ONLINE INTERACTIVE PROBLEM-SOLVING

by

Venkateshwar Rao Thota

A PROJECT

Presented to the Faculty of
The Graduate College at the University of Nebraska
In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

December, 2004



ONLINE INTERACTIVE PROBLEM-SOLVING

Venkateshwar Rao Thota, M.S.

University of Nebraska, 2004

Advisor: Berthe Y. Choueiry

With the advent of online computer systems, we now have a new dimension in
problem-solving capabilities. Instead of simply using the power of a computer to
achieve fast turnaround, we can develop interactive systems that are user-friendly and
capable of integrating the human user into the decision loop and exploiting his/her
insight for problem solving. Interactive problem-solving can thus be defined as a
process in which a computer and a user work side-by-side to define, analyze and solve
a problem.

In this report,we describe a system we built for interactively solving the Graduate
Teaching Assistant Assignment Problem (GTAAP). We have developed a constraint-
based system that is operated through a web-based visual interface. The system
provides the manager the ability to assign GTAs to various departmental tasks by
taking various constraints into consideration. The decision-making system uses con-
sistency algorithms to maintain the overall consistency of the problem.

The system has drastically reduced the number of conflicting decisions, increased
the quality of the process and solution, and decreased the amount of time and effort

spent on generating the assignment.



ACKNOWLEDGEMENTS

First of all I would like to thank my advisor, Dr. Berthe Y. Choueiry, whose
valuable contributions and insight made this project a reality. I am grateful for her
constant support and patience during my research. I would like to thank Dr. Hong

Jiang, Dr. Fred Choobineh, and Dr. Steven Dunbar for being in my committee.

I also thank my colleagues, the members of Constraint Systems Laboratory,
especially Ryan Lim and Praveen Guddeti for their co-operation and help in making

me understand the GTA project.

I would also like to thank Ms. Deborah Derrick, who checked my report and

provided feedback on English.

[ am greatly indebted to my parents, Mr. Soma Narayana Thota and Mrs.
Lalitha Thota for motivating towards Masters degree. I thank all my friends for

their help during my masters study.



I dedicate this project to my parents, Soma Narayana and Lalitha, who supported
and encouraged me during my masters study and also throughout my career.



Contents

1 Introduction
1.1 GTA assignment problem . .
1.2 Problem-solving strategies . .
1.2.1  General setting . . . .

1.2.2 The context of the GTAAP . . . . . . . . .. .. ... . ...

1.3 Definitions . . . . . . . .. ..
1.4 GTAAP modeled as a CSP . .
1.5 Interactive system . . . . . . .
1.6 Organization of the report . .

2 Methodology
2.1 Overall methodology . . . . .
2.2 System initialization . . . . .

2.2.1 Node-Consistency algorithm . . . . . ... ... ... ... ..
2.2.2  Arc-comsistency algorithm . . . . .. ... ... ... ... ..

2.3 Assignment of GTAs to classes
2.3.1 Assigning a GTA . . .
2.3.2  Unassigning a GTA . .

2.4 Assignment of classes to GTAs

3 Design and implementation
3.1 GTA assignment project . . .
3.2 Interactive system . . . . . . .

3.3 Interface for interactive selections . . . . . . . . . . . . .. ... ...

3.3.1 Driver for user’s actions
3.3.2 Assignment of GTAs to

classes . .. ...

3.3.3 Assignment of classes to GTAs . . . . ... ... ... ....

3.3.4 Other features . . . . .
3.4 Interactive solver . . . . . ..
3.4.1 Socket listener . . . . .
3.4.2  Consistency algorithms

4 Conclusion and future work

= O~ Ok NN =

—_

13
14
15
16
18
18
19
21

23
25
28
29
30
32
39
41
45
46
48

49



Bibliography 51

A File and Data structures 54
A.1 Filestructure . . . . . . . . ... 54
A.2 Datastructures . . . . . . . . .. .. 56

A.2.1 Assigned Courses . . . . . . . ... 56
A.2.2 Log of Assignments/Unassignments . . . . . . .. ... .... 57
A.2.3 Communication with PHP scripts . . . . . . .. ... .. ... 57
A.3 Variables and functions . . . . . . .. .. ... 58
A31 aclisp . . . . .. 58
A3.2 loadgtalisp . . . . . . ... 58
A.3.3 misc-funcslisp . . . . ... L 59
A3.4 savecsplisp . . . ... 59
A3.5 showgtaslisp . . . . . . ... 60
A.3.6 showcourses.lisp . . . . . . . . ... 61
A3.7 sock-listenerdisp . . . . . .. ..o 62
A3.8 Functioncalls . . . . .. ... ... 62

B Communication between the web interface and the interactive solver 66



List of Figures

1.1
1.2
1.3

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Al
A2
A3
A4
A5
A6
AT
A8
A9

Problem-solving techniques: batch versus interactive. . . . . . . . . . ..
A CSP represented as a graph. . . . . . . . . . . .. ... ... ...
Web interface of interactive problem-solving. . . . . . . . . . . . ... ..

Overall Methodology. . . . . . . . . . . .. . .

GTA assignment project system architecture [Lim et al., 2004al. . . . . .
Global view of the architecture of the interactive system in GTAAP.

Detailed view of the architecture of the interactive system. . . . . . . ..
Possible actions for the manager under ‘Interactive Selections.” . . . . . .
Snapshot of perspective ‘Assign GTAs to Classes.” . . . . . . . . ... ..
Domains of courses when assigning. . . . . . . . . . ... ... ...

An example of a course and a list of consistent GTAs present in its domain.

Assignment of GTAs to Classes. . . . . . . . . . . . . ... ... ...
Options menu. . . . . . . . . . .. e e
Snapshot of perspective ‘Assign Classes to GTAs.” . . . . . . . . ... ..
An example of a GTA and a list of courses in which he/she is present.

Dual perspective for decision making. . . . . . . . . . . ... ... ...
Drop-down menu to save/retrieve assignments. . . . . . . . .. .. ...

Function: ac-1. . . . . . . . . ...
Function: assign-gta. . . . . . . . . . ..o
Function: check-assignment. . . . . . . . . . .. ...
Function: check-year-sem. . . . . . . . . . . ... ...
Function: clear-saved-assignments . . . . . . . . . . ... ... .. ...
Function: display-gtas . . . . . . . . . . . ... ...
Function: display-courses . . . . . . . . . . . .. ...
Function: load-assigned-courses . . . . . . . . . . ... ... .. ....
Function: load-initialize-csp . . . . . . . . . . . . . . ... ...

A.10 Function: make-current . . . . . . . . . ...

A.11 Function: save-current-csp . . . . . . . . . . .o

A.12 Function: start-server . . . . . . . . .o

A.13 Function: do-command . . . . . . . . . ...

B.1

Conversion of manager’s actions into Lisp function calls. . . . . . . . ..



List of Tables

3.1
3.2
3.3

B.1

Database table where names of alternative scenarios are stored. . . . . . . 42
Database table for storing the details of an alternative scenario. . . . . . . 42
Lisp commands and their description. . . . . . . . . . . ... ... ... 47

Global variables in Lisp environment. . . . . . . . . . .. ... .. ... 68



Chapter 1

Introduction

The early 1990s saw a drastic increase in the development and deployment of interac-
tive decision-support systems. These programs are designed to take advantage of the
experience and intuition of the human user to solve problems. Some of the systems
attempt to maintain generality and remain applicable across domain areas. Others
focus on restricted problem area.

The Graduate Teaching Assistant Assignment Project is one such dedicated sys-
tem for solving the Graduate Teaching Assistant Assignment Problem (GTAAP). The
project is being developed at the Constraint Systems Laboratory of the Department
of Computer Science and Engineering (CSE) of the University of Nebraska-Lincoln
(UNL). One of the main features of this project is interactive problem-solving, which
allows a human manager to interactively assign GTAs to various departmental tasks
by taking various constraints into consideration.

In this chapter, we give a short description of the GTAAP and the motivating
reasons for developing an interactive system. We recall the definitions and related

terms, and summarize our contributions.



1.1 GTA assignment problem

As stated by Glaubius [2001]: “The GTA assignment problem can be described as
the task of assigning GTAs to courses, based on their qualifications, availability, and
preferences, to academic courses in a semester for jobs such as grading, supervising
labs and recitations, and teaching introductory classes.” Typically every semester, a
group of 25 to 40 GTAs must be assigned to 55 to 70 courses. The problem is often
tight and sometimes over-constrained. Given its size and the variety of constraints,
the problem is difficult to solve manually and usually involves various staff and faculty.

The process is tedious and error-prone, and the results tend to be less than satisfactory

[Glaubius and Choueiry, 2002c].

1.2 Problem-solving strategies

In this section, we explain the motivation for using interactive techniques for solving
the GTAAP. We explain, in general, the deficiencies involved in using automated

solvers and, more specifically, the difficulties in using them for solving the GTAAP.

1.2.1 General setting

Problem-solving techniques can be broadly divided into batch processing and interac-
tive processing [Kopfer and Schnberger, 2002]. The algorithmic flow involved in the
two techniques is shown in Figure 1.1.

In batch processing, a series of non-interactive jobs are executed all at one time.
An automatic problem solver is used to find a solution to the given problem. The
underlying algorithm used in the solver searches for a solution until it reaches a pre-
defined termination criterion. Although most real-world applications use automatic

problem-solving techniques, they have some deficiencies [Pu and Faltings, 2002]:



Batch processing Interactive processing

Start Start
Build a model Build a model

Problen instanc Problen instanc:
\

Automated solver | Remove inconsistencies |
Search until a solution is
found or a termination
condition is reached.

—)I Take user input |

Hints

Is solution

Reformulate the problem
found®:

based on user hin
Problen instanc:

Yes \
- | Propagate the user hints in the problem
Output solution
Y
Is solution found?
AL Or is user Output solution

satisfied with
solution so fe?

Y

( Exit )

Figure 1.1: Problem-solving techniques: batch versus interactive.

e The process of finding one or more solution cannot be manipulated after the
algorithm has been started because new information cannot be propagated to
the solving process. The search process and its direction cannot be influenced

once the automatic search is started.

e In some complex problems, the search algorithms may not find a solution or
cannot find a solution in a reasonable amount of time. As the search proceeds,
a user might be able to provide hints for guiding the search. However, the
underlying design of these search mechanisms does not allow the user to add

his/her input during the search. The user can incorporate or implement his/her



4

hints and ideas, as additional constraints on the initial problem formulation,

only after the algorithm terminates.

e A complete problem formulation, which is the basic assumption of an automatic
search processes, may be tedious and error-prone for some problems, where

constraints are subjective and ill-formulated.

In any case, the user has to take the solution that has been generated by the algorithm
as a basis for further modifications and adaptations, and is not supported by the
search algorithms during this difficult process.

The second approach, used to overcome the problems caused by batch processing,
is interactive processing. In this case, modifications done by the human user are
recognized. The interactive algorithm continues its computational task while taking
into consideration the additional information and the hints given by the user. This
process continues until a solution is found or the user is satisfied with the solution
obtained so far. Interactive problem solvers are unique because they combine the
human’s problem knowledge and intuition for creative solving with the computational
power of a computer that can handle a large number of constraints and large amount

of data.

1.2.2 The context of the GTAAP

Various automated search algorithms have been developed and tested for solving the
GTAAP [Lim et al., 2004a). The behavior and performance of these search strategies
with different characterizations are documented in [Zou and Choueiry, 2003a; 2003b;
Zou, 2003]. The search strategies that are developed are (deterministic) backtrack
(BT) search with various ordering heuristics [Glaubius and Choueiry, 2002a], a local

search [Zou and Choueiry, 2003a], a multi-agent based search [Zou and Choueiry,



bt

2003a), and a randomized backtrack search with a new restart strategy [Guddeti
and Choueiry, 2004]. On average, the GTAAP usually consists of sixty variables and
approximately thirty values per variable. Thus, the search space (30%° possible combi-
nations with only a few valid solutions [Glaubius and Choueiry, 2002b]) of the problem
is large and general search algorithms do not terminate within a reasonable amount
of time. This is evident from the performance of BT, even though the algorithm is
theoretically sound and complete, as discussed in [Guddeti and Choueiry, 2004]. The
performance of local search is affected by local optima [Zou and Choueiry, 2003a] and
multi-agent-based search by deadlocks when the problem is over-constrained [Zou
and Choueiry, 2003a]. Multi-agent search is consistently the only technique capable
of solving tight but solvable problems.

The interactive processing of GTAAP strives to avoid these difficulties by involving
human intuition into the system. The manager, with his/her experience in solving
the problem, assigns GTAs to courses while the system continues to optimize the
problem and provides feedback to the manager. The system provides the manager
the ability to test and verify various scenarios until he/she finds a suitable assignment
to all the courses. A manager can identify various sources of conflicts that may not be
apparent to an automatic solver, and take appropriate steps. As a result, the process
decreases the overall amount of time and effort spent on making the assignment by

avoiding the generation of solutions that are not acceptable in practice.

1.3 Definitions

The GTAAP is a multi-criteria optimization problem for which we have developed
a constraint-based model. We give a brief definition of the Constraint Satisfaction

Problem (CSP) and related terms in this section.



6

Definition 1. Constraint: A constraint is a logical relation among several unknowns
(or variables), each taking a value in a given domain (e.g., A+B=C and ‘the circle is

inside the square’) [Bartak, 1998].

Definition 2. Constraint satisfaction problem (CSP): Mathematically, a CSP is de-
fined as follows:

Given: P = (V, D, C), where

e )V: a set of variables

V={V,Vs,....Vi}

e D: a set of variable domains (domain values)
D ={Dy,,Dy,,...,Dy,}

such that Dy, is the domain of variable V;

e C: a set of constraints
C=1{Cy,Cw,....Cvyv,. v, Cv,}
such that Cv, v, v, = {(z,9,...,2)/(x € Dy, )A(y € Dy;)A...(x € Dy,)} C
Dy, x Dy, x ... X Dy,

and C%,\G7-..7Vk is a constraint between variables V;, V}, ..., V;.

Query: Find a value for each variable from its domain such that all the constraints

are satisfied.

Informally, a CSP is a problem where one must choose values to a given set of
decision variables that satisfy a given set of constraints or criteria.

For any given constraint Ct; v, . v, the set of variables V;,V;, ..., V} is called the
constraint’s scope and the size of this set is the constraint’s arity. If the arity of a
constraint is one, then it is called a unary constraint. If the arity is two then it is

called a binary constraint.



7

A CSP can be represented as an undirected graph with nodes representing the

variables and edges representing constraints (see Figure 1.2). The edges connect

Figure 1.2: A CSP represented as a graph.

variables that share a constraint. A unary constraint is represented by an arc orig-
inating and terminating at the same node. If a constraint involves more than two
variables (non-binary constraint), then a new type of node is generated to represent
the non-binary constraint and is linked to the nodes of the variables in the scope of
the constraint. Figure 1.2 shows a unary constraint V; > 2 on node Vj, a binary con-
straint V5 < V3 between nodes V5 and V3, and a non-binary constraint V; + V5 = V3,

represented by a separate node C, between nodes Vi, V5, and V3.

1.4 GTAAP modeled as a CSP

The GTAAP can naturally be formulated as a CSP [Glaubius and Choueiry, 2002c].
Courses are variables whose domains consist of the available GTAs. Constraints in the
system are based on the practical constraints drawn out from descriptions provided
by the CSE department. In this section, we list the variables, values, and constraints

in the problem. More details can be found in [Glaubius and Choueiry, 2002a).

The GTAAP as a CSP: In a given semester, given a set of GTAs, a set of courses,

and a set of constraints on allowable assignments, find an assignment of GTAs to



courses that is:

e (onsistent: the assignment breaks no constraints.

e Satisfactory: maximize the number of courses covered (first) and the satisfaction

of the assigned GTAs (second).

Courses: Courses are modeled as variables in the CSP. There are three types of
courses offered: lectures, labs, and recitations. These courses may be offered during
the entire semester, or only during the first or last half. Lectures usually require a

GTA grader, while labs and recitations require an instructor.

Domains: GTAs make up the domains of the variables. A GTA may serve as an
instructor if he/she has International Teaching Assistant (ITA) certification. Each

GTA may specify a preference value on a scale of 0 to 5 for each course offered.

Constraints: Three different types of constraints have been formulated: unary,

binary, and non-binary constraints:
o Unary:
1. ITA Certification: A GTA must be ITA certified to teach the constrained
course.

2. Enrollment: A GTA cannot be assigned to a course in which he/she is

enrolled.

3. Overlap: A GTA cannot be assigned to a course that requires an instructor

if he/she is enrolled in a course at the same time.

4. Zero preference: A GTA cannot be assigned to a course for which he/she
has zero preference. The GTA gives a zero preference to a course if he/she

has justification (e.g., currently enrolled or time conflicts).



e Binary:
1. Mutex: Courses cannot be assigned the same GTA.
o Non-Binary:

1. Equality: all courses should be assigned the same GTA.

2. Capacity: no GTA should be assigned a workload that exceeds his/her

capacity.

3. Confinement: assignments to two specific sets of courses should be mutu-

ally exclusive.

As a part of the GTAAP, a web interface was developed to simplify the collection of
data and specification of constraints [Lim et al., 2004a]. As discussed in Section 1.2,
a number of algorithms have been implemented to assist the human manager in

generating solutions automatically [Lim et al., 2004b).

1.5 Interactive system

We built an online interactive system that assists a manager in solving a GTAAP
instance. This system allows the manager to interactively assign GTAs to courses
and visualize how the assignment affects the GTAs available for other courses. The
interactive functionality is one of the main features of the system deployed at CSE
and uses the GTA and course data collected via the web. A snapshot of the web
interface is shown in Figure 1.3.

A manager can view the list of GTAs for any course at any time and take appro-
priate action. He/she can visually see the lists getting filtered, which allows him /her

to take the appropriate actions. When the manager makes an assignment on the web



Efcﬁﬁ managet interface (DEMO] - Microsoft Internet Explorer =Jla
Bio Edt Wew Favortes Joss telp i
Qoeck = & - [ @ 0| Psewch frravoess & 5+ % FEEES2L0gE 3
Aoz | ] httifesce.uni.eduj~gtademajmanages| E Go

“Spnng 2004 E.[ ]'GTM ][ Closses -| [ Interoctive selection H Search ] [ Sws Admin ] [ Lngcu.n}
Interactive Selections Assign: GTAs to Classses Dptions Men
g [l Auto As
-
Referch Data & CS
i Feep Scenarios CSCE 101L W 025 |5=BaymonFeagan{0) E|
[ Clear Scenanos CSCE 101L 001 Lab 1030-1220 E 025 |5—Baymon Reagan {0) 3
CSCE 105 151 Lab 1530-1620 M 0.25 | — Mobody— b
u Slsclat CSCE 105 153 Lab 1430-1520 E 025 |—MNobody—
Cnng-;sam e i = |Avaitavie GTAs
Gl CSCE 105 150 Problem Sohang w/Computers 1330-1420 MWF 073 5= Goyen Elsy (1)
Save CSCE 150 151 Lab 1230-1320 M 025 | S—StadherEllen(l)
7 4—Garmus Aralee (0 6E)
Clgar CSCE 150 152 Lab 1230-1320 T: 0.25 4= mull Lomine (1)
CSCE 150 153 Lab 1530.1620 W 0.25 |odarevinaBri T‘E‘ﬁﬂl—
CSCE 150 154 Lab 1230-1320 W 025 [ 3-Thomsbury Beaulah (1)
] Intro to Compiter Prog ng g00-913 i g:.?_:gf;ifﬂ?ngl )
Leguid CSCE 155 151 Lab 1030-1220 M 033 |  {—Boshel Candra(066) v
. Pre-Assigned Courses (%] f |
Fiftered ouf GTAs ~
i 5 —Baymon Reagan (0)
Log of Actions: 3— Krmushaor Bema ()
B "Problem Solving w/Computers’ 15 unassigned Z—M.keltleuﬂn :lE"’lE (0}
: ; . . 1 —Gillie Antonina (0}
7 "Eraushaar Berna' 15 assigned to course "Comm. Networks 1 —Kilker Lonlee {1}
— 6 "Whakirwnre Tereie” 15 assioned to conres "Desen and Anabesin of Aloanthms’ - o e
&) bans @ Intermet

Figure 1.3: Web interface of interactive problem-solving.

interface, the system checks all the constraints, and then removes from the domains
of the ‘unassigned’ courses the GTAs that can no longer be assigned to them given
the decision made. The manager can relax or impose new constraints. In case the
problem cannot be solved, the manager can see the requirement to hire new GTAs
and distribute the course load. Alternatively, a manager can also see if there are more
GTAs than required and eliminate some of them.

There are several advantages for having the system online. The system is instantly
available at anytime, anywhere. Because our system is evolving, the manager always
has access to the latest developments. The system runs on a web server. Any updates
and upgrades are implemented directly through the server.

The system runs on the department’s Unix server (i.e., cse.unl.edu). However, it



11

is accessible to anyone running a web browser on any operating system. The browser
code, in HTML and JavaScript, is governed by standards organizations, which ensures

code compatibility with current and future browsers.

1.6 Organization of the report

The rest of the report is organized as follows. In Chapter 2, we present the method-
ology of interactive problem-solving. Chapter 3 provides the detailed design and im-
plementation of the system. Chapter 4 summarizes the project with our conclusions
and provides directions for future improvements. Appendix A explains the files and
data structures involved in the project and Appendix B explains the communication

between the visual interface and the interactive solver.



12

Chapter 2

Methodology

In this chapter, we give a detailed description of the methodology that facilitates
interactive problem-solving. We also discuss the consistency algorithms that are
required to maintain a consistent problem.

The system gives the manager the ability to do the interactive assignments from

two perspectives
1. “Assignment of GTAs to Classes” and
2. “Assignment of Classes to GTAS”

Since both perspectives are different views of the same CSP formulation, an assign-
ment in one perspective is immediately reflected in another perspective. This gives
the manager more flexibility to comprehend and solve the problem. The consistency
algorithms implemented in the system ensure that the problem is consistent. In the
following sections, we first describe the overall methodology, the consistency algo-
rithms that are involved, and finally the assignment and unassignment procedures in

the two perspectives.



13

2.1 Overall methodology

As explained in Section 1.2, the CSP is solved based on user interactions. The inter-
actions in the context of the GTAAP are the assignment and unassignment of GTAs
to courses. We use consistency algorithms to provide the user with consistent choices
only and prevent him/her from making incorrect decisions, thus facilitating user’s
task.

Figure 2.1 shows the overall flow of operations. The methodology can be further

System Initialization

| Load Course anc GTAs |

¢

| Run Node-Consistency Algorithr+

| Run Arc-Consistency Algorithm|

| Wait for manager’s view selectiolw

/\

GTAsto Classes Classesto GTAs
Display the list of Courses and GTAs Display the list of GTAs and Courses
JI Wait for manager’s action I
Switch view Save
Change the current view to Save the current assignments
1. GTAsto Classes or as <course, GTA> pairs in ’
2. Classesto GT# databas
Assign Retrieve

1. Getthe selected GTA and the 1. Retrieve all saved

corresponding course <course, GTA> pairs from
2. Assign the GTA to course database
3. Update GTA capacity 2. Assign GTASs to their
4. Propagate GTA capacity to respectivecourse

unassigned courses.
5. Run arc-consistency algorithm

yeo Clear —
1. Clear all the assignments
Unassign 2. Initialize the system

1. Getthe selected course
2. Save all the assignments in a list

(except the selected course) Refetch Data
3. Reset all domains 1. Save all the assignments in a data
4. Assign all GTAs from the saved lis structure >

and propagate the capacity to 2. Initialize the system

unassigned courses. 3. Assign all GTAs from the saved lis
5. Run Arc-Consistency Algorithm 4. Run Arc-Consistency Algorithm

Figure 2.1: Overall Methodology.



14

divided into two phases, the initialization phase and problem-solving phase. Dur-
ing the initialization phase, the system encodes the problem definition. During the
problem-solving phase, the manager can do interactive assignments from either of the
two perspectives. Each of the two perspectives has options to assign, unassign, save,
or clear the assignments. Since the system is event-driven (i.e., responds to users
actions such as mouse clicks and key strokes), it executes the user’s command and
waits for the next command. The manager can switch between the two perspectives
anytime. We give a detailed description of each of the individual component in the

following sections.

2.2 System initialization

During the initialization process, a CSP is created using the course and the GTA
information and the consistency algorithms are then run on it. The course and
GTA information is loaded from the GTAAP database. The CSP is encoded as
explained in Section 1.4. The node-consistency and arc-consistency algorithms are
run on the CSP to eliminate inconsistent GTAs present in course domains. These
algorithms ensure that the manager is always presented with a consistent set of courses
and GTAs so that the manager can only do a valid and consistent assignment. We
summarize the initialization steps in Procedure 1. To further maintain consistency,
these algorithms are run after an assignment (see Section 2.3.1) or unassignment

operation (see Section 2.3.2).

Procedure 1 Initialize system
1: Create a CSP.
2: Load course and GTA information into the CSP.
3: Run the node-consistency algorithm.
4: Run the arc-consistency algorithm.




15

The consistency algorithms are in general applicable to any CSP. In the following

sections, we give a detailed description of the consistency algorithms in the context

of the GTAAP.

2.2.1 Node-Consistency algorithm

In a CSP, if the domain D of a variable V' contains a value ‘a’ that does not satisfy
all the unary constraints on V', then V' cannot be assigned by the value ‘a’. Thus,
the problem is made node-consistent by removing the values from the domain D of
each unassigned variable V' that do not satisfy unary constraint on V.

In the GTAAP, if every GTA present in the course domain satisfies the unary con-
straints (i.e., ITA certification, enrollment, overlap, and zero preference constraints),
then the problem is said to be node-consistent. For example, if a course requires ITA
certification and a GTA present in the course domain does not have the certification,
then the GTA cannot be assigned to the course. Thus, the GTA can be removed from
the course domain. Such inconsistencies are eliminated using the node-consistency

algorithm shown in Algorithm 2 [Mackworth and Freuder, 1984]. The worst-case

Algorithm 2 Node-Consistency
Input: a CSP
Output: the node-consistent CSP

1: C' «— {¢}, the set of all the courses
2: for each c € C' do
3:  for each g € D. do

4 if any unary constraint on c is inconsistent with g then
5: D.«— D.\{g} /* remove g from D, */

6: end if

7:  end for

8: end for

time complexity of the algorithm is O(n.d), where, n is the number of courses and



16

d is the maximum number of GTAs present in a course-domain. Algorithm 2 is
executed every time a new CSP is loaded (i.e., at the initializationphase). It is not

called by the assignment Procedure 5 and unassignment Procedure 7 procedures.

2.2.2 Arc-consistency algorithm

In a CSP, a constraint (also called an arc when the CSP is represented as a graph)
from V; to Vj is said to be arc-consistent if for every value z in the current domain of V;
there is some value y in the domain of V; such that V; = x and V; = y are permitted by
the binary constraint between V; and V. The concept of arc-consistency is directional,
i.e. if an arc (V;, V) is consistent, then it does not automatically mean that (V;, V;)
is also consistent. The V; can thus be arc-consistent with respect to the constraint
between V; and V; by deleting those values from the domain of V; for which there does
not exist a value in the domain of D; that satisfies the binary constraint. Deleting
such values does not eliminate any solution of the original CSP.

For a GTAAP to be arc-consistent, all the binary constraints (i.e., Mutex and
equality constraints), must themselves be arc-consistent. For example, if two courses
¢; and ¢; have between them an equality constraint (i.e., the two courses must have
the same GTA), then both domains must have the same GTAs. Each GTA g, present
in the domain of ¢; must have a consistent (same) GTA ge; in ¢ such that g., = g.,;
otherwise the g., can be removed from domain of ¢;. The filtering algorithm is shown
in Algorithm 3.

To make every course arc-consistent, it is not sufficient to execute REVISE for
each constraint just once. Once REVISE reduces the domain of some course ¢;, then
the previously revised constraints associated with ¢; (i.e., some ¢;, ¢;) have to be
revised again, because some of the members of the domain of ¢; may no longer be

compatible with the remaining members of the revised domain of ¢;. Algorithm 4



17

Algorithm 3 Revise(c;,c;)
Input: two courses that share a constraint
Output: true the domain of ¢; are modified

—_

: DELETFE «— false

: for each g, € D,, do

if there is no such g., € D, such that ¢; < g., and ¢; < g., are consistent
then

4 D., < D, \ {g,} /* delete g., from D,, */
5 DELETE « true

6: end if
7

8

W N

. end for
: return DELETE

does these revisions to make the CSP consistent.

Algorithm 4 AC-1
Input: a CSP
Output: an arc-consistent CSP

1: @ < {(¢i,¢;) in constraints of GTA, ¢ # j }

2: repeat

3: CHANGE < false

4:  for each (¢;,¢;) € Q do

5: CHANGE «— Revise(c;,c;) VCHANGE
6: end for

7. until not CHANGE

The worst-case time complexity of the algorithm is O(d®.n.e), where d is the max-
imum domain size, n is the number of variables, and e is the number of constraints. In
general, even though the GTAAP is over-constrained, the arc-consistency algorithm
runs faster during the interactive assignments. This is because most of the GTAs are
removed during the initialization phase and there are fewer course domains that need
filtering and updating.

In general, during the execution of AC-1, when the domain of a variable is emptied,

the problem is declared unsolvable and execution is stopped. However, here the



18

execution is not stopped because the GTAAP is often an over-constrained problem.
In such cases it may not always be possible to find a complete set of assignments to
all the course variables. A partial set of assignments is also acceptable.

In the following sections, we provide a detailed description of the assignment and

unassignment procedures.

2.3 Assignment of GTAs to classes

For the assignment of GTAs to classes, the web interface displays a list of courses and
their corresponding list of consistent GTAs. The manager can choose to assign GTAs

to courses or to unassign courses. The following sections describe the two procedures.

2.3.1 Assigning a GTA

Whenever a GTA g is chosen for assignment from the domain of a course ¢, all the
other course domains are updated and the inconsistent GTAs are filtered. Proce-

dure 5 shows the steps for doing the assignment. Because the user is always presented

Procedure 5 Assign(c, g)
Input: a course and a GTA from its domain

Assigned — value(c) < g /* Assign GTA g to course ¢ */

Capacity(g) < Capacity(g) — Load(c) /* Update the capacity of the GTA */
Filter-GTAs(c, g) /* Update the domains of other unassigned courses */

Call AC-1 /* Run arc-consistency algorithm */

return true

with a consistent CSP, he/she can only choose a consistent GTA for a course. The
assignment is done in Step 1 and the following steps ensure the consistency of the
CSP. The course load is discounted from the total capacity of the GTA in Step 2.

In Step 3, the capacity of g is propagated to unassigned courses using the Filter-



19
GTAs procedure. The arc-consistency algorithm, called in Step 4, ensures that the
assignment propagates to unassigned courses. The Filter-GTAs procedure is shown

in Procedure 6. In Step 1 of the procedure, the set of all the current unassigned

Procedure 6 Filter-GTAs(c, g)
Input: a course and a GTA from its domain

Let C « {c¢;}, the set of all unassigned courses
D. — {g} /* Keep only the assigned GTA in the course domain */
for each ¢ € C do

if (9 € Do) A (Capacity(g) < Load(c’')) then

Do — Dy \ {g} /* delete g from domain of D. */

end if
end for
return true

courses is stored in C. In Step 2, the domain of the course D, is updated so that
it contains only the assigned GTA and all the other consistent GTAs are removed.
Because the capacity of the GTA is decreased following the assignment, the GTA
should be removed from the domains of the unassigned courses whose load exceeds
the remaining capacity of the GTA. Thus, all the other course domains are updated
and inconsistent GTAs are filtered in Steps 3 to 7. For each course ¢’ not equal to ¢,
if the GTA ¢ is present in the course domain and the capacity of the ¢ is less than

course load of ¢, then ¢ is removed from the domain of ¢.

2.3.2 Unassigning a GTA

Whenever a GTA is unassigned from a course ¢, all the course domains are up-
dated to reflect the change. Procedure 7 shows the steps involved. In Step 1, all
the other course assignments are saved in a list L as (course, GTA) pairs except
for the course assignment with ¢. The assigned GTA of the course is obtained in

Step 2. In Step 3, the capacity of the GTA is updated by adding the course load.



20

In Step 4, the course is removed. In Step 5, the course domains are reset to their
initial arc-consistent domains, since the domains are previously updated because of
the assignments/unassignments made earlier (arc-consistency algorithm is executed
every time an assignment is made). In Steps 6 to 9, the courses are re-assigned
and their domains are filtered. The course is assigned with its GTA in Step 7 and
the capacity of ¢’ is propagated to unassigned courses using the Filter-GTAs proce-
dure. Here, the capacity of the GTA is not discounted from the course load since
the capacity is already updated during the assignment previously made. Finally, the
arc-consistency algorithm is run in Step 10 to propagate the effect of the assignments

on the unassigned variables. Here, we are resetting course domains and redoing all

Procedure 7 Un-assign(c)
Input: course to be unassigned

1: L — {(ci, 9:)}, the set of all courses and their assigned GTAs, except course ¢
2: g « Assigned — val(c) /* Get the GTA assigned to course®/

3: Capacity(g) « Capacity(g) + Load(c) /* Update the capacity of the GTA */
4: Assigned — value(c) < nil /* Remove the course assignment */

5: Reset all the course domains to their initial arc-consistent domains

6: for each {¢,¢'} € L do

7. Assigned — value(d’) < ¢’ /* Re-assign the GTA */

8:  Filter-GTAs(¢, ¢') /* Update the domains of other unassigned courses */
9: end for
10: Call AC-1 /* Run arc-consistency algorithm */
11: return

the assignments instead of doing incremental unassignments [Bessiere, 1991]. This
is because the data structures that would be necessary to follow such an approach

would be heavy even though the CSP data structures for the GTA problem are light.



21

2.4 Assignment of classes to GTAs

The manager can also interactively assign courses to GTAs. Here the same CSP en-
coding is viewed from a different perspective. Unlike the “Assignment of GTAs to
Classes” perspective, here the manager is presented with a list of GTAs and corre-
sponding set of courses (i.e., the course domain in which the GTA is present). The
manager thinks that he/she is assigning a course to a GTA, but in the background, the
GTA is selected from the course domain and assigned to the course. Here, since the
same CSP is used, it is not necessary to perform initialization steps (see Section 2.2).
Whenever the manager chooses this view, the GTAs and their corresponding course
lists are obtained by Procedure 8. In this procedure, a domain for a GTA g is con-
structed by going through all the courses {ci, ca, ..., ¢, } and checking if the GTA g is
present in their domain. For each GTA g, its domain D, is constructed by including
all the courses in which GTA g is present. This done in Steps 3 to 10. Finally, all

the GTAs and their domains are displayed in Steps 11 to 13. In this perspective, for

Procedure 8 Display-GTAs
. C'«— {¢;}, the set of all courses in the CSP
: G «— {4g:}, the set of all GTAs in the CSP
: for each g € G do
for each c € C' do
/* Create domains for GTAs with courses as the domain elements */
if g € D. then
D, — D,U{c}
end if
end for
end for
: for each g € G do
Display ¢, D, /* Display the gta, g and its corresponding domain */
: end for
: return

© XN Wy

== = = =
=~ w N = O

any assignment or unassignment of courses, the same steps as outlined in Section 2.3

are followed. The only difference is that every time after assignment /unassignment of



22

GTAs to courses, the GTAs and the corresponding courses are obtained and displayed

as explained in Procedure 8.

Summary

This chapter reviewed the basic consistency algorithms that are required to maintain
a consistent CSP. We also discussed the assignment and unassignment procedures

that are required to filter GTAs from course domains.



23

Chapter 3

Design and implementation

In general, an interactive system for problem solving is built as a three-tier architec-

ture, with:
1. a visual interface for user interaction,
2. a back-end algorithm for problem solving, and

3. a database or file system for storing the data and saving partial or complete

solutions.

For better user interaction, the visual interface should be intuitive, easy to learn, and
capable of providing feedback on the system status so that users are in control of
the problem-solving process [Pu and Faltings, 2002]. The back-end solver algorithm
must account for the user’s input and integrate it into the problem encoding. The
algorithm should also be able to propagate the user decision to prepare the new
encoding for another input from user. Some of the other desirable features [Kopfer

and Schnberger, 2002] of the system are:

e The ability to present alternative ways of visualizing the problem.



24

e The ability to show to the human user the consequences of his/her actions.
e The ability to undo previous actions (in the GTAAP, it is variable assignments).

In this chapter we give the design and implementation details of the interactive sys-
tem, taking the above design principles into consideration. The chapter also explains
where the system fits our project. As stated in Chapter 1, interactive assignments or
selections is one of the main features of GTA project and uses the GTA and course
data collected from the GTA web interface.

We start with a short description of the GTA assignment project system architec-
ture, describe the overall interactive system, and finally the design and implementa-

tion details of the visual interface and the interactive solver.



25

3.1 GTA assignment project

The overall system architecture of GTA assignment project is shown in Figure 3.1

[Lim et al., 2004a). The current implementation consists of a web interface for data

Password Protected
Access for Manager
http://cse.unl.edu/~gta

Password Protected
Access for GTAs
http://cse.unl.edu/~gta

Visualization
widgets

]

Interactive Search

Other structured,
semi-structured,
or
unstructured DBs

Automated Search
Heuristic BT
Stochastic LS
Multi-agent Search
Randomized BT

Cooperative, hybrid ‘E N

Search Strategies

In progress

Figure 3.1: GTA assignment project system architecture [Lim et al., 2004a).

acquisition, a relational database for storing the collected data, a number of search
algorithms for problem solving, and an additional set of features to generate reports.
The interactive system is represented by the ‘Interactive Search’ component appearing

in the lower-right corner of Figure 3.1.



26

Figure 3.2 highlights the architecture of the interactive system. The web interface

!
Profile Informatiot i
|
1
1

Course Information \\/
""""""""""""""""" Database
(GTAs

o |

Course)

Figure 3.2: Global view of the architecture of the interactive system in GTAAP.

is accessible to both the manager and the students. When an applicant logs in, the
student interface is displayed and when a manager logs in, the manager interface is
displayed. While a student can access only his/her profile, the manager has complete
access to all the student profiles and the entire system. The manager can hire students,
set up courses, and define constraints between them. The information about the
students and courses is stored in the database. The web interface for interactive
selections also connects to the database to retrieve information about courses and
students, but it does so indirectly, through the interactive solver. The interface
directly connects to the database only to load any previously made assignments that
are stored in the database (see Section 3.3.4). A detailed description of the web

interface and the interactive solver is given in Section 3.2.



27

Before a semester begins, the manager loads the list of courses offered by the
department from a university-wide database. He/she may add new courses into the
system and define constraints between them. All the students who want to be a GTA
sign up online for an account. If a student already has an account, he/she simply logs
into the account, updates a profile and provides information about the courses that
he/she is enrolled in for a semester. A student’s profile includes information about
his/her personal details, undergraduate/graduate GPAs, deficiencies, GRE scores,
ITA qualifications and the courses he/she is registered in for the semester. Once all
the students fill their preferences, the manager hires potential GTAs (based on their
qualifications and other commitments) for the semester and proceeds to do interactive
selections.

The manager’s web-interface provides two operational modes for problem solving:
interactive and automatic [Lim et al., 2004a]. In both modes, the problem is modeled
as a constrained optimization problem. The web interface allows the applicants and
the manager to specify the information used for determining the consistency of a
solution. This includes the type and load of courses, the qualifications of the GTAs,
their hiring capacity, and their preferences for each course on a scale from 5 to 0 (‘5
Best choice’, ‘4 Favorite’, ‘3 Qualified’, ‘2 Able to handle’, ‘1 Avoid if possible’, ‘0
Cannot handle’). This information, in addition to the class schedule (retrieved from
a university-wide database), is stored in the database.

The GTAAP is implemented using MySQL as the back-end database, PHP as the

front-end for web interfaces, and Common Lisp and C++ for the search algorithms.



28

3.2 Interactive system

The interactive system is designed as a three-tier online client-server system (see

Figure 3.3):

Server environment

Client !
(browser) i

Port file K

~ Socket
< Y ctene

LISP command
prompt

Consistency Algorithms
Lisp functions for
Interactive selectior

CSP Model
GTAAP structures
<2l>

MySQL
Database

Interactive
selections
web- interface
(PHPscripi)

<:>TCP/IP connectic 4@EEEEp Function acce: <= Database connecti <—> File acces

Figure 3.3: Detailed view of the architecture of the interactive system.

1. An interface for user interaction (labeled ‘Interactive selections web-interface’

in Figure 3.3),
2. Algorithms for problem solving (labeled ‘Interactive solver’ in Figure 3.3), and
3. A database from which the GTA and course information is loaded.

The web interface provides the access to the interactive solver. At any time, the
interface displays an updated and consistent list of courses and GTAs from the CSP.
The interactive solver runs as a background daemon process and connects to the

database to retrieve the data. Whenever the interactive solver is started on the



29

server, it loads all the GTA and course information from the database. It also has the
ability to reload the updated information from the database anytime, upon a user’s
request.

The web interface connects to the interactive solver using the TCP/IP protocol.
Whenever a manager assigns (or unassigns) a GTA to a class through the interface, the
solver checks all the constraints, filters the domains, and sends the updated course
and GTA information of all the variables and domains, back to the web interface.
When the manager undoes or changes assignments, the domains of all the variables
are then recomputed from the initial data while maintaining any selections that were
previously made. An interactive selection on the web interface comes as a request
to the server and the updated domain information of the courses is sent back to the
client as a response. In the next section, we describe the individual components of
the system.

The database (MySQL) in the system is used to store information about the

courses, GTAs, and the course assignments from the web interface.

3.3 Interface for interactive selections

The web interface in the system acts as a visual interface through which the manager
interacts with the interactive solver. The manager’s actions regarding the courses
and GTAs displayed in the interface serve as input to the interactive solver, which
outputs new decisions directly to the interface as courses and their domains change.
The interface interprets the manager’s actions (e.g., assign, unassign, save, or clear)
and converts them into commands (see Appendix B) that are understandable by the
solver. The interactive solver executes the commands and sends the output back to

the interface. The web interface parses this output and generates a new web page



30

ready to receive the manager’s new actions.
In the following subsections, we describe the driver that is used to guide the user
actions, followed by the interfaces to assign ‘GTAs to classes’ and ‘classes to GTAS’

with other features.

3.3.1 Driver for user’s actions

Figure 3.4 shows the possible actions available to the manager from the ‘Interactive

selections’ option of GTA project’s interface. Each of the boxes is linked to a web

Login

|
{ v ! v

| GTAs | | Classes | Interactive selections | Search |
v
| |

Assign GTAs to Classeg Assign Classes to GTAS

= Web page

= Link to web page

= Feature

11

Figure 3.4: Possible actions for the manager under ‘Interactive Selections.’

page or a feature on the web page. The manager logs in from the login page using a
username and password. After proper authentication, the manager is presented with

different pages to do different tasks. These pages include:

e the ‘GTASs’ page to access and modify the GTA profiles,



31

e the ‘Classes’ page to add or modify course information in the system,
e the ‘Interactive Selections’ page to do interactive problem-solving, and
e the ‘Search’ page to perform automated search.

The web interface is built in HTML, PHP and Javascript. As shown in Figure 3.3,
the PHP scripts on the server interact with the database and interactive solver to gen-
erate HTML pages that are displayed on the manager’s browser. We use Javascripts
for creating drop-down menus and validating data on the client side. Some of the

attractive features of PHP are its ability to:
e Dynamically generate web pages,

e Connect and retrieve information from a different server, given its IP address

and socket number,
e Store user preferences during a session, and
e Possess other capabilities such as sorting and parsing.

The course and GTA data structures in the web interface are built as PHP objects.
All courses and GTAs are defined as classes. A course object encapsulates course
name, number, section, timings, load, and a set of GTA objects that are consistent
with the course. A GTA object encapsulates the GTA name, advisor name, speak
test information, ITA certification information, and a set of course objects (course
domains) in which the GTA is present. The object-oriented features enable easier
implementation of sorting features on the web interface. The objects can be sorted
easily according to the data stored inside the object. For example, all the objects can
be sorted, in ascending or descending order, according to the course name. Also, the

object-oriented features make the interface scalable. In the future, any new details



32

about the courses or GTAs can be added by modifying the required class structures

without re-implementing the code for sorting procedures.

3.3.2 Assignment of GTAs to classes

This perspective gives a course-centered view of the CSP. The web page displays
courses and the corresponding list of consistent GTAs in their domain. Figure 3.5

shows a snapshot of the perspective. Each row contains the course number, section,

Wl‘m_ Immmm" Intor et Explorer '-ﬁi‘ﬂ
fle Edt Mew Favorites Tooks  pelp ar
Ok~ O - @@ 6 P Fovortes 40 | 5. o FEZ Lm0 s

Ackbess | ] i fesos. unl.eduj~ghadsmaimansgst] l]'ﬂﬂ
| Spring 2004 o) [GTas ] Ciesses | [_eroctveselecson [ Search ]| [ SysAdme [ Logaut |
]
Interacive Selections Assign: GTAs to Classses Ciplicta Meni
. E As
e It

Compuier Scicnce Fundamentals

E 101

Referch Data & CSCE 101 Computer Science Funidamental .
CSCE10IL 002 Lahb W 025 — Nobody— »
| CeaScenarios | CSCE10IL 001 Lab 1030-12200 R 025 — Nobody— >
CSCE 105 151 Lak 1530-1620 M 025 — Nobody— ~|
Cara Selitiions OSCE 106 153 Tab 3430-1520 R 025 — Nobody— vl
- [Assion | CSCE105 150  Problem SolvmgwiComgputers  1330-1420 MWE 075 |— Nobody— »
CSCE.150 151 Tab 1230-1320 B 0.25 — Nobody— -
CSCE 150 152 Tab 1230-1320 T 025 — Mobody— ¥
CSCE 150 153 Lab 1530-1620 W 025 — Nobody— ¥
(_FriniPage | CSCE 150 1594 Lab 12301320 W 025 |— Nobody— |
-SUB 150 130 Inro te Computer Programming BO0-975 1 Sandwill Crpha -
Legend % . _"l
.Prbﬁsagmd Courses
Log of Actions:
8] oo oD intermet

Figure 3.5: Snapshot of perspective ‘Assign GTAs to Classes.’

title, timings, course load, and a list of selectable GTAs in its domain (in a drop-
down menu). The drop-down menu contains the GTA preference for the course, GTA

name, and the available capacity. The background of the row is shown in green if the



33

course has a pre-assigned GTA. Pre-assigned courses will have a fixed GTA assigned
to the course and thus the course variable will not be included in any consistency
algorithms. The page also contains an ‘Auto Assign’ option. When this option is
selected, the page is updated immediately when the manager chooses a GTA from
the drop-down menu, and propagation algorithms are launched over the unassigned
courses. If this option is not selected, the manager can do multiple assignments and
then he/she can manually press the ‘Assign’ button in the left frame of the page
to confirm the changes to the interactive solver. A log of the manager’s actions is

displayed at the bottom portion of the browser.



34

A course along with the GTAs present in its domain is shown in Figure 3.6.

Bla Edt Vew Favoites Joos e L4

Qosck » O [ @ fh Poewch Grevos & -l UREESLDEE S
Adrnss |‘] httpifesce. und.eduf~ghademo/manages | E Go
'LS__p_r_l_n_g_?UlH E | GTAs || Classes ] || Internctive selection || Search ]| || Sys Admin J | Ln_guuijl
S
Iuteractive Selections Assign: GTAs to Classses Dptiens Menu

I GTAs o Classes
) Clagges 1o GTAs

[# Auto Assign 3

*undamentals 1A00-15

Keep Scenarios | 1330-1520 W 025 |5-BaymonFReagan(0) [

Cleor Scenonos | CSCE101L 001 Lab 1030-1220 R 025 |5—BaymonPeagan (i) =
CSCE 105 151 Lab 1530-1620 M 025 |— Mobody— i»
CSCE 105 153 Lab 1430-1520 R 025 A—miy{;m
CSCE 103 150 Problem Sclang wiC omputers 1330-1420  MWF 075 5~ Goyen Elsy (1)
CSCE 150 151 Lab 1230-1320 M 025 izmzﬁﬁ:eﬂ&ss)
C3CE 150 152 Lab 1230-1320 T 025 4-Mu|ﬁ.amnam i
CSCE 150 153 Lab 1530-1620 W (.25 d

Prin Pags CSCE 150 154 Lab 1230-1320 W

RN T R 2 —Sensel Earl (1)
Intro to Comptiter Programmmg ¥ ] 2=Tharsan Mirna (1)
Legend CSCE 155 151 Lab 1030-1220 M 033 1 —Boshel Candra (0 66) v
lPre-Assi,gned Courges (%] " >
Fiftered out GTAs -~
. & —Baymon Reagan (0} r
Log of Actions: i 3 [
. - 3-Kraushaor Berna (0)
8 "Problem Solving wiComputers’ 15 unassigned 1~Miskiewicz Jemie (0)
T & ; i ¥ 1 —Gillie Antanina (0
7 'Fraushaar Berna' 1z assigned to course 'Comm. Networks 1 —Kilker Lorlee (1)
6 "Whakirwnre Tereie” 15 assioned to conres "Desen and Anabesin of Aloanthms’ e
&] cons ® Intemer

Figure 3.6: Domains of courses when assigning.



35

Depending on the GTAs’ input, each course has a certain number of possible GTAs
in its domain. A GTA can be present in more than one course domain. These GTAs
are displayed in sorted order according to the GTA’s preference for the course. A
course, its information, and the corresponding GTAs present in its drop-down menu

are shown in Figure 3.7. The GTAs displayed in the drop-down menu are divided into

Course name Course load
S - "\H— — ,_A_
F:'EC"E 101 001 Computer Science Fundamentals  1400-1515 TR 0.66 | 4—Beuchler Sherron (0.34) v
—_— - — Hobgdy —
N Avaifabls GTA
Course number, Course timings and days '/v?f‘i::m;mea (0 66)
section :-E:E!::uhﬁuéﬁa ml s:,’]. :
. - i
Assigned GTA PRt P 8

33— Chiaro Ceolle (0.75)

i 1 - Glescock Mirta (0.75)
Consistent GTAs sy poh

List of available GTAs for assignment- J:g::;::ﬂmﬂ i
i—

mblie
GTA Preference for course ice

GTA name = Sandhvill Orpha (1)
3= Thomsbury Beaulsh (1)

Available GTA capacity 1= Wik Loerine (1)

Filferad oul GTAs
- J _::%ﬁqﬁu%%ﬂ_.
= ure a
Inconsistent GTAs || T oo neme Coon

List of busy GTAs who cannot be assigned L 3:;‘3?;?;33::?;1%25}

Figure 3.7: An example of a course and a list of consistent GTAs present in its domain.

‘Available GTAs” and ‘Filtered-out GTAs.” ‘Available GTAs’ are the ones who can be
assigned to the course, and ‘Filtered out GTAs’ are those whose remaining capacity
is less than the course load. These GTAs are eliminated from the course domain by
constraint propagation. In each portion, the GTAs are listed in decreasing preference
order, as a primary sorting criterion, and then in increasing lexicographical of the
GTA'’s last name, as a secondary criterion. Next to the name, the current capacity
of each GTA is displayed (which is the hired capacity of the GTA discounted by the

load of his/her other assignments).



36

A snapshot of the manager’s browser after a few assignments is shown in Fig-

ure 3.8. The manager can assign a GTA to a particular course by selecting from the

Wm_mm DEMO) - Microsoft Internet Explorer \;JLE.‘E
Blo Edt Wew Fgvortes Jods Help T
Qosk = O - W F 0 Poeath frravones @ 3= s EE=2Z2 L0 3

Auimes | ] hitpifesce. un edujgtademolmanages] B>
| Sprina 2004 v} [GTAs] Ciasses || [ intersctveseiecton | Search || [ SysAdmin || |[Logout]
Interactive Selectons Assign: GTAs to Classses Cptions Menu F
GTAsto Classes el datto Asagn
Clagzas o GTAs
|' (=t f 811 gl g
Refetch Data & i 1400-151°
[ KeepScenarios | CSCE I01IL 002 Lab 1330-1520 W 025 [5-Baymon Raug&n 0 ]
[ Clear Scenanos CSCE101L 001 Lab 1030-1220 R 025 (5= B&',,;;D';;ﬁ;ags‘n“in"}' =
CSCE 105 151 Lab 1530-1620 M 025 [3= anperl.uu (s |
Curvent Selections CSCE 105 153 Lab 1430-1520 R 025 |3-Hopperluci{os) v
CSCE 105 150  Problem Selving w/Computers 13301420 MWF 075 |5—Gluc Edins (0.25) vl
CSCE 150 151 Lab 1230-1320 M 025 |5=DevoraJomes (0.75) v
Cloar CSCE 150 152 Lab 1230-1320 T 025 [—MNobody— ¥
CSCE150 153 Lab 1530.1620 W 025 [—Mobogy— v
[ PrmPags ] CSCE150 154 Lab 1230-1320 W ' —
Intro to Computer Programming BO0-915 TR i ha
Legend CSCE 155 151 Lab 10301220 M 0.33 |—Nobady— e] e
.Pr: Assigned Courses (%] 1 | |
Log of Actions: | Clear Log
12. 'Devaora James' 12 assigned to course "Lab’
11, "Glue Edns' 12 assigned to course 'Problem Solnng wiComputers'
— 10 "Hormer Tam' 15 asmened to conrse "Tahb' - — A
&] ane © Intermet

Figure 3.8: Assignment of GTAs to Classes.

drop-down menu. Whenever a GTA is assigned to a course, constraint propagation
(which involves checking all the associated unary, binary and non-binary constraints)
is performed and all the course domains are automatically updated according to the
assignment. This is done so that the arc-consistency of the CSP is maintained. All
inconsistent GTAs are filtered from course domains and the manager is always pre-
sented with an updated and a sorted list of possible consistent choices. This constrains
the manager to always do a consistent assignment.

The page is also equipped with sorting features to provide better assistance to the



37

manager. These features allow a manager to sort columns in ascending or descending
order. The sorting functionality is implemented in PHP. Figure 3.5 shows the column
names displayed as hyperlinks to PHP scripts. These scripts retrieve the data from
the interactive solver and sort them according to the column name before generating
the HTML page. A symbol (‘A’ for ascending and ‘¥’ for descending) after the sorted

column name indicates the sorting order.



38

The page also has flexibility to allow the manager to control the display on the
page. The interface provides an ‘Options menu’ from which the manager can select
or unselect the column names. This allows the manager to view only selected column
names in the interface. The menu is built using Javascript and the manager’s options
are stored in PHP sessions'. These options are sent to the web interface when the
manager selects or unselects a column name in the menu. The PHP script checks
the session information to read the manager’s options and generates an HTML page
with or without the selected column. A snapshot of the menu is shown in Figure 3.9.

Here, the course timings and days are not displayed in the interface since the manager

B TGTAP manawst interface (DEMO) - Microsalt Inter et Explorer =akd
Ele  Edl Wew Fawsites Took ek ir
Qexck » O (9 2 B LPOsewdh Trrvokes & 3- o B FEwZ2Ls008 3
A | ) g fcsco i bt g x| &8

_éS_pvnﬂg 2004 E | GTAs | Classes || || imemcivessiecion || Sesch | | Sysadmin | | Logout |
i
Interactive Selections Assign: T As to Classses Ciptions Memy [
[ Class
Assign B Auto Assi
| GTAsioClassas | _ e [# Section
Claases 1o GTAs -8 ] Load i flE | E Description

[] Time

Refetch Data & i : Leduae Rena [J Days

| kespScepmios || CSCEI0IL 002 Lab 0.25 | —HNobody — ] Load

| ClearScenarios | CSCE10IL 001 Leb Nobiod, [ Assigned GTAS
CSCE 105 151 Lab 0.25 | — Nobady — : o
CSCE 105 153 Lab 0.5 | — Nobody— Auelt Sclectimt
CECE 105 130 Preblem Sobang wiComputers 075 |—Mobpdy — e |
CSCE 150 151 Lab 025 — Nobody— v
CSCE 150 152 Lsb 0.25 — Nabody— ~

_ CSCE 150 153 Lab 025 |— Nobody — 1] |
Pt Pags <l - -
gl © lnternet

Figure 3.9: Options menu.

unselected the two options in the ‘Options menu.’

I'PHP sessions are used to store information about user preferences on the server side.



39

3.3.3 Assignment of classes to GTAs

The web interface for ‘Assignment of Classes to GTAs’ is shown in Figure 3.10. This

{27 GTAP manager intarface (DEMO) - Microsoft Intesmet Explorer ==&
Fe Et ew Favoritss Tooks bl ar
Qb - @ - [& @ 6 Pseeh Srrowter @ 5 5 B FE"ZOOEnNE S

Ackbess | ) bt ffeses.unledu~otadsmalmanager] | Be
| Spring 2004 o) [GTas ] Ciesses | [_eroctveselecson [ Search ]| [ SysAdme [ Logaut |
al
Interacive Selections Assign: Classses to GTAs Ciplicns Meni
ey
[oomnom )| T o e
Noamied  Advisor "0 IIA Capecty pe :
Refetch Data & ' ; ( 35 1ag.153 1%
Guth__ Caoo L
! ay Efnanca i =
Melie  Kleefisch S Va3 - ]
o Baymon  Amssa . T 05 T ""J
Crrrent Seloctians Feagan  Sketupa -
Esuchler Lawands . : 1 T f]
Save Sherron  Hinteen L
'_ Edlet Febeidad 1 "J
Roger Greyoach
e Boshell  Vonme T 066 T . "'J
(_Frint Page | Candra  Mrcgohan : -
Breceda Cednck . ) 1 T "J
Legend Margrett  Bucskeo o [
.Prbﬁsagmd Courses (%] »|
Log of Artiong:
8] o o internet

Figure 3.10: Snapshot of perspective ‘Assign Classes to GTAs.’

page design is similar to the ‘GTAs to Classes’ page, but here the GTA information
and corresponding courses are displayed. The GTA information includes the GTA
name, advisor name, speak test, ITA qualification, GTA capacity, and the courses
to which the GTA is assigned. The drop-down menu contains the courses to which
the GTA can be assigned. The drop-down menu also contains the GTA preference

towards the course, the course number, section number and the course load.



40

Figure 3.11 shows an example of a GTA and the list of courses present in which

he/she is present. Like the GTA menu described earlier, the course menu is divided

Advisor Courses assigned to GTA
AT A,
E;:f:::’ Eﬁf’ T T 024 252D-001 -
{ ] . —— Mo Course fUnessngr: all courses) —
GTA name Speak test, ITA qualification, Possible Assignments
H 2-[156H-150]-0.25~ Col Scill
GTA capacity { i e e
1 = [990-004] - 0.25 - Seminar-Software Cuality Met
. . T Ruled-0
Possible Assignments / a7 (41341 3001]- 05~ Daisisasa Syswenia
Courses that are available for Sl ekt
[ 3-[166-150]-0.75 - Intra Comp Scill
ass"gnmenr ro G TA 3 ~T{L23[I-EI]‘I% =1~ Computer g:gm?zahun
= 3-[451-851-001] - 0.5 - Operak tems i
Options Ruled-Out 2 -%351-01:1 ]- u.é = e E:g?nifring &
Courses that cannot be assigned ST Rt Lo
’_/-“'1 - umancal Anafysis |

| EE"Human-Computer Interaction

GTA Preference for course«1 e A E B

CO urse nu mber _ Section :;,(/ 5-003] - 0.5 - Spac Topics-ntarmneat Prog

Course load
Course name

Figure 3.11: An example of a GTA and a list of courses in which he/she is present.

into ‘Possible Assignments’ and ‘Options Ruled-Out.” All the courses that have a
course load less than the GTA capacity can be assigned to a GTA. These courses are
listed as ‘Possible Assignments.” The remaining courses that cannot be assigned to a

GTA are listed as ‘Options Ruled-Out.’



41

The ‘Options menu’ and sorting features in the interface are similar to the features

in the ‘GTAs to classes’ interface. Because the two perspectives are derived from the

same CSP, an assignment made in one of them is immediately reflected in the other.

Figure 3.12 shows the two perspectives derived from the same CSP. Thus, the manager

is always presented with a consistent CSP in both perspectives.

T e A o
i = A e e -5 0 SAEYTREREEG

Rl s

Lepsd S M e
| LT L
[FTEE TS
1 Troes ot e @
2 P e = gl 4 s S Pl

Course-certerad view

= Ealem]) Coosamie Jma] (=) (=)

B R s
E dai i

. M=

M i pe Ay D e E

Qs 0 Hld il Soed fresim @ -0 BET"BIEOERS
L e nlds

H EalEem] [ eteswes [ § (e § [l

=
i Classiad bs GTAs T 1

= B vl

Legesd. 9 v el st b promee e o 1 - [
Bl b Cor 8 Balie Tt g s s Dk | PHLR 06
= e Ey ;

T4 problem modeled as a CEF

Figure 3.12: Dual perspective for decision making.

3.3.4 Other features

Each of the two perspectives has the following additional set of features. These

features allow the manager to save the current session and retrieve them at a later

time.



42
3.3.4.1 Confirming assignments
By default a manager can assign one GTA to a course at a time before consistency

checking is launched. The ‘Assign current selections’ feature allows him/her to do

multiple assignments at the same time before starting constraint propagation.

3.3.4.2 Saving scenarios

Using this feature the manager can give a friendly name and save all the current
assignments in the database so that he/she can explore alternative assignments. Using

the name given to the CSP, the web interface creates a Lisp command
(save-current-csp *php-stream* csp-name)

and sends it to the interactive solver for execution. This function saves the CSP in
the database. A detailed description of all Lisp commands is given in Appendix B.
The structures of tables defined in MySQL database are shown in Tables 3.1

and 3.2. Table 3.1 stores all the names of saved scenarios along with the unique

Table 3.1: Database table where names of alternative scenarios are stored.

Assignment-id | Assignment (scenario) name Year | Semester
1 Trial on Fri Aug 13 2004 23
2 Trial on Fri Aug 14 2004 23

Table 3.2: Database table for storing the details of an alternative scenario.

Assignment-id | Course-id GTA-id
1 32 21

1 34 32
2 34 42
2 24 41




43
id generated by the database, the year, and semester. Table 3.2 stores the course
and the GTA ids. The course-id and GTA-id are used to link to the GTAAP course
database tables that contain complete course and GTA details.

The manager can save any number of assignments and can resume the saved
selections at any time later as long as the list of courses has not been modified in the
database. Once all current selections are saved, the system is initialized again from
scratch and a new CSP is displayed. All saved assignments are displayed in a drop-

down menu as shown in Figure 3.13. The menu is located in the left-hand corner of

the page.

e
fle Edt Yew Favorites ook  pwelp ¥
Obxk - O - B[R R P Srreote: @ 3 5 W HET"ZL2EN 3
Akbmas | ) ot feane, unl edu~gtadamoimarsget] :J =

| Sping 2004 [w)| [GTAs][ Classes || [ marscvesslacson || Seerch || [ SysAdmn | |[ Logout |
- “.
Tuteractive Selectons Axsign: GTAx to Classses Ophone heny 1
: Ass | [ Auto Assign
.: GTAz o Claszes B
Classes o GTAs |
TR e : agl TIPS £ e6a
CSCEI0IL 002 Lab 1330-1520 W 025 5-Baymonfsegen(l)
. 1 [ty S, - —
[ Cewscormmss | oz 1 I 10301220 R 025 (5o v
CECE 105 151 Lab 1530-1620 M 025 3=Hopperliec(05) -
e e CSCE 105 153 Lab 1430-1520 E 0:25 | 3-Hopperlec (05 "
Current Selections irch : :-l
FYrE CSCE 105 150  Problem Sohmg w/Computers 1330-1420 MWEF 075 |[5—GlecEdrs {1:25) :-l
Son] CSCE150 151 Lab 12301320 M 025 5-DevomJames(075) v
CSCE150 152 Lab 12301320 T 025 — Mobody— vl
C3CE 150 153 Lab 1530-1620 W 025 — MNobody— :]
Coabaad CSCE150 154 Lab 12301320 W 025  — Nobody— v
Faved Scenancs: SLE 130 I e omputer Programaming { 1 Sandwl Orpha
_ CSCE155 151 Lab 1030-1220 M 033 — Nobody— » o
e L —— -
E ; (] !;2.|3|.34 " 2
cenano Dec x 4
Scanano Dec § 2004 Log of Acrions: "
Trnl assignment Dec 7 12 “Devora James' is assigned bo course 'Lab’
W Fre- Assigned Courses 11 "Gluc Edris’ 2 mezigned to course "Froblem Solving wiComguters'
10 “Hepeer Tuei® e sesionad ts soures Tk’ 2]
& O Intermet

Figure 3.13: Drop-down menu to save/retrieve assignments.



44

The saved assignments are retrieved by selecting the name of the assignments
from the drop-down list. As shown in Figure 3.3, the web interface directly connects
to the database to retrieve the names of all saved scenarios. After selecting the name
of saved assignments, a new CSP is created and the GTA assignments are made by
procedure Procedure 5. The interface issues a warning message to save any current
assignments before retrieving the CSP from the database. All current assignments

are lost unless they are saved in a scenario.

3.3.4.3 Clearing stored scenarios

This feature clears all the current assignments by initializing the CSP again and

running the consistency algorithms.

3.3.4.4 Re-fetch data & keep scenarios

During the interactive assignments, new GTAs or courses can be added or removed at
any point in time. This feature gives the manager the ability to re-fetch the updated
or new data from the database while keeping the current assignments. Whenever the

manager uses this feature, the following sequence of steps are performed:
1. Save the current assignments.
2. Reload the GTA and course data.
3. Initialize the CSP.
4. Re-established maintained assignments.

5. Propagate constraints by running the consistency algorithms.



45

3.3.4.5 Refetch data & clear selections

This feature is similar to the ‘Re-fetch data & keep selections’ feature, but the only
difference is that all the saved and the current assignments will be cleared. The CSP
of the GTAAP instance must be rebuilt when some of the hired GTAs are removed
from the database or new ones are hired. Thus, it becomes imperative to remove

clear the saved assignments that might contain the deleted GTA.

3.4 Interactive solver

The interactive solver is basically a set of Lisp functions that execute the interactive
selections. The solver is built over the existing GTAAP’s underlying data structures.
As shown in Figure 3.3, the solver contains an implementation of a socket-listening
interface that provides access to the solver and a set of Lisp functions that do inter-
active selections using the basic data structures designed for the GTAAP. The GTA
data structures, built using object-oriented features of Lisp, contain implementation
of a CSP model for the GTAAP. While the web interface for interactive selections
provides an abstract view of the GTAAP, the interactive solver holds the GTAAP as
a CSP. It does the actual constraint checks, domain filtering and course assignments
in the CSP. Whenever a manager makes an assignment in the web interface, a full
arc-consistency is executed over the unassigned variables to filter their domains in
the CSP using Procedure 5.

The solver runs as an independent process on a given socket. During the ini-
tialization, the socket listener module checks for an available free port and starts a
listener on that port. This port number, which is written to a text file, is used for all
communications with the web interface. This text file is accessed by the web interface

(PHP script) to determine the port number on which the process is running.



46

The solver must run as a background daemon process for faster and more efficient
interaction with the web interface. A Lisp program runs from the Lisp environment.
To make the solver run continuously as a background process, we have used a utility
called ‘detachtty’ [det, 2001]. This utility can make any interactive program on Unix
machines run in the background. ‘detachtty’ allows a user to run interactive programs
as background processes, and to connect to these processes over the network. It is
mainly designed for long-running processes. The main components of the interactive

solver are the socket listener and the consistency algorithms

3.4.1 Socket listener

As mentioned in Section 3.2, this module acts as a gateway to the interactive solver. It
accepts and sends any information from a client, usually the web interface. It listens
to requests on a given socket and calls appropriate functions. The socket listener
retrieves the output (if any) of executed function and sends the data back. All the
requests are accepted in the form of calls to Lisp functions. Although the listener
can handle any call to a Lisp function, the common requests that are sent by the web

interface are listed in Table 3.3.



"wondLosop 107 pue spuewmod dsry ¢ ¢ o[qe],

Lisp commands

Description

(in-package gta)

Makes sure the control is in gta package and not in user package.

(load-initialize-csp)

Creates a CSP and initializes it with data from current year and
semester.

(assign-gta *php-stream* gtaname course *current-cspx*)

Assigns a GTA to a course in the *current-csp*.

(check-assignment *php-stream* course *current-cspx*)

Checks if a given course is assigned with any GTA.

(check-year-sem year semester)

Checks if the *current-cspx is of a particular year and semester.

(display-gtas *php-stream* *current-cspx*)

Retrieves all the GTAs and the course domains in which they are
present.

(display-courses *php-stream* *current-csp*)

Retrieves all the courses and the GTAs present in their domain.

(load-assigned-courses *current-csp*)

Loads all the previously assigned courses, from the variable
*assigned-courses*, into the *current-csp*.

(process-nc *current-csp*)

Makes the current CSP node-consistent.

(ac-1 *current-cspx*)

Makes the current CSP arc-consistent.

(save-current-csp *php-stream* csp-name)

Saves the current CSP into the database with a given name.

(make-current *php-stream* csp-name)

This method loads a saved CSP from MySQL database and makes
it the *current-cspx.

(clear-saved-assignments nil)

Clears all the saved assignments in the MySQL database.

Ly



48

3.4.2 Consistency algorithms

As explained in Section 3.3, ‘Interactive solver’ is a set of routines that together
do the interactive assignments. It has the core logic to assign, unassign, and check
constraints. The methodology and the algorithms are explained in Chapter 2. The

function names are listed in Table 3.3. The module includes functions to:
1. Retrieve courses and the GTAs present in their domains.
2. Retrieve GTAs and courses in which they are present.
3. Assign a GTA to a course (Procedure 5).
4. Unassign a GTA from a course (Procedure 7).
5. Perform node-consistency (Algorithm 2).
6. Perform arc-consistency (Algorithm 4).
7. Refetch data from database.

8. Save/clear/retrieve assignments from the database.

Summary

In this chapter we described the design and implementation of the interactive system,
which is designed as a three-tier architecture with a web interface, a constraint-based

interactive solver, and a relational database.



49

Chapter 4

Conclusion and future work

In this project, we have designed and implemented an interactive system for solving
the GTAAP. We have used propagation algorithms for maintaining the consistency
of the problem at any time. These basic algorithms of Constraint Processing proved
to be exactly what is needed to effectively support a human user in the difficult task
of assigning GTAs to courses in our department. The success of the system has been
replicated in other departments at the university. Our approach can be extended in

many directions. We list a few of these directions below:

1. The interactive solver can be linked to other search algorithms and with the
help of a user, it can guide a search process through the search space effectively

and efficiently.

2. The interface can interact with the user at various stages of the search process
and take hints from the user and/or the automated search algorithms to avoid

livelocks/deadlocks, check termination conditions, etc.

3. The socket listener module in the interactive solver can also be used in the

development of visualization tools to view the solution space of the problem.



50

4. The partial solutions that are obtained during the interactive assignments can

be compared and combined into complete solutions.

5. Finally, the interface can be further modified so that the manager can make
an initial set of assignments, and can let the search algorithms take over the

problem and to find the remaining assignments.



51

Bibliography

[Bartak, 1998] Roman Bartak. On-Line Guide to Constraint Programming.
http://kti.ms.mff.cuni.cz/~bartak/constraints, 1998.

[Bessiere, 1991] Christian Bessiere. Arc-Consistency in Dynamic Constraint Satisfac-
tion Problems. In Proc. of AAAI-91, pages 221-226, 1991.

[det, 2001] Detachtty: Software to attach or detach an interactive processes from the
network http://packages.debian.org/stable/admin/detachtty, 2001.

[Glaubius and Choueiry, 2002a] Robert Glaubius and Berthe Y. Choueiry. Con-
straint Modeling and Reformulation in the Context of Academic Task Assignment.
In Working Notes of the Workshop Modelling and Solving Problems with Con-
straints, ECAI 2002, Lyon, France, 2002.

[Glaubius and Choueiry, 2002b] Robert Glaubius and Berthe Y. Choueiry. Con-
straint Modeling and Reformulation in the Context of Academic Task Assignment.
In Poster presentation at the Fifth International Symposium on Abstraction, Re-
formulation and Approzimation, SARA 2002, 2002.

[Glaubius and Choueiry, 2002¢c] Robert Glaubius and Berthe Y. Choueiry. Constraint
Modeling in the Context of Academic Task Assignment. In Pascal Van Henten-
ryck, editor, Proceedings of 8" International Conference on Principle and Practice
of Constraint Programming (CP’02), volume 2470 of Lecture Notes in Computer
Science, page 789, Ithaca, NY, 2002. Springer Verlag.

[Glaubius, 2001] Robert Glaubius. A Constraint Processing Approach to Assigning
Graduate Teaching Assistants to Courses. Undergraduate Honors Thesis. Depart-

ment of Computer Science and Engineering, University of Nebraska-Lincoln, 2001.



52

[Guddeti and Choueiry, 2004] Venkata Praveen Guddeti and Berthe Y. Choueiry. A
Dynamic Restart Strategy for Randomized BT Search. In Mark Wallace, editor,
Proceedings of 10" International Conference on Principle and Practice of Con-
straint Programming (CP 04), volume 3258 of Lecture Notes in Computer Science,

page 796, Toronto, Canada, 2004. Springer Verlag.

[Kopfer and Schnberger, 2002] H. Kopfer and J. Schnberger. Interactive solving of
vehicle routing and scheduling problems: Basic concepts and qualification of tabu
search approaches. In Proceedings of the 35" Annual Hawaii International Confer-
ence on System Sciences (HICSS 02), volume 3, page 84. IEEE Computer Society,
2002.

[Lim et al., 2004a] Ryan Lim, Venkata Praveen Guddeti, and Berthe Y. Choueiry.
An Interactive, Constraint-Based System for Task Allocation in an Academic En-
vironment. In Mark Wallace, editor, An Interactive, Constraint-Based System for
Task Allocation in an Academic Environment 04, volume 3258 of Lecture Notes in

Computer Science, page 817, Toronto, Canada, 2004. Springer Verlag.

[Lim et al., 2004b] Ryan Lim, Venkata Praveen Guddeti, and Berthe Y. Choueiry.
An Interactive System for Hiring and Managing Graduate Teaching Assistants. In

Conference on Prestigious Applications of Intelligent Systems (ECAI 04), pages
730-734, Valencia, Spain, 2004.

[Mackworth and Freuder, 1984] Alan K. Mackworth and Eugene C. Freuder. The
complexity of some polynomial network consistency algorithms for constraint sat-
isfaction problems. Artificial Intelligence, (25) 1:65-74, 1984.

[Pu and Faltings, 2002] Pearl Pu and Boi Faltings. Effective Interaction Principles for
User-Involved Constraint Problem Solving. In Second International Workshop on
User-Interaction in Constraint Satisfaction, the Fighth International Conference

on Principles and Practice of Constraint Programming, September 2002, 2002.

[Zou and Choueiry, 2003a] Hui Zou and Berthe Y. Choueiry. Characterizing the Be-
havior of a Multi-Agent Search by Using it to Solve a Tight, Real-World Resource

Allocation Problem. In Workshop on Applications of Constraint Programming,
pages 81-101, Kinsale, County Cork, Ireland, 2003.



93

[Zou and Choueiry, 2003b] Hui Zou and Berthe Y. Choueiry. Multi-agent Based
Search versus Local Search and Backtrack Search for Solving Tight CSPs: A Practi-
cal Case Study. In Working Notes of the Workshop on Stochastic Search Algorithms
IJCAI 03), pages 17-24, Acapulco, Mexico, 2003.

[Zou, 2003] Hui Zou. Iterative Improvement Techniques for Solving Tight Constraint
Satisfaction Problems. Master’s thesis, Master’s thesis, Department of Computer
Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, December
2003.



Appendix A

File and Data structures

This appendix describes the file and data structures used in the interactive solver.

A.1 File structure

The following tree structure displays the directory and file structure:

-GTA-+
|-- bin --+
|-- detachtty-src --+
| |-- Source files for detachtty.
| -- startdaemon.pl
|-- configure-load.lisp
|-- detachtty
-- web-interface --+
|-- ac.lisp
|-- configure-load.lisp
|-- global-variables.lisp
|-- loadgta.lisp
| -— makecsp.lisp
|-- misc-funcs.lisp
| -- savecsp.lisp

| -— showcourses.lisp

o4



55

| -— showgtas.lisp

|-- sock-listener.lisp

|

|

I |-- testcsp.lisp
I |-- testserv.lisp
|

—-- Files.list

In the above tree, the directory ‘GTA’ also contains the files and directories (not

shown) related to GTA package. The content of each directory is described below:

e bin: This directory is used to hold external utilities that are used to start and

run the interactive solver. For now it contains compiled ‘detachtty’ utility.

e detachtty-src: contains the source code for compiling the detachtty utility for

various operating systems.

e web-interface: contains the Lisp files that load the GTA data structures.
The content of each file is described as follows:

e qc.lisp: contains an implementation of arc-consistency algorithm and related

functions.

e configure-load.lisp: a configuration file that contains default values of global

variables and system dependent path information to the compiler and log files.

e Files.list: contains paths to all the files present in the web-interface folder. This

file is included in the make file that is used to compile the overall GTA package.
e global-variables.lisp: contains a list of global variables that are used in the solver.

e [oad-gta.lisp: contains functions to load the GTA package, initialize the CSP,

and run consistency algorithms.
e makecsp.lisp: the start up file that compiles and loads the CSP.

e misc-funcs.lisp: contains miscellaneous functions that are used in other func-

tions.

e savecsp.lisp: contains functions to save the current assignments in the database.



o6

e showcourses.lisp: contains functions to send the course and corresponding GTA
information when PHP scripts (GTAs to Class assignment in the web-interface)

send requests.

e showgtas.lisp: contains functions to send the GTA and corresponding course
information when PHP scripts (Class to GTA assignment in the web-interface)

send requests.
e sock-listener.lisp: contains implementation of the Lisp-based server.

e startdaemon.pl: a perl script to start the interactive solver as a daemon process

using the ‘detachtty’ utility present in the directory.

e testcsp.lisp: contains the default values values of global variables and system-
dependent path information (as described in configure-load.lisp file) and also
calls various functions to initialize the CSP and load GTA data. This file can

be used to test if the data is loading as expected.

e testserv.lisp: contains calls to various functions to initialize the CSP, load GTA
data and start the server. As explained in Chapter 3, the detachtty utility is used
to run the GTA daemon process as a background process. As a result, it may
not be possible to view run-time errors when the manager makes an interactive
selection. This file is used to start the server as a foreground process. This
allows the user to view various Lisp function calls whenever the user interacts

with the web interface.

A.2 Data structures

In this section we describe the data structures used to store the assignments and

history of assignments/unassignments.

A.2.1 Assigned Courses

All the course assignments are temporarily stored in a structure called *assigned-coursesx*

before they are permanently stored in database. The structure is described as follows:



o7

*xassigned-courses* = ((g-1 c-1)
(g-2 c-2)

(g-n c-n)
)

The list, (g-1i c-1i) is maintained as a GTA course pair where g-i is the GTA who

is assigned to course c-i. An example of the list is,
(("Mary" 105-150) ("John" 101L-001))

This structure is mainly used when a course is unassigned.

A.2.2 Log of Assignments/Unassignments

Every time a course is assigned or unassigned a text message indicating the action is
stored in a list called *messages*. This list is used to store the history of actions for

future reference. The structure of the list is as follows:
xmessages* = (m-1 m-2 ... m-i ... m-n)

Here, m-1i is the text string and the overall structure holds all the text strings. The

order of the messages is also maintained. An example of the list is,

("John is assigned to course Computer Science Fundamentals"

"Computer Problem Solving is unassigned")

This structure is accessed by PHP scripts to display the log of user actions on the

visual interface.

A.2.3 Communication with PHP scripts

The variable, *php-stream* is used for communication between PHP scripts (web-
interface) and Lisp code (interactive solver). This variable is defined as a socket
stream in the file sock-listener.lisp file. Any information written over to this variable
from Lisp environment will be sent to PHP scripts through TCP/IP protocol. For
example, the following print message in Lisp code sends the string, ‘Test message:
10" sends to PHP script.

(format *php-stream* "Test message: “a " 10)



o8

A.3 Variables and functions

In this section, we review the functions and the internal function calls in the system.
The variables used in the interactive solver are described in Table B.1. The following

sections list the functions present in each file.

A.3.1 ac.lisp
ac-1 c¢sp [FUNCTION]

Implementation of arc-consistency algorithm.

revise vari varj constr [FUNCTION]

Used by the arc-consistency algorithm to filter inconsistent GTAs.

get-constraints  csp [FUNCTION]

Used by the arc-consistency algorithm to retrieve binary constraints in
a given CSP such that the variables involved in the constraint are not

assigned and the domain of any variable is not empty.

copy-current-domains csp [FUNCTION]

Used during the initialization phase(after executing the arc-consistency
algorithm) to copy the arc-consistent GTAs in the current-domain to the

initial-domain.

get-all-vars-bin-constraints csp [FUNCTION]

Used by copy-current-domains function to retrieve all the binary con-

straints in a given CSP.

A.3.2 loadgta.lisp

execute-func  function-call [FUNCTION]

Executes a given function and returns error message if the function call
fails. Used as a wrapper function to check errors so that the system does

not crash.



99

load-initialize-csp  stream [FUNCTION]

Creates a CSP and initializes it with data from current year and semester.

check-year-sem year semester [FUNCTION]

Checks if the *current-csp* is of a particular year and semester.

A.3.3 misc-funcs.lisp

get-gta gta-name [FUNCTION]

Retrieves the GTA object, given GTA name.

get-course key [FUNCTION]

Retrieves the course object, given a course symbol.

A.3.4 savecsp.lisp

get-is-id csp-name [FUNCTION]

Retrieves the actual database generated id (unique) corresponding to the

given user-friendly csp name.

save-current-csp  stream name [FUNCTION]

Saves the current CSP into the database with a given name.

load-assigned-courses  stream name [FUNCTION]

Loads all the previously assigned courses, from the variable *assigned-courses*,

into the *current-cspx.

make-current  stream csp-name [FUNCTION]

This method creates a CSP *current-csp* and makes the assignments

saved in the database.



60
clear-saved-assignments stream [FUNCTION]
Clears the assignments (in the current year and semester) saved in the

database.
clear-all-saved-assignments  stream [FUNCTION]

Clears all the assignments stored in the database.

get-saved-csps  stream [FUNCTION]

Retrieves all the CSPs that are stored in the database (This function is
called from the PHP script).

A.3.5 showgtas.lisp

save-course-assignment gta-name course-num-section [FUNCTION]
Saves the GTA assignment to a given course in the *assigned-courses*
structure.

get-assigned-courses gta-name csp [FUNCTION]

Retrieves all the courses to which a GTA is assigned.

get-possible-courses gta-name csp [FUNCTION]

Retrieves all the courses in the domain where the GTA is present.

get-filtered-courses gta-name csp [FUNCTION]

Retrieves all the courses from the domains where the GTA is filtered.

unassign-gta-courses gta-name csp [FUNCTION]

Unassigns the given GTA from all the courses to which he/she is assigned.

display-gtas stream csp [FUNCTION]

Displays all the GTAs and the courses in which the GTAs are present.
The function is called from PHP scripts.



61
A.3.6 showcourses.lisp

print-gta-weights stream domain course [FUNCTION]

Retrieves and sorts all the GTAs present in a course domain.

display-courses stream csp [FUNCTION]

Retrieves all the courses and the GTAs present in the course domain.

get-courseobj number section my-csp [FUNCTION]

Retrieves a course object given a course number and section.

get-rem-capacity gtaobj [FUNCTION]

Obtains the current remaining available capacity of a GTA.

do-assignment gta course csp [FUNCTION]

Assigns a GTA to a course (does not do any constraint checks). This

function is called by assign-gta function.

un-do-assignment course-var csp [FUNCTION]

Unassigns a course variable.

assign-gta stream gtaname course csp [FUNCTION]

Assigns a GTA to a course in the given CSP.

get-messages stream [FUNCTION]

Returns the log of assignments/unassignments from *messages* struc-
ture. This method is called from PHP scripts.

check-assignment  stream course csp [FUNCTION]

Checks if the given course is assigned with a GTA.



62
A.3.7 sock-listener.lisp

start-server portfile logfile port [FUNCTION]

Starts the interactive solver as a server on a given port and outputs all

function calls into a logfile.

writeport port filename [FUNCTION]

Outputs the port number on which the server is started to a given filename.

writetime filename [FUNCTION]

Outputs the current time stamp to a given file that is accessed by PHP

scripts to know the time at which the server is started.

write-to-log filename input output [FUNCTION]

Writes all the function calls made by PHP scripts into a log file.

do-command  sock-stream logfile [FUNCTION]

Reads and executes a function called (from PHP script), as a string, from

a socket stream and saves it to a logfile using write-to-log function.

A.3.8 Function calls

In this section we pictorially show the internal function calls (to and from other

functions) in the system.

| UNASSIGH-GTA-COURSES

GET-CONSTRAINTS I

UN-DO -ASSIGNMENT J=~ AC-1
REVISE
DO-ASSIGNMENT k/f//

Figure A.1: Function: ac-1.

ASSIGHN-GTA




63

| GET-COURSEOB. |

[

Il SYMBoOL2LIST |

" GET-COURSE |

GET-GTA

ASSIGNED-vAL |
UN-DO-ASSIGNMENT |
COURSE-TITLE |

MAKE-CURRENT |— LOAD-ASSIGHED-COURSES |— ASSIGN-GTA E—| OBJECT-VAL |

INITIAL -DORMAIN I

CURRENT -DOMAIN I

GET-REM-CAPACITY I

WEIGHT
GTA-HNAME
GTA-0B.

DO -ASSIGHMENT

Figure A.2: Function: assign-gta.

ASSIGNED-VAL |

GET-COURSEOB.) |

symeoL2LIST |

GTA-HAME
GTA-0BJ

CHECK.-ASSIGNMENT

Figure A.3: Function: check-assignment.

| cHECK-vEAR-SEM |— LoAD-IMITIALIZE-CSP

Figure A.4: Function: check-year-sem.

DBI.MVSOLSaL |
LOAD-INITIALIZE-CSP |

| CLEAR-SAVED-ASSINGMENTS |<1

Figure A.5: Function: clear-saved-assignments



64

5Y5:MEMREF

| cTa-apvisor |

GTA-SPEAK

COURSE-TITLE |

GET-COURSE

DISPLAY -GTAS

| GTa-course-LIsT |

Il COURSE-COURSE-NO |

“ COURSE-SECTION |

| GET-FILTERED-COURSES |

Figure A.6: Function: display-gtas

VYARIABLES

| course-counse-no |

COURSE

COURSE-SECTION |

COURSE-TITLE |

COURSE-TIME

DISPLAY -COURSES [ —| COURSE-DAVS |

WEIGHT

GET -COURSEOB. |
ASSIGHED-VAL |

GTA-NAME
GTA-0BJ

1 PRINT -GTA-WEIGHTS

Figure A.7: Function: display-courses



65

MAKE-CURRENT |—| LOAD-ASSIGNED-COURSES |— ASSIGN-GTA

Figure A.8: Function: load-assigned-courses

| MAKE -CURRENT
| CHECK-VEAR-SEM

EXECUTE-FUNC |

LOAD -IMITIALIZE-CSP STATIC -VARIABLES |
COPY -CURRENT -DOMAINS |

| CLEAR-5AVED-ASSINGMENTS

| CLEAR-ALL-5AVED-ASSINGMENTS

Figure A.9: Function: load-initialize-csp

GET-I5-1D

/ DBIMVSOL:SOL |

LISTZ25%YMBOL

SAVE-COURSE -ASSIGHMENT I

MAKE-CURBRENT

LOAD-INITIALIZE-CSP I

LOAD-ASSIGHNED -COURSES |

Figure A.10: Function: make-current

GET-15-1D

DBIMYSOL:SOL |

SYMBOLZLIST

| SAVE-CURRENT -C5P

Figure A.11: Function: save-current-csp

SOCKET:MAKE -50CKET

WRITEPORT

WRITETIME |

START-SERVER

SOCKET:ACCEPT-COMMECTION

DO-COMMAND |

Figure A.12: Function: start-server

| sTarT-server |— po-commanp |— wriTE-To-L0G |

Figure A.13: Function: do-command



66

Appendix B

Communication between the web

interface and the interactive solver

The manager can connect to the interactive solver through web interface using a
browser (or any program that can connect to interactive solver and parse the data).
At any time, the manager on the client (browser) side initiates the request. When
the web interface (PHP script) is accessed, it sends a request to the interactive solver
(daemon process) for the current updated list of courses and the corresponding GTAs.
The solver sends the information back to the web interface, including the assignments.
The web interface parses the information and renders the output as an HTML page.

The series of events can be summarized as:
On server side (cse.unl.edu):

1. Initialize the GTA system (see Section 2.2).

2. Start the socket listener on a port number (The starting default port num-
ber is specified in configuration file configure-load.lisp. The socket
listener module searches for next 100 ports for an available port and starts

the server).
3. Make this process run in the background using the utility ‘detachtty.’

4. The socket listener stores the port number, on which the server is started,

in a temporary file (e.g., lispport.txt).



67
On client side (browser):

1. The browser sends a request to web server for the PHP script.

2. The PHP script checks the port file (lispport.txt) to know the port number

on which the socket listener is running.

3. Using this port number, the PHP script connects to the socket listener and
sends the Lisp commands (see Table 3.3).

4. The socket listener executes the commands and sends the output back to
the PHP script.

5. The PHP script reads the output and generates an HTML page.

As explained in Sections 3.2 and 3.3, the web interface is implemented in PHP and
the interactive solver is implemented in Lisp. The two environments communicate
through the socket listener using TCP/IP protocol. The socket-listener interface,
built inside the Lisp daemon process, listens to connections on a predefined port (the
default port number is 9000 stored in file configure-load.lisp). The port number
is obtained from the text file 1ispport.txt shared on the server by Lisp and PHP
scripts.

The PHP scripts connect to this port and send the Lisp commands, defined in
Table 3.3. The global variables (by convention, asterisks are used around the names
of global variables) used in these commands are listed in Table B.1. The functionality
of these Lisp commands is explained in Chapter 2.

Upon initialization, the interactive solver loads the Lisp command environment
into system memory and the socket listener interface present in the solver accepts
and executes any Lisp function call sent by the PHP scripts. Since the commands
are already in Lisp function format, the socket listener in the daemon process simply
executes the functions on Lisp command prompt and sends any resulting output back
to the PHP script.

A manager’s action in the web interface is converted into a Lisp function call
(the format is ‘(function-name arguments)’) and is sent to the interactive solver.
The solver executes the function on its command prompt and sends any output back
to the web interface. The PHP scripts do the required conversion of the manager’s
action. The PHP scripts maintain a list of Lisp functions and variable names for each
action. The scripts also know what kind of output to expect after the execution of

each command. While some of the commands return a simple true or false value,



68

Table B.1: Global variables in Lisp environment.

Variable Description
xcurrent-csp* CSP that holds all the courses, domains, and constraints.
*php-stream* Acts as a communication medium between PHP and the

Lisp environments using sockets. Any data written to
this stream variable, from Lisp code, will be sent to the

PHP script.
*xgta-yearx Holds the current GTA year (e.g., 2002 and 2003).
xgta-semester* Holds the current GTA semester (e.g., 1-Spring, 2-Fall,

21, and 22-Summer courses)

xassigned-courses* | This variable is used internally in Lisp data structures.
It holds the courses that are assigned to courses. The
internal data structure is explained in Appendix A.2.
*messages* Holds the manager’s actions as a list of strings. The
internal data structure is explained in Appendix A.2.

others return a large amount of data. After the command is executed, the PHP
script again sends request for the updated GTA and course information. The PHP
script parses this data, generates an HTML page and sends it back to manager’s
browser. Figure B.1 shows the overall sequence of actions when the manager selects

a GTA from the drop-down menu for a course. The numbers before text indicate the

_ Web interface I nter active solver
I(BIL('?'VIYASEr 1. Action: Select (PHP script) (assign-gta g ¢) (Lisp program)

; - GTA from meny| 2. Convert manager’s 3. Execute Lisp

avascript) action into a Lisp | command and

command X True/False return True/False.
Disol 4. Obtain GTAs and (di spl ay- GTAs csp)
GI'?K :)énd courses » 5. Return updated
coUTSes course and GTA
6. Generate HTML | information

«———
HTML page page with GTAs | Courses and GTAs
and courses

Figure B.1: Conversion of manager’s actions into Lisp function calls.

step number. The manager initiates the overall process by selecting a GTA from the
drop-down menu. In Step 1, the manager’s action is sent to PHP script from HTML
as a post method. In Step 2, the script creates the Lisp command ‘(assign-gta

*php-stream* ¢ g *current-cspx)’ (abbreviated in the figure) and sends it to the



69

interactive solver. In Step 3, the interactive solver executes the command and returns
the output as a true value ‘t’ or false value ‘nil’to indicate that the assignment was a
success/failure. The PHP script again sends a request to the solver to obtain GTA and
course information to by sending the Lisp command ‘(display-GTAs *php-stream*
*xcurrent-csp#)’ (abbreviated in the figure). The PHP scripts parse the data from
the interactive solver in Step 6 and send the HTML page back to the manager’s
browser for further interaction.

Lisp commands that retrieve data other than true or false are commands for
‘Assignment of courses to GTA’ or for ‘Assignment of GTAs to courses.” When a
manager requests (usually, a button is pressed on the web interface) a display of
courses and corresponding GTAs in their domain, the PHP script interprets this as

command:
(display-courses *php-stream* *current-cspx*)

and sends it to the solver for execution. The solver executes the command and re-
trieves all the courses and GTAs present in their domain from the CSP. The retrieved
course information contains the course number, course section, course title, timings,
course load and GTAs present in the course domain. For each GTA, the name, course
preference and available capacity are retrieved. The course and GTA information is
sent back to the PHP script in the following format:

The information for each course is enclosed in ‘%’ symbols. If course-i indicates

course ‘i’ then the Lisp functions format the overall information of all the courses as:
hcourse-1%%course-2%%course-3%. . . hcourse-nj,

The string course-i contains the overall course and GTA information, separated by
‘@’, ‘;7 and ‘=" symbols. The course string, course-i can be further divided by ‘=’

symbol as:
%Course-information=Assigned-GTA=current-domain=initial-domainj,

‘Assigned-GTA’ is the GTA information string that a course might already have been
assigned during interactive assignments. The GTAs in current and initial domains

[

are separated by the ‘;” symbol and the GTA information is separated by the ‘@

Y

symbol. The course string is thus formed as:

course-i = YCourse-information=CD-1;CD-2;...;CD-p=ID-1;ID-2;....;ID-q%



where, CD-i and ID-j represent the GTAs present in the current and initial domains of

the course respectively. The initial domain is the domain of the course before any as-

signments are made, and the current domain is the filtered domain of the course after

the assignments are made. The set difference between the initial and current domains

gives the GTAs who are busy (i.e., GTAs who are assigned to other courses). The

course and GTA information is further split by ‘@. Thus, the Course-information

string is:
course—number@section@title@timings@days@load
and the GTA-info string is:
course-preference@available-capacity@GTA-name
The overall course string can be summarized as:

course-i = Ycourse-number@section@title@timings@days@load=gta-pref@

available-capacity@gta-name;gta-pref@available-capacity@

If a particular course is not assigned with a GTA, then the string is:

course-i %Course-information=current-domain=initial-domain}% or

course-i = Ynumber@section@title@timings@days@load=preference®@

available-capacity@gta-name;....;%

Also if a course is assigned with a fixed GTA, then the string need not contain the

domain information. The string is represented as:

course-i = YCourse-information=Assigned-GTA},  or

course-i = Ynumber@section@title@timings@days@load=Assigned-GTA-name}

An example of course string is:

%101@0020Lab@1330-15200WR0 . 25=400.75@Nicholas = 4Q@1@Nate;
400.660Tim;40@0.75@Nicholas=40@10@Nate;400.660Tim;4@0.75@Nicholas;
4@0.20@Baucher;400.15@;Mary;%

If the above string is separated as



71

sl = 1010002@Lab0@1330-15200WQ0 .25

s2 = 4Q00.750Nicholas

s3 = 4010Nate;400.66Q0Tim;4Q@0.750Nicholas and

s4 = 4010Nate;400.60Tim;400.750Nicholas;4@0.20Baucher;400.150;Mary;

then , the string s1 represents the course information and it is interpreted as course
number 101, the section number is 002, the course is type ‘Lab’, the timings are
between ‘1330-1520" on ‘W’ (Wednesday) with a course load of 0.25. The next string,
s2 represents a GTA assigned to the course. It is interpreted as ‘Nicholas’ has a
capacity of 0.75 and his preference towards the course is 4. The strings s3 and s4
are the GTAs present in current and initial domains. It can be observed that all
GTAs who are not in current domain i.e. ‘400.200Baucher;400.15@;Mary’, have a
capacities of 0.20 and 0.15 which is less than the course load of 0.25.

For displaying a GTA and corresponding compatible courses, the Lisp functions
are written to output the data to PHP scripts in the following format:

Here also the information for GTAs is enclosed in ‘)%’ symbols as
hGTA-1%%GTA-2%%GTA-3%. . . . .. %GTA-nY,

Here, GTA-1 is a string that contains overall GTA and their course information, sep-
arated by the ‘@', °;” and ‘=" symbols. The course string, GTA-i can be divided by

the ‘=" symbol in two formats. For GTAs who are by pre-assigned (i.e., by default

assigned to some courses prior to initialization), the format is

GTA-i = JGTA-info=!pre-assigned-courses}

and for other GTAs the format followed is

GTA-i = JGTA-info=Assigned-courses=Available-courses=Ruled-out-courses}

The string ‘GTA-info’, contains the GTA name,GTA’s Advisor, Speech Test (‘T” or
‘NIL’ to indicate whether the GTA has taken the Speech Test), ITA Certification
(‘T” or ‘NIL’ to know whether the GTA is ITA certified) and GTA Capacity. The

information is separated by the ‘@ symbol as,
GTA-name@Advisor-name@Speech-Test@ITA-Certification@GTA-Capacity

The string ‘Assigned-courses’ contains the list of courses that are assigned to a

]

GTA. The courses are separated by a ‘;’ symbol and each course information is

further separated by a ‘@ symbol as



72

course—name@course-preference@umber@section@course-load

Similarly, the strings ‘Available-courses’ and ‘Ruled-out-courses’ have the same
format as explained above. The string ‘Available-courses’ contains the list of
courses in which the GTA is present and ‘Ruled-out-courses’ contains courses from
which the GTA is filtered. An example of a GTA string is,

%Nicholas@Mary@T@ONILQO.5=Lab@50@105@151@0.25;
Graph Algorithms@5@924@001@0.25=Comp. Sci. Fundametals@5@101@002@0.5;
Data Structures and Algorithms@4@310@15000.5=CSPQ@504210821017%

This string can be separated as

GTA-info Nicholas@Mary@T@ONIL®@O.5$

Assigned-courses Lab@50@1050@151@0.25;Graph Alg@50@9240001@0.25
Available-courses = Computer Science Fundamentals@5@101@002@0.25;
Data Structures and Algorithms@40@3100150@0.5;
CSP@50421082101

Ruled-out-courses

The GTA-info string indicates that the GTA, ‘Nicholas’ whose advisor is ‘Mary’
has taken speech test (‘T” value) and does not have ITA certification (‘NIL’ value).
He has an available capacity of 0.5. The ‘Assigned-course’ string indicates that
‘Nicholas’ is currently assigned to two courses, ‘Lab’ and ‘Graph Algorithms’. The
‘Available-courses’ string indicates that the GTA can still be assigned to either
‘Computer Science Fundamentals’ or ‘Data Structures and Algorithms’. These
two courses have loads of 0.25 and 0.5, respectively, which are less than or equal to

the capacity of the GTA. The course ‘CSP’ is ruled-out because its course load is 1.



