to 5 for each course offered.

Constraints: Three different types of constraints have been formulated: unary,

binary, and non-binary constraints:

• Unary :

1. ITA Certification: A GTA must be ITA certified to teach the constrained

course.

2. Enrollment: A GTA cannot be assigned to a course in which he/she is

enrolled.

3. Overlap: A GTA cannot be assigned to a course that requires an instructor

if he/she is enrolled in a course at the same time.

4. Zero preference: A GTA cannot be assigned to a course for which he/she

has zero preference. The GTA gives a zero preference to a course if he/she

has justification (e.g., currently enrolled or time conflicts).

9

• Binary :

1. Mutex: Courses cannot be assigned the same GTA.

• Non-Binary :

1. Equality: all courses should be assigned the same GTA.

2. Capacity: no GTA should be assigned a workload that exceeds his/her

capacity.

3. Confinement: assignments to two specific sets of courses should be mutu-

ally exclusive.

As a part of the GTAAP, a web interface was developed to simplify the collection of

data and specification of constraints [Lim et al., 2004a]. As discussed in Section 1.2,

a number of algorithms have been implemented to assist the human manager in

generating solutions automatically [Lim et al., 2004b].

1.5 Interactive system

We built an online interactive system that assists a manager in solving a GTAAP

instance. This system allows the manager to interactively assign GTAs to courses

and visualize how the assignment affects the GTAs available for other courses. The

interactive functionality is one of the main features of the system deployed at CSE

and uses the GTA and course data collected via the web. A snapshot of the web

interface is shown in Figure 1.3.

A manager can view the list of GTAs for any course at any time and take appro-

priate action. He/she can visually see the lists getting filtered, which allows him/her

to take the appropriate actions. When the manager makes an assignment on the web

10

Figure 1.3: Web interface of interactive problem-solving.

interface, the system checks all the constraints, and then removes from the domains

of the ‘unassigned’ courses the GTAs that can no longer be assigned to them given

the decision made. The manager can relax or impose new constraints. In case the

problem cannot be solved, the manager can see the requirement to hire new GTAs

and distribute the course load. Alternatively, a manager can also see if there are more

GTAs than required and eliminate some of them.

There are several advantages for having the system online. The system is instantly

available at anytime, anywhere. Because our system is evolving, the manager always

has access to the latest developments. The system runs on a web server. Any updates

and upgrades are implemented directly through the server.

The system runs on the department’s Unix server (i.e., cse.unl.edu). However, it

11

is accessible to anyone running a web browser on any operating system. The browser

code, in HTML and JavaScript, is governed by standards organizations, which ensures

code compatibility with current and future browsers.

1.6 Organization of the report

The rest of the report is organized as follows. In Chapter 2, we present the method-

ology of interactive problem-solving. Chapter 3 provides the detailed design and im-

plementation of the system. Chapter 4 summarizes the project with our conclusions

and provides directions for future improvements. Appendix A explains the files and

data structures involved in the project and Appendix B explains the communication

between the visual interface and the interactive solver.

12

Chapter 2

Methodology

In this chapter, we give a detailed description of the methodology that facilitates

interactive problem-solving. We also discuss the consistency algorithms that are

required to maintain a consistent problem.

The system gives the manager the ability to do the interactive assignments from

two perspectives

1. “Assignment of GTAs to Classes” and

2. “Assignment of Classes to GTAs”

Since both perspectives are different views of the same CSP formulation, an assign-

ment in one perspective is immediately reflected in another perspective. This gives

the manager more flexibility to comprehend and solve the problem. The consistency

algorithms implemented in the system ensure that the problem is consistent. In the

following sections, we first describe the overall methodology, the consistency algo-

rithms that are involved, and finally the assignment and unassignment procedures in

the two perspectives.

13

2.1 Overall methodology

As explained in Section 1.2, the CSP is solved based on user interactions. The inter-

actions in the context of the GTAAP are the assignment and unassignment of GTAs

to courses. We use consistency algorithms to provide the user with consistent choices

only and prevent him/her from making incorrect decisions, thus facilitating user’s

task.

Figure 2.1 shows the overall flow of operations. The methodology can be further

System Initialization

Create a CSP

Load Courses and GTAs

Run Node-Consistency Algorithm

Run Arc-Consistency Algorithm

Clear
1. Clear all the assignments
2. Initialize the system

Save
Save the current assignments
as <course, GTA> pairs in
database

Wait for manager’s action

Assign
1. Get the selected GTA and the

corresponding course
2. Assign the GTA to course
3. Update GTA capacity
4. Propagate GTA capacity to

unassigned courses.
5. Run arc-consistency algorithm.

Retrieve
1. Retrieve all saved

<course, GTA> pairs from
database

2. Assign GTAs to their
respective courses

Switch view
Change the current view to
1. GTAs to Classes or
2. Classes to GTAs

Refetch Data
1. Save all the assignments in a data

structure
2. Initialize the system
3. Assign all GTAs from the saved list
4. Run Arc-Consistency Algorithm

Unassign
1. Get the selected course
2. Save all the assignments in a list

(except the selected course)
3. Reset all domains
4. Assign all GTAs from the saved list

and propagate the capacity to
unassigned courses.

5. Run Arc-Consistency Algorithm

GTAs to Classes
Display the list of Courses and GTAs

Wait for manager’s view selection

Classes to GTAs
Display the list of GTAs and Courses

Figure 2.1: Overall Methodology.

14

divided into two phases, the initialization phase and problem-solving phase. Dur-

ing the initialization phase, the system encodes the problem definition. During the

problem-solving phase, the manager can do interactive assignments from either of the

two perspectives. Each of the two perspectives has options to assign, unassign, save,

or clear the assignments. Since the system is event-driven (i.e., responds to users

actions such as mouse clicks and key strokes), it executes the user’s command and

waits for the next command. The manager can switch between the two perspectives

anytime. We give a detailed description of each of the individual component in the

following sections.

2.2 System initialization

During the initialization process, a CSP is created using the course and the GTA

information and the consistency algorithms are then run on it. The course and

GTA information is loaded from the GTAAP database. The CSP is encoded as

explained in Section 1.4. The node-consistency and arc-consistency algorithms are

run on the CSP to eliminate inconsistent GTAs present in course domains. These

algorithms ensure that the manager is always presented with a consistent set of courses

and GTAs so that the manager can only do a valid and consistent assignment. We

summarize the initialization steps in Procedure 1. To further maintain consistency,

these algorithms are run after an assignment (see Section 2.3.1) or unassignment

operation (see Section 2.3.2).

Procedure 1 Initialize system
1: Create a CSP.
2: Load course and GTA information into the CSP.
3: Run the node-consistency algorithm.
4: Run the arc-consistency algorithm.

15

The consistency algorithms are in general applicable to any CSP. In the following

sections, we give a detailed description of the consistency algorithms in the context

of the GTAAP.

2.2.1 Node-Consistency algorithm

In a CSP, if the domain D of a variable V contains a value ‘a’ that does not satisfy

all the unary constraints on V , then V cannot be assigned by the value ‘a’. Thus,

the problem is made node-consistent by removing the values from the domain D of

each unassigned variable V that do not satisfy unary constraint on V .

In the GTAAP, if every GTA present in the course domain satisfies the unary con-

straints (i.e., ITA certification, enrollment, overlap, and zero preference constraints),

then the problem is said to be node-consistent. For example, if a course requires ITA

certification and a GTA present in the course domain does not have the certification,

then the GTA cannot be assigned to the course. Thus, the GTA can be removed from

the course domain. Such inconsistencies are eliminated using the node-consistency

algorithm shown in Algorithm 2 [Mackworth and Freuder, 1984]. The worst-case

Algorithm 2 Node-Consistency
Input: a CSP
Output: the node-consistent CSP

1: C ← {ci}, the set of all the courses
2: for each c ∈ C do
3: for each g ∈ Dc do
4: if any unary constraint on c is inconsistent with g then
5: Dc ← Dc \ {g} /* remove g from Dc */
6: end if
7: end for
8: end for

time complexity of the algorithm is O(n.d), where, n is the number of courses and

16

d is the maximum number of GTAs present in a course-domain. Algorithm 2 is

executed every time a new CSP is loaded (i.e., at the initializationphase). It is not

called by the assignment Procedure 5 and unassignment Procedure 7 procedures.

2.2.2 Arc-consistency algorithm

In a CSP, a constraint (also called an arc when the CSP is represented as a graph)

from Vi to Vj is said to be arc-consistent if for every value x in the current domain of Vi

there is some value y in the domain of Vj such that Vi = x and Vj = y are permitted by

the binary constraint between Vi and Vj . The concept of arc-consistency is directional,

i.e. if an arc (Vi, Vj) is consistent, then it does not automatically mean that (Vj, Vi)

is also consistent. The Vi can thus be arc-consistent with respect to the constraint

between Vi and Vj by deleting those values from the domain of Vi for which there does

not exist a value in the domain of Dj that satisfies the binary constraint. Deleting

such values does not eliminate any solution of the original CSP.

For a GTAAP to be arc-consistent, all the binary constraints (i.e., Mutex and

equality constraints), must themselves be arc-consistent. For example, if two courses

ci and cj have between them an equality constraint (i.e., the two courses must have

the same GTA), then both domains must have the same GTAs. Each GTA gci
present

in the domain of ci must have a consistent (same) GTA gcj
in cj such that gci

= gcj
;

otherwise the gci
can be removed from domain of ci. The filtering algorithm is shown

in Algorithm 3.

To make every course arc-consistent, it is not sufficient to execute REVISE for

each constraint just once. Once REVISE reduces the domain of some course ci, then

the previously revised constraints associated with ci (i.e., some cj , ci) have to be

revised again, because some of the members of the domain of cj may no longer be

compatible with the remaining members of the revised domain of ci. Algorithm 4

17

Algorithm 3 Revise(ci,cj)

Input: two courses that share a constraint
Output: true the domain of ci are modified

1: DELETE ← false

2: for each gci
∈ Dci

do
3: if there is no such gcj

∈ Dcj
such that ci ← gci

and cj ← gcj
are consistent

then
4: Dci

← Dci
\ {gci

} /* delete gci
from Dci

*/
5: DELETE ← true

6: end if
7: end for
8: return DELETE

does these revisions to make the CSP consistent.

Algorithm 4 AC-1
Input: a CSP
Output: an arc-consistent CSP

1: Q← {(ci, cj) in constraints of GTA, i 6= j }
2: repeat
3: CHANGE ← false

4: for each (ci, cj) ∈ Q do
5: CHANGE ← Revise(ci, cj) ∨ CHANGE

6: end for
7: until not CHANGE

The worst-case time complexity of the algorithm is O(d3.n.e), where d is the max-

imum domain size, n is the number of variables, and e is the number of constraints. In

general, even though the GTAAP is over-constrained, the arc-consistency algorithm

runs faster during the interactive assignments. This is because most of the GTAs are

removed during the initialization phase and there are fewer course domains that need

filtering and updating.

In general, during the execution of AC-1, when the domain of a variable is emptied,

the problem is declared unsolvable and execution is stopped. However, here the

18

execution is not stopped because the GTAAP is often an over-constrained problem.

In such cases it may not always be possible to find a complete set of assignments to

all the course variables. A partial set of assignments is also acceptable.

In the following sections, we provide a detailed description of the assignment and

unassignment procedures.

2.3 Assignment of GTAs to classes

For the assignment of GTAs to classes, the web interface displays a list of courses and

their corresponding list of consistent GTAs. The manager can choose to assign GTAs

to courses or to unassign courses. The following sections describe the two procedures.

2.3.1 Assigning a GTA

Whenever a GTA g is chosen for assignment from the domain of a course c, all the

other course domains are updated and the inconsistent GTAs are filtered. Proce-

dure 5 shows the steps for doing the assignment. Because the user is always presented

Procedure 5 Assign(c, g)

Input: a course and a GTA from its domain

1: Assigned− value(c)← g /* Assign GTA g to course c */
2: Capacity(g)← Capacity(g)− Load(c) /* Update the capacity of the GTA */
3: Filter-GTAs(c, g) /* Update the domains of other unassigned courses */
4: Call AC-1 /* Run arc-consistency algorithm */
5: return true

with a consistent CSP, he/she can only choose a consistent GTA for a course. The

assignment is done in Step 1 and the following steps ensure the consistency of the

CSP. The course load is discounted from the total capacity of the GTA in Step 2.

In Step 3, the capacity of g is propagated to unassigned courses using the Filter-

19

GTAs procedure. The arc-consistency algorithm, called in Step 4, ensures that the

assignment propagates to unassigned courses. The Filter-GTAs procedure is shown

in Procedure 6. In Step 1 of the procedure, the set of all the current unassigned

Procedure 6 Filter-GTAs(c, g)

Input: a course and a GTA from its domain

1: Let C ← {ci}, the set of all unassigned courses
2: Dc ← {g} /* Keep only the assigned GTA in the course domain */
3: for each c′ ∈ C do
4: if (g ∈ Dc′) ∧ (Capacity(g) < Load(c′)) then
5: Dc′ ← Dc′ \ {g} /* delete g from domain of Dc′ */
6: end if
7: end for
8: return true

courses is stored in C. In Step 2, the domain of the course Dc is updated so that

it contains only the assigned GTA and all the other consistent GTAs are removed.

Because the capacity of the GTA is decreased following the assignment, the GTA

should be removed from the domains of the unassigned courses whose load exceeds

the remaining capacity of the GTA. Thus, all the other course domains are updated

and inconsistent GTAs are filtered in Steps 3 to 7. For each course c′ not equal to c,

if the GTA g is present in the course domain and the capacity of the g is less than

course load of c′, then g is removed from the domain of c′.

2.3.2 Unassigning a GTA

Whenever a GTA is unassigned from a course c, all the course domains are up-

dated to reflect the change. Procedure 7 shows the steps involved. In Step 1, all

the other course assignments are saved in a list L as 〈course, GTA〉 pairs except

for the course assignment with c. The assigned GTA of the course is obtained in

Step 2. In Step 3, the capacity of the GTA is updated by adding the course load.

20

In Step 4, the course is removed. In Step 5, the course domains are reset to their

initial arc-consistent domains, since the domains are previously updated because of

the assignments/unassignments made earlier (arc-consistency algorithm is executed

every time an assignment is made). In Steps 6 to 9, the courses are re-assigned

and their domains are filtered. The course is assigned with its GTA in Step 7 and

the capacity of g′ is propagated to unassigned courses using the Filter-GTAs proce-

dure. Here, the capacity of the GTA is not discounted from the course load since

the capacity is already updated during the assignment previously made. Finally, the

arc-consistency algorithm is run in Step 10 to propagate the effect of the assignments

on the unassigned variables. Here, we are resetting course domains and redoing all

Procedure 7 Un-assign(c)

Input: course to be unassigned

1: L← {〈ci, gi〉}, the set of all courses and their assigned GTAs, except course c

2: g ← Assigned− val(c) /* Get the GTA assigned to course*/
3: Capacity(g)← Capacity(g) + Load(c) /* Update the capacity of the GTA */
4: Assigned− value(c)← nil /* Remove the course assignment */
5: Reset all the course domains to their initial arc-consistent domains
6: for each {c′, g′} ∈ L do
7: Assigned− value(c′)← g′ /* Re-assign the GTA */
8: Filter-GTAs(c′, g′) /* Update the domains of other unassigned courses */
9: end for

10: Call AC-1 /* Run arc-consistency algorithm */
11: return

the assignments instead of doing incremental unassignments [Bessière, 1991]. This

is because the data structures that would be necessary to follow such an approach

would be heavy even though the CSP data structures for the GTA problem are light.

21

2.4 Assignment of classes to GTAs

The manager can also interactively assign courses to GTAs. Here the same CSP en-

coding is viewed from a different perspective. Unlike the “Assignment of GTAs to

Classes” perspective, here the manager is presented with a list of GTAs and corre-

sponding set of courses (i.e., the course domain in which the GTA is present). The

manager thinks that he/she is assigning a course to a GTA, but in the background, the

GTA is selected from the course domain and assigned to the course. Here, since the

same CSP is used, it is not necessary to perform initialization steps (see Section 2.2).

Whenever the manager chooses this view, the GTAs and their corresponding course

lists are obtained by Procedure 8. In this procedure, a domain for a GTA g is con-

structed by going through all the courses {c1, c2, . . . , cn} and checking if the GTA g is

present in their domain. For each GTA g, its domain Dg is constructed by including

all the courses in which GTA g is present. This done in Steps 3 to 10. Finally, all

the GTAs and their domains are displayed in Steps 11 to 13. In this perspective, for

Procedure 8 Display-GTAs

1: C ← {ci}, the set of all courses in the CSP
2: G← {gi}, the set of all GTAs in the CSP
3: for each g ∈ G do
4: for each c ∈ C do
5: /* Create domains for GTAs with courses as the domain elements */
6: if g ∈ Dc then
7: Dg ← Dg ∪ {c}
8: end if
9: end for

10: end for
11: for each g ∈ G do
12: Display g, Dg /* Display the gta, g and its corresponding domain */
13: end for
14: return

any assignment or unassignment of courses, the same steps as outlined in Section 2.3

are followed. The only difference is that every time after assignment/unassignment of

22

GTAs to courses, the GTAs and the corresponding courses are obtained and displayed

as explained in Procedure 8.

Summary

This chapter reviewed the basic consistency algorithms that are required to maintain

a consistent CSP. We also discussed the assignment and unassignment procedures

that are required to filter GTAs from course domains.

23

Chapter 3

Design and implementation

In general, an interactive system for problem solving is built as a three-tier architec-

ture, with:

1. a visual interface for user interaction,

2. a back-end algorithm for problem solving, and

3. a database or file system for storing the data and saving partial or complete

solutions.

For better user interaction, the visual interface should be intuitive, easy to learn, and

capable of providing feedback on the system status so that users are in control of

the problem-solving process [Pu and Faltings, 2002]. The back-end solver algorithm

must account for the user’s input and integrate it into the problem encoding. The

algorithm should also be able to propagate the user decision to prepare the new

encoding for another input from user. Some of the other desirable features [Kopfer

and Schnberger, 2002] of the system are:

• The ability to present alternative ways of visualizing the problem.

24

• The ability to show to the human user the consequences of his/her actions.

• The ability to undo previous actions (in the GTAAP, it is variable assignments).

In this chapter we give the design and implementation details of the interactive sys-

tem, taking the above design principles into consideration. The chapter also explains

where the system fits our project. As stated in Chapter 1, interactive assignments or

selections is one of the main features of GTA project and uses the GTA and course

data collected from the GTA web interface.

We start with a short description of the GTA assignment project system architec-

ture, describe the overall interactive system, and finally the design and implementa-

tion details of the visual interface and the interactive solver.

25

3.1 GTA assignment project

The overall system architecture of GTA assignment project is shown in Figure 3.1

[Lim et al., 2004a]. The current implementation consists of a web interface for data

Password Protected
Access for GTAs

http://cse.unl.edu/~gta

Cooperative, hybrid
Search Strategies

Other structured,
semi-structured,

or
unstructured DBs

In progress

Visualization
widgets

Password Protected
Access for Manager
http://cse.unl.edu/~gta

Interactive Search

 Automated Search
Heuristic BT

Stochastic LS
Multi-agent Search

Randomized BT

Local
DB

Figure 3.1: GTA assignment project system architecture [Lim et al., 2004a].

acquisition, a relational database for storing the collected data, a number of search

algorithms for problem solving, and an additional set of features to generate reports.

The interactive system is represented by the ‘Interactive Search’ component appearing

in the lower-right corner of Figure 3.1.

26

Figure 3.2 highlights the architecture of the interactive system. The web interface

Server Environment

Manager Web-interface

Hire GTAs

Student Web-interface

Profile Information

Course Information

Setup courses

Interactive system

Interactive solver

Interactive selections

Client
Environment

Student

Manager

Database
(GTAs

&
Courses)

Figure 3.2: Global view of the architecture of the interactive system in GTAAP.

is accessible to both the manager and the students. When an applicant logs in, the

student interface is displayed and when a manager logs in, the manager interface is

displayed. While a student can access only his/her profile, the manager has complete

access to all the student profiles and the entire system. The manager can hire students,

set up courses, and define constraints between them. The information about the

students and courses is stored in the database. The web interface for interactive

selections also connects to the database to retrieve information about courses and

students, but it does so indirectly, through the interactive solver. The interface

directly connects to the database only to load any previously made assignments that

are stored in the database (see Section 3.3.4). A detailed description of the web

interface and the interactive solver is given in Section 3.2.

27

Before a semester begins, the manager loads the list of courses offered by the

department from a university-wide database. He/she may add new courses into the

system and define constraints between them. All the students who want to be a GTA

sign up online for an account. If a student already has an account, he/she simply logs

into the account, updates a profile and provides information about the courses that

he/she is enrolled in for a semester. A student’s profile includes information about

his/her personal details, undergraduate/graduate GPAs, deficiencies, GRE scores,

ITA qualifications and the courses he/she is registered in for the semester. Once all

the students fill their preferences, the manager hires potential GTAs (based on their

qualifications and other commitments) for the semester and proceeds to do interactive

selections.

The manager’s web-interface provides two operational modes for problem solving:

interactive and automatic [Lim et al., 2004a]. In both modes, the problem is modeled

as a constrained optimization problem. The web interface allows the applicants and

the manager to specify the information used for determining the consistency of a

solution. This includes the type and load of courses, the qualifications of the GTAs,

their hiring capacity, and their preferences for each course on a scale from 5 to 0 (‘5

Best choice’, ‘4 Favorite’, ‘3 Qualified’, ‘2 Able to handle’, ‘1 Avoid if possible’, ‘0

Cannot handle’). This information, in addition to the class schedule (retrieved from

a university-wide database), is stored in the database.

The GTAAP is implemented using MySQL as the back-end database, PHP as the

front-end for web interfaces, and Common Lisp and C++ for the search algorithms.

28

3.2 Interactive system

The interactive system is designed as a three-tier online client-server system (see

Figure 3.3):

Server environment

Interactive solver
(Lisp based daemon process)

Client
(browser)

Manager
(HTML,

Javascript)

Web-Server

MySQL
Database

Interactive
selections

web- interface
(PHP script)

Port file
Socket
Listener

CSP Model
GTAAP structures

Consistency Algorithms
Lisp functions for

Interactive selections

LISP command
prompt

 TCP/IP connection Database connection Function access File access

Figure 3.3: Detailed view of the architecture of the interactive system.

1. An interface for user interaction (labeled ‘Interactive selections web-interface’

in Figure 3.3),

2. Algorithms for problem solving (labeled ‘Interactive solver’ in Figure 3.3), and

3. A database from which the GTA and course information is loaded.

The web interface provides the access to the interactive solver. At any time, the

interface displays an updated and consistent list of courses and GTAs from the CSP.

The interactive solver runs as a background daemon process and connects to the

database to retrieve the data. Whenever the interactive solver is started on the

29

server, it loads all the GTA and course information from the database. It also has the

ability to reload the updated information from the database anytime, upon a user’s

request.

The web interface connects to the interactive solver using the TCP/IP protocol.

Whenever a manager assigns (or unassigns) a GTA to a class through the interface, the

solver checks all the constraints, filters the domains, and sends the updated course

and GTA information of all the variables and domains, back to the web interface.

When the manager undoes or changes assignments, the domains of all the variables

are then recomputed from the initial data while maintaining any selections that were

previously made. An interactive selection on the web interface comes as a request

to the server and the updated domain information of the courses is sent back to the

client as a response. In the next section, we describe the individual components of

the system.

The database (MySQL) in the system is used to store information about the

courses, GTAs, and the course assignments from the web interface.

3.3 Interface for interactive selections

The web interface in the system acts as a visual interface through which the manager

interacts with the interactive solver. The manager’s actions regarding the courses

and GTAs displayed in the interface serve as input to the interactive solver, which

outputs new decisions directly to the interface as courses and their domains change.

The interface interprets the manager’s actions (e.g., assign, unassign, save, or clear)

and converts them into commands (see Appendix B) that are understandable by the

solver. The interactive solver executes the commands and sends the output back to

the interface. The web interface parses this output and generates a new web page

30

ready to receive the manager’s new actions.

In the following subsections, we describe the driver that is used to guide the user

actions, followed by the interfaces to assign ‘GTAs to classes’ and ‘classes to GTAs’

with other features.

3.3.1 Driver for user’s actions

Figure 3.4 shows the possible actions available to the manager from the ‘Interactive

selections’ option of GTA project’s interface. Each of the boxes is linked to a web

Login

GTAs Classes Interactive selections

Logout

Current Selections

Re-fetch Data &

Assign GTAs to Classes

Assign Classes to GTAs

Search

Keep selections

 = Web page

Clear selections

Assign

Clear

Save = Feature

 = Link to web page

Figure 3.4: Possible actions for the manager under ‘Interactive Selections.’

page or a feature on the web page. The manager logs in from the login page using a

username and password. After proper authentication, the manager is presented with

different pages to do different tasks. These pages include:

• the ‘GTAs’ page to access and modify the GTA profiles,

31

• the ‘Classes’ page to add or modify course information in the system,

• the ‘Interactive Selections’ page to do interactive problem-solving, and

• the ‘Search’ page to perform automated search.

The web interface is built in HTML, PHP and Javascript. As shown in Figure 3.3,

the PHP scripts on the server interact with the database and interactive solver to gen-

erate HTML pages that are displayed on the manager’s browser. We use Javascripts

for creating drop-down menus and validating data on the client side. Some of the

attractive features of PHP are its ability to:

• Dynamically generate web pages,

• Connect and retrieve information from a different server, given its IP address

and socket number,

• Store user preferences during a session, and

• Possess other capabilities such as sorting and parsing.

The course and GTA data structures in the web interface are built as PHP objects.

All courses and GTAs are defined as classes. A course object encapsulates course

name, number, section, timings, load, and a set of GTA objects that are consistent

with the course. A GTA object encapsulates the GTA name, advisor name, speak

test information, ITA certification information, and a set of course objects (course

domains) in which the GTA is present. The object-oriented features enable easier

implementation of sorting features on the web interface. The objects can be sorted

easily according to the data stored inside the object. For example, all the objects can

be sorted, in ascending or descending order, according to the course name. Also, the

object-oriented features make the interface scalable. In the future, any new details

32

about the courses or GTAs can be added by modifying the required class structures

without re-implementing the code for sorting procedures.

3.3.2 Assignment of GTAs to classes

This perspective gives a course-centered view of the CSP. The web page displays

courses and the corresponding list of consistent GTAs in their domain. Figure 3.5

shows a snapshot of the perspective. Each row contains the course number, section,

Figure 3.5: Snapshot of perspective ‘Assign GTAs to Classes.’

title, timings, course load, and a list of selectable GTAs in its domain (in a drop-

down menu). The drop-down menu contains the GTA preference for the course, GTA

name, and the available capacity. The background of the row is shown in green if the

33

course has a pre-assigned GTA. Pre-assigned courses will have a fixed GTA assigned

to the course and thus the course variable will not be included in any consistency

algorithms. The page also contains an ‘Auto Assign’ option. When this option is

selected, the page is updated immediately when the manager chooses a GTA from

the drop-down menu, and propagation algorithms are launched over the unassigned

courses. If this option is not selected, the manager can do multiple assignments and

then he/she can manually press the ‘Assign’ button in the left frame of the page

to confirm the changes to the interactive solver. A log of the manager’s actions is

displayed at the bottom portion of the browser.

34

A course along with the GTAs present in its domain is shown in Figure 3.6.

Figure 3.6: Domains of courses when assigning.

35

Depending on the GTAs’ input, each course has a certain number of possible GTAs

in its domain. A GTA can be present in more than one course domain. These GTAs

are displayed in sorted order according to the GTA’s preference for the course. A

course, its information, and the corresponding GTAs present in its drop-down menu

are shown in Figure 3.7. The GTAs displayed in the drop-down menu are divided into

Figure 3.7: An example of a course and a list of consistent GTAs present in its domain.

‘Available GTAs’ and ‘Filtered-out GTAs.’ ‘Available GTAs’ are the ones who can be

assigned to the course, and ‘Filtered out GTAs’ are those whose remaining capacity

is less than the course load. These GTAs are eliminated from the course domain by

constraint propagation. In each portion, the GTAs are listed in decreasing preference

order, as a primary sorting criterion, and then in increasing lexicographical of the

GTA’s last name, as a secondary criterion. Next to the name, the current capacity

of each GTA is displayed (which is the hired capacity of the GTA discounted by the

load of his/her other assignments).

36

A snapshot of the manager’s browser after a few assignments is shown in Fig-

ure 3.8. The manager can assign a GTA to a particular course by selecting from the

Figure 3.8: Assignment of GTAs to Classes.

drop-down menu. Whenever a GTA is assigned to a course, constraint propagation

(which involves checking all the associated unary, binary and non-binary constraints)

is performed and all the course domains are automatically updated according to the

assignment. This is done so that the arc-consistency of the CSP is maintained. All

inconsistent GTAs are filtered from course domains and the manager is always pre-

sented with an updated and a sorted list of possible consistent choices. This constrains

the manager to always do a consistent assignment.

The page is also equipped with sorting features to provide better assistance to the

37

manager. These features allow a manager to sort columns in ascending or descending

order. The sorting functionality is implemented in PHP. Figure 3.5 shows the column

names displayed as hyperlinks to PHP scripts. These scripts retrieve the data from

the interactive solver and sort them according to the column name before generating

the HTML page. A symbol (‘N’ for ascending and ‘H’ for descending) after the sorted

column name indicates the sorting order.

38

The page also has flexibility to allow the manager to control the display on the

page. The interface provides an ‘Options menu’ from which the manager can select

or unselect the column names. This allows the manager to view only selected column

names in the interface. The menu is built using Javascript and the manager’s options

are stored in PHP sessions1. These options are sent to the web interface when the

manager selects or unselects a column name in the menu. The PHP script checks

the session information to read the manager’s options and generates an HTML page

with or without the selected column. A snapshot of the menu is shown in Figure 3.9.

Here, the course timings and days are not displayed in the interface since the manager

Figure 3.9: Options menu.

unselected the two options in the ‘Options menu.’

1PHP sessions are used to store information about user preferences on the server side.

39

3.3.3 Assignment of classes to GTAs

The web interface for ‘Assignment of Classes to GTAs’ is shown in Figure 3.10. This

Figure 3.10: Snapshot of perspective ‘Assign Classes to GTAs.’

page design is similar to the ‘GTAs to Classes’ page, but here the GTA information

and corresponding courses are displayed. The GTA information includes the GTA

name, advisor name, speak test, ITA qualification, GTA capacity, and the courses

to which the GTA is assigned. The drop-down menu contains the courses to which

the GTA can be assigned. The drop-down menu also contains the GTA preference

towards the course, the course number, section number and the course load.

40

Figure 3.11 shows an example of a GTA and the list of courses present in which

he/she is present. Like the GTA menu described earlier, the course menu is divided

Figure 3.11: An example of a GTA and a list of courses in which he/she is present.

into ‘Possible Assignments’ and ‘Options Ruled-Out.’ All the courses that have a

course load less than the GTA capacity can be assigned to a GTA. These courses are

listed as ‘Possible Assignments.’ The remaining courses that cannot be assigned to a

GTA are listed as ‘Options Ruled-Out.’

41

The ‘Options menu’ and sorting features in the interface are similar to the features

in the ‘GTAs to classes’ interface. Because the two perspectives are derived from the

same CSP, an assignment made in one of them is immediately reflected in the other.

Figure 3.12 shows the two perspectives derived from the same CSP. Thus, the manager

is always presented with a consistent CSP in both perspectives.

Figure 3.12: Dual perspective for decision making.

3.3.4 Other features

Each of the two perspectives has the following additional set of features. These

features allow the manager to save the current session and retrieve them at a later

time.

42

3.3.4.1 Confirming assignments

By default a manager can assign one GTA to a course at a time before consistency

checking is launched. The ‘Assign current selections’ feature allows him/her to do

multiple assignments at the same time before starting constraint propagation.

3.3.4.2 Saving scenarios

Using this feature the manager can give a friendly name and save all the current

assignments in the database so that he/she can explore alternative assignments. Using

the name given to the CSP, the web interface creates a Lisp command

(save-current-csp *php-stream* csp-name)

and sends it to the interactive solver for execution. This function saves the CSP in

the database. A detailed description of all Lisp commands is given in Appendix B.

The structures of tables defined in MySQL database are shown in Tables 3.1

and 3.2. Table 3.1 stores all the names of saved scenarios along with the unique

Table 3.1: Database table where names of alternative scenarios are stored.

Assignment-id Assignment (scenario) name Year Semester
1 Trial on Fri Aug 13 2004 23
2 Trial on Fri Aug 14 2004 23

Table 3.2: Database table for storing the details of an alternative scenario.

Assignment-id Course-id GTA-id
1 32 21
1 34 32
2 34 42
2 24 41

43

id generated by the database, the year, and semester. Table 3.2 stores the course

and the GTA ids. The course-id and GTA-id are used to link to the GTAAP course

database tables that contain complete course and GTA details.

The manager can save any number of assignments and can resume the saved

selections at any time later as long as the list of courses has not been modified in the

database. Once all current selections are saved, the system is initialized again from

scratch and a new CSP is displayed. All saved assignments are displayed in a drop-

down menu as shown in Figure 3.13. The menu is located in the left-hand corner of

the page.

Figure 3.13: Drop-down menu to save/retrieve assignments.

44

The saved assignments are retrieved by selecting the name of the assignments

from the drop-down list. As shown in Figure 3.3, the web interface directly connects

to the database to retrieve the names of all saved scenarios. After selecting the name

of saved assignments, a new CSP is created and the GTA assignments are made by

procedure Procedure 5. The interface issues a warning message to save any current

assignments before retrieving the CSP from the database. All current assignments

are lost unless they are saved in a scenario.

3.3.4.3 Clearing stored scenarios

This feature clears all the current assignments by initializing the CSP again and

running the consistency algorithms.

3.3.4.4 Re-fetch data & keep scenarios

During the interactive assignments, new GTAs or courses can be added or removed at

any point in time. This feature gives the manager the ability to re-fetch the updated

or new data from the database while keeping the current assignments. Whenever the

manager uses this feature, the following sequence of steps are performed:

1. Save the current assignments.

2. Reload the GTA and course data.

3. Initialize the CSP.

4. Re-established maintained assignments.

5. Propagate constraints by running the consistency algorithms.

45

3.3.4.5 Refetch data & clear selections

This feature is similar to the ‘Re-fetch data & keep selections’ feature, but the only

difference is that all the saved and the current assignments will be cleared. The CSP

of the GTAAP instance must be rebuilt when some of the hired GTAs are removed

from the database or new ones are hired. Thus, it becomes imperative to remove

clear the saved assignments that might contain the deleted GTA.

3.4 Interactive solver

The interactive solver is basically a set of Lisp functions that execute the interactive

selections. The solver is built over the existing GTAAP’s underlying data structures.

As shown in Figure 3.3, the solver contains an implementation of a socket-listening

interface that provides access to the solver and a set of Lisp functions that do inter-

active selections using the basic data structures designed for the GTAAP. The GTA

data structures, built using object-oriented features of Lisp, contain implementation

of a CSP model for the GTAAP. While the web interface for interactive selections

provides an abstract view of the GTAAP, the interactive solver holds the GTAAP as

a CSP. It does the actual constraint checks, domain filtering and course assignments

in the CSP. Whenever a manager makes an assignment in the web interface, a full

arc-consistency is executed over the unassigned variables to filter their domains in

the CSP using Procedure 5.

The solver runs as an independent process on a given socket. During the ini-

tialization, the socket listener module checks for an available free port and starts a

listener on that port. This port number, which is written to a text file, is used for all

communications with the web interface. This text file is accessed by the web interface

(PHP script) to determine the port number on which the process is running.

46

The solver must run as a background daemon process for faster and more efficient

interaction with the web interface. A Lisp program runs from the Lisp environment.

To make the solver run continuously as a background process, we have used a utility

called ‘detachtty’ [det, 2001]. This utility can make any interactive program on Unix

machines run in the background. ‘detachtty’ allows a user to run interactive programs

as background processes, and to connect to these processes over the network. It is

mainly designed for long-running processes. The main components of the interactive

solver are the socket listener and the consistency algorithms

3.4.1 Socket listener

As mentioned in Section 3.2, this module acts as a gateway to the interactive solver. It

accepts and sends any information from a client, usually the web interface. It listens

to requests on a given socket and calls appropriate functions. The socket listener

retrieves the output (if any) of executed function and sends the data back. All the

requests are accepted in the form of calls to Lisp functions. Although the listener

can handle any call to a Lisp function, the common requests that are sent by the web

interface are listed in Table 3.3.

47

Lisp commands Description

(in-package gta) Makes sure the control is in gta package and not in user package.
(load-initialize-csp) Creates a CSP and initializes it with data from current year and

semester.

(assign-gta *php-stream* gtaname course *current-csp*) Assigns a GTA to a course in the *current-csp*.
(check-assignment *php-stream* course *current-csp*) Checks if a given course is assigned with any GTA.
(check-year-sem year semester) Checks if the *current-csp* is of a particular year and semester.

(display-gtas *php-stream* *current-csp*) Retrieves all the GTAs and the course domains in which they are
present.

(display-courses *php-stream* *current-csp*) Retrieves all the courses and the GTAs present in their domain.
(load-assigned-courses *current-csp*) Loads all the previously assigned courses, from the variable

assigned-courses, into the *current-csp*.

(process-nc *current-csp*) Makes the current CSP node-consistent.
(ac-1 *current-csp*) Makes the current CSP arc-consistent.

(save-current-csp *php-stream* csp-name) Saves the current CSP into the database with a given name.
(make-current *php-stream* csp-name) This method loads a saved CSP from MySQL database and makes

it the *current-csp*.
(clear-saved-assignments nil) Clears all the saved assignments in the MySQL database.

T
ab

le
3.3:

L
isp

com
m

an
d
s

an
d

th
eir

d
escrip

tion
.

48

3.4.2 Consistency algorithms

As explained in Section 3.3, ‘Interactive solver’ is a set of routines that together

do the interactive assignments. It has the core logic to assign, unassign, and check

constraints. The methodology and the algorithms are explained in Chapter 2. The

function names are listed in Table 3.3. The module includes functions to:

1. Retrieve courses and the GTAs present in their domains.

2. Retrieve GTAs and courses in which they are present.

3. Assign a GTA to a course (Procedure 5).

4. Unassign a GTA from a course (Procedure 7).

5. Perform node-consistency (Algorithm 2).

6. Perform arc-consistency (Algorithm 4).

7. Refetch data from database.

8. Save/clear/retrieve assignments from the database.

Summary

In this chapter we described the design and implementation of the interactive system,

which is designed as a three-tier architecture with a web interface, a constraint-based

interactive solver, and a relational database.

49

Chapter 4

Conclusion and future work

In this project, we have designed and implemented an interactive system for solving

the GTAAP. We have used propagation algorithms for maintaining the consistency

of the problem at any time. These basic algorithms of Constraint Processing proved

to be exactly what is needed to effectively support a human user in the difficult task

of assigning GTAs to courses in our department. The success of the system has been

replicated in other departments at the university. Our approach can be extended in

many directions. We list a few of these directions below:

1. The interactive solver can be linked to other search algorithms and with the

help of a user, it can guide a search process through the search space effectively

and efficiently.

2. The interface can interact with the user at various stages of the search process

and take hints from the user and/or the automated search algorithms to avoid

livelocks/deadlocks, check termination conditions, etc.

3. The socket listener module in the interactive solver can also be used in the

development of visualization tools to view the solution space of the problem.

50

4. The partial solutions that are obtained during the interactive assignments can

be compared and combined into complete solutions.

5. Finally, the interface can be further modified so that the manager can make

an initial set of assignments, and can let the search algorithms take over the

problem and to find the remaining assignments.

51

Bibliography

[Barták, 1998] Roman Barták. On-Line Guide to Constraint Programming.

http://kti.ms.mff.cuni.cz/~bartak/constraints, 1998.

[Bessière, 1991] Christian Bessière. Arc-Consistency in Dynamic Constraint Satisfac-

tion Problems. In Proc. of AAAI-91, pages 221–226, 1991.

[det, 2001] Detachtty: Software to attach or detach an interactive processes from the

network http://packages.debian.org/stable/admin/detachtty, 2001.

[Glaubius and Choueiry, 2002a] Robert Glaubius and Berthe Y. Choueiry. Con-

straint Modeling and Reformulation in the Context of Academic Task Assignment.

In Working Notes of the Workshop Modelling and Solving Problems with Con-

straints, ECAI 2002, Lyon, France, 2002.

[Glaubius and Choueiry, 2002b] Robert Glaubius and Berthe Y. Choueiry. Con-

straint Modeling and Reformulation in the Context of Academic Task Assignment.

In Poster presentation at the Fifth International Symposium on Abstraction, Re-

formulation and Approximation, SARA 2002, 2002.

[Glaubius and Choueiry, 2002c] Robert Glaubius and Berthe Y. Choueiry. Constraint

Modeling in the Context of Academic Task Assignment. In Pascal Van Henten-

ryck, editor, Proceedings of 8th International Conference on Principle and Practice

of Constraint Programming (CP’02), volume 2470 of Lecture Notes in Computer

Science, page 789, Ithaca, NY, 2002. Springer Verlag.

[Glaubius, 2001] Robert Glaubius. A Constraint Processing Approach to Assigning

Graduate Teaching Assistants to Courses. Undergraduate Honors Thesis. Depart-

ment of Computer Science and Engineering, University of Nebraska-Lincoln, 2001.

52

[Guddeti and Choueiry, 2004] Venkata Praveen Guddeti and Berthe Y. Choueiry. A

Dynamic Restart Strategy for Randomized BT Search. In Mark Wallace, editor,

Proceedings of 10th International Conference on Principle and Practice of Con-

straint Programming (CP 04), volume 3258 of Lecture Notes in Computer Science,

page 796, Toronto, Canada, 2004. Springer Verlag.

[Kopfer and Schnberger, 2002] H. Kopfer and J. Schnberger. Interactive solving of

vehicle routing and scheduling problems: Basic concepts and qualification of tabu

search approaches. In Proceedings of the 35th Annual Hawaii International Confer-

ence on System Sciences (HICSS 02), volume 3, page 84. IEEE Computer Society,

2002.

[Lim et al., 2004a] Ryan Lim, Venkata Praveen Guddeti, and Berthe Y. Choueiry.

An Interactive, Constraint-Based System for Task Allocation in an Academic En-

vironment. In Mark Wallace, editor, An Interactive, Constraint-Based System for

Task Allocation in an Academic Environment 04, volume 3258 of Lecture Notes in

Computer Science, page 817, Toronto, Canada, 2004. Springer Verlag.

[Lim et al., 2004b] Ryan Lim, Venkata Praveen Guddeti, and Berthe Y. Choueiry.

An Interactive System for Hiring and Managing Graduate Teaching Assistants. In

Conference on Prestigious Applications of Intelligent Systems (ECAI 04), pages

730–734, Valencia, Spain, 2004.

[Mackworth and Freuder, 1984] Alan K. Mackworth and Eugene C. Freuder. The

complexity of some polynomial network consistency algorithms for constraint sat-

isfaction problems. Artificial Intelligence, (25) 1:65–74, 1984.

[Pu and Faltings, 2002] Pearl Pu and Boi Faltings. Effective Interaction Principles for

User-Involved Constraint Problem Solving. In Second International Workshop on

User-Interaction in Constraint Satisfaction, the Eighth International Conference

on Principles and Practice of Constraint Programming, September 2002, 2002.

[Zou and Choueiry, 2003a] Hui Zou and Berthe Y. Choueiry. Characterizing the Be-

havior of a Multi-Agent Search by Using it to Solve a Tight, Real-World Resource

Allocation Problem. In Workshop on Applications of Constraint Programming,

pages 81–101, Kinsale, County Cork, Ireland, 2003.

53

[Zou and Choueiry, 2003b] Hui Zou and Berthe Y. Choueiry. Multi-agent Based

Search versus Local Search and Backtrack Search for Solving Tight CSPs: A Practi-

cal Case Study. In Working Notes of the Workshop on Stochastic Search Algorithms

IJCAI 03), pages 17–24, Acapulco, Mexico, 2003.

[Zou, 2003] Hui Zou. Iterative Improvement Techniques for Solving Tight Constraint

Satisfaction Problems. Master’s thesis, Master’s thesis, Department of Computer

Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, December

2003.

54

Appendix A

File and Data structures

This appendix describes the file and data structures used in the interactive solver.

A.1 File structure

The following tree structure displays the directory and file structure:

-GTA-+

|-- bin --+

| |-- detachtty-src --+

| | |-- Source files for detachtty.

| |-- startdaemon.pl

| |-- configure-load.lisp

| |-- detachtty

|-- web-interface --+

| |-- ac.lisp

| |-- configure-load.lisp

| |-- global-variables.lisp

| |-- loadgta.lisp

| |-- makecsp.lisp

| |-- misc-funcs.lisp

| |-- savecsp.lisp

| |-- showcourses.lisp

55

| |-- showgtas.lisp

| |-- sock-listener.lisp

| |-- testcsp.lisp

| |-- testserv.lisp

|-- Files.list

In the above tree, the directory ‘GTA’ also contains the files and directories (not

shown) related to GTA package. The content of each directory is described below:

• bin: This directory is used to hold external utilities that are used to start and

run the interactive solver. For now it contains compiled ‘detachtty’ utility.

• detachtty-src: contains the source code for compiling the detachtty utility for

various operating systems.

• web-interface: contains the Lisp files that load the GTA data structures.

The content of each file is described as follows:

• ac.lisp: contains an implementation of arc-consistency algorithm and related

functions.

• configure-load.lisp: a configuration file that contains default values of global

variables and system dependent path information to the compiler and log files.

• Files.list: contains paths to all the files present in the web-interface folder. This

file is included in the make file that is used to compile the overall GTA package.

• global-variables.lisp: contains a list of global variables that are used in the solver.

• load-gta.lisp: contains functions to load the GTA package, initialize the CSP,

and run consistency algorithms.

• makecsp.lisp: the start up file that compiles and loads the CSP.

• misc-funcs.lisp: contains miscellaneous functions that are used in other func-

tions.

• savecsp.lisp: contains functions to save the current assignments in the database.

56

• showcourses.lisp: contains functions to send the course and corresponding GTA

information when PHP scripts (GTAs to Class assignment in the web-interface)

send requests.

• showgtas.lisp: contains functions to send the GTA and corresponding course

information when PHP scripts (Class to GTA assignment in the web-interface)

send requests.

• sock-listener.lisp: contains implementation of the Lisp-based server.

• startdaemon.pl: a perl script to start the interactive solver as a daemon process

using the ‘detachtty’ utility present in the directory.

• testcsp.lisp: contains the default values values of global variables and system-

dependent path information (as described in configure-load.lisp file) and also

calls various functions to initialize the CSP and load GTA data. This file can

be used to test if the data is loading as expected.

• testserv.lisp: contains calls to various functions to initialize the CSP, load GTA

data and start the server. As explained in Chapter 3, the detachtty utility is used

to run the GTA daemon process as a background process. As a result, it may

not be possible to view run-time errors when the manager makes an interactive

selection. This file is used to start the server as a foreground process. This

allows the user to view various Lisp function calls whenever the user interacts

with the web interface.

A.2 Data structures

In this section we describe the data structures used to store the assignments and

history of assignments/unassignments.

A.2.1 Assigned Courses

All the course assignments are temporarily stored in a structure called *assigned-courses*

before they are permanently stored in database. The structure is described as follows:

57

assigned-courses = ((g-1 c-1)

(g-2 c-2)

...

(g-n c-n)

)

The list, (g-i c-i) is maintained as a GTA course pair where g-i is the GTA who

is assigned to course c-i. An example of the list is,

(("Mary" 105-150) ("John" 101L-001))

This structure is mainly used when a course is unassigned.

A.2.2 Log of Assignments/Unassignments

Every time a course is assigned or unassigned a text message indicating the action is

stored in a list called *messages*. This list is used to store the history of actions for

future reference. The structure of the list is as follows:

messages = (m-1 m-2 ... m-i ... m-n)

Here, m-i is the text string and the overall structure holds all the text strings. The

order of the messages is also maintained. An example of the list is,

("John is assigned to course Computer Science Fundamentals"

"Computer Problem Solving is unassigned")

This structure is accessed by PHP scripts to display the log of user actions on the

visual interface.

A.2.3 Communication with PHP scripts

The variable, *php-stream* is used for communication between PHP scripts (web-

interface) and Lisp code (interactive solver). This variable is defined as a socket

stream in the file sock-listener.lisp file. Any information written over to this variable

from Lisp environment will be sent to PHP scripts through TCP/IP protocol. For

example, the following print message in Lisp code sends the string, ‘Test message:

10’ sends to PHP script.

(format *php-stream* "Test message: ~a " 10)

58

A.3 Variables and functions

In this section, we review the functions and the internal function calls in the system.

The variables used in the interactive solver are described in Table B.1. The following

sections list the functions present in each file.

A.3.1 ac.lisp

ac-1 csp [FUNCTION]

Implementation of arc-consistency algorithm.

revise vari varj constr [FUNCTION]

Used by the arc-consistency algorithm to filter inconsistent GTAs.

get-constraints csp [FUNCTION]

Used by the arc-consistency algorithm to retrieve binary constraints in

a given CSP such that the variables involved in the constraint are not

assigned and the domain of any variable is not empty.

copy-current-domains csp [FUNCTION]

Used during the initialization phase(after executing the arc-consistency

algorithm) to copy the arc-consistent GTAs in the current-domain to the

initial-domain.

get-all-vars-bin-constraints csp [FUNCTION]

Used by copy-current-domains function to retrieve all the binary con-

straints in a given CSP.

A.3.2 loadgta.lisp

execute-func function-call [FUNCTION]

Executes a given function and returns error message if the function call

fails. Used as a wrapper function to check errors so that the system does

not crash.

59

load-initialize-csp stream [FUNCTION]

Creates a CSP and initializes it with data from current year and semester.

check-year-sem year semester [FUNCTION]

Checks if the *current-csp* is of a particular year and semester.

A.3.3 misc-funcs.lisp

get-gta gta-name [FUNCTION]

Retrieves the GTA object, given GTA name.

get-course key [FUNCTION]

Retrieves the course object, given a course symbol.

A.3.4 savecsp.lisp

get-is-id csp-name [FUNCTION]

Retrieves the actual database generated id (unique) corresponding to the

given user-friendly csp name.

save-current-csp stream name [FUNCTION]

Saves the current CSP into the database with a given name.

load-assigned-courses stream name [FUNCTION]

Loads all the previously assigned courses, from the variable *assigned-courses*,

into the *current-csp*.

make-current stream csp-name [FUNCTION]

This method creates a CSP *current-csp* and makes the assignments

saved in the database.

60

clear-saved-assignments stream [FUNCTION]

Clears the assignments (in the current year and semester) saved in the

database.

clear-all-saved-assignments stream [FUNCTION]

Clears all the assignments stored in the database.

get-saved-csps stream [FUNCTION]

Retrieves all the CSPs that are stored in the database (This function is

called from the PHP script).

A.3.5 showgtas.lisp

save-course-assignment gta-name course-num-section [FUNCTION]

Saves the GTA assignment to a given course in the *assigned-courses*

structure.

get-assigned-courses gta-name csp [FUNCTION]

Retrieves all the courses to which a GTA is assigned.

get-possible-courses gta-name csp [FUNCTION]

Retrieves all the courses in the domain where the GTA is present.

get-filtered-courses gta-name csp [FUNCTION]

Retrieves all the courses from the domains where the GTA is filtered.

unassign-gta-courses gta-name csp [FUNCTION]

Unassigns the given GTA from all the courses to which he/she is assigned.

display-gtas stream csp [FUNCTION]

Displays all the GTAs and the courses in which the GTAs are present.

The function is called from PHP scripts.

61

A.3.6 showcourses.lisp

print-gta-weights stream domain course [FUNCTION]

Retrieves and sorts all the GTAs present in a course domain.

display-courses stream csp [FUNCTION]

Retrieves all the courses and the GTAs present in the course domain.

get-courseobj number section my-csp [FUNCTION]

Retrieves a course object given a course number and section.

get-rem-capacity gtaobj [FUNCTION]

Obtains the current remaining available capacity of a GTA.

do-assignment gta course csp [FUNCTION]

Assigns a GTA to a course (does not do any constraint checks). This

function is called by assign-gta function.

un-do-assignment course-var csp [FUNCTION]

Unassigns a course variable.

assign-gta stream gtaname course csp [FUNCTION]

Assigns a GTA to a course in the given CSP.

get-messages stream [FUNCTION]

Returns the log of assignments/unassignments from *messages* struc-

ture. This method is called from PHP scripts.

check-assignment stream course csp [FUNCTION]

Checks if the given course is assigned with a GTA.

62

A.3.7 sock-listener.lisp

start-server portfile logfile port [FUNCTION]

Starts the interactive solver as a server on a given port and outputs all

function calls into a logfile.

writeport port filename [FUNCTION]

Outputs the port number on which the server is started to a given filename.

writetime filename [FUNCTION]

Outputs the current time stamp to a given file that is accessed by PHP

scripts to know the time at which the server is started.

write-to-log filename input output [FUNCTION]

Writes all the function calls made by PHP scripts into a log file.

do-command sock-stream logfile [FUNCTION]

Reads and executes a function called (from PHP script), as a string, from

a socket stream and saves it to a logfile using write-to-log function.

A.3.8 Function calls

In this section we pictorially show the internal function calls (to and from other

functions) in the system.

Figure A.1: Function: ac-1.

63

Figure A.2: Function: assign-gta.

Figure A.3: Function: check-assignment.

Figure A.4: Function: check-year-sem.

Figure A.5: Function: clear-saved-assignments

64

Figure A.6: Function: display-gtas

Figure A.7: Function: display-courses

65

Figure A.8: Function: load-assigned-courses

Figure A.9: Function: load-initialize-csp

Figure A.10: Function: make-current

Figure A.11: Function: save-current-csp

Figure A.12: Function: start-server

Figure A.13: Function: do-command

66

Appendix B

Communication between the web

interface and the interactive solver

The manager can connect to the interactive solver through web interface using a

browser (or any program that can connect to interactive solver and parse the data).

At any time, the manager on the client (browser) side initiates the request. When

the web interface (PHP script) is accessed, it sends a request to the interactive solver

(daemon process) for the current updated list of courses and the corresponding GTAs.

The solver sends the information back to the web interface, including the assignments.

The web interface parses the information and renders the output as an HTML page.

The series of events can be summarized as:

On server side (cse.unl.edu):

1. Initialize the GTA system (see Section 2.2).

2. Start the socket listener on a port number (The starting default port num-

ber is specified in configuration file configure-load.lisp. The socket

listener module searches for next 100 ports for an available port and starts

the server).

3. Make this process run in the background using the utility ‘detachtty.’

4. The socket listener stores the port number, on which the server is started,

in a temporary file (e.g., lispport.txt).

67

On client side (browser):

1. The browser sends a request to web server for the PHP script.

2. The PHP script checks the port file (lispport.txt) to know the port number

on which the socket listener is running.

3. Using this port number, the PHP script connects to the socket listener and

sends the Lisp commands (see Table 3.3).

4. The socket listener executes the commands and sends the output back to

the PHP script.

5. The PHP script reads the output and generates an HTML page.

As explained in Sections 3.2 and 3.3, the web interface is implemented in PHP and

the interactive solver is implemented in Lisp. The two environments communicate

through the socket listener using TCP/IP protocol. The socket-listener interface,

built inside the Lisp daemon process, listens to connections on a predefined port (the

default port number is 9000 stored in file configure-load.lisp). The port number

is obtained from the text file lispport.txt shared on the server by Lisp and PHP

scripts.

The PHP scripts connect to this port and send the Lisp commands, defined in

Table 3.3. The global variables (by convention, asterisks are used around the names

of global variables) used in these commands are listed in Table B.1. The functionality

of these Lisp commands is explained in Chapter 2.

Upon initialization, the interactive solver loads the Lisp command environment

into system memory and the socket listener interface present in the solver accepts

and executes any Lisp function call sent by the PHP scripts. Since the commands

are already in Lisp function format, the socket listener in the daemon process simply

executes the functions on Lisp command prompt and sends any resulting output back

to the PHP script.

A manager’s action in the web interface is converted into a Lisp function call

(the format is ‘(function-name arguments)’) and is sent to the interactive solver.

The solver executes the function on its command prompt and sends any output back

to the web interface. The PHP scripts do the required conversion of the manager’s

action. The PHP scripts maintain a list of Lisp functions and variable names for each

action. The scripts also know what kind of output to expect after the execution of

each command. While some of the commands return a simple true or false value,

68

Table B.1: Global variables in Lisp environment.

Variable Description
current-csp CSP that holds all the courses, domains, and constraints.
php-stream Acts as a communication medium between PHP and the

Lisp environments using sockets. Any data written to
this stream variable, from Lisp code, will be sent to the
PHP script.

gta-year Holds the current GTA year (e.g., 2002 and 2003).
gta-semester Holds the current GTA semester (e.g., 1-Spring, 2-Fall,

21, and 22-Summer courses)
assigned-courses This variable is used internally in Lisp data structures.

It holds the courses that are assigned to courses. The
internal data structure is explained in Appendix A.2.

messages Holds the manager’s actions as a list of strings. The
internal data structure is explained in Appendix A.2.

others return a large amount of data. After the command is executed, the PHP

script again sends request for the updated GTA and course information. The PHP

script parses this data, generates an HTML page and sends it back to manager’s

browser. Figure B.1 shows the overall sequence of actions when the manager selects

a GTA from the drop-down menu for a course. The numbers before text indicate the

 (assign-gta g c)

HTML page

1. Action: Select
GTA from menu

Browser
(HTML,

Javascript)

Display
GTAs and
courses
 Courses and GTAs

 (display-GTAs csp)

Web interface
(PHP script)

2. Convert manager’s
action into a Lisp

command

4. Obtain GTAs and

courses

6. Generate HTML

page with GTAs
and courses

Interactive solver
(Lisp program)

3. Execute Lisp
command and
return True/False.

5. Return updated

course and GTA
information

 True/False

Figure B.1: Conversion of manager’s actions into Lisp function calls.

step number. The manager initiates the overall process by selecting a GTA from the

drop-down menu. In Step 1, the manager’s action is sent to PHP script from HTML

as a post method. In Step 2, the script creates the Lisp command ‘(assign-gta

php-stream c g *current-csp*)’ (abbreviated in the figure) and sends it to the

69

interactive solver. In Step 3, the interactive solver executes the command and returns

the output as a true value ‘t’ or false value ‘nil’to indicate that the assignment was a

success/failure. The PHP script again sends a request to the solver to obtain GTA and

course information to by sending the Lisp command ‘(display-GTAs *php-stream*

current-csp)’ (abbreviated in the figure). The PHP scripts parse the data from

the interactive solver in Step 6 and send the HTML page back to the manager’s

browser for further interaction.

Lisp commands that retrieve data other than true or false are commands for

‘Assignment of courses to GTA’ or for ‘Assignment of GTAs to courses.’ When a

manager requests (usually, a button is pressed on the web interface) a display of

courses and corresponding GTAs in their domain, the PHP script interprets this as

command:

(display-courses *php-stream* *current-csp*)

and sends it to the solver for execution. The solver executes the command and re-

trieves all the courses and GTAs present in their domain from the CSP. The retrieved

course information contains the course number, course section, course title, timings,

course load and GTAs present in the course domain. For each GTA, the name, course

preference and available capacity are retrieved. The course and GTA information is

sent back to the PHP script in the following format:

The information for each course is enclosed in ‘%’ symbols. If course-i indicates

course ‘i’ then the Lisp functions format the overall information of all the courses as:

%course-1%%course-2%%course-3%...%course-n%

The string course-i contains the overall course and GTA information, separated by

‘@’, ‘;’ and ‘=’ symbols. The course string, course-i can be further divided by ‘=’

symbol as:

%Course-information=Assigned-GTA=current-domain=initial-domain%

‘Assigned-GTA’ is the GTA information string that a course might already have been

assigned during interactive assignments. The GTAs in current and initial domains

are separated by the ‘;’ symbol and the GTA information is separated by the ‘@’

symbol. The course string is thus formed as:

course-i = %Course-information=CD-1;CD-2;...;CD-p=ID-1;ID-2;....;ID-q%

70

where, CD-i and ID-j represent the GTAs present in the current and initial domains of

the course respectively. The initial domain is the domain of the course before any as-

signments are made, and the current domain is the filtered domain of the course after

the assignments are made. The set difference between the initial and current domains

gives the GTAs who are busy (i.e., GTAs who are assigned to other courses). The

course and GTA information is further split by ‘@’. Thus, the Course-information

string is:

course-number@section@title@timings@days@load

and the GTA-info string is:

course-preference@available-capacity@GTA-name

The overall course string can be summarized as:

course-i = %course-number@section@title@timings@days@load=gta-pref@

available-capacity@gta-name;gta-pref@available-capacity@

gta-name;.......;%

If a particular course is not assigned with a GTA, then the string is:

course-i = %Course-information=current-domain=initial-domain% or

course-i = %number@section@title@timings@days@load=preference@

available-capacity@gta-name;....;%

Also if a course is assigned with a fixed GTA, then the string need not contain the

domain information. The string is represented as:

course-i = %Course-information=Assigned-GTA% or

course-i = %number@section@title@timings@days@load=Assigned-GTA-name%

An example of course string is:

%101@002@Lab@1330-1520@W@0.25=4@0.75@Nicholas = 4@1@Nate;

4@0.66@Tim;4@0.75@Nicholas=4@1@Nate;4@0.66@Tim;4@0.75@Nicholas;

4@0.20@Baucher;4@0.15@;Mary;%

If the above string is separated as

71

s1 = 101@002@Lab@1330-1520@W@0.25

s2 = 4@0.75@Nicholas

s3 = 4@1@Nate;4@0.66@Tim;4@0.75@Nicholas and

s4 = 4@1@Nate;4@0.6@Tim;4@0.75@Nicholas;4@0.2@Baucher;4@0.15@;Mary;

then , the string s1 represents the course information and it is interpreted as course

number 101, the section number is 002, the course is type ‘Lab’, the timings are

between ‘1330-1520’ on ‘W’ (Wednesday) with a course load of 0.25. The next string,

s2 represents a GTA assigned to the course. It is interpreted as ‘Nicholas’ has a

capacity of 0.75 and his preference towards the course is 4. The strings s3 and s4

are the GTAs present in current and initial domains. It can be observed that all

GTAs who are not in current domain i.e. ‘4@0.20@Baucher;4@0.15@;Mary’, have a

capacities of 0.20 and 0.15 which is less than the course load of 0.25.

For displaying a GTA and corresponding compatible courses, the Lisp functions

are written to output the data to PHP scripts in the following format:

Here also the information for GTAs is enclosed in ‘%’ symbols as

%GTA-1%%GTA-2%%GTA-3%......%GTA-n%

Here, GTA-i is a string that contains overall GTA and their course information, sep-

arated by the ‘@’, ‘;’ and ‘=’ symbols. The course string, GTA-i can be divided by

the ‘=’ symbol in two formats. For GTAs who are by pre-assigned (i.e., by default

assigned to some courses prior to initialization), the format is

GTA-i = %GTA-info=!pre-assigned-courses%

and for other GTAs the format followed is

GTA-i = %GTA-info=Assigned-courses=Available-courses=Ruled-out-courses%

The string ‘GTA-info’, contains the GTA name,GTA’s Advisor, Speech Test (‘T’ or

‘NIL’ to indicate whether the GTA has taken the Speech Test), ITA Certification

(‘T’ or ‘NIL’ to know whether the GTA is ITA certified) and GTA Capacity. The

information is separated by the ‘@’ symbol as,

GTA-name@Advisor-name@Speech-Test@ITA-Certification@GTA-Capacity

The string ‘Assigned-courses’ contains the list of courses that are assigned to a

GTA. The courses are separated by a ‘;’ symbol and each course information is

further separated by a ‘@’ symbol as

72

course-name@course-preference@number@section@course-load

Similarly, the strings ‘Available-courses’ and ‘Ruled-out-courses’ have the same

format as explained above. The string ‘Available-courses’ contains the list of

courses in which the GTA is present and ‘Ruled-out-courses’ contains courses from

which the GTA is filtered. An example of a GTA string is,

%Nicholas@Mary@T@NIL@0.5=Lab@5@105@151@0.25;

Graph Algorithms@5@924@001@0.25=Comp. Sci. Fundametals@5@101@002@0.5;

Data Structures and Algorithms@4@310@150@0.5=CSP@5@421@821@1%

This string can be separated as

GTA-info = Nicholas@Mary@T@NIL@0.5$

Assigned-courses = Lab@5@105@151@0.25;Graph Alg@5@924@001@0.25

Available-courses = Computer Science Fundamentals@5@101@002@0.25;

Data Structures and Algorithms@4@310@150@0.5;

Ruled-out-courses = CSP@5@421@821@1

The GTA-info string indicates that the GTA, ‘Nicholas’ whose advisor is ‘Mary’

has taken speech test (‘T’ value) and does not have ITA certification (‘NIL’ value).

He has an available capacity of 0.5. The ‘Assigned-course’ string indicates that

‘Nicholas’ is currently assigned to two courses, ‘Lab’ and ‘Graph Algorithms’. The

‘Available-courses’ string indicates that the GTA can still be assigned to either

‘Computer Science Fundamentals’ or ‘Data Structures and Algorithms’. These

two courses have loads of 0.25 and 0.5, respectively, which are less than or equal to

the capacity of the GTA. The course ‘CSP’ is ruled-out because its course load is 1.

