
NEW RELATIONAL CONSISTENCY ALGORITHMS AND A FLEXIBLE

SOLVER ARCHITECTURE FOR INTEGRATING THEM DURING SEARCH

by

Anthony R. Schneider

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

December, 2022

NEW RELATIONAL CONSISTENCY ALGORITHMS AND A FLEXIBLE

SOLVER ARCHITECTURE FOR INTEGRATING THEM DURING SEARCH

Anthony R. Schneider, Ph.D.

University of Nebraska, 2022

Adviser: B.Y. Choueiry

Consistency algorithms, which perform inference, are at the heart of Constraint Pro-

gramming. The strongest consistency level provided in most constraint solvers is

Generalized Arc Consistency (GAC). In recent years, higher-level consistencies, espe-

cially relational consistencies, were shown to be critical for solving difficult Constraint

Satisfaction Problems (CSPs). Implementing algorithms that enforce such consisten-

cies in existing solvers cannot be done in a flexible and transparent manner and may

require significantly modifying the constraint model of the CSP.

In this thesis, we address the practical mechanics for making higher-level consisten-

cies a pragmatic choice for solving CSPs. To this end, we present three main contribu-

tions. First, we design and implement a new generation of constraint solvers with an

architecture open to development and integration of new domain and relation-filtering

consistency algorithms where one or more consistency algorithms can independently

operate on specific, possibly overlapping subproblems, and where the implementation

of the relational consistency algorithms does not require the modification of the con-

straint model of the CSP. Second, we propose new algorithms for two different kinds

of relational consistencies: pairwise and m-wise consistency. Finally, we describe how

to dynamically identify and exploit tractable substructures during search using one

of the novel pairwise consistencies developed in this dissertation.

ii

ACKNOWLEDGMENTS

I would like to extend my heartfelt thanks to my advisor, Professor Berthe Y.

Choueiry, for her guidance, instruction, and patience throughout my time in gradu-

ate school. I also need to thank the other members of the Constraint Systems Lab-

oratory who contributed to Stampede and availed themselves to me for countless

brainstorming sessions: Robert Woodward, Daniel Geschwender, Ian Howell, Denis

Komissarov, and Nate Stender.

I would be remiss not to mention at least some of the friends I made during my

tenure at the University of Nebraska-Lincoln, without whom I would likely not have

seen this through to the end: Robert Woodward, Daniel Geschwender, Taylor Span-

gler, Jake Williams, Ellie Quint, Ian Howell, Mikaela Cashman, Natasha Pavlovikj,

Nancy Pham, Dan Gutierrez, and so many others. Without their friendships, my

journey through academia would have been considerably worsened. You all helped

me grow and gave me the confidence to push on through all the years here.

And of course, my sincerest thanks to my amazingly loving family, and wonderful

fiancée Lakyn for enduring me during challenging times and encouraging me through

it all.

This research was partially supported by NSF Grant No. RI-111795 and NSF Grant

No. RI-1619344. Experiments were conducted on the equipment of the Holland Com-

puting Center at the University of Nebraska–Lincoln.

iii

Contents

Contents iii

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Motivation & Claim . 2

1.2 Approach . 4

1.2.1 Rethinking Constraint Solvers 4

1.2.2 A New Generation of Relational Consistency Algorithms . . . 5

1.2.3 Dangle Identification: Identifying Opportunities For Selectively

Applying Relational Consistencies 6

1.3 Contributions . 7

1.4 Outline of Dissertation . 9

2 Background 11

2.1 Constraint Satisfaction Problem . 11

2.1.1 Solving CSPs . 13

2.1.2 Graphical Representations . 15

2.1.3 Properties of the Dual Graph 17

iv

2.1.4 Tree Decomposition . 19

2.2 Consistency Properties and Algorithms 21

2.2.1 Global Consistency Properties 22

2.2.2 Generalized Arc Consistency 22

2.2.3 Pairwise Consistency . 23

2.2.4 m-wise Relational Consistency 24

2.3 Related Work . 25

2.3.1 Constraint Solvers . 26

2.3.2 Consistency Algorithms . 28

2.3.3 Structural Tractability . 31

3 Stampede: A CSP Solver Designed for Research, Extensibility,

and Composability 34

3.1 Motivating the Creation of Stampede 34

3.1.1 The Shortcomings of Existing Alternatives 35

3.1.2 scsp: A Precursor to Stampede 36

3.1.3 Design Philosophies and Goals of Stampede 37

3.2 Extensibility: Lowering the Burden of Entry for Novel Ideas and Al-

gorithms . 39

3.2.1 Core Classes . 39

3.2.2 Run-time Configurable Algorithms: tclap and the CLIFactory 43

3.2.3 Consistency Propagators and Configuration 47

3.3 Leveraging Modularity to Give Rise to Novel Relational Consistencies 53

3.3.1 Algorithms for Enforcing Hyper-3 Consistency 53

3.3.2 Drivers . 54

3.4 Research Oriented . 56

v

3.4.1 Ordering and Reproducibility 57

3.4.2 Interacting with Stampede 58

4 Pairwise Consistency Algorithms 64

4.1 Current State-of-the-Art for enforcing PWC 65

4.2 Techniques for Improving Pairwise Consistency 68

4.2.1 Piecewise Functionality . 68

4.2.2 Refocusing Propagation on Subscopes 68

4.2.3 Minimal Dual Graph . 69

4.2.4 Determining when GAC is enough to enforce PWC 70

4.3 Integrating Improvements into existing PWC Algorithms 72

4.4 Empirical Evaluation of PW-AC2 and eSTR2(w)m 76

4.5 PW-CT: Efficiently and Lazily Enforcing Pairwise Consistency . . . 82

4.5.1 A Brief Overview of Algorithm CompactTable 83

4.5.2 Data Structures . 84

4.5.3 Enforcing PW-CT . 89

4.6 Empirical Evaluation of PW-CT . 95

4.7 Future work . 99

5 Improving m-wise Consistency Algorithms Via Dynamic Relation

Partitioning 102

5.1 Background . 102

5.2 PerFB Algorithm . 105

5.2.1 Replacing the Index Tree with Coarse Blocks 105

5.2.2 Additional Equivalence Classes of Relations 107

5.2.3 The PerFB and AllSolFB Algorithms 109

5.3 Empirical Evaluation . 114

vi

5.3.1 Binary Benchmarks . 115

5.3.2 Non-Binary Benchmarks . 120

6 Dangle Identification: Dynamically Identifying and Solving Tra-

ctable Branches of Search 127

6.1 Background and Related Work . 128

6.2 Dangle Identification . 131

6.2.1 Which Graph to Use . 131

6.2.2 Fast Hyperedge Removal . 134

6.3 Dangle Identification Algorithm . 135

6.4 Ensuring Satisfiability of Dangles . 140

6.5 Empirical Evaluation of Dangle Identification 141

7 Conclusions 154

7.1 Summary of Contributions . 154

7.2 Future Work . 155

A Per-Benchmark Results for GAC Algorithms 159

B Per-Benchmark Results for PWC Algorithms 167

C Per-Benchmark Results for R(∗,m)C Algorithms 171

D Per-Benchmark Results for Dangle Identification Algorithms 208

Bibliography 215

vii

List of Figures

2.1 A small example CSP . 12

2.2 SAT clauses represented as a CSP. 12

2.3 A set of relations from a CSP . 15

2.4 Two representations of a hypergraph . 16

2.5 The primal graph of the hypergraph in Figure 2.4 16

2.6 The dual graph representation of the graph in Figure 2.4 16

2.7 A minimal dual graph of the graph in Figure 2.4 16

2.8 The incidence graph of the hypergraph in Figure 2.4 17

2.9 An example of a piecewise functionality 19

2.10 A hypergraph, its primal graph, and the triangulated primal graph . . . 20

2.11 The max cliques for the problem in Figure 2.10 21

2.12 The tree decomposition for the graphs in Figure 2.10 21

2.13 Piecewise functional constraint. 25

2.14 Illustrating R(∗,m)C. 25

3.1 Relationship between subset of core classes 40

3.2 UML class diagram of core Stampede structures. 41

3.3 Class diagram of Stampede’s graph structures. 43

3.4 A simplified UML diagram of Stampede’s CLI Factory 44

3.5 Example output of a help message for an object in Stampede. 47

viii

3.6 Sequence diagram of initialization of Stampede. 48

3.7 Helper macro to enable GAC2001 propagator use in Stampede. 49

3.8 Diagram of various classes used to configure propagators. 50

3.9 A simplified UML diagram Stampede’s websocket GUI architecture. . . 58

3.10 Images showcasing Stampede’s browser-based GUI and debugger. . . . 60

4.1 A dual graph, subscope and coarse blocks, and minimal dual graph. . . . 67

4.2 A set of relations and their induced partitions. 69

4.3 Data structures for PW-AC2. 72

4.4 Scatter chart comparing PWC algorithms. 78

4.5 Cumulative chart comparing PWC algorithms. 79

4.6 Scatter chart comparing PW-AC2f and PW-AC2. 80

4.7 Cumulative chart comparing PWC and GAC algorithms. 82

4.8 Pairwise comparison between PW-AC2 and STR2. 83

4.9 Cumulative chart comparing PW-CT and GAC algorithms. 96

4.10 Scatter chart comparing minimal dual and full dual versions of PW-CT. 97

4.11 Cumulative chart of PW-CT and GAC, excluding “BDDLarge”. 98

4.12 Scatter charts comparing PW-CT and GAC algorithms. 99

5.1 Piecewise functional constraint. 103

5.2 Illustrating R(∗,m)C. 103

5.3 The index tree data structure. 106

5.4 An overview of different partitioning schemes. 108

5.5 Cumulative charts for binary CSPs comparing PerFB and PerTuple. . 116

5.6 Cumulative charts for binary CSPs comparing AllSolFB and AllSol. 118

5.7 Scatter chart comparing R(∗,m)C algorithms on binary CSPs. 119

5.8 Cumulative charts for non-binary CSPs comparing PerFB and PerTuple.121

ix

5.9 Cumulative charts for non-binary CSPs comparing AllSolFB and AllSol.123

5.10 Scatter plot comparing AllSolFB and AllSol on non-binary CSPs. . 124

5.11 Scatter plot comparing PerFB and PerTuple on non-binary CSPs. . . 124

6.1 Graphical representations of a simple CSP. 128

6.2 A motivating example for the choice of dual graph. 132

6.3 A dual graph with redundancy removal. 133

6.4 Cumulative charts for dangle identification using |dom|wdeg 144

6.5 Cumulative charts for dangle identification using |dom|ddeg 147

6.6 Histograms for the NADL metrics for constraints and variables. 150

6.7 Histograms for the ADPI metrics for constraints and variables. 151

x

List of Tables

3.1 Available consistency algorithms in Stampede. 52

3.2 List of drivers that Stampede supports. 56

4.1 Number of instances that ran out of memory per PWC algorithm. 77

4.2 Pairwise t-test results for tested PWC algorithms 81

4.3 T-test results for PWC and GAC algorithms using |dom|wdeg 98

5.1 Combination search statistics. 120

5.2 Pairwise t-test results for R(∗,m)C algorithms on binary CSPs. 122

5.3 Pairwise t-test results for R(∗,m)C algorithms on non-binary CSPs. . . . 125

6.1 Pairwise t-test results for dangle identification using |dom|wdeg 146

6.2 Number of OOM and TO instances using dangle identification with |dom|wdeg . 148

7.1 Algorithms introduced in this thesis. 155

A.1 Per-benchmark results for GAC algorithms on binary instances. 159

A.2 Per-benchmark GAC results for non-binary CSPs. 164

B.1 Per-benchmark results for PWC algorithms. 168

C.1 Per-benchmark AllSol results for binary CSPs. 172

C.2 Per-benchmark AllSol results for non-binary CSPs. 179

C.3 Per-benchmark PerTuple results for binary CSPs. 184

xi

C.4 Per-benchmark PerTuple results for non-binary CSPs. 191

C.5 Per-benchmark PerFB results for binary CSPs. 196

C.6 Per-benchmark PerFB results for non-binary CSPs. 203

D.1 Per-benchmark results for dangle identification. 209

1

Chapter 1

Introduction

Constraint Processing (CP) is a powerful framework for modeling and solving a wide

range of practical problems including scheduling problems, resource allocation, and

product configuration. The flexibility of the framework lends itself to models that are

more easily produced and interpreted by humans, especially when compared to many

of CP’s closely related approaches such as SAT Solvers or Mathematical Programming

In general, CP optimization problems are NP-Hard and their decision variants,

called Constraint Satisfaction Problems (CSPs), are NP-Complete. A CSP is defined

by a set of decision variables with their respective set of values (i.e., domain) and a

set of constraints that restrict the acceptable combinations of values per variable. A

solution to a CSP is an assignment of values to all variables such that all constraints

are satisfied. In many applications, we seek one solution to a CSP.

Mechanisms for solving a CSP typically intertwine two main mechanisms, namely,

search and inference. The work presented in this dissertation uses constructive back-

track search, a sound and complete algorithm that exhaustively explores the search

space to find a solution to a CSP. Inference is used to narrow the search space by

pruning portions of the search space that cannot contain a satisfying solution. The

focus of this dissertation are CSPs, the relational consistency algorithms used for

inference, the exploitation of the changing topology of the graphical structure of a

CSP instance during search, and the design and implementation of a flexible solver

architecture to support the integration of diverse consistency algorithms.

2

1.1 Motivation & Claim

Backtrack search is currently the only sound and complete algorithm for solving CSPs.

It is a deterministic and exhaustive process. However, its cost grows exponentially

in the size of the problem. In order to limit the exponential growth of the cost of

search, inference algorithms are used before and during search. They operate on

subproblems to remove inconsistent values or combinations of values, which results

in pruning the search space and removing subtrees that do not contain any solution.

Inference procedures (also called consistency propagators and consistency algorithms)

enforce a specific consistency property and are typically polynomial in time and space

in the size of the problem. Their efficiency stems from the fact that they operate

locally on subproblems of a restricted size and propagate their effects over the entire

problem. The larger the subproblems they consider, the stronger the consistency they

enforce, but also the larger the computational cost.

The strongest consistency property enforced by common (i.e., off-the-shelf) con-

straint solvers is Generalized Arc Consistency (GAC) [Mackworth, 1977; Waltz, 1975].

GAC focuses on a single constraint at a time, ensuring that the values in the domains

of the variables to which the constraint applies do not violate the constraint. In

contrast, the research community has investigated propagators that reason about a

combination of constraints (e.g., algorithms for Path Consistency [Montanari, 1974]

or more general relational consistencies [Dechter and van Beek, 1997; Karakashian et

al., 2010a]). They typically enforce stronger consistency properties than GAC and are

thus called high-level consistencies (HLC). Existing constraint solvers cannot easily

accommodate these more complex inference algorithms, because propagators in most

existing solvers are typically tied to a single constraint. This situation is perhaps

best exemplified by the following quote from the tutorial of the Choco constraint

3

solver: 1

When one needs to declare its own constraint, actually, he needs to create

a propagator. Indeed, in Choco, a constraint is a container which is

composed of propagators.

We believe that this limitation of modern solvers has hindered the progress of

research on relational consistency algorithms.

Although the cost of relational consistency algorithms may seem too high to be

practical, during the past decade, a few researchers, including some in the Constraint

Systems Laboratory, have designed HLC algorithms and established their useful-

ness in practical settings [Karakashian et al., 2010a, 2012, 2013; Karakashian, 2013;

Lecoutre et al., 2013; Paparrizou and Stergiou, 2012, 2016; Samaras and Stergiou,

2005; Schneider and Choueiry, 2018; Schneider et al., 2014; Stergiou, 2007; Wood-

ward et al., 2011a,b,c, 2012]. While relational consistency propagators can potentially

prune a much larger amount of the search space than traditional propagators, the time

required to enforce relational consistencies can often be prohibitive in practice. In

fact, traditional propagators (e.g., GAC) frequently outperform existing relational

consistencies when the relational consistencies are indiscriminately applied at every

variable assignment during search. This situation prompts the following question:

How can relational consistency algorithms become a pragmatic choice for solving

CSPs?

In this dissertation, we answer the above question as follows:

1. We propose and implement a new constraint-solver architecture that al-

lows the simultaneous application of various domain and relation-filtering

1https://choco-tuto.readthedocs.io/en/latest/src/801.constraints.html

4

consistency algorithms on selectively chosen and potentially overlapping

subproblems.

2. We design new relational consistency algorithms that not only improve

upon existing ones, but are competitive with the fastest available tradi-

tional consistency algorithms.

3. We advantageously exploit the dynamically changing topology of the

graphical representation of the CSP in order to reduce the search effort.

4. Finally, we empirically show that combining HLC algorithms and the

exploitation of structural properties as enabled by our new solver is ad-

vantageous in practice.

As a result, this dissertation establishes the promise and practicality of higher-level

consistencies in constraint solvers.

1.2 Approach

Our approach to addressing the challenge of furthering the promise of relational con-

sistencies focuses on two complementary aspects of constraint processing: the ar-

chitecture of solvers and the theoretical and empirical evaluation of relational and

traditional consistency algorithms.

1.2.1 Rethinking Constraint Solvers

We believe that there are three aspects of the architecture of a constraint solver that

are critical for making higher-level consistencies a competitive and pragmatic choice,

namely,

5

1. The predictability of a propagator’s behavior,

2. Fine-tuned control over queues and ordering, and

3. The ease of implementation and integration of consistency algorithms in the

solver.

We will show that Stampede, the solver developed in this dissertation, achieves

these goals by inverting the traditional relationship between constraints and their

propagators adopted by most common constraint solvers. More specifically, rather

than a constraint being associated with multiple propagators, Stampede allows prop-

agators to directly operate over an arbitrary set of constraints. This architecture facil-

itates the development of relational consistency algorithms and the ability to flexibly

and selectively apply different types of consistencies during search over specific sub-

problems. Further, allowing developers of propagators to fully control the order of

queueing and handling of the ordering of operations within subproblems facilitates the

empirical evaluation of consistency algorithms by limiting the variability encountered

in existing solvers.

1.2.2 A New Generation of Relational Consistency Algorithms

We advance the current state of the art in relational consistencies through the cre-

ation of four new algorithms for enforcing the consistency properties (f)PWC and

R(∗,m)C, namely, PerFB [Schneider et al., 2014], AllSolFB, PW-AC2, and PW-

CT [Schneider and Choueiry, 2018].

As a first step towards advancing relational consistencies to be ready for practical

use, we propose PerFB, a consistency algorithm that enforces R(∗,m)C. PerFB

is an improvement on a previous algorithm PerTuple [Karakashian et al., 2010a;

6

Karakashian, 2013]. We identify and exploit a weakness in the original algorithm that

caused redundant calls to PerTuple’s backtrack search.

The algorithm PW-AC of Samaras and Stergiou [2005] enforces PWC on a CSP

without modifying the constraint network and uses the piecewise-functional property

of the constraints of the dual CSP to efficiently propagate tuple deletions by deleting

all the tuples in an equivalence class instead of one at a time. However, it creates

data structures for each pair of connected constraints in the dual CSP, causing a

large memory overhead in many problems, which poorly scale in the presence of

large relations and dense graphs. Our algorithm, PW-AC2, improves upon PW-

AC by exploiting the minimality of the dual graph, and operating on the distinct

subscopes incident to constraints, instead of pairs of constraints in the dual graph.

As a result, we can significantly reduce the costs of enforcing fPWC both in terms of

time and memory requirements. Finally, we push the state-of-the-art in algorithms

for enforcing PWC with PW-CT, an algorithm that is competitive with the (as of

writing) fastest algorithm for enforcing GAC.

1.2.3 Dangle Identification: Identifying Opportunities For Se-

lectively Applying Relational Consistencies

We propose to develop an efficient technique to dynamically identify α-acyclic portions

of the subproblem induced after the instantiation of variables during search when

solving non-binary CSPs. To this end, we adapt the Graham reduction operator, in

combination with counting the degree of vertices in the dual graph in order to reduce

cost.

As these dangling, acyclic branches are identified, we propose to use a modified ver-

sion of our state-of-the-art PW-CT algorithm to ensure that each dangle has at least

7

one solution in polynomial time thanks to well-known properties of tree-structured

CSPs. If a dangle is found to be unsatisfiable, search has to backtrack. If it is found

to be satisfiable, we propose to remove the tractable subproblem, thus reducing the

number of variables over which search has to iterate and the number of constraints for

inference algorithms to consider. Search can then process the remaining subproblem.

1.3 Contributions

Below are the primary contributions of this dissertation, each of which functions as

a step towards our goal of demonstrating how relational consistencies can become a

pragmatic choice for application in CSPs:

1. A new solver which priorities research and exploration of HLC We design and

build, Stampede, the first constraint solver that allows us to execute any consis-

tency algorithm (of any level) on any subproblem of a CSP. Algorithms can nat-

urally and transparently operate on variable/value and relation/tuple encodings

of the primal, dual, or incidence graphs without requiring any alteration of the

constraint model. This feature allows the creation of hybrid propagators that

selectively enforce, during search, arbitrary consistencies on arbitrary groups of

variables and constraints. The flexibility and modularity of the current version

of our solver, Stampede, has already been validated in two contexts. The first

context is the implementation of reactive strategies that trigger, during search,

high-level consistencies as required by the problem instance difficulty [Wood-

ward, 2018]. The second context is a portfolio approach for controlling the

execution of minimality algorithms on subproblems during search [Geschwen-

der, 2018].

8

2. Pushing the state-of-the-art for Pairwise Consistency algorithms We introduce

two new algorithms for enforcing Pairwise Consistency (PWC) [Samaras and

Stergiou, 2005]. These algorithms dramatically improve performance by exploit-

ing the piecewise functionality of the equality constraints in the dual network.

We show that the performance of our latest algorithm for PWC is comparable to

that of the state-of-the-art algorithm for Generalized Arc Consistency (GAC),

which is the most commonly used algorithm in research constraint solvers and

enforces the strongest consistency in public-domain constraint solvers.

3. Improved algorithms for enforcing m-wise consistency We improve upon the

existing state-of-the-art algorithms for enforcing m-wise consistency, PerTu-

ple [Karakashian et al., 2010b] and AllSol [Karakashian, 2013], by identifying

and skipping redundant work when enforcing the consistency.

4. Dynamically exploiting the changing structure of the search space We design new

mechanisms for dynamically identifying tractable subproblems during search

based on the changing topology of the constraint network. Further, we advocate

efficiently (i.e., in polynomial time) solving these substructures by partially

enforcing PWC.

We also present in this thesis the following secondary contributions, which are not

directly related to our goal but are nevertheless significant:

1. Live data Visualizations in Stampede We implement a mechanism for visu-

alizing arbitrary algorithms, data structures, and search itself in Stampede

while search is running. This mechanism has already been used in research ma-

terial to identify new ways of intelligently applying varying levels of consistency

during search [Woodward, 2018].

9

2. Live debugging of Search and Consistency algorithms Using the same tools that

enabled live data visualization, we integrate a live debugger into Stampede

that allows setting break points in the code that can pause search, allowing a

user to easily examine the full search state. This mechanism was integral in

debugging and analyzing many of the algorithms presented in this dissertation.

1.4 Outline of Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 provides the background information necessary to contextualize the

contributions of this thesis.

• Chapter 3 details the architecture and aspects of Stampede which make it

novel and integral to our research into relational consistencies.

• Chapter 4 provides two new algorithms for enforcing PWC. Results from this

chapter appeared in [Schneider and Choueiry, 2018].

• Chapter 5 provides two new algorithms for enforcing m-wise consistency. Re-

sults from this chapter appeared in [Schneider et al., 2014].

• Chapter 6 introduces a mechanism for dynamically identifying tractable sub-

problems of a CSP during search.

• Chapter 7 Concludes this dissertation and highlights interesting areas for fu-

ture work that arise from the research presented here.

10

Summary

This chapter provided an overview of our motivations, claims, and road-path to ver-

ifying those claims, as well as an outline of the remainder of this dissertation.

11

Chapter 2

Background

This chapter provides information necessary to contextualize the research presented

in this dissertation. We then review the research related to consistency algorithms

used in this dissertation and present an overview of the most popular and modern

CSP solvers.

2.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined as P = (X ,D, C), where

• X is a set of variables

• D the set of the variables’ domain values, with xi ∈ X having the domain

di ∈ D, and

• C is a set of constraints ci = 〈Ri, scope(ci)〉, where scope(ci) ⊆ X , and Ri =

{(a, b, ..., c)} ⊆
∏

vi∈scope(ci)
di.

The arity of a constraint is the cardinality of its scope. Solving a CSP requires

assigning to each variable a value from its domain such that all the constraints are

satisfied. We frequently refer to the neighbors of a variable xi as the set of variables

that appear in the scope of any constraint cj where xi ∈ scope(cj). In this dissertation,

we consider variables with finite domains and a specific type of constraint called a

table constraint, where relations are given by tuples, which are the valid combinations

12

of values for the variables in the constraint’s scope. We use the relational projection

operator π to restrict a tuple to a set of variables.

｛1,2,3｝ ｛1,2,3｝
A B
1 2
1 3
2 3

｛1,2,3｝
B

A < B

A = C

B ≠ C

A C
1 1
2 2
3 3

B C
1 2
1 3
2 1
2 3
3 1
3 2

A C

Figure 2.1: A CSP with intension constraints and its corresponding table constraints.

Figure 2.1 shows a small example CSP with three variables (A, B, and C), each

represented by a node in a graph. Each variable has the domain {1, 2, 3}. The

constraints are represented by edges between the nodes, which are labeled with a

mathematical expression corresponding to the constraint between the two variables.

Mathematically formulated constraints such as those appearing on the edges in the

graph of Figure 2.1 are called intension constraints. The intension and table con-

straints shown in the figure are equivalent.

V2 V3 V4
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
1 1 1

｛0,1｝ ｛0,1｝｛0,1｝

｛0,1｝｛0,1｝

V1 V2 V3

V4V5

C1 C2C3

C1 C2 C3
V1 V5
0 0
0 1
1 1

V1 V2 V3
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
1 1 1

Figure 2.2: SAT clauses represented as a CSP.

As a further example, consider the Boolean expression in Conjunctive Normal

Form: (V1 ∨ V2 ∨ V3) ∧ (V2 ∨ V3 ∨ V4) ∧ (¬V1 ∨ V5). An equivalent CSP is shown in

13

Figure 2.2. Each term in the SAT is represented as a variable in its equivalent CSP,

and each clause is a constraint. The resulting CSP is non-binary because the arity of

at least one of the constraints is greater than two.

2.1.1 Solving CSPs

To date, backtrack search remains the only sound and complete algorithm for finding a

solution to a CSP. Below, we review three important components of a search procedure

used for solving CSPs: variable ordering heuristics, inference procedures for pruning

the search space, and the search procedure itself.

Variable Ordering Heuristic: Currently, the most effective variable ordering

heuristic is the |dom|wdeg heuristic, which chooses the variable with the minimal value

obtained from dividing the cardinality of its remaining domain with the sum of the

weighted degrees of its incident edges [Boussemart et al., 2004]. The weight of a

constraint is incremented when the constraint causes a domain wipeout of a variable,

causing the search to backtrack. This heuristic adheres to the principle of instan-

tiating the most constrained variable first. This principle allows us to reduce the

branching factor of the search tree as well as to increase the pruning effectiveness

of the filtering mechanisms resulting from inference. Older heuristics such as |dom|ddeg

are sometimes still used in research due to their relative stability with respect to the

search space explored by different algorithms [Woodward et al., 2011b, 2012]. The
|dom|
ddeg heuristic operates exactly as |dom|wdeg , but assigns the weight of each constraint to

one.

Inference: Inference procedures enforce a given consistency property and (in gen-

eral) operate by removing, from the domains of the uninstantiated variables in the

14

problem, values that are guaranteed to be inconsistent with the instantiated vari-

ables. For our purposes, we adopt a Real-Full Lookahead (RFL) strategy [Nadel,

1989], which maintains a given consistency property over the subproblem induced

by the uninstantiated variables given the set of current instantiations (i.e., given a

partial solution).

Backtrack Search: The search procedure proceeds in a systematic and exhaustive

manner generating consistent partial solutions. It assigns a value to the variable se-

lected by the ordering heuristic and enforces some form of lookahead on the remaining

subproblem given a new variable assignment. If the lookahead procedure empties the

domain of a ‘future’ variable, we say the domain of the future variable is annihi-

lated, and search proceeds by assigning another value to the variable. If all values

for the current variable yield a dead-end, then backtracking occurs, which undoes the

assignment of the previous variable, and the process is repeated until all variables

are instantiated or no solution is found. In this dissertation, we are concerned with

finding the first solution to the CSP.

Tree-Structured CSPs and Dangles: Tree structured CSPs can be solved back-

track-free (and thus, in polynomial time) by making the problem directional arc-

consistent from the root to the leaves of the tree [Freuder, 1982b]. Performing a

second pass of directional arc-consistent from the leaves to the root ensures the graph

is minimal [Dechter, 2003a]. The first pass from root to leaves is sufficient for deter-

mining the existence of a solution. Notably, this mechanism applies to any subproblem

of the CSP that is a tree. We say that such tree-structured subproblems form dangles

attached to the constraint graph of the CSP. If we can identify and isolate them, we

can determine their satisfiability independently of the rest of the CSP. One of the

15

contributions of this dissertation is to dynamically (i.e., during search) identify such

tractable substructures and exploit them to reduce the search effort.

A C F
0 0 1
1 0 1
1 1 0

A B C E
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 1 0
0 1 1 1
1 1 1 1

A B C G
0 0 1 0
0 0 0 1
0 1 1 0

A B D
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

R1 R2 R3 R4

Figure 2.3: The relations of a small CSP with satisfying tuples for a solution high-
lighted.

Solution Example: A valid solution to a CSP is one such that all variables are

assigned, and none of the assignments causes a constraint to be violated. Consider a

CSP with variables X = A,B,C,D,E, F,G, each of which has a boolean domain (that

is, ∀xi ∈ X , di = 0, 1), and constraints C = c1, c2, c3, c4 where scope(c1) = A,B,C,E,

scope(c2) = A,B,D, scope(c3) = A,B,C,G, and scope(c4) = A,C, F . The relations

for each of these constraints is given in Figure 2.3. One valid solution to this example

(there are many) is 〈A, 0〉, 〈B, 0〉, 〈C, 0〉, 〈D, 0〉, 〈E, 1〉, 〈F, 1〉, 〈G, 1〉. The highlighted

tuples in Figure 2.3 are the tuples that satisfy these variable assignments.

2.1.2 Graphical Representations

There are several graphical representations for a CSP. In the hypergraph, the vertices

represent the variables of the CSP and the hyper edges represent the scopes of the

constraints. The two most common visualizations of a hypergraph are presented in

Figure 2.4.

16

GA

E

B

D

C

F
R1R2 R3R4

GA

E

B

D

C

F

R1

R2

R3

R4

Figure 2.4: Two representations of a hypergraph

In the primal graph, the variables are vertices. Two vertices in the primal graph

are connected by an edge when at least one constraint is shared amongst those two

variables (Figure 2.5).

A B

ED

C

F

G

Figure 2.5: The primal graph of the hypergraph in Figure 2.4

AB

ABD

ABCE

ABCG

ACF

AB
A

AC

AC
ABC

R4

R3

R1

R2

Figure 2.6: The dual graph represen-
tation of the graph in Figure 2.4

ABD

ABCE

ABCG

ACF

AB

AC

ABC

R4

R3

R1

R2

Figure 2.7: A minimal dual graph of
the graph in Figure 2.4

In the dual graph (a.k.a. join graph [Dechter, 2003b] and complete intersection

graph [Maier, 1983]), the vertices represent the constraints of the CSP and an edge

17

exists between any two vertices whose scopes overlap (Figure 2.6). We call this non-

empty intersection a subscope, which we denote, for two CSP constraints ci and cj,

subscope(ci, cj) = scope(ci) ∩ scope(cj). This edge represents an equality constraint

between ci, cj and indicates that the variables in subscope(ci, cj) must take the same

values in ci and cj (a.k.a. the connectedness property).

R1 R2 R3 R4

A B EDC F G

Figure 2.8: The incidence graph of the hypergraph in Figure 2.4

The incidence graph of a CSP is a bipartite graph, with the variables in the CSP

forming the first set of vertices and the constraints in the CSP forming the second.

An edge is present between a vertex representing the variables and one representing

the constraints iff the variable is in the scope of the constraint. An example of an

incidence graph is shown in Figure 2.8.

2.1.3 Properties of the Dual Graph

In this dissertation, we exploit two properties of the constraints of the dual graph of

a CSP, namely, acyclicity and piecewise functionality.

Minimal Dual Graph: Janssen et al. [1989] and Dechter [2003b] observed that an

edge between two vertices in the dual graph is redundant if there exists an alternative

path between the two vertices such that the shared variables appear in every vertex

in the path. Redundant edges can be removed without affecting the set of solutions

(Fig. 2.7). Consequently, if any minimal dual graph of a CSP is a tree (a.k.a. join

18

tree), then all its minimal dual graphs are necessarily trees. Janssen et al. [1989]

introduced an efficient algorithm for computing the minimal dual graph by removing

redundant edges. Many minimal graphs may exist, but all are guaranteed to have the

same number of edges.

Acyclicity: Acyclicity of both the dual and hypergraph is an important component

of this dissertation. There are several types of acyclicity defined for a given graphical

model. 1 The strongest type of acyclicity, and the one we use in this dissertation,

is α-acyclicity. A hypergraph is α-acyclic iff it has a join tree [Beeri et al., 1983].

The properties of being α-acyclic, having a join tree, and being solvable with pairwise

consistency are all equivalent properties of a query schema [Beeri et al., 1983]. The

Graham reduction is a graph reduction operator used to determine if a query schema

(or, in our case, a hypergraph) is α-acyclic [Maier, 1983].

Piecewise Functionality: Another important property of the dual graph arises

from the nature of the constraints in the dual encoding of a CSP. In Figure 2.9, the

subscopes AB and AC label two edges and each of the subscopes A and ABC label

one edge. These constraints are equality constraints and dictate that the variables of

the subscope must have the same values in the corresponding vertices.

A binary constraint is said to be piecewise functional if the domains of the variables

in its scope can be partitioned such that a set from one variable is supported by at

most one set in the other and vice versa. Equality constraints are, therefore, piecewise

functional [Hentenryck et al., 1992; Samaras and Stergiou, 2005]. This property

is critical in developing the new relational consistency algorithms presented in this

dissertation.
1A quick review: Berge acyclicity [Beeri et al., 1983] → γ-acyclicity [Duris, 2012] → β-

acyclicity [Duris, 2012] → α–acyclicity [Beeri et al., 1983] ≡ join tree [Beeri et al., 1983].

19

AB

ABD

ABCE

ABCG

ACF

AB
A

AC

AC
ABC

R4

R3

R1

R2
A B D
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

✗

✗

R1 R2
A B C E
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 1 0
0 1 1 1
1 1 1 1

Figure 2.9: The equality constraint is piecewise functional

2.1.4 Tree Decomposition

A tree decomposition of a CSP is a tree embedding of its constraint network. We call

the nodes in this tree its clusters. A given cluster cl is comprised of a set of variables

χ(cl) ∈ X , and a set of constraints ψ(cl) ∈ C. All valid tree decompositions must

satisfy the following two conditions:

1. Each constraint appears in at least one cluster, and at least one of these clusters

must also contain all the variables in the constraint’s scope

2. For all variables xi ∈ X , the clusters where xi appear induce a connected subtree

of the decomposition

Many methods of constructing a tree decomposition from a CSP exist. Stam-

pede’s current implementation, and the one used for tree decompositions in this

thesis, is based on a technique presented in Dechter and Pearl [1989], and operates

as follows:

1. We triangulate2 the primal graph using the MinFill heuristic [Dechter, 2003c;

Kjærulff, 1990].
2A graph is triangulated iff every cycle of size four or more has a chord, which is an edge between

any two non-adjacent vertices.

20

2. We compute the maximal cliques in the resultant triangulated primal using the

MaxCliques algorithm [Golumbic, 1980].

3. Each of the identified cliques becomes a tree cluster cl in the final tree decom-

position, where the variables in the clique compose the variables χ(cl).

4. A constraint ci is placed in a cluster iff scope(ci) ⊆ χ(cl). This may cause some

clusters to have no constraints, which is acceptable as long as the two conditions

listed above are satisfied.

5. The clusters are connected using the JoinTree algorithm [Dechter, 2003d],

choosing a root for the tree such that the tree depth is minimized.

GB

E

A

D

C

F
R1R2

R3
R4
H

I
R5

R6

R7

A B

ED

C

F

G

HI

A B

ED

C

F

G

HI

Figure 2.10: A hypergraph, its primal graph, and the triangulated primal graph

Figure 2.10 shows a hypergraph of a CSP3, its corresponding primal graph, and

the triangulated primal graph (with dashed lines representing the edges added by the

triangulation). The maximal cliques for this CSP are shown in Figure 2.11, where

each of the colored regions map to a maximal clique. Finally, the tree decomposition

generated from the JoinTree algorithm is shown in Figure 2.12.

While not a central focus of this dissertation, tree decompositions have been used

extensively to improve relational consistencies [Geschwender et al., 2016; Geschwen-
3A slightly modified hypergraph from those presented earlier to make the resulting tree decom-

position slightly more interesting.

21

A B

ED

C

F

G

HI

Figure 2.11: The max cliques for the problem in Figure 2.10

{A,B,C,E,G}, {R1,R3}

{E,G,H}, {R5,R6} {A,C,F}, {R4} {A,C,D,E}, {R2}

{D,E,I}, {R7}

Figure 2.12: The tree decomposition for the graphs in Figure 2.10

der, 2018; Karakashian et al., 2011, 2012, 2013; Karakashian, 2013; Woodward, 2018].

Most relevant to this work is their use in conjunction with the propagation algorithms

PerTuple and AllSol to focus the enforcement of m-wise consistency over every

combination of m relations in each cluster, rather than every combination of m re-

lations in the entire problem, which can drastically reduce the memory and time

requirements of the algorithm.

2.2 Consistency Properties and Algorithms

Consistency properties can be partitioned into global and local properties. While

global consistency properties are likely intractable, algorithms for enforcing local

consistency properties are typically polynomial time because they operate on sub-

22

problems of fixed sizes. For a given consistency property, there can be any number

of algorithms (i.e., propagators) for enforcing it on a CSP. Additionally, consistency

properties can also be partitioned into those that focus on the domains of the variables

and those that focus on the relations of the constraints. This dissertation deals pri-

marily with three local consistency properties, namely, Generalized Arc Consistency

(GAC), Pairwise Consistency (PWC), and m-wise consistency (R(∗,m)C). Below, we

review their definitions.

2.2.1 Global Consistency Properties

Minimality and decomposability [Montanari, 1974] are both highly desirable global

consistency properties, which is a consistency property defined over an entire CSP.

Minimality ensures that every value in the domain of the variables participate in at

least one solution. Decomposability means that any partial solution of size k can

be extended to a complete solution backtrack-free. Unfortunately, enforcing mini-

mality is NP-Complete [Gottlob, 2011], and generally speaking global consistency

properties are computationally hard [Bessiere, 2006]. For this reason, the remainder

of this dissertation focuses on specific examples of local consistency properties and

the algorithms that enforce them.

2.2.2 Generalized Arc Consistency

Arc Consistency is a simple variable-based consistency property that operates on

binary CSPs and, when enforced, guarantees every value in every variable has at

least one support in each of its neighbors. Generalized Arc Consistency (GAC) is

a version of Arc Consistency that can be applied to non-binary CSPs. Both Arc

Consistency and GAC are extremely popular consistency properties due to their low

23

cost to enforce during search.

Definition 1. Generalized Arc Consistency (GAC) [Mackworth, 1977; Waltz, 1975]:

A constraint network P = (X ,D, C) is GAC iff, for every constraint ci ∈ C, and

∀xj ∈ scope(ci), every value v ∈ D(xj) is consistent with ci (i.e., appears in some

support of ci).

There are many general algorithms for enforcing GAC on arbitrary constraints.

Algorithms that strictly enforce GAC only remove unsupported values from the do-

mains of relations, but an extension to GAC algorithms (referred to as Tabular Re-

duction) also filter tuples from the relations of constraints which can no longer be

used in a solution. The current state of the art algorithm for GAC (and the one used

in this dissertation as the baseline for empirical evaluations) is a tabular reduction

algorithm called CompactTable(CT) [Demeulenaere et al., 2016]. This algorithm

makes heavy use of a data structure called the reversible sparse bitset, which is sim-

ilar to the sparse set structure [Briggs and Torczon, 1993; le Clément et al., 2013],

but encodes each element of the set as a single bit. Sparse sets are optimized for

membership checks as well as for insertions and removal of values. Making a sparse

set reversible allows the restoration of elements in the set in O(1) time and space,

enabling extremely fast backtracking operations.

2.2.3 Pairwise Consistency

Pairwise consistency is a relation-based consistency that effectively enforces arc con-

sistency on the dual encoding of a CSP.

Definition 2. Pairwise Consistency (PWC) [Gyssens, 1986]: A constraint network

P = (X , D, C) is PWC iff, for every tuple ti in every constraint ci there is a tuple

24

tj in every constraint cj such that πsubscope(ci,cj)(ti) = πsubscope(ci,cj)(tj), tj is called a

PW-support of ti in cj. A CSP that is both PWC and GAC is said to be full PWC

(fPWC) [Debruyne and Bessière, 2001].

As mentioned in Section 2.1.2, the piecewise functionality property divides rela-

tions into equivalences classes of tuples (see Figure 2.13) and forms the basis of the

PW-AC algorithm [Samaras and Stergiou, 2005]. PW-AC monitors the number of

living tuples in each group of tuples formed by the equivalence classes induced by

the piecewise functionality property. When one of the groups’ count is reduced to

0, all other groups in the equivalence class are immediately removed from the prob-

lem. However, the memory required to store the equivalences classes induced by the

piecewise functionality property is prohibitive in practice.

2.2.4 m-wise Relational Consistency

Pairwise consistency operates on every pair of relations in a CSP, which prompts

the question, could we enforce a relational consistency over an arbitrary number of

relations? Gyssens [1986] proposed a property for relational databases called m-wise

consistency. This property ensures that every combination ofm relations was minimal

(that is, each tuple in a relation could be extended to every combination of m − 1

relations). R(∗,m)C [Karakashian et al., 2010a, 2013] is equivalent to the m-wise

consistency property defined in Databases.

Definition 3. R(∗,m)C [Karakashian et al., 2010a]: A constraint network P = (X ,

D, C) is R(∗,m)C iff every tuple in the relation of each constraint ci ∈ C can be

extended to the variables in
⋃
cj∈C scope(cj) \ scope(ci) in an assignment that satisfies

all the constraints in C simultaneously. A network is R(∗,m)C iff every set of m

constraints, m ≥ 2, is R(∗,m)C.

25

The parameterized algorithm PerTuple enforces R(∗,m)C. It ensures that each

tuple in a relation appears in a solution of the dual CSP induced by them relations by

conducting a backtrack search on the tuples of the m− 1 relations (see Figure 2.14).

A closely related consistency is wR(∗,m)C, which guarantees R(∗,m)C for every set

of m connected constraints found in the minimal dual graph.

A B C D G
t1 0 0 0 0 0
t2 0 0 0 1 0
t3 0 0 1 0 0
t4 0 0 1 1 1
t5 0 1 1 0 1
t6 0 1 1 1 1
t7 1 1 1 1 1

A B E
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

✗

✗

R1 R2

Figure 2.13: Piecewise functional con-
straint.

..…
For every combination

of m-1 relations Every	
 tuple	

In	
 every	
 rela.on	

Figure 2.14: Illustrating R(∗,m)C.

After running PerTuple, the removal of tuples from a relation Ri are reflected

in the domains of variables in scope(Ri) by projecting the altered constraints onto

the domains of the variables in the constraints’ scopes. The PerTuple algorithm

uses a data structure called an index tree that groups the equivalent tuples in a con-

straint relative to another constraint, implicitly exploiting the piecewise functionality

of the two constraints. This data structure allows PerTuple’s backtrack search to

efficiently identify tuples that can be part of a valid solution to the combination of

constraints.

2.3 Related Work

In this section, we delve into work related to our goal of demonstrating the efficacy

and aiding in the development of relational consistencies.

26

2.3.1 Constraint Solvers

At a high level, constraint solvers fall into two categories: off-the-shelf solvers pri-

marily used for modeling and industrial applications, and research solvers used for

developing new consistency properties and algorithms. Many of these solvers strad-

dle that line to some extent, but lean more towards one side or the other. There

are three publicly available solvers that are commonly used for building commercial

applications, namely, Choco, Gecode, and Google’s OR-Tools.

Choco: Choco is a Java-based solver whose primary focus is to model and solve

decision and optimization problems for commercial applications. It is maintained and

used by Cosling to support their commercial activities. Of the three solvers discussed

in this section, it is the most understandable and straightforward in its design and

implementation, and the developers have provided ample documentation. While the

current version of Choco is not intentionally built to support further research and

algorithm development, the clarity of the code seems well suited for extensions. As

stated above, Choco attaches propagators directly to constraints. This design deci-

sion raises no issues for commonly used consistency algorithms. However, the code

may require significant alterations to lend itself to the development of relational con-

sistency algorithms because the current solver’s architecture does not support them.

Gecode: Gecode’s architecture is a complex one, but, thankfully, Gecode comes

with extensive documentation. It relies heavily on the visitor and signal design pat-

terns, resulting in somewhat unpredictable behavior from a non-expert user’s perspec-

tive. A scheduler class controls the execution order of propagators, which may not

be transparent to the user. Like in Choco, propagators are associated with a single

constraint. Thus, allowing a propagator to operate on multiple constraints would

27

likely require altering the model of the CSP. If implementing relational consistencies

is indeed possible, it is certainly not straightforward or trivial.

OR-Tools: OR-Tools is a library that combines, into one solver, graph algo-

rithms, linear and mixed integer programming, constraint programming, and routing

and scheduling algorithms. The constraint programming component of the solver

focuses on optimization, not on satisfaction. Additionally, because of the breadth

of its scope, the documentation of OR-Tools is fragmented, making it difficult to

find a cohesive overview of the constraint solver. Recently, they have replaced the

original constraint solver with a new CP-SAT solver, which reportedly boasts some

performance improvements but, unfortunately,

“The only (big) downside is that you cannot write new constraints with

this solver.”4

This limitation is indeed a significant obstacle to the development of new con-

straints and propagators and largely precludes the use of this solver for research.

We believe that all three solvers discussed above focus on modeling and solving

practical applications rather than providing an open platform to support new research

and investigations. However, given its design and extensive documentation, Choco

may be, in our opinion, more accessible to a researcher than Gecode and OR-Tools.

Furthermore, because of the automated behavior of their propagation schedulers, it is

difficult to predict the behavior of these solvers without gaining an intimate knowledge

of their control mechanisms. (This comment applies to all three solvers but more so

to Gecode or OR-Tools than to Choco.) Such a design is clearly beneficial for the

engineering of industrial solutions. However, it is to the detriment of the researchers
4Message from main developer of OR-Tools, Laurent Perron, on the Google groups forums

(accessed 2021/05/14).

https://groups.google.com/g/or-tools-discuss/c/qANoFaIsj88
https://groups.google.com/g/or-tools-discuss/c/qANoFaIsj88

28

who need to reduce the number of independent variables when empirically comparing

algorithms. While both Choco and OR-Tools explicitly state that they do not

support relational consistency algorithms, nothing in Gecode’s documentation lends

credence to the contrary (at least without significant modification of either its code

or the CSP’s model).

One example of a publicly available solver that is oriented more towards the re-

search community is AbsCon [Merchezn et al., 2001]. Prior approaches such as Mairy

et al. [2014] have tried to integrate HLC into AbsCon, but required adding new con-

straints in the problem, altering the model. Vion et al. [2011] proposed a more general

method of integrating HLC into theoretically any event based solver, but again, this

formulation required adding a global constraint that replaces the constraints the HLC

would operate on, as well as introducing several other abstractions. Further, it does

not alleviate our concerns with execution order. Without altering the propagation

queue scheme or implementing some form of constraint prioritization, the solver may

choose to uselessly enforce a weak consistency after a strong consistency. This ap-

proach provides a means of enforcing HLC in event-based solvers, but, in our view,

significantly increases the complexity of reasoning about the model and operation of

the solver, in addition to requiring somewhat significant alterations to the constraint

network.

2.3.2 Consistency Algorithms

Traditional GAC propagators have recently been extended to filter not only the do-

mains of variables but also the tuples of table constraints. The first and perhaps most

well-known GAC propagators are the Simple Tabular Reduction (STR) family of al-

gorithms [Lecoutre et al., 2012; Lecoutre, 2011; Ullmann, 2007]. These algorithms

29

have shown a significant performance improvement over other GAC algorithms at the

times of their publications.

The current state of the art in GAC propagators is the CompactTable algo-

rithm, which, in a manner similar to the STR algorithms, filters relations. The

CompactTable algorithm operates on a bitset representation of a table constraint,

which allows it to remove multiple tuples at once rather than a single tuple as in STR.

This feature is advantageous both when checking whether or not a variable-value pair

has a support in a constraint and when removing invalid tuples, as each operation

can be performed in 64 tuple-chunks in a single operation on most modern CPU

architectures. The algorithm demonstrates a tremendous performance improvement

over STR algorithms and is, to the best of our knowledge, the best general-use GAC

propagator that currently exists [Demeulenaere et al., 2016].

Algorithms for enforcing stronger consistencies than GAC while filtering only

the domains of the variables include algorithms for enforcing the following consis-

tency properties: NIC [Freuder and Elfe, 1996], maxRPC [Debruyne and Bessière,

1997a], maxRPWC [Bessière et al., 2008], SAC [Debruyne and Bessière, 1997b],

NSAC [Wallace, 2015], and POAC [Bennaceur and Affane, 2001] and its adaptive

version aPOAC [Balafrej et al., 2014]. While all the above approaches demonstrate

performance improvement over their contemporaneous GAC algorithms on specific

benchmarks, none of them can beat GAC on all instances.

The very first relational-consistency algorithms (i.e., algorithms that operate on a

combination of constraints) are perhaps those for enforcing Path Consistency (PC) on

a binary CSP [Montanari, 1974]. More generally, the consistency of combinations of a

given size for non-binary constraints was articulated asm-wise consistency by Gyssens

[1986]. More recently, Samaras and Stergiou [2005] introduced the algorithm PW-

AC, which enforces pairwise consistency (PWC or m-wise consistency where m = 2),

30

by effectively ensuring arc-consistency on the dual representation of the CSP.5 The

PW-AC algorithm was a good step towards making relational consistencies competi-

tive with traditional propagators on certain benchmarks, but the data structures were

costly in terms of memory. Lecoutre et al. [2013] developed eSTR, which enforces

PWC and is based on the STR algorithms. They also identified a special condition

where GAC is sufficient for enforcing PWC, though, the memory required for its

implementation remains prohibitive in many cases. Paparrizou and Stergiou [2016]

generalized the approach used by eSTR into a suite of algorithms (the HOSTR algo-

rithms) capable of enforcing a number of relational consistency properties that range

in strength from stronger than GAC but weaker than fPWC to enforcing fPWC. They

found that a weakened version of eSTR which does not requeue on tuple removals

was superior in performance to enforcing fPWC with eSTR.

Enforcing what corresponds tom-wise consistency withm=2 andm=3 was shown

to be beneficial in the context of the Minesweeper computer-game [Bayer et al., 2006].

Karakashian et al. [2010a] and Karakashian [2013] proposed two general, parameter-

ized algorithms for enforcing m-wise consistency (which they called R(∗,m)C) named

PerTuple and AllSol. They also identified the importance of using a minimal

dual graph, which was discussed in detail in Section 2.1.2. The performance of their

algorithms is hindered by the large number of m-sized combinations in problems and

its impact on the computational cost, although this cost can be compensated by the

significant reduction of the search space and the search effort that R(∗,m)C may

provide.
5The idea of enforcing PWC by enforcing AC on the dual CSP was first proposed by Janssen et

al. [1989].

31

2.3.3 Structural Tractability

Freuder [1982a] showed that tree-structured CSPs are tractable and can be solved

in a backtrack-free manner after enforcing arc consistency. He also linked the level

of consistency that is needed to guarantee tractability to the width of the constraint

graph of the CSP [Freuder, 1985]. This relationship is of significant theoretical im-

portance, but its practical applicability is limited because enforcing consistency in

this manner may require adding constraints to the constraint graph, which alters its

width, thus, requiring a higher consistency level. This line of research was extended

by Dechter and Pearl [1988] and Dechter and Pearl [1989] yielding algorithms that

guarantee single-parameter tractability in terms of the induced width of the constraint

networks. Beyond CSPs, Dechter [2003b] argues that these techniques are intimately

related to elimination algorithms, dynamic-programming algorithms, join trees in

databases, and tree decompositions in graph theory.

Exploiting tree decompositions for solving satisfiability, optimization, or model

counting problems in CP or more general graphical models has received increased

attention in the last two decades [Dechter et al., 2001; Dechter, 1996, 1997; Jégou

and Terrioux, 2003a; Jégou et al., 2005; Kask et al., 2005]. One CP technique that

is particularly relevant to our work is the cycle-cutset method [Dechter and Pearl,

1987]. This technique identifies a cycle cutset of the constraint network of a binary

CSP, which is a set of variables whose removal changes the remaining network into

a tree. The algorithm iterates over finding a solution to the variables in the cutset

using backtrack search, then extending the solution found to the remaining tree struc-

ture after enforcing directional arc-consistency. The cycle-cutset method reduces the

exponential cost of solving the CSP to size of the cutset.6

6Finding the smallest cutset of a graph is an NP-Hard problem.

32

Derenievicz and Silva [2018] focuses on a specific kind of acyclic structure in Nu-

merical Constrained Global Optimization Problems that they dub “Epiphytic Trees”.

According to their work, these trees are more common than Berge acyclic graphs,

and can be solved backtrack free through a combination of GAC and relational arc

consistency. However, relational arc consistency may require adding constraints to

the model, and the strength of their approach seems limited to a very specific class

of optimization problem. Further, they only check for their acyclic structures prior

to search, and do not dynamically identify the appearance of these acyclic structures

as variables are assigned.

To the best of our knowledge, there has been little work on dynamically identi-

fying tractable subproblems during search. Examples include dangling trees in the

dual graphs within PerTuple and AllSol [Karakashian et al., 2010a; Karakashian,

2013], which have been significantly improved and carefully evaluated by Geschwender

[2018]. This approach is limited to search on the dual graph.

Acyclic schemas in databases are highly desirable because they are known to be

tractable. The Graham operator was proposed in relational databases to efficiently

recognize acyclic queries [Maier, 1983]. We make extensive use of this operator to

identify tractable subproblems during search.

Summary

In this chapter we provided a formal definition of a CSP, an overview of various

techniques used for solving a CSP, and an example of such a solution . We then gave

a brief review of various consistency properties and how they relate to one another,

including the definitions of global, local, and relational consistencies. We ended with

an overview of works related to the research presented in this dissertation with a focus

33

on consistency algorithms and constraint solvers.

34

Chapter 3

Stampede: A CSP Solver Designed for Research, Extensibility,

and Composability

Relational consistencies have not traditionally been at the forefront of research within

the CP community; traditional variable-based and other lower order consistency prop-

erties have long dominated the discourse and research, largely due to their low perfor-

mance overheads and ease of implementation. This has unfortunately but predictably

meant that software created for both research and industrial use has not been con-

ducive to the development of novel relational consistency properties.

This chapter describes Stampede, a CSP solver developed from the ground-

up to facilitate the creation and research of relational consistency properties. We

will motivate the creation of this solver, explain its central design philosophies, and

describe (at a high level) the architecture that enables both traditional and relational

consistency properties to be developed and tested with as little friction as possible.

3.1 Motivating the Creation of Stampede

There is a large upfront cost of developing a wholly new software stack. New software

requires substantial planning, designing, and testing, on top of the obvious time

investment of programming and debugging. It is difficult to justify this immense

investment of time, especially when existing software seemingly accomplishes most of

the goals that the new stack aspires to achieve. The process of creating Stampede

was no exception: Not only were there existing CP solvers available that claimed

35

to be versatile, powerful, and fast, but our own lab had a homegrown solver (scsp)

that was capable of developing new algorithms for relational consistencies (in fact,

R(∗,m)C and RNIC were both initially developed using scsp). Here we address

why we chose to construct Stampede rather than either modifying an existing solver

to incorporate relational consistency algorithms or continuing to use and expand on

scsp.

3.1.1 The Shortcomings of Existing Alternatives

As mentioned in Section 2.3.1, adapting one of the existing solvers to incorporate

relational consistencies such as Gecode or Choco was not just difficult, but likely

impossible to do without altering the CSP model. While this may have changed in

the intervening years since Stampede was conceived, it would appear that there’s

still a tightly coupled relationship between a specific constraint and its propagator in

both solvers. Both Choco’s and Gecode’s highest level of consistency enforced on

table constraints is GAC, using the CT algorithm [Prud’homme, 2022b] [Schulte et

al., 2022].

Even were there an avenue to easily incorporate relational propagators into these

solvers, there would still be a need to contend with existing code, developers, review

processes, and licenses, which would further impede relational consistency research.

Indeed, this could carry the advantage of having a built in user base which might

encourage additional and further growth of relational consistencies, but that would be

far from a guarantee. Developing in-house meant we could develop and iterate much

faster by creating software tailor made to our skills and needs. Control in general

was a secondary (but important) motivator; we could choose the language, tools, and

ensure integration with our existing parsing and experimental tooling infrastructure.

36

Further, these solvers (and the supporting documentation) tend to focus more

on modeling, search, and defining new, very specific constraints. There is less of

an emphasis on creating or comparing new propagators for existing constraints and

inference algorithms. Overall, it is our view that the most prominent constraint solvers

are not designed with supporting research as a primary goal, least of all research on

producing propagators for combinations of constraints.

3.1.2 scsp: A Precursor to Stampede

Prior to initiating the development of Stampede, UNL’s Constraint Systems Labo-

ratory conducted research using another internally built constraint solver called scsp.

The development of scsp began as a single student’s effort, and quickly evolved into

a full fledged solver to support the lab’s research. However, this quick evolution re-

sulted in a fragmented code base without a strong, cohesive design backing it, as

elements were added in an ad-hoc manner to support new and changing research

directions within the lab; the lab’s investigations into relational consistencies were

just beginning. Consequently, there was little-to-no documentation of code or design

as elements were frequently removed, altered, or replaced to meet the lab’s changing

needs.

Further, scsp was written using C99. The lack of modern programming features

(e.g., objects, generics, lambdas) in combination with its rapid development led to a

heavy reliance on global variables and global state. By the end of its use, a singleton

global variable used ubiquitously throughout scsp had grown to contain over one

hundred individual members, many of which were pointers to other global structures.

Managing state in scsp had become an onerous task, and a non-trivial amount of

development and research was spent debugging segmentation faults and initialization

37

issues stemming from these global structures. The absence of a standard library in

C99 also necessitated the development (and frequent debugging) of lab-grown data

structures for everything ranging from linked lists to multiple graph models.

Configuration of scsp was handled through command line arguments, using the

GetOpt library. Predictably, as the number of algorithms and research directions

grew, the command line arguments used to configure scsp grew as well. Adding new

options to the command line, either to support new algorithms or variations in existing

ones, was an onerous process that typically required finding the correct parent switch,

parsing it, ensuring it did not conflict with other switches, and passing it through

several (sometimes a dozen or more) functions for use in the target algorithm. It

was, by the end of scsp’s life-cycle, not uncommon to see command line runs such as

./scsp -f extra/xml/zebra-supports.xml -k -F -v-10 -Tmfrstonenosp -s2 -xpb -qmr

-b2x13, and even this is not a particularly egregious example.1

The point of relaying this here is not to tear down the efforts that went into

building scsp, but to clearly motivate the design decisions that informed Stampede,

as many hard lessons were learned that enabled us to design and build a solver that

could streamline the development and testing of a wide range of research.

3.1.3 Design Philosophies and Goals of Stampede

There is nothing particularly noteworthy about Stampede with respect to the the-

oretical or research oriented field of software engineering; the aspect of Stampede

that makes it unique (and what this chapter will focus on) is how Stampede treats

the core entities of a CSP (e.g., constraints, relations, variables, and propagators)

relative to its other contemporary constraint solvers.
1This specific configuration resulted in scsp running an algorithm called PerTuple on a par-

ticular cluster in a tree decomposition (the 13th cluster, in this case).

38

Stampede is, in many ways, a response to the lessons learned from the design

and implementation of scsp and the shortcomings of other solvers with respect to

their support for relational consistencies. Stampede was designed with a focus on

the following objectives:

1. Extensibility and Ease-of-use: Stampede should be, above all else, easy to

modify with as low of a barrier to entry for testing new ideas and algorithms as

is feasible.

2. Modularity and Composability : Combining multiple approaches at once can

produce surprising results. Propagators, ordering heuristics, and search type

should be able to operate alongside each other without requiring “glue” for every

new combination of algorithms. Propagators should be drop-in replacements for

one another. And all without altering the initial model of the CSP.

3. Research Oriented : Making A/B comparisons between propagators should be

as fair as possible. Propagators should share as much code as possible without

sacrificing performance of the propagator itself. This ensures that differences

seen between two algorithms can be attributed to the algorithms themselves.

Notably, Stampede was never intended to compete with other solvers. The per-

formance of Stampede relative to other solvers was always an explicit non-goal; while

Stampede needs to be fast enough to complete experiments, it was far more impor-

tant to ensure that comparisons between two different propagators or algorithms were

fair, all other things being equal. This required some sacrifice to overall performance,

but care was paid to ensure that performance did not suffer so severely that we were

unable to solve CSPs in a practical time frame. In short, Stampede tries to prioritize

readability and usability over raw speed.

39

The remainder of this chapter will provide a high-level overview of how Stampede

accomplishes these goals and expedites research and development of novel relational

consistencies.

3.2 Extensibility: Lowering the Burden of Entry for Novel

Ideas and Algorithms

As mentioned in Section 3.1.2, scsp inspired several quality-of-life improvements that

became integral to the design of Stampede. In this section, we will describe how

Stampede improved on the ease of adding of new algorithms through the use of a

custom command-line argument parsing based on the “Templatized C++ Command

Line Parser” (tclap) library [Aarno, 2022], then provide an overview of some of the

core classes and relevant implementation details used to construct them, followed by

describing the ways Stampede makes it straightforward to create a new propagator,

and finally how propagator implementations can modify the state of a CSP without

needing insight into the rest of the runtime environment.

3.2.1 Core Classes

Stampede provides a set of core classes used to represent a CSP. These classes are the

building blocks for every search engine and constraint propagator. Here we’ll provide

a brief overview of some of these classes, focusing in particular on the elements that

engender extensibility by providing a foundation on which new propagators can build

upon.

As mentioned in Chapter 2, all CSPs are comprised of sets of variables, do-

mains, and constraints. Unsurprisingly, these all have corresponding representations

in Stampede. Each instantiation of one of these core classes has at least one unique

40

ID associated with them. Figure 3.1 shows a partial class hierarchy for one such class,

the so-called Assignable class.

Figure 3.1: Relationship between subset of core classes

An Assignable represents any element which can be instantiated with a value. In

traditional solvers, this would be likely be limited to variables and their domains, but

Stampede implements several propagators which require temporary assignments of

a tuple to a table constraint. An added benefit is that it closely reflects the nature of

the dual encoding of a CSP.

Underlying the domains of the assignable objects in Stampede is the RSparseIn-

trusiveDomain class. This class is a generic container that combines two concepts:

the reversible sparse set [Demeulenaere et al., 2016] and an intrusive list [Boost, 2022].

A sparse set [Briggs and Torczon, 1993] is a data structure that acts as a set, but

provides O(1) complexity for insertion, removal, and lookup operations. A reversible

sparse set is effectively the same structure, but adds a “reversible” primitive (essen-

tially just a vector of values) that allows chunks of removed values to be restored in

41

Figure 3.2: Class diagram of Stampede’s assignable elements with a subset of class
member variables and functions

constant time. The details of these data structures and their implementations have

been covered extensively in prior literature, so are omitted from this dissertation.

An intrusive list is a cache-friendly implementation of a linked list where the

underlying data can be stored in a compacted vector or array; pointers to the next

element in the list are inserted into the objects themselves via a mix-in. This means

all pointers to objects in the list remain valid for their lifetime (since the underlying

42

objects are never moved), and slices of the list can be removed and re-inserted in O(1)

time as the only changes are pointer assignments. The combination of the intrusive

list and reversible sparse set lets users of the domains iterate over either the living or

dead values with value semantics (i.e., no pointers or std::reference_wrappers) while

providing excellent performance when undoing changes during search or providing the

changes made to the problem state to propagators and other objects.

Figure 3.2 shows the relationships between the Variable, TableConstraint, Vari-

ableDomain, and Relation classes. The VariableDomain and Relation classes are

somewhat vestigial. With the introduction of RSparseIntrusiveDomain, both classes

effectively just pass function calls and requests through to the underlying RSpar-

seIntrusiveDomain implementation. In fact, a more efficient implementation of this

structure would have a one-to-many relationship between domains and variables (or

relations and table constraints) to save on space where possible, with an RSparseIn-

trusiveDomain representing the current domain.

Stampede also provides a small set of classes used to represent the various graph-

ical representations of a CSP. Figure 3.3 shows an overview of these classes, but omits

the classes representing the nodes and edges for space. The relationships of nodes

and edges mirror the structure of the graphs, where dual edges and primal edges

are instantiated with specific constraint types (equality and universal constraints,

respectively).

The graphs are modeled using a pattern known colloquially as the Curiously Re-

curring Template Pattern (CRTP) [Coplien, 1995]. This allows a common base class,

in this case GenericGraph, to implement a set of behaviors common to several child

classes while allowing the child classes to specialize specific portions of the behav-

ior implemented in the base class and add entirely new methods without the use of

virtual functions. In the particular case of the GenericGraph class, we can offload

43

Figure 3.3: Class diagram of Stampede’s graph structures.

common behavior like adding or removing nodes and general graph construction so

that the various child classes need not duplicate these implementation details.

The graph interface is seldom used in Stampede. Most uses of any of the graph

classes happen on a concrete instantiation of the class, because most algorithms know

at compile time which representation they require (e.g., a specific propagator tends

to require operating on a specific kind of graph, such as the dual graph). Generally

speaking, the graph structures in Stampede are lightweight, and allow developers to

more easily reason across a multitude of CSP representations.

3.2.2 Run-time Configurable Algorithms: tclap and the CLI-

Factory

Perhaps the aspect of Stampede which had the largest impact on its ability to

be easily modified and extended was its command-line parsing capabilities. One of

44

the largest hurdles to deploying new algorithms (or modifications to existing algo-

rithms) in scsp was the large amount of boilerplate code and plumbing required to

get started. This was remedied in Stampede through the combination of two fairly

simple methods: a generic factory class [Gamma et al., 1994] called (CLIFactory), and

a somewhat minor modification to an existing command-line parsing library called

tclap [Aarno, 2022].

Figure 3.4: A simplified UML diagram of Stampede’s CLI Factory

Figure 3.4 shows a simplified rendering of the CLIFactory class’ API. The factory

is a generic class, templated on the BaseType (e.g., a propagator or search engine),

and a variable number of types that change depending on what BaseType the factory

is being used to create. When registering a new class with the factory, a small number

of arguments are required:

1. Name: The name of the class, which will be used to select the class for use on

the command line.

2. Description: A short description of the class for use in help messages.

45

3. Opts: A function pointer or lambda to the constructor of the options used for

the class.

4. Obj: A function pointer or lambda to the constructor of the class itself.

5. Config: A function pointer or lambda to the Configurator for the class.2

Once a class is registered with the factory, it can be created through the create

method, which requires the name of the class to construct (supplied in the regis-

tration), and arguments corresponding to the same set of types used to define the

factory.

This registration mechanism has a minor downside: the constructors for a given

BaseType (e.g., all constructors for propagators) must have the same function defi-

nitions so that the signature of their lambda functions will be identical. This could

potentially be worked around through type erasure or similar mechanisms, but was

not necessary in the context of Stampede: nearly all propagators, for example, rely

on the same core entities for construction and initialization, namely, the variables and

constraints of the problem.

The second critical component that makes Stampede easily modifiable is its

command line argument parsing. The tclap library is a small, header only library

that provides a simple mechanism for parsing command line arguments. It contains a

number of classes used to define various kinds of argument types typically encountered

on the command line, such as a SwitchArg (e.g., the common -h flag which takes

no arguments), or a ValueArg (e.g., –num-retries 10). Users can build up a set

of expected, required, or mutually exclusive arguments, pass in an array of strings

corresponding to the command line arguments, and tclap will verify the arguments
2The configurator argument is an element of Stampede that will be covered below in Sec-

tion 3.2.3.

46

meet the specified requirements and provide a set of objects containing the parsed

values.

In addition to the existing argument types defined in tclap, a new type, the Sub-

ValueArg was defined and added to an internal fork of the library. A SubValueArg

is just a value argument, but with the addition of an arbitrary number of additional

arguments contained inside of braces following the value. For example, a propaga-

tor might require some configuration, such as a switch to enable an experimental

feature and an integer representing a timeout (e.g., ./Stampede -s BasicSearch {–

consistencyPropagator MyNewProp {–timeout 10 –enableExperiment} –varOrder

DomDeg}).

The flags inside the braces are a completely independent set of command line

arguments that can be verified and checked according to the propagator’s needs. In

fact, any object registered with the factory has its own set of command line arguments

accompanied by an automatically generated help message. For example, passing –

help to the GAC2001 propagator in Stampede produces the help message displayed

in Figure 3.5. While more recent C++ argument parsing libraries have made this

feature more of a de facto standard, at the time of the implementation of Stampede

(circa 2014) it was fairly novel.

Notably, this feature allows Stampede to arbitrarily nest propagators inside of

other propagators without altering any code, assuming the propagator allows taking

another propagator as an argument. This was used, in part, to create a new type

of propagator (a driver) to selectively enforce varying levels of consistency to sub-

problems of the CSP derived from the properties of the problem itself [Woodward et

al., 2018; Woodward, 2018]. But most importantly, it makes Stampede and all its

individual components highly and easily configurable.

47

Figure 3.5: Example output of a help message for an object in Stampede.

3.2.3 Consistency Propagators and Configuration

Consistency propagators are the major differentiating element of Stampede from

its contemporary solvers. Other solvers typically (ubiquitously, to our knowledge)

enforce consistency properties at the granularity of a single constraint. That is,

each propagator ensures that a given constraint adheres to the consistency property

enforced by the propagator. Propagators in Stampede, however, are responsible for

ensuring that an entire collection of constraints adhere to a consistency property.

Of course, other solvers must have some mechanism for propagating changes

caused by the enforcement of a consistency property to other variables and con-

straints, but those tend to be treated as implementation details, hidden from end

users, with assumptions around a one-to-one mapping of constraint to propagator.

Choco, for example, states

“The Propagate component is less prone to be modified, it will not be

described here. However, its interface is minimalist and can be easily

48

implemented.” [Prud’homme, 2022a]

Perhaps it would not necessarily be impossible to implement a relational consistency

propagator in another solver, but doing so would bend the assumptions these solvers

were designed around, and likely produce very complex, error-prone code (were it

even possible to do so without altering the CSP model itself).

Figure 3.6: Sequence diagram of initialization of Stampede.

Creating a new propagator and using it in search in Stampede is a fairly straight-

forward process for users wishing to add new propagators or search engines, but belies

a fair amount of complexity under the surface. Figure 3.6 shows the initialization

sequence typical for a simple consistency propagator. Users wishing to write new

propagators only need be concerned with the final steps of the initialization, where-

upon construction the propagator shall create all necessary data structures that it

will use during search (graphs, book keeping, etc.).

49

Writing a new propagator is frequently contained to a single header and imple-

mentation file, with dependencies only arising for common support classes like graph

representations. A helper macro such as the one in figure 3.7 is placed at the top

of the propagator’s implementation file, which creates the required registry entries in

the CLIFactory. That is all that is required to begin using the propagator inside of

any implemented search engine in Stampede.

1 REGISTER_PROPAGATOR("GAC2001",
2 "Enforces GAC2001 on the table "
3 "constraints in the problem",
4 GAC2001 ,
5 GACHelpers :: GAC2001Options ,
6 GACHelpers :: GAC2001Config)

Figure 3.7: Helper macro to enable GAC2001 propagator use in Stampede.

The registration macro requires two classes aside from the propagator itself. The

first is a class which contains the tclap logic used to parse and define the valid

options for the propagator. This class must be a child of the ArgumentInterface

class (e.g., GACHelpers::GAC2001Options referenced in Figure 3.7). ArgumentIn-

terface contains only a single abstract function, clone(), which is used to make a

deep copy of any objects used by the options class. The second class is a child of the

PropagatorConfigurator3 interface.

Figure 3.8 shows the relationships between the PropagatorConfigurator interface,

two helper classes used to simplify the creation of concrete instances of the interface,

and two such concrete implementations. The Visitable 4 class referenced in Figure 3.8

is an alias for a std::variant, a C++ class that is frequently used to implement visitor

patterns [Gamma et al., 1994], and is a type-safe union of classes. In the case of

the Visitable class, the union is comprised of all concrete constraint and assignable
3An admittedly terrible name
4Another admittedly terrible name

50

Figure 3.8: Diagram of various classes used to configure propagators.

classes. A concrete implementation of a PropagatorConfigurator is given a set of

Visitable objects. The PropagatorConfigurator must then examine each and decide

which are relevant to its operation (and which are not) by visiting each Visitable in

the collection.

The DefaultVisitor is a helper class that uses CRTP to allow specific Propaga-

torConfigurator implementations to handle the specific constraints and assignables

that are relevant to them without needing to explicitly define every handle method

for the classes defined within Visitable. In fact, the PropagatorConfigurator allows

developers to craft propagators that can operate on very specific constraints (e.g.,

only constraints of a specific arity, with a certain name, or a particular connectivity

property within the CSP).

The GenericConfigurator class in Figure 3.8 handles the most common use-case

for propagators, where the propagator enforces a consistency over a specific kind of

51

assignable (e.g., variables) and a specific kind of constraint (e.g., table constraints).

Most propagator classes can use this by inheriting it with their chosen assignable and

constraint types as template parameters. The ViewableTag template parameter is

used to differentiate between the specific kinds of changes to the problem state that

the propagator needs to be notified about: changes to the assignables, constraints,

both, or neither.

These machinations serve two purposes. The first is to communicate information

back to the search engine prior to search begins about any constraints in the prob-

lem that the propagator (or set of propagators) being used do not handle. These

constraints will need to use back-checking to ensure consistency. The second is to

ensure that after the initial setup, the propagator implementation will only ever see

variables and constraints that it expects, and reduces the amount of time required to

insert new implementations into Stampede.

Table 3.1 shows the consistency algorithms currently available in Stampede at

the time of writing. The breadth of the available algorithms and relatively low amount

of time required to implement these algorithms in Stampede supports our claims of

its flexibility and ease-of-use, and serves to validate the overall architecture of its

design.

To summarize, the combination of the classes outlined in Section 3.2.1 and the

PropagatorConfigurator outlined in this section makes it fairly trivial to begin de-

veloping a new propagator in Stampede: Adding new command line arguments for a

propagator requires modifying only the corresponding options class for the propaga-

tor, and adding an entirely new propagator requires only setting up the configuration

class (which can be as simple as instantiating a GenericConfigurator) and using a

macro.

52

Table 3.1: Available consistency algorithms in Stampede.

Algorithm Consistency Property Notes
AllSol m-wise
AllSolFB m-wise Option of AllSol
Backcheck -
CompactTable GAC
FC3rm Forward Checking Uses GAC3rm
GAC2001 GAC
GAC3rm GAC3rm
LivingSTR GAC
MaxRPWC2 MaxRPWC
NIC NIC
PC2001 PC2001 Binary only
POAC1 POAC1
POACPartial Partial POAC
POACQ POACQ
PW-AC1 PWC
PW-AC2 PWC
PW-CT fPWC
PerTuple m-wise
PerFB m-wise Option of PerTuple
RNIC RNIC
RNICSingleQueue RNIC
SAC SAC w/POAC-1
SACQ SAC w/POAC-Q
STR1 GAC
STR2 GAC
STR3 GAC
STRBit GAC
TriangleH3C Triangle H3C
TriangleH3CBit Triangle H3C
TrianglePPC Triangle PPC
TrianglePPCBit Triangle PPC
eSTR1 fPWC Supports min dual and weakened
eSTR2 fPWC Supports min dual and weakened
sCDC1 sCDC1

53

3.3 Leveraging Modularity to Give Rise to Novel Relational

Consistencies

One of the fundamental ideas that served as a north star when designing Stampede

was ensuring components could be swapped in and out of algorithms without consis-

tently requiring edge case handling or glue to bind disparate pieces together. The final

implementation reflects this goal in a few (somewhat unexpected) ways due to the

emergent behavior that arose from the combination of shifting propagators to enforce

a consistency to the problem state (as mentioned in Section 3.2.3), treating relations

as fundamentally changeable and first-class objects, and the ability to mix-and-match

components.

3.3.1 Algorithms for Enforcing Hyper-3 Consistency

The decision to have TableConstraint objects also act as Assignables mentioned in

Section 3.2.1 complicated portions of Stampede, but gave rise to some unexpected

and powerful emergent behavior. One notable example are the family of algorithms

used to enforce Hyper-3 Consistency and its weaker variants [Woodward, 2018].

Hyper-3 Consistency is a consistency property that ensures that every two rela-

tions can be consistently extended to a third [Jégou, 1993]. This property mirrors

the more familiar Path Consistency (PC), which ensure that every two variables can

be consistently extended to a third. There also exist weakened versions of PC, Con-

servative Path Consistency (CPC) [Debruyne, 1999] and Partial Path Consistency

(PPC) [Bliek and Sam-Haroud, 1999]. Each of these algorithms requires removing

combinations of values from the constraints incident to the variables. Prior to the

work presented by Woodward [2018] that was developed using Stampede, no algo-

54

rithm for enforcing the many variants of Hyper-3 Consistency existed, as doing so

would require operating on the dual encoding, triangulating it, and marking combi-

nations of tuples as no-goods.

However, algorithms for enforcing Hyper-3 Consistency and its variants arose nat-

urally from the relationships between table constraints, equality constraints, and the

Assignable in Stampede. In fact, the algorithms for enforcing the PC family of con-

sistencies were carried over to the Hyper-3 Consistency family of consistencies almost

directly, due to the explicit representation of equality constraints and the inheritance

hierarchy that defines a table constraint as an assignable entity. Triangulating the

dual graph for Hyper-3 Consistency algorithms used the same code that was used to

triangulate the primal graph for the path consistency algorithms, and the enumera-

tion of tuples within an equality constraint was accomplished by creating new table

constraints for each equality constraints, where the “variables” in the scope of the

generated table constraints were the original table constraints.

3.3.2 Drivers

Search engines in Stampede are completely agnostic to the propagator and level of

consistency they run, so long as the propagator accurately reports the constraints it

will ensure at least the minimum level of consistency required to prevent backcheck-

ing. When execution is handed off from search to a propagator, the propagator is

free to choose what consistency to enforce, where to enforce it, and how often to

enforce it. This flexibility led to the eventual evolution of two distinct categories of

ConsistencyPropagators.

The first category hews closely to the traditional concept of a propagator. Gen-

erally, these operate on a specific kind of constraint, adding elements that need to

55

be revised to a queue until quiescence is reached (i.e., the remaining problem ad-

heres to the consistency property enforced by the propagator). The propagators for

CompactTable and GAC2001, for example, fall into this category.

The second category is what we would come to refer to as drivers. A driver in

Stampede is just a child of the ConsistencyPropagator class, but enforces some form

of hybrid consistency, employing one or more other propagators within it. Configuring

a driver is the same as any other propagator, though drivers are responsible for

also accurately reporting (to the search engine) what constraints are handled by all

propagators that the driver itself creates.

The tree decomposition cluster-driven consistency, R(∗,|ψ|)C [Karakashian et al.,

2011, 2013] is implemented using one such driver. The propagator, ClusterBased-

Driver, first constructs the tree decomposition. Then, for each cluster in the tree

decomposition, it creates a separate propagator. In the case where we wish to en-

force R(∗,|ψ|)C, each propagator is one of PerTuple or AllSol [Karakashian et

al., 2010a, 2013]. The original implementations of the algorithms used to enforce

R(∗,|ψ|)C were done in scsp, but fit naturally within the framework Stampede pro-

vides. Other selective propagators defined in the literature also fit naturally into

this model. For example, MABDriver uses a multi-armed bandit to probabilistically

enforce one of an arbitrary number of consistencies [Balafrej et al., 2015]. Table 3.2

shows the list of all currently implemented drivers and a brief description of their

purpose.

Importantly, any alterations to the CSP model are isolated to the class which

altered the model. For example, constraints added by a tree decomposition to bolster

propagation between cluster are not relayed to search or other propagators, unless

specifically requested by the user running the search. The only entity that needs to

be notified of the additional constraints would be the Reductions class in order to

56

Table 3.2: List of drivers that Stampede supports.

Driver Description
ClusterBasedDriver Enforces a consistency on each cluster of a tree decomposition of the CSP
DensityDriver Enforces a consistency if primal graph density is below a threshold
MABDriver Uses multi-armed bandit to selectively enforce other consistency algorithms
PortfolioDriver Enforces consistency from a given portiolio
SyncDriver Used to project/select changes to/from table constraints
TriggerDriver Enforces a list of arbitrary consistency algorithms
RepeatDriver Repeats enforcement of a set of consistencies

notify any propagators that do share the generated constraints of removals.

The ability to compose drivers from other propagators (or even other drivers) also

gave rise to several novel types of consistency properties. The work presented by

Woodward [2018] and Woodward et al. [2018] is one such example. DensityDriver

runs a consistency (chosen at run-time) only if the primal graph’s density is below

some specified threshold. The TriggerDriver was used to implement methods that

control when, where, and how much of an HLC to enforce at specific search nodes

based on so-called “triggers” in the problem, and was empirically shown to improve

search performance. The work from Geschwender et al. [2016] and Geschwender

[2018] uses a driver to select one of several propagators at each node in search from

a portfolio based on a statistical classifier chosen at run-time.

3.4 Research Oriented

Ensuring Stampede was suitable for conducting research on CSPs was of paramount

import in its design. This section outlines a few of the ways Stampede meets the

demands of pursuing new directions of research, with specific regards to high-level

and relational consistencies.

57

3.4.1 Ordering and Reproducibility

A major component of research involves A/B comparisons between different algo-

rithms (or modifications to existing algorithms). Ensuring reproducibility when run-

ning the same CSP instance requires deterministic ordering of every component of

the CSP. Stampede solves this in part through the ID mechanism described in Sec-

tion 3.2.1. Each core element of the CSP has at least two unique IDs (one universal

amongst all core elements, and another unique to its class), and the IDs are created in

the order that the entities are read in from the XML file that describes a CSP. These

IDs are thus safe to use for deterministic ordering as the XML files are static, and

cheaper than performing lexicographical comparisons of the strings corresponding to

the names of the objects. All containers built for Stampede (such as sparse sets and

intrusive containers) use these IDs for lookup and ordering.

Another possible source of randomness are the variable and value ordering heuris-

tics used to select the next variable-value pair to instantiate during search. Stampede

offers a number of heuristics to use that will provide a static ordering with respect to

a given propagation algorithm. However, ordering heuristics such as |dom|wdeg may begin

to explore radically different search trees depending on which constraints are reported

as the cause of a domain wipeout. While this can be mitigated to some extent by

ordering propagation queues, relational consistencies in particular are very suscepti-

ble to changes induced by |dom|wdeg as they may find domain wipeouts in entirely different

portions of the CSP than something enforcing GAC would.

Stampede also limits the number of design patterns that can contribute to sur-

prising execution order like signals, observers, and raw callbacks. These are present

in some situations where not having them present would cause a significant amount

of burden (such as constraint weight incrementing in ordering heuristics), but in sit-

58

uations where they are used, they do not affect search state. This ensures simply

reading the code for Stampede can give an accurate impression on execution order.

3.4.2 Interacting with Stampede

In addition to the more conventional ways that Stampede can aid with research,

it also provides a web-browser based graphical user interface (GUI). The GUI is

effectively broken into two pieces. The classes shown in Figure 3.9 are the key classes

that form the backend of the GUI. If Stampede is started as a daemon (rather than

used to solve a single instance), it creates an internal websocket server. Individual

classes in Stampede can inherit from theGuiProducer class to send JSON-formatted

messages over the websocket. The only required component of the JSON message is

a UUID that corresponds to the object in Stampede that is responsible for sending

and receiving messages to and from the frontend.

Figure 3.9: A simplified UML diagram Stampede’s websocket GUI architecture.

The bulk of the work is handled behind a few layers of abstractions; users wishing

to add a visual element to any of their classes just define the information required to

visualize their class. For example, a user wishing to add a visualization to show the

graph of a CSP would only need to send the variables and constraints in the JSON

format of their choosing (or the nodes and edges of one of the graph formulations).

59

Users can also interact with Stampede from the GUI. Messages sent from the

GUI are received by a DispatchJob class, which polls to check for new messages in a

separate thread from the one Stampede is using to solve the instance, and forwards

the message to its intended target based on the UUID in the message. Classes that

inherit from GuiProducer are automatically registered with the dispatch job in a

similar manner to how classes are registered with the CLIFactory. Messages are

likewise dispatched to the GUI on a separate thread to minimize the overhead of

running Stampede in this mode.

There were two primary motivators for setting up visualizations for Stampede

with this architecture. The first is the vast array of data visualization libraries that

are available for Javascript and other browser-based languages. The second is the

ease of implementing new UI elements in a web page relative to a C++ application

which was not initially designed to have a GUI at all. A service-based implementation

allows for ad hoc additions of new GUI representations for arbitrary classes without

significant time needing to be spent dealing with C++-specific frameworks (which

have a tendency to be cumbersome and intrusive in this author’s humble opinion).

While this architecture technically allows for any software capable of sending and

receiving JSON messages over a websocket to act as a frontend for Stampede, the

current implementation uses a web page to interact with the solver5. Figure 3.10

shows two screenshots of the frontend.

Figure 3.10a shows the landing page, which consists of all of the available options

the solver provides, dynamically loaded on mouse over. The arguments in the frontend

mirror the tclap command line arguments exactly without any additional effort from

developers. When Stampede is launched as a daemon, a new handler class for tclap
5An undergraduate research assistant, Denis Komissarov, took on the bulk of front-end imple-

mentation under guidance from the author.

60

(a) During setup.

(b) During search.

Figure 3.10: Images showcasing Stampede’s browser-based GUI and debugger.

61

is created instead of its default handler, that inherits from the GuiProducer class and

communicates all of the available options for a given SubArg to the GUI by formatting

a portion of the help message (which describes all available options for a SubArg)

and forwarding it to the frontend. Stampede’s logs and output are forwarded to the

GUI using a similar mechanism, and displayed in the console window at the bottom

of the page.

Figure 3.10b shows the GUI for Stampede while search is running. Of particular

note is the column on the right side of the figure. These buttons allow users to interact

with Stampede as search is running to dynamically pause the search and examine

the state of the problem, as well as enable breakpoints (created during Stampede’s

compilation) where execution will pause until manually resumed. It also contains a

feature to automatically resume search after being paused for a given duration to

slow search down enough to allow human users to examine search as it proceeds. The

breakpoints are populated as part of the build, and can be placed at any location

in Stampede. Frequently, debugging new algorithms and ideas requires extremely

granular insight into the CSP state and datastructures being used in (for example)

a propagator. This feature allows researchers to step through search to help identify

errors in their code.

This GUI was used to form new visualizations used to help validate and understand

the performance of propagators: the number of backtracks per depth (BpD) and the

number of consistency calls per depth (CpD) [Howell et al., 2020; Woodward et al.,

2018; Woodward, 2018].

62

Summary

In this chapter we described Stampede, a CSP solver built specifically to aid in the

development and research of relational consistency propagators.

While Stampede succeeds with respect to the goals laid out in Section 3.1.3,

it is not without faults. Though not a goal, the overall performance could likely

be substantially improved by redesigning its core data structures with cache locality

and dense representations in mind (a focus early in the design was on the Big-O

performance of datastructures and algorithms, rather than real-world performance).

The GUI was produced without an explicit design in mind, as it was initially produced

as a proof-of-concept rather than a full-fledged feature, but could be retooled to

use a purpose-built RPC service (e.g., gRPC) instead of websockets and custom-

formatted JSON. Beyond increasing its speed and reliability, a dedicated RPC service

would provide a unified message form (e.g., protos) rather than the more ad-hoc

JSON messages currently used. And though the inheritance structure of Assignable,

TableConstraint, and Variable resulted in some beneficial emergent behavior, the

same could likely have been accomplished through other, less complicated means.

Despite the above shortcomings (and many others not listed here), the merits of

Stampede have already been validated in the context of

1. New reactive strategies for monitoring, controlling, and selectively triggering

consistency [Woodward et al., 2018; Woodward, 2018],

2. Examination of performance on different models of nonogram puzzles using

HLC and GAC [Tran, 2019],

3. Controlling the application of minimality algorithms over subproblems [Geschwen-

der et al., 2016; Geschwender, 2018],

63

4. The development and validation of new higher-level consistency algorithms [Schnei-

der and Choueiry, 2018; Woodward et al., 2017], and

5. New approaches for visualizing the performance of propagators during search [How-

ell et al., 2020; Woodward et al., 2018; Woodward, 2018].

Thus, it is our belief that Stampede is clearly a valuable tool for the research

and development of novel constraint processing techniques and ideas.

64

Chapter 4

Pairwise Consistency Algorithms

GAC has long been the focus of extensive research in constraint processing, and for

good reason: it lends itself towards simple yet highly effective algorithms. The low

cost and effectiveness of GAC algorithms when paired with an ordering heuristic like
|dom|
wdeg have made them the de facto baseline for research. The current state-of-the-art in

GAC algorithms are CompactTable [Demeulenaere et al., 2016] and STRbit [Wang

et al., 2016], both of which use bitsets to quickly check for supports and perform

tabular reduction – the process of removing invalid tuples from constraints.

As with GAC, pairwise consistency is arguably the most straightforward relational

consistency. Its definition is equivalent to arc consistency on the dual graph. A

naive approach to enforcing PWC would be to enforce AC on the dual encoding of

the CSP, but this would not be efficient as the number of tuples tends to be very

large in most problems, and this approach would not exploit properties inherit to

the dual encoding that can be used to more efficiently enforce PWC. Most existing

work focuses on enforcing PWC in a variable/domain-centric manner (e.g., RPWC

and eSTR), but few algorithms treat the relations themselves as first class entities.

This is likely in large part due to the variable-based algorithms for enforcing PWC

generally outperforming their relational consistency competitors.

In this chapter we provide a brief overview of one of the most recent variable based

methods for enforcing PWC (eSTR), and an in-depth explanation of one of the only

relational methods for enforcing PWC (PW-AC). We then provide two new algo-

rithms. The first algorithm, PW-AC2, greatly improves on PW-AC, and we show

65

that it can outperform even the variable based state-of-the-art algorithms for enforc-

ing PWC. The second algorithm, PW-CT, uses lessons learned from constructing

PW-AC2 and merges those with the current state-of-the-art GAC algorithm Com-

pactTable, and was published in [Schneider and Choueiry, 2018]. We show that

PW-CT is competitive with CompactTable and STRbit in many problems and

can in fact best it in several. It’s also capable of beating other GAC algorithms

in nearly all cases, and clearly and definitively outperforms all other algorithms for

enforcing PWC.

4.1 Current State-of-the-Art for enforcing PWC

The algorithm eSTR was introduced by Lecoutre et al. [2013] along with its variant

eSTR2. They are based on the Simple Tabular Reduction (STR) family of algorithms

which not only enforce GAC, but also remove tuples from relations that contain any

non-GAC values in the domains of the variables in its scope. This reduction of tuples

from the table constraints helps speed up subsequent searches for support for GAC

values, effectively improving the performance of enforcing GAC.

At a high level, STR algorithms operate by ensuring that every value in the

domain of a variable has a supporting tuple in each constraint by iterating over the

tuples in the constraint. The algorithms store a pointer to the last known support

found for a variable-value pair so that it can resume search from that position in the

future (as once a tuple in a constraint is determined to not be a support, it will remain

that way until a backtrack occurs). While seeking the next support for a value, it

skips over previously removed tuples in the constraint.

There are three variants of STR: STR, STR2, and STR3 [Lecoutre et al., 2012;

Lecoutre, 2011]. The difference between these algorithms is not relevant to the re-

66

mainder of this dissertation; the salient takeaway is that STR2 is typically the best

performing variant.

The eSTR algorithms enforce fPWC by extending the STR algorithms. In eSTR,

after finding a tuple in a constraint that supports a value, eSTR then ensures that

the tuple is also pairwise consistent with all neighboring constraints. It does this by

maintaining counts of the number of tuples that are pairwise consistent with a given

tuple in a constraint, and updating those counts upon the deletion of a tuple. If the

count for a support is zero, eSTR continues looking for another tuple that supports

the value. Algorithm eSTRw is a modification of eSTR and enforces a weakened

version of fPWC by not re-queuing a constraint after a PW-support is lost. The

differences between eSTR and eSTR2 are simply the STR algorithm used as its

base. As such, we use eSTR2 and eSTR2w in this chapter as they are typically the

most performant of all variations.

Algorithms HOSTR and maxRPWC+r [Paparrizou and Stergiou, 2016] enforce

consistency properties that are weaker than PWC and incomparable to each other.

fHOSTR, a variant of HOSTR, enforces fPWC, but was found by its authors to be

too expensive relative to its weakened version. Lecoutre [2011] show that HOSTR

and maxRPWC+r outperform STR2 on certain benchmarks.

Some approaches for enforcing higher order consistencies apply GAC after refor-

mulating the CSP with new constraints or variables. Algorithm DkWC [Mairy et al.,

2014] enforces k-wise consistency by adding new hybrid constraints to the problem.

The Factor Encoding (FE) enforces fPWC by adding new variables to the problem,

thereby increasing the arity of constraints [Likitvivatanavong et al., 2014]. A decom-

position of the FE lessens the imposed arity increases from FE while still enforcing

fPWC [Likitvivatanavong et al., 2015]. However, we ignore these approaches because

they modify the constraint network as part of their operation, which is not only ex-

67

pensive, but also tends to result in much more complicated algorithms and reasoning.

AB

ABD

ABCE

ABCG

ACF

AB
A

AC

AC
ABC

R4

R3

R1

R2 ABD

ABCE

ABCG

ACF

AB

AC

ABC

A B D
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

✗

✗

R1 R2
A B C E
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 1 0
0 1 1 1
1 1 1 1

R4

R3

R1

R2

Figure 4.1: Dual graph (left), subscopes and blocks (center), a minimal dual graph
(right)

The algorithm PW-AC was introduced by Samaras and Stergiou [2005]. This al-

gorithm enforces PWC (not fPWC) by partitioning relations based on their piecewise

functionality. In Figure 4.1, the subscope AB partitions each of the two relations R1

and R2 into three blocks. We define the signature of a block as the set of variable-value

pairs of the inducing subscope (e.g., {〈A, 0〉, 〈B, 0〉}). Thus, a signature is uniquely

determined by a combination of a constraint, subscope, and tuple.

In PW-AC, for each pair of relations in the problem that have non-empty sub-

scopes, the algorithm buckets tuples in each relation into blocks that share the same

signature. Each block will have at most one pairwise support in its paired relation. If

one of the blocks is empty, all tuples in the pairwise-consistent block of the other re-

lation can be removed from the problem as all of those tuples have lost their support.

These removals may cause other relations to lose their supports, propagating the

deletions throughout the CSP. Enforcing fPWC after PWC using PW-AC requires

projecting tuple deletions of the relations onto the variables in their scopes. This will

remove any non-GAC values from the variables caused by the PWC deletions.

68

4.2 Techniques for Improving Pairwise Consistency

Below, we describe four distinct techniques to improve the performance of PWC

algorithms. These methods can be combined or exploited in isolation.

4.2.1 Piecewise Functionality

As mentioned in Chapter 2, Samaras and Stergiou [2005] exploit the piecewise-

functional property of the equality constraints of the dual graph to infer the blocks of

equivalent tuples of two constraints with shared variables. If a tuple τ in a constraint

ci does not have a PW-support in another constraint cj, all tuples in the block in-

duced by πsubscope(ci ,cj)(τ) on ci can be immediately removed. Further, all other blocks

of tuples that are PW-supported by τ in all other neighboring constraints (i.e., blocks

with the same signature) must also be deleted. This operation is in stark contrast

with most GAC-based algorithms that search for supports one tuple at a time (with

the notable exception of AC-5 [Hentenryck et al., 1992]).

4.2.2 Refocusing Propagation on Subscopes

Algorithms for enforcing pairwise consistency usually operate on every pair of con-

straints with overlapping subscopes (e.g., PW-AC partitions relations pairwise, eSTR

counts supports pairwise). Karakashian et al. [2010a] and Schneider et al. [2014]

exploit the fact that, for a given subscope, all relations induce on another rela-

tion Ri the same unique partition. For example, in Figure 4.1, the blocks induced

by subscope {A,B} on relation R1 are the same for any relation Rj such that

subscope(R1, Rj) = {A,B}.

Consider the more concrete example given in Figure 4.2, which shows a set of

69

A C F G
0 0 1 1
1 0 1 1
1 1 0 1

A B C E
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 1 0
0 1 1 1
1 1 1 1

A B C G
0 0 1 0
0 0 0 1
0 1 1 0

A B D
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

R1 R2 R3 R4
DEG
t1 0 0 0
t2 0 0 1
t3 1 0 0
t4 1 0 1
t5 1 1 0
t6 1 1 1
t7 2 1 0
t8 2 1 1
t9 2 2 1

Ri
o1

cblock1

t1
t2
t3
t4

cblock2

t5
t6
t7
t8

cblock3 t9

o2

cblock4
t1
t2

cblock5

t3
t4
t5
t6

cblock6
t7
t8
t9

Ri
t1
t2
t3
t4
t5
t6
t7
t8
t9

o3

cblock7

t1
t3
t5
t7

cblock8

t2
t4
t6
t8
t9

Ri

o1

R2

R4

R1

o3

o2

R3
o3

Figure 4.2: A set of relations and the partitions for relation Ri.

relations and a partitioning scheme for one of the relations. Each block is comprised

of a disjoint set of tuples. Although there are four relations adjacent to Ri, we only

partition Ri three times (once per unique subscope). Consequently, identifying and

storing a relation’s partitions based on unique subscopes rather than by the degree

of a vertex in the dual graph can significantly reduce the memory requirements of

algorithms that exploit the pairwise functionality of the equality constraints of the

dual graph. Depending on the nature of the support checks in the algorithm, it may

also reduce the number of required PWC checks.

4.2.3 Minimal Dual Graph

As stated in Section 2, we can remove redundant edges in the dual graph of a CSP

without affecting the set of solutions. In fact, Janssen et al. [1989] show that enforcing

PWC on a dual graph is equivalent to enforcing PWC on any of its minimal dual

graphs. Importantly, removing redundant edges can reduce not only the degree of the

graph (thus reducing the number of pairs of constraints over which a PWC algorithm

must iterate) but also the number of unique subscopes that a PWC algorithm must

take into consideration. For instance, in the example shown in Figure 4.1, removing

redundant edges eliminates: (1) The need to compute and store the partitions of R1

70

for the subscope {A,B} and the partitions of R3 for the subscope {A,C} and (2) The

subscope {A} and the partition it induces on each of R2 and R4. Consequently,

a minimal dual graph can reduce the number of neighbors of a constraint in the

problem, the number of unique subscopes incident to a constraint, and may eliminate

some subscopes from the problem entirely. We conclude that a PWC algorithm that

operates on a minimal dual graph may reduce its memory requirements and increase

its propagation speed because of the reduced number of subscopes to consider per

constraint and the total number of unique subscopes.

4.2.4 Determining when GAC is enough to enforce PWC

In some situations, GAC is enough to enforce PWC between constraints. The algo-

rithm eSTR, for example, only checks for PW-supports over “non-trivial” subscopes,

which are subscopes with a cardinality strictly greater than one [Lecoutre et al., 2013].

In fact, the particularity of constraints intersecting on at most one variable is discussed

by Bessière et al. [2008] but PWC is inexplicably excluded from the corresponding

theorem. Below, we restate this property and give a proof:

Proposition 1. GAC is sufficient to enforce PWC over trivial subscopes.

Proof. Consider the CSP P= (X ,D, C). If a subscope is trivial (e.g., subscope =

{x} ⊂ X) the signature of each block induced by this subscope is one variable-value

pair (e.g., 〈x, a〉). Thus, the block loses all PW-supports only if 〈x, a〉 is removed from

the problem. If 〈x, a〉 is deleted, a tabular-reduction algorithm necessarily removes

all tuples with 〈x, a〉 from the problem. On the other hand, if 〈x, a〉 is alive after

enforcing GAC, then, by definition, ∀ci ∈ C such that x ∈ scope(ci), there is at least

one living tuple τ in the relation of ci such that πx(τ) = a.

71

We describe a particular situation, which arises during search, in which the above

property holds even for non-trivial subscopes as long as GAC is enforced on a con-

straint prior to running a PWC algorithm:

Proposition 2. GAC is sufficient to enforce PWC on a block induced by a non-trivial

subscope whose signature includes a deleted variable-value pair.

Proof. This proposition follows from Proposition 1. Consider a block bi induced by

a non-trivial subscope σi on the constraint ci. If a dead variable-value pair 〈x, a〉 is

in the block’s signature, a tabular-reduction GAC algorithm removes all tuples with

〈x, a〉 from the problem, and as a result, it removes all the PW-supports of bi from

the relations of neighboring constraints because they necessarily also contain 〈x, a〉

in their signatures.

Algorithm eSTR implicitly applies this principle by ensuring that all the variable-

value pairs of a tuple are alive before checking whether or not the tuple has PW-

supports in neighboring constraints. We exploit Proposition 2 in a PWC algorithm

in a slightly more efficient manner, which is described in Section 4.5. Briefly: assume

a CSP is already PWC. After a variable is instantiated, we run an STR-based GAC,

which may delete tuples from constraints. We now need to process these deleted

tuples because some of them may have been the last remaining tuples in blocks that

were the PW-support of blocks in other constraints. In the case that a variable-value

pair deleted by GAC appears in the signature of a block in which one of these deleted

tuples appears, we can safely skip the processing we intended to do to enforce PWC

because its result is ensured by GAC.

72

4.3 Integrating Improvements into existing PWC Algorithms

Below we introduce a first attempt at applying the improvements introduced in Sec-

tion 4.2 by applying a subset of the suggested improvements to the algorithm PW-

AC. This algorithm, denoted PW-AC2, is a direct successor of the PW-AC algo-

rithm; the flow of the algorithm and manner of propagation is nearly identical to

PW-AC. It also takes advantage of the piecewise functionality of table constraints

in the dual graph as PW-AC does by partitioning relations into blocks. However,

unlike PW-AC, which partitions every pair of relations connected in the dual graph,

PW-AC2 partitions according to its relations’ incident subscopes. PW-AC2 also

uses the minimal dual graph to potentially reduce the number of subscopes required

to partition against in the problem.

σ Values
Table

σ1 ᴠᴛ1
σ2 ᴠᴛ2

⋮ ⋮

σi
ᴠᴛi

Values PWC
Table

v1 ᴘᴡᴄ1
v2 ᴘᴡᴄ2

⋮ ⋮

vj ᴘᴡᴄj

R Coarse
Block

R1 CB1
R2 CB2

⋮ ⋮

Rk CBk

τ1
τ2
⋮
τm

Living

PWC Table*

Values TableSubscope Table PWC Table Coarse Block

Figure 4.3: Data structures used to partition relations according to subscopes for
PW-AC2.

The data structures shown in Figure 4.3 provide access to the blocks computed

during preprocessing. The blocks are organized by a particular block’s signature (e.g.,

its subscope, subtuple, and relation). These can be stored in a 3-dimensional table

using a combination of hashmaps, sparse maps, and vectors, but for the purposes of

explaining the algorithm we will refer to the structure as a simple array structure

73

coarseBlocks[σi][vi][Ri] where σi is a subscope in the problem, vi is a subtuple (stored

as a vector of domain values) for the variables in the subscope, and Ri is a relation

incident to σi. If a combination or subset of the combination of σi, vi, and Ri is not

present in the table, it returns nil (e.g., if a subtuple vi for subscope σi has not yet

been recorded, coarseBlocks[σi][vi] will return nil , as will coarseBlocks[σi][vi][Ri].

Algorithm 1 presents the required initialization steps for PW-AC2. The method

initStructs, defined on line 1 of Algorithm 1 iterates over every edge in the dual

graph. We assume that the dual graph g has already had its redundant edges removed,

although this is not a hard requirement for the algorithm; the pseudocode presented

here works regardless of whether the minimal dual graph is being used. However, we

explicitly define PW-AC2 as running on the minimal dual graph.

Algorithm 1: Data Structure Initialization
1 Method initStructs(g: A DualGraph of the CSP):
2 foreach edge e ∈ g do
3 Ri, Rj ← relations incident to e
4 subscope σi ← scope(Ri) ∩ scope(Rj)
5 PartitionSubscope(Ri, σi)
6 PartitionSubscope(Rj, σi)

7 Method PartitionSubscope(Ri, σi: A relation, subscope to partition):
8 if AlreadyPartitioned(Ri,σi) then
9 return

10 foreach tuple τ ∈ Ri do
11 subtuplei ← πσi(τ)
12 if coarseBlocks[σi][subtuplei][Ri] = nil then
13 coarseBlocks[σi][subtuplei][Ri]←new coarse block

14 tupleBlock ← coarseBlocks[σi][subtuplei][Ri]
15 tupleBlock.tuples ← tupleBlock.tuples ∪ τ
16 tupleBlock.count ← tupleBlock.count + 1
17 tupleBlock.relation ← Ri

18 tupleBlock.pwctable ← coarseBlocks[σi][subtuplei]
19 blockLookup[Ri][σi][τ]← reference to tupleBlock

74

The method PartitionSubscopes defined on line 7 then checks if the given

〈relation, subscope〉 pair has already been partitioned. This can be implemented

using any number of data structures and thrown away after the initialization is com-

plete, so we omit the details of the implementation here for brevity. The algorithm

then proceeds to iterate over each tuple of the relation. Lines 12–13 create a new

coarse block if one for the current signature has not yet been created. The block is

then modified to include a reference to the current tuple, a count denoting how many

tuples are alive in the block, and a reference to the relation. An ancillary lookup ta-

ble, blockLookup, is created to quickly find blocks that a tuple belongs to, provided

a relation and a subscope.

Once the data structures are initialized by line 3 in Algorithm 2, a queue is pop-

ulated with any blocks that are initially missing pairwise supports. The next call

to Propagate will iterate over this queue. Method Revise takes a block bi (corre-

sponding to a relation Ri) that was popped from the queue and removes the tuples

in bi one at a time. The blockLookup table is used in Revise to lookup (in constant

time) other blocks in Ri being revised that contain the removed tuple. Lines 24–28

decrement the count of living tuples for each bj in Ri that contain the newly deleted

tuple. If removing the tuple causes the count of bj to drop to zero, Revise adds all of

its piecewise functional blocks to the queue (i.e., blocks in other relations which were

supports of bj). This process repeats until quiescence. Note that Algorithm 2 is func-

tionally identical to the one presented by Samaras and Stergiou [2005], albeit with

different semantics to incorporate the changes related to partitioning relations ac-

cording to subscopes. The asymptotic time and space complexity are also unchanged

from their original publication describing PW-AC, as in the worst case the number of

subscopes in the dual graph is equivalent to the number of constraints in the problem.

To use PW-AC2 during search, tuples are filtered from relations after an assign-

75

Algorithm 2: PW-AC2
1 Method PW-AC2(g: A DualGraph of the CSP):
2 g ← makeMinimal(g)
3 initStructs(g)
4 Qcp ← ∅
5 foreach subscope σi ∈ g.subscopes do
6 foreach vi ∈ tupleBlocks[σi] do
7 if ∃Ri s.t. incident(σi, Ri) ∧ tupleBlocks[σi][vi][Ri] = nil then
8 foreach Ri s.t. incident(σi, Ri) ∧ tupleBlocks[σi][vi][Ri] 6= nil

do
9 Qcp ← Qcp ∪ {tupleBlocks[σi][vi][Ri]}

10 Method Propagate(Qcp: A queue of tuple blocks):
11 while Qcp 6= ∅ do
12 tupleBlock← pop(Qcp)
13 ∆← Revise(tupleBlock)
14 if LivingTuples(Ri) = 0 then
15 return Inconsistent

16 Qcp ← Qcp ∪∆

17 return Consistent

18 Method Revise(bi): A Tuple Block):
19 δ ← ∅
20 foreach τi ∈ bi do
21 if alive (τi) then
22 alive (τi) ← false
23 foreach subscope σi s.t. incident(σi, Ri) do
24 bj ← blockLookup[Ri][σi][τ]
25 bj.count ← bj.count −1
26 if bj.count = 0 then
27 foreach block ∈bj.pwctable do
28 δ ← δ ∪ {block}

29 return δ

ment of a value to a variable (removing those tuples from relations that are incompat-

ible with the assignment). As these tuples are removed, each block containing those

tuples have their counts decremented. If a block’s count drops to zero, its piecewise

76

functional blocks are added to the queue just as they were in Revise. After prop-

agation is complete, the modified relations are projected onto the variables in their

constraints’ scopes to remove any values from the domains of variables who no longer

have supporting tuples in the relation.

4.4 Empirical Evaluation of PW-AC2 and eSTR2(w)m

In addition to PW-AC2, we also evaluate variants of the eSTR family of algorithms

introduced by Lecoutre et al. [2013] that use the minimal dual graph, and are denoted

as eSTR2(w)m. The changes required to enforce fPWC using the minimal dual graph

in eSTR are straightforward – literally only a single line that computes the minimal

dual graph, which is then used in the construction of the various support structures

used in the algorithm. The correctness of the algorithm is guaranteed due to the

properties of enforcing PWC on minimal dual graphs as outlined by Janssen et al.

[1989].

The experiments were run on 48 benchmarks of non-binary CSPs. These bench-

marks were selected from the CPAI08 dataset1, and were limited to non-binary bench-

marks with at least one instance with a subscope of cardinality greater than one (that

is, benchmarks with non-trivial subscopes). Benchmarks with only trivial subscopes

were excluded as enforcement of fPWC on these problems can be achieved using only

GAC. This resulted in a total of 1,351 instances. In this section, we focus on seven

algorithms: PW-AC, eSTR2, eSTR2w, and PW-AC2f , which enforce fPWC using

the full dual graph, and their counterparts eSTR2m, eSTR2wm, and PW-AC2 which

use the minimal dual graph to enforce fPWC.

Search over each CSP was performed using Stampede to find the first consistent
1http://www.cril.univ-artois.fr/CPAI08/

77

solution, using the |dom|wdeg ordering heuristic. The solver was limited to one hour and

8GB of memory. When an algorithm timed out or ran out of memory (OOM), it

is recorded as having taken the full hour. We chose to focus on CPU time as our

metric of comparison in all chapters of this dissertation. Metrics such as the num-

ber of constraint checks or node visits can be deceiving when comparing algorithms

which enforce different levels of consistency. For example, with strong inference algo-

rithms can dramatically reduce the number of nodes visited during search, perhaps

even enforcing minimality, but would require much larger CPU overhead due to the

additional reasoning required.

We begin by demonstrating the strength of using the minimal dual graph when

enforcing PWC. Figure 4.4 shows scatter charts for algorithms eSTR2, eSTR2w,

and PW-AC2. Each point in the chart corresponds to a CSP instance solved with

each algorithm, where the x and y coordinates of the points are the time required

to solve the instance for the full and minimal dual graph variants of each algorithm,

respectively. When a point falls below the diagonal on the chart, it means the minimal

dual variant of the algorithm was able to solve that particular instance faster. The

axes are logarithmic to clarify the difference in performance on both easy and hard

problems.

Table 4.1: Number of instances that ran out of memory per PWC algorithm.

Algorithm: PW-AC PW-AC2f PW-AC2 eSTR2 eSTR2w eSTR2wm eSTR2m

OOM: 148 132 132 138 138 132 132

In each case, the version of the algorithm using the minimal dual graph is superior.

Not only are the minimal dual versions able to solve instances consistently faster than

their full dual graph counterpart, but they generally incur fewer losses due to memory

consumption surpassing the 8GB limit as well. The number of instances that ran out

of memory for each algorithm are listed in Table 4.1.

78

1

10

100

1000

1 10 100 1000

eS
TR

2ᵐ

eSTR2

eSTR2ᵐ OOM eSTR2 OOM

(a) eSTR2

1

10

100

1000

1 10 100 1000

eS
TR

2ʷ
ᵐ

eSTR2ʷ

eSTR2ʷᵐ OOM eSTR2ʷ OOM

(b) eSTR2w

1

10

100

1000

1 10 100 1000

PW
-A
C2

PW-AC2ᶠ

PW-AC2 OOM PW-AC2ᶠ OOM

(c) PW-AC2

Figure 4.4: Pairwise comparisons between versions of PWC algorithms and their
minimal dual counterparts using the |dom|wdeg ordering heuristic. Points below the line
correspond to instances where the minimal dual variant was faster. Note the loga-
rithmic scale.

79

PW-AC2 and PW-AC2f run out of memory on the same number of problems;

while operating and creating data structures based on the minimal dual graph has

clear advantages, there’s a small upfront cost when computing and removing the

redundant edges. The increase in memory required while computing the minimal

dual graph is transitory, but in some cases is enough to push the overall memory

consumed over the limit. On the other hand, using the full dual graph requires

persistent additional memory consumption due to the redundant subscopes and tuple

blocks created, as well as an increase in time required to solve the instance.

PW-AC1

PW-AC2ᶠ

PW-AC2

eSTR2
eSTR2ʷ

eSTR2ʷᵐ

eSTR2ᵐ

325

375

425

475

525

575

625

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

Figure 4.5: Cumulative chart showing number of instances completed in N seconds
for PWC algorithms and their minimal dual counterparts using the |dom|wdeg heuristic.

Figure 4.5 provides a cumulative chart showing the number of instances able to

be solved on each tested algorithm within a certain amount of time, up to the limit of

one hour. All three algorithms that were based on the minimal dual graph outperform

the others. We note again that eSTR2 algorithms had previously been formulated

only using the full dual graph. PW-AC2 performs very well, though eSTR2m is

competitive and eventually succeeds at solving one more instance than PW-AC2.

80

1

10

100

1000

1 10 100 1000

PW
-A
C2

ᶠ

PW-AC1

PW-AC2ᶠ OOM PW-AC1 OOM

Figure 4.6: Pairwise comparison between PW-AC2 using the full dual graph and
PW-AC.

PW-AC lags behind, though this is somewhat expected; of the properties outlined

in Section 4.2, PW-AC only incorporates piecewise functionality. The eSTR2m and

eSTR2wm algorithms have all of the desirable properties mentioned in Section 4.2 with

the exception of replacing pairwise reasoning with a subscope-centric driven propa-

gation mechanism. Figure 4.6 shows the strength of a subscope-centric approach. It

compares the relative performance of PW-AC and PW-AC2f ; the difference between

these two algorithms lays mainly in the subscope-based partitioning and their respec-

tive data structures, as the algorithms used to propagate are functionally identical.

Clearly there is a large advantage to subscope-based partitioning in terms of both

CPU time and memory consumption.

81

Table 4.2: Pairwise t-test results for tested PWC algorithms

P
W

-A
C

P
W

-A
C

2f

P
W

-A
C

2

eS
T

R
2

eS
T

R
2w

eS
T

R
2w

m

eS
T

R
2m

PW-AC - - - - - - -
PW-AC2f T - - T T - -
PW-AC2 T T - T T T T
eSTR2 T - - - T - -
eSTR2w T - - - - - -
eSTR2wm T - - T T - -
eSTR2m T T - T T T -

Table 4.2 shows a pairwise t-test on the runtime of all instances between all tested

algorithms. The cells are labeled “True” if the population means show a statistically

significant difference for the two tested algorithms (p < .05) and the average runtime

for the algorithm in that row was less than the average runtime for the algorithm in

that column. Here we can see that the minimal versions of all algorithms outperformed

any other, and PW-AC2 is the best performing algorithm.

These results show the strengths of reasoning based on subscopes (PW-AC2,

PW-AC2f), the minimal dual graph (PW-AC2, eSTR2m, eSTR2wm), and selective

enforcement of PWC (eSTR2, eSTR2w, eSTR2m, eSTR2wm).

However, relative to algorithms for enforcing GAC that were contemporary with

the tested algorithms, PWC still lags far behind. Figure 4.7 shows the same cu-

mulative chart as Figure 4.5 but with the inclusion of STR2 and GAC2001, two

algorithms used to enforce GAC.

Figure 4.8 shows a pairwise comparison between PW-AC2 and GAC2001. While

there are select instances where PW-AC2 outperforms STR2, the additional memory

consumption incurred by block creation in PW-AC2 causes a large number of OOMs

relative to STR2. Additionally, while GAC is a relatively weak consistency, it is

82

GAC2001

PW-AC1

PW-AC2ᶠ

PW-AC2

STR2

eSTR2
eSTR2ʷ

eSTR2ʷᵐ

eSTR2ᵐ

325

375

425

475

525

575

625

675

725

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

Figure 4.7: Cumulative chart showing number of instances completed in N seconds
for GAC and PWC algorithms that were contemporaneous with PW-AC2.

cheap to enforce, and if it is capable of finding an inconsistency at a particular search

node, any additional effort that would have been made to enforce PWC at the same

node would be wasted.

4.5 PW-CT: Efficiently and Lazily Enforcing Pairwise Con-

sistency

We now introduce PW-CT, an algorithm for enforcing fPWC, as an extension of

CompactTable [Demeulenaere et al., 2016]. PW-CT requires few modifications

to the original CT structures, exploits mechanisms from existing PWC algorithms,

and integrates additional improvements discussed previously in this chapter. More

specifically, PW-CT uses CompactTable (i.e., GAC) as much as possible to avoid

costly PWC checks in two ways: by ensuring the problem is GAC before resorting to

any PWC checks and by identifying situations where GAC guarantees PWC. Finally,

83

1

10

100

1000

1 10 100 1000

PW
-A
C2

STR2

PW-AC2 OOM STR2 OOM

Figure 4.8: Pairwise comparison between PW-AC2 and STR2.

it exploits properties of the dual encoding of the CSP to speed-up processing and

reduce memory consumption.

First, we provide a brief overview of CompactTable, before proceeding to the

description and experiments of PW-CT.

4.5.1 A Brief Overview of Algorithm CompactTable

CompactTable [Demeulenaere et al., 2016] is an algorithm that enforces GAC on

a problem in a manner similar to the tabular reduction methods used in the STR

family of algorithms. The main idea of these algorithms is to track which variables

have been modified since the last time GAC was enforced, filter tuples in the table

84

constraints whose scopes contain the modified variables, and update the domains of

the variables in the constraints’ scopes based on the recently removed tuples. Various

support structures are used to make each phase of these algorithms more efficient.

In the case of CompactTable, these support structures take the form of re-

versible, sparse bitsets. There are two types of bitsets created for CompactTable:

the first is a bitset that corresponds to the currently living tuples in each constraint.

Each bit in the set corresponds to the ID of a tuple in the constraint. The bit is set

if the tuple is alive and unset if it has been removed from the constraint. The second

type of bitset is static throughout the course of search. These sets are created for

each combination of variable-value pair in the scope of a constraint, and correspond

to tuples that contain the given variable-pair. Thus, both types of sets are the same

size, and will contain one bit per tuple in a given constraint.

Updating a table constraint to remove invalid tuples due to variable-value deletions

can be accomplished by intersecting the bitset corresponding to the living tuple in

the constraint with the bitset of the tuples that contained that variable-value pair.

Determining if the removal of tuples caused another value to lose its support can be

done by checking if the intersection of supports for a given variable-value pair and

the living tuples in the constraint is the empty set.

4.5.2 Data Structures

Support Structures: Both CompactTable and PW-CT represent the living

tuples in a constraint as an RSparseBitSet. The RSparseBitSet stores four members:

an array of reversible 64-bit integers called words,2 a reversible integer called limit that

represents the number of non-zero integers in words, an array called index that stores

the position of all non-zero integers in words in locations less-than or equal-to limit,
264-bit on most current architectures.

85

and an array called mask used to modify the set. Demeulenaere et al. [2016] introduce

member functions of the RSparseBitSet used by PW-CT which we briefly review:

function addToMask takes an array and alters mask to be the bitwise OR of the array

and the current mask, function intersectWithMask alters words to be the bitwise

AND of the current words and mask, and function clearMask sets the integers in

mask to 0.

The RSparseBitSet for a constraint ci is denoted as living(ci). The data struc-

ture supports[ci, x, a] is a static array of bits corresponding to the tuples of a constraint

ci that have the value a for variable x.3 To improve performance of various functions

in PW-CT, we introduce a structure indices[ci, x, a], which is an RSparseBitSet that

stores the positions in supports[ci, x, a] that are non-zero.

PW-CT uses two maps. The first, incidentCons[σ], gives the list of constraints

incident to a non-trivial subscope σ. The second, incidentSubscopes[ci], gives the

list of non-trivial subscopes incident to a constraint ci. We can optionally use the

minimal dual graph to reduce the number of generated subscopes in each map without

affecting the level of consistency enforced (see Section 4.2). Importantly, all these

support structures are created at initialization.

Blocks: We represent a block as a simple structure with a member sets, which is

a vector of pointers to supports[ci, x, a] representing the signature of the block, and

a member commonIndices, which is an RSparseBitSet of the indices shared by all of

the supports in sets. Performing an intersection of the sets in a block computes the

set of tuples with the signature corresponding to sets. In PW-CT, blocks are never

stored but always computed dynamically during search.
3Note that we have added the additional parameter ci to supports[] to uniquely determine the

constraint’s supports we are referring to in the pseudocode.

86

Algorithm 3: CreateBlock(ci, τ, σ)

Input: A constraint ci, a tuple τ , and a subscope σ
Output: A block b

1 j ← 0
2 foreach variable x ∈ σ do
3 b.sets[j]← supports[ci][x][τ [x]] // τ [x] is the value for x in tuple

τ
4 ind[j]← indices[ci][x][τ [x]]
5 if ind[j].limit < ind[0].limit then swap(ind[j], ind[0])
6 j ← j + 1

7 b.commonIndices.initIntersection(ind)
8 return b

The function CreateBlock (Algorithm 3) takes as input a constraint, tuple,

and subscope and returns a block structure, which can be used to dynamically com-

pute the partition of tuples of the constraint with the corresponding signature. The

RSparseBitSet commonIndices improves performance of some operations of the meth-

ods listed in Algorithm 4. Note that the method initIntersection called in Line 7

is defined in Algorithm 4 and makes use of the call swap in Line 5.

Additional Methods for the RSparseBitSet Class: Algorithm 4 introduces

additional methods for the RSparseBitSet class for use in PW-CT. The method

initIntersection is used in CreateBlock to initialize the RSparseBitSet with

the indices common to a collection of RSparseBitSets.

87

Algorithm 4: Additional algorithms required for RSparseBitSet
1 Method initIntersection(sets: A vector of RSparseBitSets):
2 limit← −1
3 index← ∅
4 Expand words and index to size of sets[0].words
5 foreach i← 0 to sets[0].limit do
6 offset← sets[0].index[i]
7 bits ← sets[0].words[offset]
8 for set ∈ sets and bits 6= 0 do
9 bits ← bits & set.words[offset] // Bitwise AND

10 if bits 6= 0 then
11 words[offset]← bits
12 limit← limit + 1
13 index[limit]← offset

14 Method intersectIndex(block: A Block created by createBlock):
// If limit < block.commonIndices.numSet(), iterate from 0 to

limit
15 for offset ∈ block.commonIndices do
16 intersection ← words[offset]
17 for set ∈ block.sets and intersection 6= 0 do
18 intersection ← intersection & set.words[offset] // Bitwise AND

19 if intersection 6= 0 then return offset

20 return -1

21 Method removeBlock(block: A Block created by createBlock):
22 for i← limit to 0 do
23 offset ← index[i]
24 if offset ∈ block.commonIndices then
25 b ← 64-bit Integer with all bits set
26 for set ∈ block.sets and b 6= 0 do
27 b ← b & set.words[offset] // Bitwise AND

28 words[offset]← words[offset] & ∼b // Bitwise NOT
29 if words[offset] = 0 then
30 index[i]← index[limit]
31 index[limit]← offset
32 limit ← limit −1

88

We overload the original RSparseBitSet method intersectIndex to operate on

blocks. It is similar in behavior to the original intersectIndex, differing in that

it determines if a block of tuples has a support in the set, rather than a single

variable-value pair. The method removeBlock computes the set-difference between

the RSparseBitSet and a block of tuples. Anytime the bits at position offset in the

words member is modified, the RSparseBitSet computes the difference in set bits for

the integer at words[offset]. Method numSet returns the total number of set bits in

the RSparseBitSet. This operation incurs some overhead but is needed in PW-CT.

There were a few functions omitted from the pseudocode in Algorithm 4 for

brevity. The methods save and restore respectively save and restore the state of

the reversible elements in the RSparseBitSet and follow from the definition of a re-

versible set. We maintain the number of living bits when altering the set and numSet

returns this value.4 PW-CT relies on the ability to discover the tuples removed be-

tween two points in time (the delta of the set). To this end, method computeDelta

returns an RSparseBitSet containing the bits removed between the current state of

the RSparseBitSet and the last stored state. Method clearDelta readies the set to

track the next set of removed tuples, but does not alter the currently set bits. These

were implemented using the method save and comparing the reversible primitives of

the current state of the set and its previously saved state. Method addBlockToMask

behaves like the original addToMask, but adds to the mask only those bits com-

mon to all bitsets in the block. Its implementation follows from addToMask and

intersectIndex. We also assume that the bits in the RSparseBitSets are iterable

and treat the bits and the tuples they represent interchangeably in our pseudocode

for simplicity.
4This can be done efficiently in C++ with Clang/GCC’s builtin popcountll function.

89

4.5.3 Enforcing PW-CT

Roughly speaking, PW-CT has two main phases: a GAC phase, in which Compact-

Table is executed until quiescence, and a PWC phase that performs a single pass

over the tuples deleted by CompactTable to uncover new non-PWC blocks. PW-

CT maintains two queues: CTQueue tracks constraints that must be ‘checked for

GAC’ and PWCQueue tracks constraints that have lost tuples, thus threatening the

PW-consistency of blocks in other constraints. For brevity we assume both queues

act as sets in that there is at most one instance of a particular constraint in the queue

at a time.

Algorithm 5: Lookahead(P) Enforces PWC on a CSP P
Input: A CSP P = (X ,D, C)
Output: Whether the current problem is consistent

1 consistent ← true
2 if P has not been preprocessed then
3 consistent ← PreProcess(C)
4 while consistent and not empty(CTQueue) do
5 ci ← pop(CTQueue)
6 consistent ← CompactTable(ci)
7 if ci was modified then push(ci,PWCQueue)
8 if consistent and empty(CTQueue) then
9 mCons ← PWCQueue

10 for ci ∈ mCons and consistent do
11 consistent ← EnforcePWC(ci)
12 living(ci).clearDelta()
13 PWCQueue ← PWCQueue \{ci}

14 return consistent

Function Lookahead (Algorithm 5) is the entry point for PW-CT. Lines 4 to 7

run CompactTable until quiescence and enqueues constraints modified by GAC

into PWCQueue. CompactTable enqueues constraints with modified variables into

CTQueue, thus, when execution hits Line 9, the problem is GAC but not necessarily

90

PWC. Lines 9 to 13 call function EnforcePWC (Algorithm 6) on modified con-

straints to determine if the removal of tuples in each constraint ci in the queue causes

the loss of a PW-support in another constraint.

Algorithm 6: EnforcePWC(ci) Propagates invalid blocks of ci
Input: Constraint ci that has been modified by CT
Output: Whether the current problem is consistent

1 tupsToCheck ← living(ci).computeDelta()
2 for σ ∈ incidentSubscopes[ci] do
3 tupsToCheck.save()
4 for variable x ∈ σ s.t. x was modified on previous call to CT do
5 if |D(x)| < |∆x| then
6 tupsToCheck.clearMask()
7 for value a ∈ D(x) do
8 tupsToCheck.addToMask(supports[ci][x][a])

9 tupsToCheck.intersectWithMask()

10 else
11 for value a ∈ ∆x do
12 b ← an empty block
13 b.sets ← supports[ci][x][a]
14 b.indices ← indices[ci][x][a]
15 tupsToCheck.removeBlock(b)

16 for τ ∈ tupsToCheck do
17 consistent ← ReviseBlock(ci, σ, τ)
18 if not consistent then return false
19 tupsToCheck.removeBlock(CreateBlock(ci, σ, τ))

20 tupsToCheck.restore()

21 return true

EnforcePWC iterates over all subscopes incident to a constraint and the con-

straint’s most recently removed tuples, checking whether the block induced by the

combination of each subscope and tuple is empty. As discussed in Section 4.2.4, any

blocks whose signatures have variable-value pairs removed by GAC necessarily have

had all of their supporting blocks in neighboring constraints removed as well. The

loop beginning at Line 4 in EnforcePWC (Algorithm 6) takes advantage of this

91

insight by discarding blocks of tuples from consideration for PW-support checks, skip-

ping unnecessary calls to ReviseBlock (Algorithm 7). It uses a mechanism similar

to incremental and reset-based updates [Perez and Régin, 2014], where ∆x is the set

of values of variable x removed by the previous call to CompactTable.

Algorithm 7: ReviseBlock(ci, σ, τ) Removes supports of empty block
Input: A constraint ci, a subscope σ, and a tuple τ
Output: Whether the current problem is consistent

1 if living(ci).intersectIndex(CreateBlock(ci, σ, τ)) = -1 then
2 for cj ∈ incidentCons[σ] s.t. ci 6= cj do
3 living(cj).removeBlock(CreateBlock(cj, σ, τ))
4 if living(cj) was modified then
5 if living(cj).numSet() = 0 then return false
6 push(cj,PWCQueue)
7 push(cj,CTQueue)

8 return true

Lines 16 to 19 check the block induced by each removed tuple for the current

subscope for validity by calling function ReviseBlock (Algorithm 7). If no other

tuples in the induced block are alive in the constraint, ReviseBlock removes the

piecewise-functional blocks from all other constraints incident to the current subscope,

and enqueues the constraints modified during this process. Multiple tuples in the set

of removed tuples may belong to the same block for a given subscope, so, Line 19

removes all other tuples from that block from the set of tuples to check (as successive

calls for the same block would be redundant).

It is advantageous to interleave CompactTable and EnforcePWC calls be-

cause tuples removed by EnforcePWC may enable value deletions that can be

propagated quickly by CT. To prevent running EnforcePWC until quiescence on

the first pass, a copy of the queue is created in Line 9 of Lookahead (Algorithm 5).

As a result, each modified constraint is processed at most once at each PWC pass.

92

Proposition 3. If the CSP is initially PWC, Lookahead guarantees fPWC.

Proof. Consider a constraint ci altered by CompactTable. Because the problem

was PWC prior to running CompactTable, the only ‘endangered’ blocks in ci have

tuples deleted by CompactTable. To enforce PWC, we need to check if any block

bi whose signature is a combination of a deleted tuple τ of ci, a subscope σi incident

to ci and ci is empty as a result of CompactTable. If we find a block bi to be empty,

we can remove the blocks that are PW-supports of bi from all constraints cj incident

to σi. Because each cj modified in ReviseBlock is added to the PWCQueue (Line

6), the removal of any tuple in cj by ReviseBlock that emptied a block induced

on any subscope σj is necessarily detected by the next call to EnforcePWC(cj).

Running CompactTable in between calls to EnforcePWC on any modified con-

straint ensures that the domains of the variables in the scope of the constraint are

‘synced’ with the constraint’s relation, thus, ensuring fPWC.

Proposition 4. The time complexity of calling EnforcePWC on a constraint is

O((|C| · t) · (d t
64
e · |C|+ |σ|)), where t is the number of tuples in the largest constraint

and σ the largest subscope.

Proof. ReviseBlock iterates over the constraints incident to a subscope, which in

the worst case is |C| − 1. Each constraint may need to call removeBlock, which

requires iterating over dt/64e elements. Creating the block requires iterating over σ.

The only tuples evaluated by ReviseBlock are those that have been removed from

a constraint, and at most t tuples can be removed. A removed tuple can be revised

for each of its constraint’s incident subscopes. In the worst case, a constraint has

|C| − 1 neighbors in the dual graph, and each neighbor induces a unique subscope.

Therefore, each tuple in the problem may cause ReviseBlock to be called O((|C| ·

t) · (d t
64
e · |C|+ |σ|)) times.

93

Algorithm 8: PreProcess(C) Runs CT and removes non-PWC tuples
Input: A set of constraints C
Output: Whether the current problem is consistent

1 Run CompactTable() until quiescence
2 if consistent then
3 consistent ← InitPWC(C)
4 if consistent then
5 forall ci ∈ C do living(ci).clearDelta()
6 consistent ← InitPWC(C)

7 return consistent

PW-CT requires an additional initialization step to guarantee that preprocessing

enforces fPWC. Consider the tuple τ = {〈A, 1〉,〈B, 1〉,〈C, 1〉, 〈E, 1〉} in R1 in Fig-

ure 4.1. Each variable-value pair in τ has a GAC support in R2, but no PW-support.

EnforcePWC operates on deleted tuples in order to propagate PW-support re-

movals, but because τ ’s variable-value pairs are GAC, τ is not deleted by Compact-

Table. Therefore, EnforcePWC is not called. To remedy this situation, all blocks

that initially lack PW-supports need first to be removed from the problem. Once this

removal is done, EnforcePWC can then evaluate the deleted tuples and propagate

any other blocks that are emptied by their removal. Function PreProcess (Algo-

rithm 8) accomplishes this operation by first enforcing GAC with CompactTable

and then calling function InitPWC (Algorithm 9).

Function InitPWC considers each subscope σ in the problem. It begins by finding

the constraint cs with the smallest number of living tuples incident to σ. The algo-

rithm checks if the blocks induced by the subscope σ for each tuple τ in living(cs) has

a PW-support in all constraints incident to σ (Lines 6 to 9). If the block is supported,

then, for each constraint cj incident to σ, we add the block of tuples induced by τ to

the mask of living(cj) (Line 12). After all blocks of cs are processed, the masks of

each RSparseBitSet living(cj) contain only PW-supported tuples. Line 15 removes

94

Algorithm 9: InitPWC(C) Partially enforces PWC on the constraints
Input: A set of constraints C
Output: Whether the problem is consistent at preprocessing

1 for σ ∈ Subscopes do
2 cs ← constraint with fewest living tuples ∈ incidentCons[σ]
3 foreach ci ∈ incidentCons[σ] do living(ci).clearMask()
4 toCheck ← living(cs) // Makes a copy
5 for τ ∈ toCheck do
6 tuplePWC ← true
7 foreach ci ∈ incidentCons[σ] and tuplePWC do
8 if living(ci).intersectIndex(CreateBlock(ci, τ, σ))= −1 then
9 tuplePWC ← false

10 if tuplePWC then
11 foreach ci ∈ incidentCons[σ] do
12 living(ci).addBlockToMask(CreateBlock(ci, τ, σ));

13 toCheck.removeBlock(CreateBlock(cs, τ, σ))

14 foreach ci ∈ incidentCons[σ] do
15 living(ci).intersectWithMask()
16 if living(ci) was modified then
17 push(ci,PWCQueue)
18 push(ci,CTQueue)

19 if living(ci).numSet = 0 then return false
20

21 return true

non-PWC tuples by calling the intersectWithMask method for each living(cj). In

practice, we found that in some problems the number of initially non-PWC tuples can

be extremely large causing significant slowdown in the first call to EnforcePWC

after PreProcess. To alleviate some of this burden, Function PreProcess runs

InitPWC twice. The second call to InitPWC tends to remove fewer tuples than

the first and guarantees the removal of any block that lost PW-supports due to the

first call. Note that only the first call is strictly necessary for correctness.

95

4.6 Empirical Evaluation of PW-CT

As with Section 4.4, the experiments were run on 48 benchmarks of non-binary CSPs

and were limited to non-binary benchmarks with at least one instance with a non-

trivial subscope. This resulted in a total of 1,351 instances. In this section, we focus on

eight algorithms: PW-AC2, PW-AC2-CT, PW-CT, PW-CTf , CompactTable,

STRbit, GAC2001, and STR2. In Section 4.4 we showed the strength of PW-AC2

relative to other algorithms used to enforce fPWC, so we use PW-AC2 as a baseline

of fPWC performance. We also include a version of PW-AC2, PW-AC2-CT, which

runs the CompactTable algorithm prior to enforcing PW-AC2 to demonstrate

that naively enforcing a GAC prior to enforcing PWC does not provide the same per-

formance as interleaving them in an algorithm like PW-CT. CompactTable and

STRbit are both algorithms that enforce GAC using bitsets, but their data struc-

tures and methods differ. Algorithms STR2 and GAC2001 represent the “classical”

method of enforcing GAC both with and without tabular reduction, respectively.

As before, search over each CSP was performed using Stampede to find the first

consistent solution, using the |dom|wdeg ordering heuristic. The solver was limited to one

hour and 8GB of memory. When an algorithm timed out or ran out of memory

(OOM), it is recorded as having taken the full hour.

Figure 4.9 shows a cumulative chart providing the number of instance solved by

the tested algorithms within a certain amount of time. We’ll begin by delving into

the relative performance of PW-CT and PW-CTf . Surprisingly we can see that the

version of PW-CT operating on the full dual graph outperforms the version operating

on the minimal dual graph. The cause of this becomes clear when we examine the

scatter plot in Figure 4.10 for these two algorithms.

The large grouping of OOM instances on the right side of Figure 4.10 are all from

96

CT

GAC2001

PW-AC2-CT

PW-AC2

PW-CTᶠ

PW-CT
STR2

STRBit

325

375

425

475

525

575

625

675

725

775

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

Figure 4.9: Cumulative chart showing number of instances completed in N seconds
for GAC and select PWC algorithms.

a single benchmark, BddLarge. The instances in this benchmark are all structurally

similar, with roughly 2,700 constraints that are all fully connected. Computing the

minimal dual graph requires roughly 16GB of memory with our current implemen-

tation, and while removing redundant edges in the dual graph reduces the average

degree of a node considerably (from 2,712 to an average of 60 and a maximum of 108

in the specific instance examined), it comes at a considerable cost in memory and

CPU time, and leaves the total number of non-trivial subscopes in the problem un-

changed (roughly 1.1 million). This benchmark (and its smaller version, BddSmall)

are somewhat pathological for PWC algorithms. The high number of tuples in the

problem cause the classical PWC algorithms presented earlier in this chapter to run

out of memory regardless of whether the algorithm was operating on the minimal or

full dual graph, but because PW-CT does not store any coarse blocks, it is uniquely

impacted.

Figure 4.11 shows a cumulative graph with the BddLarge instances excluded.

97

1

10

100

1000

1 10 100 1000

PW
-C
Tᶠ

PW-CT

PW-CTᶠ OOM PW-CT OOM

Figure 4.10: Scatter chart comparing minimal dual and full dual versions of PW-
CT.

Here we can see that the full and minimal dual version of PW-CT are extremely

competitive with the minimal dual version edging out the full dual version. The gains

we see in other PWC algorithms from using the minimal dual graph are minimized

with PW-CT for two reasons. The first is the relatively small number of times PW-

CT enforces PWC at all, as it enforces GAC between each run of PWC. The second is

the relatively small cost of enforcing PWC in PW-CT since the tuples in constraints

are processed as 64-bit chunks.

Figure 4.12 shows scatterplots comparing PW-CT to two GAC algorithms: STR2

and CompactTable. STR2 is representative of the “classical” GAC algorithms

while CompactTable is the current best-in-class for enforcing GAC. While PW-

CT outperforms STR2 on the vast majority of instances, including some which STR2

98

CT

GAC2001
PW-AC2-CT
PW-AC2

PW-CTᶠ
PW-CT

STR2

STRBit

325

375

425

475

525

575

625

675

725

775

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

Figure 4.11: Cumulative chart showing number of instances completed in N seconds
for GAC and select PWC algorithms excluding instances from the BDDLarge dataset.

was unable to solve at all within the time constraints, CompactTable still handily

outperforms PW-CT on all but a handful of instances.

Table 4.3: Pairwise t-test results for all tested PWC and GAC algorithms with |dom|wdeg
ordering heuristic. Cells are labeled “T” if the results were significantly different (p
<.05) and the value of the row entry was less than the column.

C
T

G
A

C
20

01

P
W

-A
C

2-
C
T

P
W

-A
C

2

P
W

-C
T
f

P
W

-C
T

ST
R

2

ST
R
bi
t

CT - T T T T T T T
GAC2001 - - T T - - - -
PW-AC2-CT - - - T - - - -
PW-AC2 - - - - - - - -
PW-CTf - T T T - T T -
PW-CT - T T T - - - -
STR2 - T T T - - - -
STRbit - T T T T T T -

99

1

10

100

1000

1 10 100 1000

PW
-C
Tᶠ

STR2

PW-CTᶠ OOM STR2 OOM

(a) PW-CT and STR2

1

10

100

1000

1 10 100 1000

PW
-C
T

CT

PW-CT OOM CT OOM

(b) PW-CT and CompactTable

Figure 4.12: Pairwise comparisons between PW-CT and two GAC algorithms. Points
below the line correspond to instances where PW-CT was faster.

This is further elucidated by the t-test results in Table 4.3.5 However, PW-CT

still represents a fundamental step forward for relational consistencies, and PWC in

particular, as it is the first PWC algorithm we are aware of that is able to consis-

tently outperform any classical GAC algorithm, and is still fairly competitive with

modern GAC algorithms. We would also further emphasize that while this research

has evaluated the use of HLC on full problems, their true strength lies in a targeted,

localized approach [Woodward, 2018].

4.7 Future work

We would also be remiss to not mention the impact that variable ordering heuris-

tics can have on search. While |dom|wdeg has been shown to be generally more effective

than |dom|
ddeg , the decisions made by |dom|wdeg have previously been considered too unstable

5The results included in Table 4.3 include benchmark BddLarge; excluding BddLarge results in
there being no statistical difference between PW-CT and PW-CTf .

100

to objectively allow comparing algorithms’ performance. Researchers studying the

performance of HLC during search sometimes use |dom|ddeg in their experiments [Balafrej

et al., 2015; Paparrizou and Stergiou, 2016, 2017]. We opted to use |dom|wdeg in these

experiments in the interest of showing performance akin to real-world use cases.

However, when looking at the number of nodes visited (i.e., search tree size) for

algorithms CompactTable and PW-CT on the tested instances, 4.6% of the search

trees were larger for PW-CT. Of those 4.6%, the average increase in the number

of nodes visited was 95,328 (a 23.9% increase from CompactTable). While this

occurred in only a small number of instances, that it happened at all given the

increase in propagation strength PWC can provide is surprising. Ordering heuristics

that are designed and tuned for relational consistencies, or robust to the propagation

scheme being used, are an obvious next step in showing the efficacy of relational

consistency algorithms.

Additionally, identifying strategies for selectively applying PWC when using PW-

CT would likely prove to be beneficial. The algorithm is already very nearly on par

with CompactTable and STRbit on many problems and exceeds the performance

of other GAC and PWC algorithms on nearly every benchmark. Judicious application

of PWC while maintaining GAC would more than likely produce a hybrid consistency

that reliably exceeds the performance of CT. Such approaches have already been em-

pirically validated, albeit with different choices for the HLC being used [Geschwender

et al., 2016; Karakashian et al., 2011, 2013; Woodward et al., 2017, 2018; Woodward,

2018].

101

Summary

In this chapter, we introduced two new algorithms for enforcing fPWC, PW-CT and

PW-AC2, as well as modified versions of eSTR2 algorithms that use the minimal

dual graph. We showed that PWC algorithms generally benefit from using a minimal

dual graph to improve time and space cost. Further, we introduced three other ways

to improve the efficacy of PWC algorithms, and designed an algorithm, PW-CT that

uses all of them. Finally, we showed that the performance of PW-CT far and away

exceeds that of other PWC algorithms, falling only behind the most recent GAC

algorithms, STRbit and CompactTable.

102

Chapter 5

Improving m-wise Consistency Algorithms Via Dynamic Rela-

tion Partitioning

Chapter 4 introduced new algorithms and techniques for enforcing fPWC, which

ensures that any tuple in one relation can be consistently extended to at least one

tuple in another, effectively ensuring that any two relations are minimal with respect

to one another. The obvious next step is ensuring minimality amongst an arbitrary

number of relations. The consistency property R(∗,m)C [Karakashian et al., 2010a,

2011, 2013] (originally known as m-wise consistency [Gyssens, 1986]) formally defines

this property. In this chapter, we will provide a brief background of this consistency

property and the algorithms that are used to enforce it, provide two new algorithms

used to enforce m-wise consistency (previously published in [Schneider et al., 2014]),

and empirically evaluate the performance of these algorithms.

5.1 Background

We’ll begin by reviewing the definition of PWC.

Definition 4. Pairwise Consistency (PWC) [Gyssens, 1986]: A constraint network

P = (X , D, C) is PWC iff, for every tuple ti in every constraint ci there is a tuple

tj in every constraint cj such that πsubscope(ci,cj)(ti) = πsubscope(ci,cj)(tj), tj is called a

PW-support of ti in cj. A CSP that is both PWC and GAC is said to be full PWC

(fPWC).

103

As mentioned in Chapter 4, the piecewise functionality property divides relations

into equivalences classes of tuples (see Figure 5.1) and forms the basis of the PW-

AC, PW-AC2, and PW-CT algorithms [Samaras and Stergiou, 2005; Schneider and

Choueiry, 2018]. A natural extension of this property is extending the guarantee to

m other constraints. We call this a “parameterized” consistency because the value of

m is not fixed.

Definition 5. R(∗,m)C [Karakashian et al., 2010a]: A constraint network P = (X ,

D, C) is R(∗,m)C iff every tuple in the relation of each constraint ci ∈ C can be

extended to the variables in
⋃
cj∈C scope(cj) \ scope(ci) in an assignment that satisfies

all the constraints in C simultaneously. A network is R(∗,m)C iff every set of m

constraints, m ≥ 2, is R(∗,m)C.

The consistency property R(∗,m)C ensures the minimality of every combination

of m relations. It is equivalent to m-wise consistency defined in Databases [Gyssens,

1986]. The parameterized algorithm PerTuple enforces R(∗,m)C [Karakashian et

al., 2010a, 2013]. It ensures that each tuple in a relation appears in a solution of the

dual CSP induced by any m relations by conducting a backtrack search on the tuples

over the other m− 1 relations in the combination (see Figure 5.2).

A B C D G
t1 0 0 0 0 0
t2 0 0 0 1 0
t3 0 0 1 0 0
t4 0 0 1 1 1
t5 0 1 1 0 1
t6 0 1 1 1 1
t7 1 1 1 1 1

A B E
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

✗

✗

R1 R2

Figure 5.1: Piecewise functional con-
straint.

..…
For every combination

of m-1 relations Every	
 tuple	

In	
 every	
 rela.on	

Figure 5.2: Illustrating R(∗,m)C.

After running PerTuple, the removal of tuples are reflected in the domains of

104

variables by projecting the altered constraints onto the domains of the variables in

the constraints’ scopes. PerTuple uses a data structure called an index tree that

groups the equivalent tuples in a constraint relative to another constraint, implicitly

exploiting the piecewise functionality of the two constraints. This data structure

allows PerTuple’s backtrack search to efficiently identify tuples that can be part of

a valid solution to the combination.

Another algorithm used to enforce R(∗,m)C is AllSol [Karakashian, 2013]. Both

PerTuple and AllSol operate in very similar manners, conducting searches over

every connected subgraph of size m on the dual graph of a CSP. Where they differ

is the manner in which they conduct their search. PerTuple focuses on a single

relation Ri in a combination, conducting a search to find the first solution for each

tuple or removing the tuple from Ri if a solution does not exist. This process needs

to be repeated for every other relation in the combination as well, once all tuples in

Ri have been processed.

AllSol, on the other hand, performs a single search over the combination, enu-

merating all solutions. Tuples which are not found in any of the enumerated solutions

are removed from their respective relations to make the combination minimal. To im-

prove the performance of AllSol, the search is stopped once all tuples have been

marked as being a part of a solution. Further, while performing the search, if all tu-

ples in the future subproblem and the tuples currently instantiated along the search

path have already been marked, the subproblem is skipped.

Naively applying either AllSol or PerTuple to an entire CSP is cost pro-

hibitive, even with small combination sizes. Instead, Karakashian et al. [2013] ad-

vocates to 1) weaken the consistency enforced by R(∗,m)C by creating combinations

based on the minimal dual graph, resulting in the property wR(∗,m)C, and 2) localiz-

ing the scope of R(∗,m)C to the clusters formed by a tree decomposition of the CSP,

105

resulting in the consistency properties cl-R(∗,m)C and cl-wR(∗,m)C. When using a

tree decomposition, the size of m may be adjusted to the number of constraints in a

particular tree cluster. This is denoted as cl-wR(∗,Ψ(cli))C and ensures the minimal-

ity of each cluster in the decomposition. Karakashian [2013] has previously shown the

advantage to using this approach, and we follow suit in this dissertation, enforcing

cl-wR(∗,m)C exclusively by using a tree decomposition of the CSP.

5.2 PerFB Algorithm

This section introduces a new algorithm for enforcing R(∗,m)C called PerFB. At its

core, the operation of PerFB is extremely similar to PerTuple, but dramatically

improve its performance by using the data structures and partitions described in

Chapter 4, and by identifying entire subproblems that have already been explored

while performing searches over combinations of constraints.

5.2.1 Replacing the Index Tree with Coarse Blocks

Figure 5.3 provides an example of an index tree, which is, at its core, a trie (also

known as a prefix tree). When conducting search over the relations in a combination,

the trie can be walked with an instantiated tuple from another relation to identify the

piecewise functional tuples supporting it. The index tree is conceptually similar to

the data structures used to enforce PW-AC2 introduced in Chapter 4. Both serve to

quickly identify a group of tuples in a relation that match a given signature. However,

the index tree has a few notable downsides relative to the coarse block partitions.

The first disadvantage is the need to walk the tree each time a group of supporting

tuples needs to be found. This operation is handled in constant time in PW-AC2 with

only a modest amount of additional memory consumption. To find the supports for

106

ABC
t1 1 0 0
t2 2 1 0
t3 2 1 1
t4 0 0 1
t5 0 1 1
t6 0 1 2
t7 1 1 1

A B E
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

R2R1

1

0 1

0

0 1

2

1

t4 t5
t6

t1 t7 t2
t3

A

B

Figure 5.3: Two relations (R1 and R2) and the index tree corresponding to R1 with
respect to R2.

an arbitrary τ from a relation Ri in some adjacent relation Rj using coarse blocks, we

first identify Subscope(Ri, Rj) which can be performed in constant time through the

dual graph, and then use the table blockLookup[Rj][σi][τ] to immediately identify the

group of supporting tuples for τ . Using the index tree, the subscope between the two

relations is computed, then each value corresponding to the variables in the subscope

are selected from the tuple and used to find the supporting group of tuples. However,

this requires the index trees to have a universal canonical ordering of variables from

root to leaf, which is fairly constricting, as the scopes of various relations may be

arbitrarily ordered in the problem description.

The second disadvantage is the lack of additional metadata included at the leaves

of the index tree, such as a counter indicating the number of living tuples in a par-

ticular group, or a pointer to other supporting groups in neighboring relations with

the same signature.

Finally, the index trees are created for each pair of tuples. A straightforward but

significant improvement would be to only construct index trees once per subscope, as

is the case with the partitioning scheme (i.e., coarse blocks) used by PW-AC2.

The lookahead mechanism for PerFB uses the block structures rather than index

107

trees. This change was straightforward in Stampede, as both the index tree and

coarse blocks were written to the same interface, making coarse blocks a drop in

replacement for the index tree. While no significant modification were needed to

be made to PerTuple to use coarse blocks, the faster lookup times for supporting

blocks play a role in the increased performance of PerFB.

5.2.2 Additional Equivalence Classes of Relations

In Chapter 4, we introduced the notion of a “coarse block” of tuples and exploited the

equivalence classes induced, on the relation Ri of a constraint Ci, by Ci’s neighbors in

the dual graph. Here, we distinguish two additional types of such equivalence classes

depending on the subset of neighbors considered: fine blocks (fb) and intermediate

blocks (ib). Figures 5.4a and 5.4b illustrate these equivalence classes for R1. The

notations and data structures used in the following sections refer to this example.

Coarse blocks: Any single neighbor of Ci in the dual graph partitions Ri into a set of

coarse blocks. In Figure 5.4a, subscope(C1,C2) = {A,B,C,D,G}∩{A,B,E} =

{A,B} = o1. The tuples ti∈[1,4] ∈ R1 are equivalent for R1 given o1=00,1 and

consistent with (0,0,0) and (0,0,1) ∈ R2. Indeed, πo1(ti∈[1,4] ∈ R1) = (0, 0) and

πo1((0, 0, 0) ∈ R2) = πo1((0, 0, 1) ∈ R2) = (0, 0). Further, the above does not

hold for any other tuple of R1. Thus, cb1 = {t1, t2, t3, t4} is the coarse block

of R1 induced by o1=00. The other two coarse blocks are cb2 = {t5, t6} and

cb3 = {t7}. Similarly, subscope(C1, Cj∈{3,4,5}) is o1 = {A,B}, o2 = {B,G}, and

o3 = {C} respectively. Thus, o1, o2, and o3 induce on R1 the set of coarse

blocks {cb1, cb2, cb3}, {cb4, cb5, cb6}, and {cb7, cb8}, respectively. Coarse blocks
1Abusing tuple/set assignment notation.

108

A B C D G

fb1
t1 0 0 0 0 0
t2 0 0 0 1 0

fb2 t3 0 0 1 0 0
fb3 t4 0 0 1 1 1

fb4
t5 0 1 1 0 1
t5 0 1 1 1 1

fb5 t7 1 1 1 1 1

A B F
fb12 0 0 0
fb13 0 0 1
fb14 0 1 1
fb15 1 1 0
fb16 1 1 1

B E G
..

C F
..

R1 R3

R4 R5

A B E
fb6 0 0 0
fb7 0 0 1
fb8 0 1 0
fb9 0 1 1
fb10 1 0 0
fb11 1 0 1

R2

(a) An example CSP.

cb1

t1

t2

t3

t4

cb2
t5

t6

cb3 t7

cb4
t1

t2

t3

cb5 t4

cb6
t5

t6

t7

cb7
t1

t2

cb8

t3

t4

t5

t6

t7

fb1
t1

t2

fb2 t3

fb3 t4

fb4
t5

t6

fb5 t7

ib1
t1

t2

ib2
t3

t4

ib3
t5

t6

ib4 t7

o1={A,B} o2={B,G} o3={C} o1∪o2∪o3 o1∪o3

(b) Coarse, fine, and intermediate blocks
of Ri

Figure 5.4: An overview of different partitioning schemes.

are the partitions identified and exploited by Samaras and Stergiou [Samaras

and Stergiou, 2005] and PW-AC2.

Fine blocks: When we consider all the constraints adjacent to Ci in the dual graph,

they induce on Ri the finest possible partition, obtained by performing the in-

tersections of all of Ri’s coarse blocks. As a result, they yield the (unique) set of

Ri’s fine blocks. In Figure 5.4b, the set of fine blocks of R1 is {fb1, fb2, . . . , fb5}.

We note here that a fine block contains more than one tuple iff the scope of the

constraint containing the tuple has at least one variable that only appears in

the scope of that particular constraint.

Intermediate blocks: Finally, the partition induced on a relation Ri by a given

109

combination of m constraints depends on the neighboring constraints of Ci

that are included in m. The granularity of that partition is intermediate:

not finer than Ri’s fine partition and not coarser than any of its coarse par-

titions. For example, {C2, C5} ⊂ neighbors(C1) induce the intermediate blocks

{ib1, ib2, ib3, ib4}.

In our prior work [Schneider et al., 2014], the fine blocks found in the problem

were computed and stored before preprocessing alongside the coarse blocks. However,

while they may be of theoretical value, in practice we have found their use to be of

limited practical import. In most problems, there is a one-to-one relationship between

tuples and their fine blocks. There tend to be few relations whose constraint has a

scope that includes a variable that was constrained only by that particular constraint.

Further, the additional overhead to create the fine blocks during preprocessing and

the extra complexity they induce on the algorithm makes them more hindrance than

help.

5.2.3 The PerFB and AllSolFB Algorithms

Here, we describe FB-SearchSupport, which improves on PerTuple’s Search-

Support [Karakashian et al., 2010a]. The overall operation of PerFB is otherwise

identical to PerTuple. Like PerTuple, PerFB takes as input a queue Q and Φ,

where Φ is the set of all combinations of m relations. The queue is initialized to all

the combination-relations pairs 〈ϕ,Ri〉 such that ϕ∈Φ and Ri∈ϕ. PerFB iterates

over all tuples of a relation Ri in a combination ϕ, calling FB-SearchSupport to

ensure that a tuple can be extended to a solution in the dual CSP induced by ϕ

by conducting a backtrack search. In addition to the use of static coarse blocks (as

110

opposed to the index tree), FB-SearchSupport makes use of intermediate blocks,

dynamically induced by the relations in ϕ.

PerFB improves PerTuple by reducing the cost of the search over the combi-

nation in SearchSupport by exploiting dynamically induced intermediate blocks.

The central idea of the improvement is to check, prior to the instantiation of a tuple,

whether another tuple with the same signature has already had its subtree explored.

If so, the result of the prior instantiation is returned, as the resulting subtree is

guaranteed to be identical.

Algorithm 10: Modified methods of SearchSupport for PerFB.
1 Method Label(Ci: A constraint to assign):
2 τ ← AssignTuple()
3 node ← ibTracker.getNode(Ci,τ)
4 if node.result 6= UNKNOWN then
5 return node.result

6 consistent← LookAhead()
7 if consistent = false then
8 node.result ← false

9 else if all constraints are assigned and consistent = true then
10 node.result ← true

11 Method Unlabel():
...

12 Update state as normal, removing changes caused by this node
...

13 ibTracker.resetNodes()

Algorithm 10 shows the modifications required to the search procedure used by

PerTuple and AllSol. We refer to two functions, label and unlabel, which are

commonly used names when describing search over CSPs to refer to the process of

instantiating and node in the tree and uninstantiating it, respectively [Prosser, 1993].

The modified search uses a new IBTracker, to determine if the current instantiation of

111

〈constraint, tuple〉 pair is equivalent to another pair that has already been searched.

Algorithm 11 describes the operation of this class. IBTracker returns a node that

contains one of three values: unknown, true, or false. If the node contains unknown,

the current tuple is the first of its intermediate partition to be assigned at the current

level of search. Otherwise, the boolean value stored in the result corresponds to

whether the prior tuple from the same intermediate partition was consistent or not.

To accomplish this, class IBTracker effectively builds an index tree for the parti-

tion of tuples induced on the constraint at the current level of the subproblem search

by the union of scopes it shares with the unassigned constraints. Each level of the

trie corresponds to the intermediate block induced by the union of subscopes between

the relation being assigned and the unassigned relations in the combination. When a

tuple is instantiated during the search over a combination, it is added to the trie for

that level.

Method lookupNode in Algorithm 11 returns a references to the leaf node

of the trie, which can then be used to store the result of the current subproblem.

Method createIntermediateBlockScope generates a bitset corresponding the

union of variables in the subscopes between the current constraint Ci and its unas-

signed neighbors. Method getNode constructs a new path in the trie if the inter-

mediate partition induced by the current tuple has not yet been evaluated, or the

node corresponding to the previous result if it has. We assume that each node has

a sparse map called next to provide pointers to child nodes in the trie. getNode

walks through the variables in the bitset generated by Method createIntermedi-

ateBlocks, generating new nodes when needed. Method resetNodes clears out

the generated trie and set of variables at a given level. An important implementation

detail is the use of a pool of nodes that are recycled (and dynamically expanded when

needed) to prevent frequent (de-)allocations from the construction and tear down of

112

Algorithm 11: Class IBTracker that tracks visited nodes in FB-
SearchSupport.
/* Member variables of the tracker class */

1 rootNodes[m] // Root nodes of trie per level of subproblem search
2 ibScopes[m] // Subscope defining ib per level of subproblem search
3 neighbors[|C|] // Sparse set of global neighbors for each constraint
4 subscopes[|C|,|C|] // Stores bitset representation of a subscope
5 unassignedNodes // Sparse set of unassigned constraints in

combination
6

7 Method resetNodes(level):
8 rootNodes[level].clear()
9 ibScopes[level].clear()

10

11 Method createIntermediateBlockScope(Ci):
12 if size(unassignedNodes) = 0 then
13 return ∅
14 ibBitset ← 0
15 for possNeigh ∈ unassignedNodes s.t. possNeigh in neighbors[Ci] do
16 ibBitset |= subscopes[possNeigh, Ci]

17 return ibBitset

18

19 Method getNode(τ , level):
20 node ← rootNodes[level]
21 for varID ∈ ibScopes[level] do
22 val ← τ .atVar(varID)
23 if val 6∈ node.next() then
24 node.next(val) ← new node
25 node.result ← UNKNOWN

26 node ← node.next(val)

27 return node

28

29 Method lookupNode(
30 Ci: The instantiated constraint at level,
31 τ : The tuple assigned to Ci,
32 level: The current level of the tuple search):
33 if ibScopes[level] = then
34 ibScopes[level] ← createIntermediateBlockScope(Ci)

35 return getNode(tau, level)

113

each trie.

Soundness of PerFB. The central conceit of PerFB is its ability to skip expanding

nodes, thereby foregoing the processing of entire subproblems during the search over

a combination. Node expansion is prevented iff the tuple assigned at the node has

an identical signature to a previously explored node with respect to the remaining

subproblem. Any variables not included in the signature cannot possibly have an

impact on the remaining subproblem as they are, by definition, not constrained by

any other constraints in the combination. The assignment of two tuples with iden-

tical signatures at any level of search will necessarily produce identical search trees.

Therefore, PerFB will produce an identical result to PerTuple.

Note that the version of PerFB implemented in Stampede forgoes the explicit

creation of fine blocks entirely. The mechanism used to identify tuples with equivalent

signatures during a subproblem search is extremely efficient, and any tuples that

would have been in a fine block will be implicitly identified as part of the same

intermediate block during the subproblem search, negating the benefit from pre-

computing them.

Complexity. When deleting a tuple during search, it is important to maintain the

correct counts of living tuples remaining in coarse blocks. Each tuple deletion re-

quires O(e2) updates in the worst case. Updates are performed in constant time

thanks to the blockLookup table. The cost of these updates is, in practice, greatly

dwarfed by that of FB-SearchSupport. The time complexity of PerFB is iden-

tical to that of PerTuple, and dominated by the O(tm−1) search conducted in

FB-SearchSupport [Karakashian et al., 2010a]. Additionally, PerFB performs at

most as much work in (FB)-SearchSupport as PerTuple does, because

114

⋃
Rj∈ϕ\{Ri}

subscope(Ri, Rj) (5.1)

is the same as scope(Ri) in the worst case. At each level of search in FB-

SearchSupport, the trie is composed of O(t) tuples. Thus, an additional O(m · t)

space is required for PerFB to store the results of previously searched subtrees at

each level of search in FB-SearchSupport.

The modifications to FB-SearchSupport extend naturally and easily to All-

Sol, producing the algorithm AllSolFB. Both AllSol and PerTuple use the

same SearchSupport procedure in Stampede, so any improvements made to

SearchSupport carry directly into AllSol. This is unique to Stampede’s imple-

mentation of PerTuple and AllSol, making this work the first time AllSolFB

has ever been evaluated.

5.3 Empirical Evaluation

In this section we evaluate the performance of algorithms PerFB, PerTuple, All-

SolFB, and AllSol. Each algorithm configuration uses the tree decomposition

to direct propagation, using m = 3 and m = Ψ to enforce cl-wR(∗,m)C and cl-

wR(∗,Ψ(cli))C, respectively. We label each algorithm with the level of consistency

enforced (e.g., PerFBm3 or PerFBψ). The experiments were run on 107 binary

and 72 non-binary CSPs (a total of 4,970 instances). These benchmarks were se-

lected from the CPAI08 dataset2. We excluded benchmarks which were unable to be

completed by any algorithm presented in this dissertation.

PerTuple and PerFB can optionally store the solutions found for each tuple

when enforcing R(∗,m)C to prevent repeated searches for the same solution on sub-
2http://www.cril.univ-artois.fr/CPAI08/

115

sequent calls to the algorithm. We tested configurations of PerTuple and PerFB

that store one solution per tuple (-os) and no solutions (-ns). We also tested Per-

Tuple with a support scheme that stores a list of all valid solutions that a tuple

participates in (-as). We have previously found this to be counter productive in the

context of PerFB due to the memory overhead required to store all tuples, with mini-

mal advantage due to the overlapping functionality of storing supports and computing

the intermediate blocks in PerFB. We also examined two variations of PerFB and

AllSolFB which only compute the intermediate blocks at the root node, rather

than at every node in search (-r).

Search over each CSP was performed using Stampede to find the first consistent

solution, using the |dom|wdeg ordering heuristic. The solver was limited to one hour and

8GB of memory. When an algorithm timed out or ran out of memory (OOM), it is

recorded as having taken the full hour. It is important to note that all of the tested

algorithms in this section explore identical search trees, so long as the same ordering

heuristics are used.

5.3.1 Binary Benchmarks

We begin by examining binary instances.

Figure 5.5 provides a cumulative chart showing the number of instances solved

within a given time frame using PerFB and PerTuple on binary benchmarks.

The performance of PerFB is considerably higher than PerTuple for m = 3, and

boasts a modest improvement for m = Ψ. The version of PerFB which only checks

for redundant intermediate blocks at the root of the search tree outperforms the full

version for both tested combination sizes. This is not particularly surprising. One of

the main benefits of checking for redundant subproblems is finding subtrees which are

116

PerFBᵐ³-ns-r
PerFBᵐ³-ns

PerFBᵐ³-os-r
PerFBᵐ³-os

PerTupleᵐ³-as

PerTupleᵐ³-ns

PerTupleᵐ³-os

500

600

700

800

900

1000

1100

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(a) m = 3

PerFBᵠ-ns-r
PerFBᵠ-ns

PerFBᵠ-os-r

PerFBᵠ-os
PerTupleᵠ-as

PerTupleᵠ-ns

PerTupleᵠ-os

300

350

400

450

500

550

600

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(b) m = Ψ

Figure 5.5: Cumulative charts showing number of binary instances completed in N
seconds for PerFB and PerTuple.

117

already known to be consistent, but if a subtree is consistent, PerFB and PerTuple

will have already found the first solution and returned from SearchSupport.

Using PerFB on subproblems the size of clusters is somewhat pathological for

PerFB, especially with variants that only check for redundancy at the root of the

search tree. The size of the intermediate blocks (and thus, the number of tuples that

could potentially be skipped) is likely smaller when m is large; the root node is likely

to share many of the variables in its scope with unassigned constraints. Should it share

all of its scope with the unassigned constraints in the subproblem, all intermediate

blocks will have a single tuple. In binary instances, this is exceedingly likely as the

cardinality of all scopes in the problem is two.

Figure 5.6 provides a cumulative chart showing the number of instances solved

within a given time frame using AllSolFB and AllSol on binary benchmarks.

Unlike PerFB, here we can clearly see the value of checking for redundant subprob-

lems during search, due to AllSol exploring the entire search tree until all tuples

are marked or all solutions in the subproblem are found. At least one variant of both

AllSolFB and PerFB dominate AllSol and PerTuple (respectively) on binary

problems.

Figure 5.7 shows scatter charts comparing the time required to complete each

instance using the variants of PerTuple, PerFB, AllSol, and AllSolFB which

were able to solve the most instances in the provided hour. Points below the diagonal

are instances that were completed faster by PerFB or AllSolFB. Notably there are

a few instances when processing combinations of size Ψ that run out of memory with

PerFB and AllSolFB, but successfully complete with PerTuple and AllSol

(even when storing all solutions with PerTuple).

This is likely due to the increased memory required to create the coarse block struc-

tures used for lookahead in PerFB and AllSolFB relative to index trees. However,

118

AllSolFBᵐ³-r
AllSolFBᵐ³

AllSolᵐ³

675

725

775

825

875

925

975

1025

1075

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(a) m = 3

AllSolFBᵠ-r

AllSolFBᵠ

AllSolᵠ

275

295

315

335

355

375

395

415

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(b) m = Ψ

Figure 5.6: Cumulative charts showing number of binary instances completed in N
seconds for AllSolFB and AllSol.

119

1

10

100

1000

1 10 100 1000

Al
lS
ol
FB
ᵐ³

AllSolᵐ³

AllSolFBᵐ³ OOM AllSolᵐ³ OOM

(a) AllSolFBm3 v. AllSolm3

1

10

100

1000

1 10 100 1000

Al
lS
ol
FB
ᵠ

AllSolᵠ

AllSolFBᵠ OOM AllSolᵠ OOM

(b) AllSolFBΨ v. AllSolΨ

1

10

100

1000

1 10 100 1000

Pe
rF
Bᵐ

³-
os
-r

PerTupleᵐ³-os

PerFBᵐ³-os-r OOM PerTupleᵐ³-os OOM

(c) PerFBm3-os-r v. PerTuplem3-os

1

10

100

1000

1 10 100 1000

Pe
rF
Bᵠ
-o
s-
r

PerTupleᵠ-as

PerFBᵠ-os-r OOM PerTupleᵠ-as OOM

(d) PerFBΨ-os-r v. PerTupleΨ-as

Figure 5.7: Scatter charts comparing relative performance of PerTuple and PerFB
(top) and AllSol and AllSolFB (bottom) on binary benchmarks. Note the loga-
rithmic scale.

the coarse block structures play a significant role in the gains in performance that we

see with PerFB when m = Ψ; as mentioned above, detecting redundant tuples is

unlikely. The exception to this are random problems, which tend to have many tuples

and whose lack of structure can produce situations conducive to PerFB. Table 5.1

provides statistics for the number of supports found, subproblems skipped because of

the intermediate blocks at both the root node and subproblem, and the total number

of nodes visited during searches over combinations. Clearly, the effort spent trying

to detect redundant subproblems with PerFB is wasted, especially on small combi-

nations. Note that these statistics were collected across all problems, so the values

from one algorithm to another are incomparable (some algorithms completed many

120

Table 5.1: Various statistics for the combination searches on binary problems.

Av
g.

#
Su

pp
or
t
Sk

ip
s

St
dD

ev
#

Su
pp

or
t
Sk

ip
s

Av
g.

#
IB

Sk
ip
pe

d
(r
oo

t)

St
dD

ev
#

IB
Sk

ip
pe

d
(r
oo

t)

Av
g
#

IB
Sk

ip
pe

d
(s
s)

St
dD

ev
#

IB
Sk

ip
pe

d
(s
s)

Av
g
#

N
od

e
V
is
it
s

St
dD

ev
#

N
od

e
V
is
it
s

AllSolFBΨ-r - - 833,249 3,118,043 - - 260,785,995 622,556,014
AllSolFBΨ - - 926,806 3,343,735 8,387,554 29,964,280 232,192,378 585,008,180
AllSolFBm3-r - - 20,887,207 35,196,560 - - 755,073,820 1,063,734,923
AllSolFBm3 - - 21,266,136 35,863,484 35,380,901 60,804,353 718,161,884 1,041,962,992
AllSolΨ - - - - - - 651,190,657 716,074,954
AllSolm3 - - - - - - 821,231,523 878,860,367
PerFBΨ-ns-r - - 7,411,033 21,355,873 - - 180,549,404 372,407,938
PerFBΨ-ns - - 7,489,158 21,843,839 205,834 900,826 169,989,629 363,172,224
PerFBΨ-os-r 10,789,232 27,824,459 5,651,021 16,245,831 - - 196,711,535 439,540,671
PerFBΨ-os 10,122,982 26,442,130 5,223,605 15,007,916 272,828 1,568,792 169,704,833 358,547,313
PerFBm3-ns-r - - 112,207,533 200,753,924 - - 316,840,792 551,278,442
PerFBm3-ns - - 109,279,829 195,469,209 315 812 310,186,881 541,571,633
PerFBm3-os-r 169,614,137 299,036,500 57,412,913 103,092,200 - - 141,477,716 241,551,663
PerFBm3-os 161,575,084 285,863,116 54,563,821 97,872,297 398 975 135,990,097 234,948,966
PerTupleΨ-as 11,152,170 29,676,837 - - - - 151,550,180 159,908,292
PerTupleΨ-ns - - - - - - 194,021,065 204,573,996
PerTupleΨ-os 9,626,786 26,032,042 - - - - 156,802,512 165,808,837
PerTuplem3-as 193,493,822 349,807,123 - - - - 95,879,010 87,683,229
PerTuplem3-ns - - - - - - 142,299,129 130,867,614
PerTuplem3-os 191,442,904 342,831,195 - - - - 94,210,046 86,702,144

more instances than others, which would skew the values).

Finally, Table 5.2 provides the results of a paired t-test between all algorithms

evaluated in this chapter on binary problems. PerFBm3-os-r and AllSolFBm3

both show statistical significance with respect to all other tested algorithms.

5.3.2 Non-Binary Benchmarks

The results for non-binary benchmarks contain a few notable differences from the

binary benchmarks. Figure 5.8 provides a cumulative chart showing the number of

instances solved within a given time frame using PerFB and PerTuple on non-

binary benchmarks. The disadvantage of PerFB relative to PerTuple on large

combination sizes is is emphasized here, as PerTuple outperforms both versions of

PerFB. However, on smaller combination sizes, PerFB still leads the pack.

121

PerFBᵐ³-ns-r
PerFBᵐ³-ns

PerFBᵐ³-os-r
PerFBᵐ³-os

PerTupleᵐ³-as
PerTupleᵐ³-ns

PerTupleᵐ³-os

500

550

600

650

700
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(a) m = 3

PerFBᵠ-ns-r
PerFBᵠ-ns

PerFBᵠ-os-r
PerFBᵠ-os

PerTupleᵠ-as

PerTupleᵠ-ns

PerTupleᵠ-os

450

470

490

510

530

550

570

590

610

630

650

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(b) m = Ψ

Figure 5.8: Cumulative charts showing number of non-binary instances completed in
N seconds for PerFB and PerTuple.

122

Table 5.2: Pairwise t-test results for m-wise consistency algorithms with the |dom|wdeg
ordering heuristic on binary problems. Cells are labeled “T” if the results were signif-
icantly different (p <.05) and favored the row entry.

A
ll

So
lF

B
Ψ
-r

A
ll

So
lF

B
Ψ

A
ll

So
lF

B
m

3
-r

A
ll

So
lF

B
m

3

A
ll

So
lΨ

A
ll

So
lm

3

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B
m

3
-n
s-
r

P
er

F
B
m

3
-n
s

P
er

F
B
m

3
-o
s-
r

P
er

F
B
m

3
-o
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ
-o
s

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3
-o
s

AllSolFBΨ-r -
AllSolFBΨ T - - - T - - - - - - - - - - - - - - -
AllSolFBm3-r T T - - T T T T T T T T - - T T T T T T
AllSolFBm3 T T T - T T T T T T T T - - T T T T T T
AllSolΨ -
AllSolm3 T T - - T - T T T T T T - - T T T T T T
PerFBΨ-ns-r T T - - T - - T - - - - - - - T - - - -
PerFBΨ-ns T T - - T - - - - - - - - - - T - - - -
PerFBΨ-os-r T T - - T - T T - T - - - - - T T - - -
PerFBΨ-os T T - - T - T T - - - - - - - T - - - -
PerFBm3-ns-r T T - - T - T T T T - T - - T T T - T -
PerFBm3-ns T T - - T - T T T T - - - - T T T - T -
PerFBm3-os-r T T T - T T T T T T T T - T T T T T T T
PerFBm3-os T T T - T T T T T T T T - - T T T T T T
PerTupleΨ-as T T - - T - T T - - - - - - - T T - - -
PerTupleΨ-ns T T - - T - - - - - - - - - - - - - - -
PerTupleΨ-os T T - - T - T T - - - - - - - T - - - -
PerTuplem3-as T T - - T - T T T T - T - - T T T - T -
PerTuplem3-ns T T - - T - T T T T - - - - T T T - - -
PerTuplem3-os T T - - T - T T T T - T - - T T T T T -

Figure 5.9 provides the cumulative chart for AllSolFB and AllSol on non-

binary benchmarks. Here, the difference in performance when attempting to identify

redundant subproblems is even more pronounced than it was with PerFB. The per-

formance of AllSolΨ is significantly better than that of AllSolFBΨ. Attempting

to identify redundant subproblems at the root only in AllSolFBΨ-r does not im-

pact the performance of the algorithm greatly, which is not surprising. The number

of times the root node is evaluated in AllSol with m = Ψ is very low, as each

triggering of the propagator will ensure minimality over the entire cluster, and the

root node is only instantiated once per tuple in its relation.

This rationale is further validated by the scatter plots in Figure 5.10, which show

123

AllSolFBᵐ³-r

AllSolFBᵐ³

AllSolᵐ³

500

550

600

650

700
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(a) m = 3

AllSolFBᵠ-r
AllSolFBᵠ

AllSolᵠ

370

380

390

400

410

420

430

440

450

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(b) m = Ψ

Figure 5.9: Cumulative charts showing number of binary instances completed in N
seconds for AllSolFB and AllSol.

124

nearly identical performance between the AllSolΨ and AllSolFBΨ-r, but signifi-

cantly improved performance for AllSolFBm3, with a gap that appears to widen as

the problems become more difficult.

1

10

100

1000

1 10 100 1000

Al
lS
ol
FB
ᵐ³

AllSolᵐ³

AllSolFBᵐ³ OOM AllSolᵐ³ OOM

(a) m = 3

1

10

100

1000

1 10 100 1000

Al
lS
ol
FB
ᵠ-
r

AllSolᵠ

AllSolFBᵠ-r OOM AllSolᵠ OOM

(b) m = Ψ

Figure 5.10: Scatter charts comparing relative performance of AllSol and All-
SolFB on non-binary benchmarks. Points below the diagonal favor AllSolFB.

1

10

100

1000

1 10 100 1000

Pe
rF
Bᵐ

³-
ns
-r

PerTupleᵐ³-os

PerFBᵐ³-ns-r OOM PerTupleᵐ³-os OOM

(a) m = 3

1

10

100

1000

1 10 100 1000

Pe
rF
Bᵠ
-o
s-
r

PerTupleᵠ-os

PerFBᵠ-os-r OOM PerTupleᵠ-os OOM

(b) m = Ψ

1

10

100

1000

1 10 100 1000

Pe
rF
Bᵐ

³-
ns
-r

PerTupleᵐ³-ns

PerFBᵐ³-ns-r OOM PerTupleᵐ³-ns OOM

(c) m = 3 w/out supports

Figure 5.11: Scatter charts comparing relative performance of PerTuple and
PerFB on non-binary benchmarks. Points below the diagonal favor PerFB.

The scatter plots in Figure 5.11 show the benefit of detecting intermediate blocks

when enforcing R(∗,m)C. Figure 5.11a compares the two algorithms that solved the

most non-binary instances, PerFBm3-ns-r and PerTuplem3-os. Tracking solutions

125

in these problems is extremely cost prohibitive, as made evident by the large cluster

of instances on the right side of the chart which PerFBm3-ns-r finished but PerTu-

plem3-os was unable to due to memory limits. Removing the support structure from

PerTuplem3-os results in the chart in Figure 5.11c, where it becomes clear that

without the (at times) memory-intensive support tracking, PerTuplem3 is unable

to keep with PerFBm3-ns-r. The chart for PerFBΨ supports the previous assertion

that, with a few exceptions, the use of intermediate blocks at large combination sizes

is unlikely to be beneficial.

Table 5.3: Pairwise t-test results for m-wise consistency algorithms with the |dom|wdeg
ordering heuristic on non-binary problems. Cells are labeled “T” if the results were
significantly different (p <.05) and favored the row entry.

A
ll

So
lF

B
Ψ
-r

A
ll

So
lF

B
Ψ

A
ll

So
lF

B
m

3
-r

A
ll

So
lF

B
m

3

A
ll

So
lΨ

A
ll

So
lm

3

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B
m

3
-n
s-
r

P
er

F
B
m

3
-n
s

P
er

F
B
m

3
-o
s-
r

P
er

F
B
m

3
-o
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ
-o
s

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3
-o
s

AllSolFBΨ-r - T - - - - - - - - - - - - - - - - - -
AllSolFBΨ -
AllSolFBm3-r T T - - T T T T T T - - - - T T T T T T
AllSolFBm3 T T T - T T T T T T - - - - T T T T T T
AllSolΨ T T - - - - - - - - - - - - - - - - - -
AllSolm3 T T - - T - T T T T - - - - T T T T T T
PerFBΨ-ns-r T T - - T - - - - - - - - - - - - - - -
PerFBΨ-ns T T - - T - - - - - - - - - - - - - - -
PerFBΨ-os-r T T - - T - T T - - - - - - - - - - - -
PerFBΨ-os T T - - T - T T - - - - - - - - - - - -
PerFBm3-ns-r T T T T T T T T T T - T - - T T T T T T
PerFBm3-ns T T T T T T T T T T - - - - T T T T T T
PerFBm3-os-r T T T T T T T T T T - - - T T T T T T T
PerFBm3-os T T T T T T T T T T - - - - T T T T T T
PerTupleΨ-as T T - - T - T T T T - - - - - T - - - -
PerTupleΨ-ns T T - - T - T T - - - - - - - - - - - -
PerTupleΨ-os T T - - T - T T T T - - - - - T - - - -
PerTuplem3-as T T - - T - T T T T - - - - - T - - T -
PerTuplem3-ns T T - - T - T T - - - - - - - T - - - -
PerTuplem3-os T T - - T - T T T T - - - - T T T T T -

We conclude with the paired t-tests for non-binary instances, which firmly es-

tablishes the weakness of this approach using large combination sizes on non-binary

126

problems, as the original versions of PerTuple and AllSol are more effective there.

However, the use-cases for establishing minimality over subproblems of those sizes are

somewhat limited, as the applying minimality over smaller combination sizes tends

to be more effective overall.

Summary and Future Work

In this chapter, we introduced two new algorithms for enforcing R(∗,m)C: PerFB

and AllSolFB. We empirically evaluated both algorithms and showed their domi-

nance relative to PerTuple and AllSol when using small combination sizes, and

evaluated the cause of their deficiencies on large combinations. Further improvements

could be made to both algorithms by incorporating lessons learned from PW-CT into

the subproblem search. Operating on bitsets has been show to be extremely advan-

tageous in the context of tabular reduction, and could likely be extended to enforce

R(∗,m)C.

127

Chapter 6

Dangle Identification: Dynamically Identifying and Solving Tra-

ctable Branches of Search

Although the cost of solving general CSPs is exponential in the number of vari-

ables in the problem, specific CSPs may be tractable under certain conditions. Tree-

structured CSPs, for example, are tractable, but rare in practice, and can solved in a

backtrack-free manner after enforcing directional arc consistency [Dechter and Pearl,

1988; Freuder, 1982a]. As mentioned in Section 2.3.3, prior work that builds on the

tractability of tree-structured CSPs includes identifying a cycle-cutset that induces a

tree-structured CSP and using the induced width of an ordering of the variables in

order to bind the computational cost of search.

The importance of acyclic graphical models extends well beyond CSPs and is

an important property in databases [Beeri et al., 1983; Maier, 1983] and optimiza-

tion problems [Derenievicz and Silva, 2018]. Prior approaches for exploiting a tree

structure have largely focused on either inducing acyclicity (as in the cycle-cutset

method [Bidyuk and Dechter, 2004; Dechter and Pearl, 1987]) or binding the search

effort by the induced width of an ordering of the variables (as in adaptive consis-

tency [Dechter and Pearl, 1988; Dechter, 1996]) or the treewidth of a tree decomposi-

tion of the constraint network (as in the BTD method [Jégou and Terrioux, 2003b]).

In this chapter, we advocate to monitor the structure of the problem as the search

proceeds, variables are instantiated, and the constraint network becomes increasingly

sparse. Our goal is to detect tractable subproblems as they dynamically unfold during

search. Such subproblems appear as dangling off the CSP being solved. We propose

128

to dynamically detect these dangles during search and remove them after determining

their solvability so as to reduce the size of the search tree. To detect acyclic subprob-

lems, we use the Graham Reduction (GYO) [Graham, 1979; Yu and Ozsoyoglu, 1979],

which operates on the hypergraph of a CSP. The solvability of these subproblems is

determined in polynomial time using either directional pairwise consistency before

allowing search to proceed.

6.1 Background and Related Work

Acyclicity is an important property of a CSP (and of a database schema). Tree-

structured binary CSPs can be solved in a backtrack-free manner after enforcing

directional arc consistency [Dechter and Pearl, 1988; Freuder, 1982a]. Beeri et al.

[1983] showed that, restated for non-binary CSPs, the following conditions (among

others) are equivalent: the hypergraph is α-acyclic, the GYO Reduction succeeds on

the hypergraph, pairwise consistency guarantees global consistency, and the CSP has

a join tree.

GA

E

B

D

C

F

R1

R2
R3

R4

ABD

ABCE

ABCG

ACF

AB

AC

ABC

R4

R3

R1

R2

AB

ABD

ABCE

ABCG

ACF

AB
A

AC

AC
ABC

R4

R3

R1

R2

(a) (b) (c)

Figure 6.1: Graphical representations of a simple CSP: (a) the hypergraph, (b) the
dual graph, and (c) a minimal dual graph.

The GYO Reduction is used to determine whether or not a database schema is

acyclic [Graham, 1979; Yu and Ozsoyoglu, 1979]. In the context of a CSP, it repeatedly

removes from the hypergraph all vertices (i.e., CSP variables) that are contained in

129

at most one hyperedge. This operation ends either when all vertices are removed

(which occurs when the hypergraph is acyclic), or when every vertex has a degree of

two or more. Given a hypergraph H = (V,E) where V are the vertices and E are

the hyperedges, the two rules of the GYO Reduction are: (1) Hyperedge removal: If

two hyperedges e, f ∈ E are such that e is properly contained in f , remove e from

E. (2) Node removal: If a vertex v ∈ V is contained in at most one hyperedge in E,

remove v from V and also from the hyperedge where it appears. For the hypergraph

in Fig. 6.1, the node-removal rule can remove the variable D from R2. Then, the

hyperedge-removal rule can remove R2 because it is properly contained in R1.

Woodward et al. [2011b] propose an algorithm for enforcing relational neighbor-

hood inverse consistency by running a backtrack search on the dual graph induced by

a constraint and its neighbors. They improve the performance of this search on the

dual graph by dynamically identifying dangles. Because the dangles are iteratively

identified on (and removed from) the dual graph as vertices of degree 1, they are only

a subset of the dangles identified on the hypergraph by the GYO Reduction.

The Cycle-Cutset method of Dechter and Pearl [1987] identifies a set of variables

in a binary CSP whose removal transforms the constraint network into a tree. Using

backtrack search, we find a solution to the cutset nodes then try to expand this

solution to the tree-structured subproblem in a backtrack-free manner. In case of

failure, we backtrack to the cutset nodes. Dechter and Pearl also propose to check

during search whether the remaining CSP is tree structured.

The closest prior work to ours is that presented by Sabin and Freuder [1997].

They present a technique for identifying dangles on binary CSPs using a modified

version of the (at the time state of the art) MAC algorithm. They dub the modified

algorithm MACE, which operates by first ensuring the problem is fully arc-consistent,

then removing variables which do not participate in any cycles from the problem. As

130

new variables are instantiated, variables which then become cycle-free are separated

and prevented from being instantiated until all variables participating in cycles are

assigned, at which point the separated variables can be extended into a full solution

backtrack-free.

However, the method presented by Sabin and Freuder [1997] has three major

downsides. The first is that the consistency algorithm used is built-in to their tech-

nique, preventing the use of other (or dynamically selected) propagation techniques.

The second downside is its reliance on non-standard variable ordering heuristics to

drive the problem towards a cutset. While this technique may be beneficial in some

problems, the efficacy of modern variable ordering heuristics like |dom|wdeg are undeniable.

Their results also do not evaluate the overhead required to identify the cutset and

remove the free variables, but instead base their results on the number of constraint

checks (a common measure at the of the paper’s publication), though this overhead

is likely to be small on binary problem. The third downside is it is not trivially

extendable to non-binary problems.

Other work close in spirit to the work presented in this chapter is that which in-

terleaves search and inference by variable elimination (which corresponds to adaptive

consistency [Dechter and Pearl, 1988]) as proposed by Rish and Dechter [2000] for

SAT and by Larrosa [2000] for binary CSPs. Variable elimination on subproblems of

bounded width k is done by applying the resolution rule on the clause of a SAT theory

when it does not yield more than k resolvents [Rish and Dechter, 2000] and by replac-

ing a variable of degree k by a constraint of arity k over the neighbors of the variable

of a binary CSP [Larrosa, 2000]. Both approaches add new clauses/constraints to the

problem. Our approach does not require the addition of any new constraints to the

problem but can be seen as a generalization of algorithm VarElimSearch [Larrosa,

2000] to non-binary CSPs with k = 1. However, in order to achieve this general-

131

ization, one needs to add a constraint normalization step, which corresponds to the

hyperedge-removal rule of the GYO Reduction in Larossa’s procedure VarElim.

6.2 Dangle Identification

In this section, we discuss the use of the hyper and dual graphs in combination with

GYO. We show how to efficiently implement the hyperedge-removal rule of GYO, and

provide an algorithm for identifying and removing dangles from a subproblem during

search.

6.2.1 Which Graph to Use

We advocate (1) identifying dangles by running the GYO Reduction on the hyper-

graph of a CSP and (2) using the dual graph of the CSP to determine the subscopes

incident to a given CSP constraint (which is needed in the edge-removal rule of the

GYO Reduction). In this section, we caution against errors that may occur in this

context.

Redundancy removal may cause errors in search. It seems natural to use a

minimal dual graph of the CSP to link the subscopes to their incident constraints

because a minimal dual graph is typically sparser than the full dual graph. We show,

with an example, that using a minimal dual graph can yield unsound results during

search. Consider the dual graph shown in Figure 6.2, a sub graph of the dual graph

of the famous Zebra puzzle.1

The edges represented with dotted lines are redundant and can be removed. As-

sume the search instantiates the variable K. The hyperedge-removal rule of the GYO
1https://en.wikipedia.org/wiki/Zebra_Puzzle

https://en.wikipedia.org/wiki/Zebra_Puzzle

132

P,L
C56

P,K

P,O
P,J

P,C

C57

C58
C7

C52 P,L
C56

P,K

P,O
P,J

P,C

C57

C58
C7

C52 P,L
C56

P,O
P,J

P,C

C58
C7

C52

Figure 6.2: A subgraph of the dual graph of the Zebra puzzle with redundant edges
removed, variable k instantiated, and the subsumed constraint C57 removed.

reduction removes C57 because it is properly contained in C56 (and C58). As a result,

C56 is disconnected from the other constraints where the variable P appears. This

situation may cause errors because we lose the connectedness property and the two

components may be incorrectly processed in isolation from one another. For example,

we could miss ‘grabbing’ all the relevant constraints to include in a dangle. Direc-

tional pairwise consistency on this disconnected ‘subdangle’ may assume solvability

whereas the ‘full’ dangle may not contain a solution. Generally speaking, to avoid

this issue, one would have to reconnect all the vertices of the dual graph to which

the subscope (potentially more than one) of the removed constraint is incident. Be-

cause some variables in the subscope may have been instantiated during search or

unassigned by backtracking, the situation may become further complicated. Thus,

we believe it non-trivial to use the minimal dual graph for the purposes of identifying

neighborhoods for use in the GYO Reduction.

Redundancy removal may break the connectedness property. Even without

the contribution of search, we may lose the connectedness property if we use a minimal

dual graph. Fig. 6.3 shows the dual graph of a simple CSP, then a minimal dual graph

obtained by redundancy removal, and the application of an edge-removal step of the

GYO Reduction. R1, which is connected to R2 and R3 in the displayed minimal

133

dual graph, is contained in both. Its removal by the edge-removal step of the GYO

Reduction, yields the disconnected minimal dual graph of Figure 6.3c.

ABF

BC AC AF AEG DEH

ADF

R1
GH

(a) The dual graph of a CSP.

ABF

BC AC AF AEG DEH

ADF

R1
GH

(b) A minimal dual graph of Fig. 6.3a.

ABF

BC AC AEG DEH

ADF

GH

R2R3

(c) GYO Reduction on graph in Fig. 6.3b.

Figure 6.3: The dual graph of a CSP, followed by redundancy removal, then an edge
removal.

Acyclicity is not easy to detect on the dual graph. For now, we choose to not

use a minimal dual graph in order to avoid pitfalls like the ones identified above. The

next question is: can all the dangles in the hypergraph be identified starting from

vertices of degree 1 in the ‘full’ dual graph (i.e., the complete intersection graph)?

Unfortunately, no, this is not possible. Figure 6.1 (b) shows a dual graph where no

vertex has degree 1, yet the CSP is acyclic. Thus, checking the degree of vertices in

134

the dual graph is not sufficient.

What to use? For the above reasons, we use the GYO Reduction (operating on

the hypergraph) to detect acyclic subproblems and the dual graph to identify the

subscopes incident to a given constraint. Because we use the ‘full’ dual graph, the

degree of a vertex in the dual graph may be large. Consequently, we need to find a

quick way to determine whether or not one constraint is subsumed by another.

6.2.2 Fast Hyperedge Removal

The hyperedge-removal rule of the GYO Reduction requires identifying, for a given

constraint ci, all the constraints cj such that scope(ci) ⊆ scope(cj). Importantly, this

operation must be done dynamically during search, where an instantiated variable

must be ignored in the scope of all the constraints. A naive implementation would

perform a subset check on the scopes of the constraints, which requires O(n · log(n))

checks for a sorted implementation or a O(n) for a hashtable-based implementation

, where n is the size of a constraint’s scope. Instead of doing this subset operation,

we propose to compare the cardinality of the scope(ci) (i.e., |scope(ci)|) and the

cardinality of each subscope incident to ci in the dual graph. Let subscopes(ci) denote

the set of subscopes incident to constraint ci in the dual graph.

Proposition 5. A constraint ci ∈ C has a scope which is a subset of the scope of

another constraint iff ∃σ ∈ subscopes(ci) such that |scope(ci)| = |σ|, where |scope(ci)|

and |σ| do not count any removed or instantiated variables.

Proof. (⇒) If the constraint ci is properly contained in another constraint, then there

exists cj ∈ C such that scope(ci)∩scope(cj) = scope(ci). If we denote σij = scope(ci)∩

135

scope(cj), then scope(ci) = σij, which implies |scope(ci)| = |σij|. In addition σij ∈

subscopes(ci) by definition of subscopes(ci).

(⇐) Conversely, assume that ∃σ ∈ subscopes(ci) such that |scope(ci)| = |σ|. Given

σ ∈ subscopes(ci), then there exists a constraint cj ∈ C such that σ = scope(ci) ∩

scope(cj). Thus, σ ⊆ scope(ci) and σ ⊆ scope(cj). Given that σ ⊆ scope(ci) and

|σ| = |scope(ci)|, then σ = scope(ci). We have σ ⊆ scope(cj) and σ = scope(ci), then

scope(ci) ⊆ scope(cj). Thus, ci is properly contained in another constraint.

Our dangle identification algorithm, presented below, exploits Proposition 5.

6.3 Dangle Identification Algorithm

Below we provide an iterative version of the GYO Reduction that exploits Proposi-

tion 5 for the hyperedge-removal step. Our pseudocode makes use of the following

global variables: queue is the set of constraints that need to be checked whether

or not they are leaves and activeVars and activeCons are the set of variables and

constraints, respectively, that have not yet been removed from the problem. Our

algorithm also relies on several counters and sets that are accessed and updated

through the following functions. The function incidentSubscopes(vi/ci) is over-

loaded. If given a variable vi as input, it returns the set of subscopes that contain vi.

If passed a constraint ci, it returns the set of subscopes incident to ci. The function

cardinality(ci/σ) is also overloaded. It takes as input either a constraint ci or a

subscope σ and returns the number of active variables in scope(ci) or σ. The function

numActiveCons(vi/σ) is overloaded. It takes as input either a variable vi or sub-

scope σ and returns the number of active constraints incident to vi or σ, respectively.

The function incidentCons(vi) gives the set of constraints incident to a variable vi.

Finally, the function neighbors(ci) gives the set of constraints that share at least

136

one variable with ci. Of course, at preprocessing, we initialize, to their appropriate

values, the counters and sets accessed with the above-listed functions.

Algorithm 12: isSubset(ci) Checks if ci can be removed
Input: Constraint ci to check
Output: Whether ci is a subset of another active constraint

1 if cardinality(ci) ≤ 1 then
2 return true

3 for σ ∈ incidentSubscopes(ci) do
4 if numActiveCons(σ) > 1 and cardinality(ci) ≤ cardinality(σ) then
5 return true

6 return false

Algorithm 12 takes a constraint ci and uses Proposition 5 to determine if ci is a

subset of another active constraint. Line 1 is used to avoid looping through all the

subscopes incident to the passed constraint (a constraint with a single active variable

in its scope is guaranteed to be either a subset of another constraint or the only active

constraint with that variable in its scope). The conditional numActiveCons(σ) > 1

in line 4 ensures that there is at least one other active constraint with the subscope

σ.

Algorithm 13: removeConstraint(ci) Removes a constraint
Input: Constraint ci to remove from problem

1 for σ ∈ incidentSubscopes(ci) do
2 numActiveCons(σ)← numActiveCons(σ)− 1

3 for vi ∈ scope(ci) do
4 numActiveCons(vi)← numActiveCons(vi)− 1

5 activeCons← activeCons \ {ci}

Algorithm 13 takes a constraint ci that is known to be properly contained in

another, updates the counts of any variables or subscopes incident to ci, and finally

removes ci from activeCons. Similarly Algorithm 14 takes a variable vi, updates the

137

Algorithm 14: removeVariable(vi) Removes a variable
Input: Variable vi to remove from problem

1 for ci ∈ incidentCons(vi) do
2 if ci ∈ activeCons then
3 cardinality(ci)← cardinality(ci)− 1
4 queue← queue ∪ {ci}

5 for σ ∈ incidentSubscopes(vi) do
6 cardinality(σ)← cardinality(σ)− 1

7 activeVars← activeVars \ {vi}

counts of active variables of the constraints and subscopes where vi appears, and

removes vi from activeVars. Algorithm 14 also inserts any active constraints incident

to vi into the queue because those constraints may now be properly contained in other

constraints following vi’s removal from the graph.

Algorithm 15: findDangles(ci) Finds all dangles in the subproblem
Input: The variable vi that was just instantiated
Output: The collections of dangles and removed variables

1 dangles← ∅, removedVars← ∅, queue← ∅
2 removeVariable(vi) // Initializes queue
3 while queue 6= ∅ do
4 possibleLeaf ← pop(queue)
5 if possibleLeaf ∈ activeCons and isSubset(possibleLeaf) then
6 (dangle,∆)← grabDangle(possibleLeaf)
7 dangles← dangles ∪ {dangle}
8 removedVars← removedVars ∪∆

9 return dangles, removedVars

Algorithms 15 and 16 provide an iterative version of the GYO Reduction and

use Algorithms 12–14 to correctly maintain the various above-described counts. Al-

gorithm 15 is executed after search instantiates a variable vi. It returns the sets of

dangles and variables removed following the instantiation of vi. The call to Algo-

rithm 14 on line 2 ensures that the counts of any subscopes and constraints incident

138

to vi are updated to reflect vi’s assignment and initializes the queue with any active

constraints incident to vi. Each constraint in the queue is now potentially properly

contained in another due to either the removal or assignment of a variable. This check

is done on line 5 of Algorithm 15 by calling Algorithm 12 after popping, in line 4,

a constraint from the queue. If the popped constraint is contained in another, the

constraint (now confirmed to be the leaf of a dangle) is passed, in line 6, as input to

Algorithm 16 in order to collect all other constraints and variables that are attached

to the leaf.

Algorithm 16: grabDangle(ci) Builds dangle leaf up
Input: Constraint ci that is the leaf of a dangle
Output: The dangle that begins with ci and any variables removed

1 dangle← ∅, removedVars← ∅, toVisit← ∅
2 push(ci, toVisit) // FIFO Queue
3 while toVisit 6= ∅ do
4 leaf ← pop(toVisit)
5 if isSubset(leaf) then
6 for neighbor ∈ neighbors(leaf) do
7 if neighbor ∈ activeCons then
8 push((leaf, neighbor), dangle)
9 push(neighbor, toVisit)

10 for vi ∈ scope(leaf) do
11 if vi is not instantiated and numActiveCons(vi) ≤ 2 and

vi ∈ activeVars then
12 removeVariable(vi)
13 removedVars← removedVars ∪ {vi}

14 removeConstraint(leaf)

15 return dangle, removedVars

Algorithm 16 takes as input a constraint that has already been recognized as a

leaf. Lines 6–9 of Algorithm 16 add, to the dangle, the edges connecting the leaf to

its parents/neighbors, where an edge is an ordered pair (leaf,neighbor). Importantly,

this list is ordered to ensure that we can later enforce directional GAC or PWC

139

along the dangles by simply linearly iterating along the returned dangle. Line 9

adds any neighbors of the leaf to a FIFO queue to check whether or not the leaf’s

parents can also be removed. Lines 10–13 check whether or not any variables in the

scope of the constraint can also be removed (because they may now be constrained

by only a single constraint). We check whether numActiveCons(vi) ≤ 2 because

the number of active constraints for the variable will not be updated until we call

removeConstraint(leaf) on line 14. Finally, in line 15, we return the dangle and

any removed variables.

Proposition 6. The complexity of Algorithm 15 is O(|C|2 · (|X |+ k)), where k is the

maximum arity of a constraint.

Proof. Each time a constraint is popped from the queue, Algorithm 12 is called to

check for hyperedge removal, which requires checking all of its incident subscopes. In

the worst case of a fully connected graph where each subscope is unique, this operation

requires O(|C|2) operations. Each constraint could potentially enter the queue k times

(once for each removed variable in its scope), resulting in a complexity of O(|C|2 · k).

Each constraint can only be removed once, and removing a constraint requires at most

O(|C|2 + k) operations to decrement the appropriate counters, which is dominated by

the complexity of calls to Algorithm 12. Removing a variable requires O(|C|+ |C|2) =

O(|C|2), to iterate over the incident constraints and subscopes, respectively. This

happens once per variable. Thus the complexity of Algorithm 15 is O((|X | · |C|2) +

(|C|2 · k) = O(|C|2 · (k + |X |)).

Despite the seemingly high complexity, our algorithm still works well in practice

because the number of subscopes incident to either a constraint or variable rarely

approaches the worst case calculated above. Additionally, we note that it is possible

to specialize this algorithm to be used for binary CSPs because certain guarantees can

140

be made regarding the counts of various structures used in the algorithm. However,

we do not make use of any such specialization in our implementation and leave this

refinement for future work.

On binary problems, our approach is equivalent to that presented by Sabin and

Freuder [1997], barring differences induced by variable ordering heuristics. Both algo-

rithms will remove variables with degrees of 1 from the problem, enforce a consistency

over the remaining subproblem, and eventually add back the removed variables, solv-

ing them backtrack free. However, as previously mentioned, the work presented by

Sabin and Freuder [1997] would not trivially extend to non-binary CSPs. Apply-

ing their technique to the dual graph would not ensure α-acyclicity and may miss

removable portions of the problem as shown in Section 6.2.1.

6.4 Ensuring Satisfiability of Dangles

Like directional arc consistency ensures the consistency of a binary CSP [Dechter and

Pearl, 1988; Freuder, 1982a], directional pairwise consistency ensures the consistency

of a non-binary CSP [Beeri et al., 1983]. We advocate to enforce directional pairwise

consistency on the subproblems identified as dangles.

Algorithm 16 returns each dangle as an ordered list of dual edges from the leaves

of the problem to the root. Thus, after Algorithm 15 completes, we need only perform

a single pass of GAC (for binary constraints) or PWC (for non-binary constraints)

on the constraints in each edge to ensure each removed dangle is satisfiable. If all

dangles are found to be satisfiable, the search procedure removes those variables and

constraints from the problem, and search continues as normal on the remaining cyclic

subproblem.

We chose to use the PW-CT algorithm from Chapter 4.5 to enforce GAC and

141

fPWC along the dangles, as it is currently the fastest known algorithm for enforcing

fPWC, only enforces fPWC when necessary, and consumes only a marginal amount of

additional memory compared to CompactTable. Enforcing directional consistency

along the dangles using PW-CT required only minor modifications to the algorithm.

Rather than enforcing PWC with respect to all subscopes incident to a constraint,

the directional version of PW-CT instead only revises the dangles from the child

nodes in the dangles to their parents without re-queueing constraints. The direction

of enforcement is reversed when the cyclic portion the problem is solved to extend the

solution to the dangles backtrack-free. It is crucial to enforce fPWC over the entire

problem as a preprocessing step to ensure that any invalid tuples are removed from

would-be dangles from the outset, lest dangle identification mistakenly assume one of

these tuples is a valid support.

We note that our solver uses d-way branching, meaning that after an ordering

heuristic chooses a variable, it attempts to find a solution with each value in the

domain of the variable before backtracking. Thus, it is only necessary to identify

dangles when variables are chosen by our heuristic and upon backtracking, not per

assignment. However, we obviously must still enforce consistency along the dangles at

each assignment because enforcing consistency may change whether or not the dangle

contains a solution.

6.5 Empirical Evaluation of Dangle Identification

Experiments for dangle identification were run on 72 benchmarks consisting of non-

binary CSPs from the CPAI08 dataset2. Binary benchmarks were excluded due to

the theoretical equivalency of prior work in this area on binary constraints [Sabin and
2http://www.cril.univ-artois.fr/CPAI08/

142

Freuder, 1997]. A total of 2,023 instances were tested.

Five algorithms were chosen to test dangle identification: CompactTable, All-

SolFBm3, AllSolFBΨ,PerFBm3-os-r, PerFBΨ-os-r. The m-wise consistency al-

gorithms were chosen based on the results from Chapter 5 (i.e., the best performing

algorithms from among those introduced in this dissertation were chosen). PW-

CT is implicitly run alongside these algorithms when ensuring consistency of dan-

gles, and was omitted from these experiments as enforcing PW-CT on top of dangle

identification would be somewhat redundant; the only savings would be from enforc-

ing directional PW-CT along dangles and removing the constraints in dangles from

consideration.

The CompactTable, PerFB and AllSolFB algorithms were slightly modified

to accommodate dangle identification. Previous to this work, Stampede had no

mechanism for removing constraints from the problem after the initial construction

of objects. Each of the algorithms was modified to incorporate the state of a constraint

(i.e., whether the constraint was hidden or not) into its queueing mechanisms. In this

work, this simply meant preventing hidden constraints from being enqueued.

The versions of these algorithms that make use of dangle identification are denoted

with the prefix “Di-”. Additionally, we show the performance of a naive approach to

dangle identification which only removes constraints that have a single uninstantiated

variable in their scope. This approach does not require enforcement of PWC so long

as the removed constraints are made GAC prior to removal. These variants serve as

a baseline to show the relative improvement that enforcing PWC along dangles has

compared to a naive approach, and are denoted with the prefix “H-”. The purpose of

the naive approach is to identify the impact that identifying the dangles has, so the

preprocessing steps for initializing dangle identification is kept, including an initial

round of PWC enforcement. Any tuple or value removals from this initial round of

143

PWC enforcement are kept localized to dangle identification and do not impact other

propagators.

Search over each CSP was performed using Stampede to find the first consistent

solution, using the |dom|wdeg ordering heuristic. The solver was limited to one hour and

8GB of memory. When an algorithm timed out or ran out of memory (OOM), it is

recorded as having taken the full hour.

The charts in Figure 6.4 show the number of instances completed within a cer-

tain amount of time for all tested algorithms. The results for CompactTable in

Figure 6.4a are somewhat disappointing. Using dangle identifications results in fewer

instances being solved, even for the naive approach. This would imply that the

decrease in performance is not due to the increased overhead from PW-CT. One

potential source for the decrease in performance is the required enforcement of fPWC

as a preprocessing step for dangle identification incurred by both versions. Our im-

plementation uses the minimal dual graph for this preprocessing step3.

Indeed both the naive and full versions of dangle identification run out of memory

on 40 instances that CompactTable finishes. However, this does not fully explain

the difference in performance, as H-CT also times out on 23 instances that Com-

pactTable finishes, and Di-CT times out on 18 instances that CompactTable

finishes. Restricting the instances to only those 23 instances that H-CT failed to

complete reveals no discernible pattern; they’re a mixture of random and structured

instances. In fact, of those 23 instances, Di-CT finishes 11 of them (and does so faster

than CompactTable on three problems). The only explanation for this behavior is

the variable ordering heuristic causing H-CT to explore sub-optimal portions of the
3This was an oversight when setting up the experiments; traditionally PWC algorithms benefit

significantly from the minimal dual graph, but PW-CT sees relatively minor gains when its enforced
over the minimal dual graph, and could have been omitted to prevent running out of memory on
problems like BddLarge.

144

CT
DI-CT
H-CT

325

525

725

925

1125

1325

1525

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(a) CompactTable

AllSolFBᵠ

AllSolFBᵐ³

DI-AllSolFBᵠ

DI-AllSolFBᵐ³

H-AllSolFBᵠ

H-AllSolFBᵐ³

325

375

425

475

525

575

625

675

725

775

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(b) AllSolFB

PerFBᵠ-os-r

PerFBᵐ³-os-r

DI-PerFBᵠ-os-r

DI-PerFBᵐ³-os-r

H-PerFBᵠ-os-r

H-PerFBᵐ³-os-r

325

375

425

475

525

575

625

675

725

775

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(c) PerFB

Figure 6.4: Cumulative charts for dangle identification using |dom|wdeg .

145

search tree, since it is guaranteed to do no more work than Di-CT, but may remove

only a subset of the constraints that Di-CT removes, which could cause the search

trees to diverge (and evidently somewhat considerably).

The results for PerFB and AllSolFB are more promising. Di-AllSolFBm3

consistently solves more problems than either H-AllSolFBm3 or AllSolFBm3, and

the results are even more pronounced for Di-PerFBm3-os-r. The gains for All-

SolFBΨ and PerFBΨ are present, but less pronounced, especially relative to H-

AllSolFBΨ and H-PerFBm3-os-r. This is not terribly surprising in hindsight; en-

forcing minimality over an entire cluster forces a lot of work at each node of the search

tree, and causes far fewer nodes to be explored. One of the key benefits of dangle

identification is reducing the number of nodes visited, the impact of which is dwarfed

by enforcing cluster minimality. Another key benefit of dangle identification is reduc-

ing the amount of work required at every node expanded, but again, this impact is

dampened if the propagator causes fewer nodes to be explored.

The t-tests in Table 6.1 confirm these findings. As in previous chapters, cells in

the table are labeled “True” if there is a statistically significant difference between

the algorithms in the row and column, and the algorithm corresponding to the row

had a lower mean solving time than the algorithm in the column. The dashed lines

in the table show the boundaries of a group of algorithms (e.g., all of the AllSolFB

algorithms are in the top left of the table). With the exception of CompactTable,

the dangle identification versions of the tested algorithms outperform their standard

counterparts. There is no statistical difference between the naive approach and full

dangle identification when enforcing cluster minimality, but full dangle identification

is shown to be an improvement for combinations of size three.

Table 6.2 shows the number of instances that algorithms in each row were able to

complete that the corresponding algorithms in the table’s columns were not able to

146

Table 6.1: Pairwise t-test results for Dangle Identification |dom|
wdeg ordering heuristic.

Cells are labeled “True” if the results were significantly different (p <.05) and the
value of the row entry was less than the column.

A
ll

So
lF

B
Ψ

H
-A

ll
So

lF
B

Ψ

D
i-A

ll
So

lF
B

Ψ

A
ll

So
lF

B
m

3

H
-A

ll
So

lF
B
m

3

D
i-A

ll
So

lF
B
m

3

C
T

H
-C

T

D
i-C

T

P
er

F
B

Ψ

H
-P

er
F
B

Ψ
-o
s-
r

D
i-P

er
F
B

Ψ
-o
s-
r

P
er

F
B
m

3

H
-P

er
F
B
m

3
-o
s-
r

D
i-P

er
F
B
m

3
-o
s-
r

AllSolFBΨ - - - - - - - - - - - - - - -
H-AllSolFBΨ T - - - - - - - - - - - - - -
Di-AllSolFBΨ T - - - - - - - - - - - - - -
AllSolFBm3 T T T - - - - - - T T T - - -
H-AllSolFBm3 T T T - - - - - - T T T - - -
Di-AllSolFBm3 T T T T T - - - - T T T - - -
CT T T T T T T - T T T T T T T T
H-CT T T T T T T - - - T T T T T T
Di-CT T T T T T T - - - T T T T T T
PerFBΨ-os-r T T T - - - - - - - - - - - -
H-PerFBΨ-os-r T T T - - - - - - - - - - - -
Di-PerFBΨ-os-r T T T - - - - - - T - - - - -
PerFBm3-os-r T T T T - - - - - T T T - - -
H-PerFBm3-os-r T T T T T - - - - T T T - - -
Di-PerFBm3-os-r T T T T T T - - - T T T T T -

complete. Again, the dashed lines show the boundaries for groups of the underlying

algorithm. Notably, every version of an algorithm is able to complete some instances

that neither of the other two variants were able to complete (e.g., H-CT and Di-CT

were able to complete 5 and 9 instances, respectively, that CompactTable timed

out on).

While we believe the results presented above clearly show the advantage of DI for

certain algorithms, the variability in CompactTable is almost certainly due to the

unpredictability introduced by the |dom|wdeg ordering heuristic. These experiments were

also run using |dom|ddeg , which has previously been shown to be a more stable heuristic

147

CT
DI-CT
H-CT

325

425

525

625

725

825

925

1025

1125

1225

1325

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(a) CompactTable

AllSolFBᵠ

AllSolFBᵐ³

DI-AllSolFBᵠ

DI-AllSolFBᵐ³

H-AllSolFBᵠ

H-AllSolFBᵐ³

325

375

425

475

525

575

625

675

725

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(b) AllSolFB

PerFBᵠ-os-r

PerFBᵐ³-os-r

DI-PerFBᵠ-os-r

DI-PerFBᵐ³-os-r

H-PerFBᵠ-os-r

H-PerFBᵐ³-os-r

325

375

425

475

525

575

625

675

725

775

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

N
um

be
r o

f I
ns

ta
nc

es
 C

om
pl

et
ed

Time (Seconds)

(c) PerFB

Figure 6.5: Cumulative charts for dangle identification using |dom|ddeg .

148

Table 6.2: |dom|wdeg results showing the number of instances algorithms in each row were
able to complete that algorithms in each column were unable to finish due to hitting
the memory limit (OOM) or a timeout (TO).

A
llS

ol
F
B

Ψ

H
-A

llS
ol
F
B

Ψ

D
I-
A
llS

ol
F
B

Ψ

A
llS

ol
F
B

m
3

H
-A

llS
ol
F
B

m
3

D
I-
A
llS

ol
F
B

m
3

C
T

H
-C

T

D
I-
C
T

P
er
F
B

Ψ
-o
s-
r

H
-P
er
F
B

Ψ
-o
s-
r

D
I-
P
er
F
B

Ψ
-o
s-
r

P
er
F
B

m
3
-o
s-
r

H
-P
er
F
B

m
3
-o
s-
r

D
I-
P
er
F
B

m
3
-o
s-
r

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

O
O
M

T
O

AllSolFBΨ - - 0 16 0 18 1 7 1 22 1 22 0 9 0 10 0 10 0 1 0 16 0 17 1 8 1 22 1 20
H-AllSolFBΨ 0 31 - - 0 5 1 25 1 10 1 13 0 1 0 2 0 0 0 22 0 1 0 7 1 26 1 11 1 12
DI-AllSolFBΨ 0 34 0 5 - - 1 27 1 14 1 8 0 1 0 1 0 0 0 25 0 6 0 2 1 28 1 15 1 7
AllSolFBm3 0 259 0 262 0 264 - - 0 25 0 24 0 11 0 12 0 12 0 99 0 106 0 107 10 1 10 23 10 20
H-AllSolFBm3 0 281 0 253 0 259 0 32 - - 0 5 0 1 0 2 0 0 0 125 0 96 0 101 10 34 9 1 10 6
DI-AllSolFBm3 0 294 0 269 0 265 0 44 0 18 - - 0 1 0 1 0 0 0 137 0 111 0 102 11 47 11 19 11 0
CT 84 767 86 742 86 741 86 491 89 465 89 450 - - 40 23 40 18 86 563 88 538 87 536 189 410 192 384 191 361
H-CT 46 750 47 726 47 724 49 473 50 449 50 433 0 5 - - 0 9 49 545 49 522 48 519 152 392 153 367 152 344
DI-CT 46 755 47 728 47 727 50 477 51 450 51 435 0 9 0 15 - - 50 549 50 523 49 521 150 399 151 372 151 348
PerFBΨ-os-r 0 192 0 198 0 201 0 37 0 61 0 58 0 10 0 11 0 11 - - 0 29 0 29 4 34 5 53 5 48
H-PerFBΨ-os-r 0 216 0 187 0 193 0 61 0 40 0 41 0 1 0 2 0 0 0 41 - - 0 8 4 56 5 33 5 31
DI-PerFBΨ-os-r 0 223 0 198 0 194 0 65 0 46 0 34 0 1 0 1 0 0 0 44 0 13 - - 4 60 5 40 5 24
PerFBm3-os-r 0 258 0 262 0 264 0 5 0 32 0 29 0 10 0 11 0 11 0 92 0 103 0 103 - - 0 27 0 24
H-PerFBm3-os-r 0 286 0 261 0 266 0 42 0 12 0 14 0 1 0 1 0 0 0 123 0 94 0 97 1 40 - - 1 5
DI-PerFBm3-os-r 0 306 0 283 0 279 0 63 0 35 0 13 0 1 0 1 0 0 0 141 0 112 0 102 0 62 0 27 - -

when used with relational consistencies [Balafrej et al., 2015; Paparrizou and Stergiou,

2016, 2017]. Figure 6.5 shows the cumulative run times for the same set of algorithms

using |dom|ddeg . While the number of instances solved for each algorithm is reduced when

using |dom|ddeg , the relative performance of the algorithms remain largely unchanged.

Looking more closely, if we compare |dom|ddeg and |dom|wdeg , looking at the number of nodes

visited on instances CompactTable and Di-CT both completed, we can see the

variance with |dom|ddeg is actually higher than with |dom|wdeg . Roughly 14% of instances using
|dom|
ddeg visited more nodes using Di-CT than CompactTable, with a mean percentage

difference of 83% (and a mean of 1,912,885 additional nodes visited) on those instances

where Di-CT visited more nodes. The |dom|wdeg heuristic, on the other hand, only visited

more nodes with Di-CT in 9.5% of instances where both algorithms finished, with a

149

mean difference of 47% (and a mean of 948,669 additional nodes visited). We believe

this provides clear motivation for further investigation into ordering heuristics that

are robust to relational consistencies and the identification and removal of tractable

subproblems.

Geschwender [2018] provided two metrics to help analyze the performance of dan-

gle identification on the dual graph during the subproblem search in PerTuple

and AllSol. The first of these statistics is the Normalized Average Dangle-Level

(NADL), which measures the depth that dangles are identified during search. The

value is calculated by tracking the number of dangling vertices at each level of search

and averaging the values when search ends. The value is then normalized by dividing

by the depth of the search tree (i.e., the number of variables in the graph in the case of

the dangle identification procedure described in this chapter). The value ranges from

0, indicating all dangles identified during search were identified at preprocessing, to

n−2
n

, where n is the depth of the search tree. The second value is the Average Percent

Dangles Identified (ADPI), which measures the average number of future variables or

constraints that are identified as part of a dangle at each visited node in search.

Figures 6.6 and 6.7 provide histograms of the NADL and ADPI for both con-

straints and variables. The values for each algorithm are displayed. The large vari-

ance between algorithms is due to the incorporation of all completed instances for

each algorithm in to the count in each range in the histogram; in fact, the NADL

and ADPI are identical for AllSol and PerTuple algorithms when operating on

the same sizes of combinations.

The NADL for both variables and constraints show that in many cases, all dangles

are identified at the end of search, though a fair amount (especially in the case of

dangling constraints in CompactTable) are identified quite early in search. The

ADPI for constraints typically falls between 0% and 5%, and between 0% and 3%

150

0

50

100

150

200

250

300

350

[0.
0,0
.1)

[0.
1,0
.2)

[0.
2,0
.3)

[0.
3,0
.4)

[0.
4,0
.5)

[0.
5,0
.6)

[0.
6,0
.7)

[0.
7,0
.8)

[0.
8,0
.9)

[0.
9,1
.0)

Constraint NADL

DI-AllSolFBᵠ DI-AllSolFBᵐ³ DI-CT DI-PerFBᵠ-os-r DI-PerFBᵐ³-os-r

(a) Constraint NADL

0
50

100
150
200
250
300
350
400
450

[0.
0,0
.1)

[0.
1,0
.2)

[0.
2,0
.3)

[0.
3,0
.4)

[0.
4,0
.5)

[0.
5,0
.6)

[0.
6,0
.7)

[0.
7,0
.8)

[0.
8,0
.9)

[0.
9,1
.0)

Variable NADL

DI-AllSolFBᵠ DI-AllSolFBᵐ³ DI-CT DI-PerFBᵠ-os-r DI-PerFBᵐ³-os-r

(b) Variable NADL

Figure 6.6: Histograms for the NADL metrics for constraints and variables.

151

0
50

100
150
200
250
300
350
400

[0%
-1%

)

[1%
-2%

)

[2%
-3%

)

[3%
-4%

)

[4%
-5%

)

[5%
-10
%)

[10
%-
30
%)

[30
%-
50
%)

[50
%-
70
%)

[70
%-
10
0%
)

Constraint ADPI

DI-AllSolFBᵠ DI-AllSolFBᵐ³ DI-CT DI-PerFBᵠ-os-r DI-PerFBᵐ³-os-r

(a) Constraint ADPI

0
100
200
300
400
500
600
700
800
900

[0%
-1%

)

[1%
-2%

)

[2%
-3%

)

[3%
-4%

)

[4%
-5%

)

[5%
-10
%)

[10
%-
30
%)

[30
%-
50
%)

[50
%-
70
%)

[70
%-
10
0%
)

Variable ADPI

DI-AllSolFBᵠ DI-AllSolFBᵐ³ DI-CT DI-PerFBᵠ-os-r DI-PerFBᵐ³-os-r

(b) Variable ADPI

Figure 6.7: Histograms for the ADPI metrics for constraints and variables.

152

for variables (note the uneven scaling in the buckets, which was used to give more

visibility to the breakdown at lower percentages). While these are relatively low val-

ues, it shows the potential strength of the dangle identification technique: Although

a low percentage of variables and constraints were removed from the problem in most

instances, and at a fairly deep level of search, we still see significant improvement in

the relational consistency algorithms when using dangle identification. This empha-

sizes the need for specialized ordering heuristics that could be used to facilitate the

creation of dangles dynamically during search, rather than relying on general purpose

heuristics like the |dom|wdeg ordering heuristic.

Summary

In this chapter, we established that using a minimal dual graph during search to

identify dangles by iteratively identifying vertices of degree 1 can lead to incorrect

results, and provided justification for the choice of using the GYO reduction for

determining acyclicity on non-binary problems. Further, we designed an efficient

algorithm for identifying dangles that applies the GYO reduction during search (i.e.,

as variables are instantiated), which is simple enough that it can be easily integrated

into existing search procedures. We demonstrated the benefits of dangle identification

for certain propagators, and provided further evidence for the need to for more robust

and HLC-friendly ordering heuristics.

Beyond investigation into ordering heuristics, the work presented in this chapter

can be extended in a few ways. Enforcing PW-CT along dangles is a task well

suited for parallelization. Search could conceivably begin enforcing consistency on the

subproblem after identifying the structural dangles concurrently with the enforcement

of PW-CT on the dangles. If either PW-CT or the subproblem finds an inconsistent

153

state, the other thread could be pre-empted, mitigating the additional cost imposed

by enforcing PW-CT. Enforcing PW-CT on some problems is still prohibitive due

to the large number of tuples and high degree of the problems, and this approach

would be especially advantageous in those circumstances.

Further improvements could also be made to the propagators themselves to better

incorporate the hidden constraint state into their operation. AllSolFB and PerFB,

for example, could skip hidden constraints in their tuple search, though the theoretical

level of consistency enforced by such a modification would need to be evaluated in

depth.

154

Chapter 7

Conclusions

We conclude the dissertation by summarizing our contributions and discussing av-

enues for future research.

7.1 Summary of Contributions

We began this dissertation seeking to establish the promise and practicality of high

level consistencies in CSPs. We accomplished this goal by designing and implementing

a solver, Stampede, capable of easily incorporating new propagators into its opera-

tion, including relational consistencies. The creation of Stampede has aided in the

development of several novel approaches to integration relational consistencies with

search [Geschwender et al., 2016; Geschwender, 2018; Woodward et al., 2018; Wood-

ward, 2018], examination of performance on different models of nonogram puzzles

using HLC and GAC [Tran, 2019], visualizations to better understand the impact of

propagators on search [Howell et al., 2020; Woodward et al., 2018; Woodward, 2018],

and new consistency algorithms responsible for pushing the state-of-the-art [Schneider

and Choueiry, 2018; Woodward et al., 2017]. The specific manner in which Stam-

pede helped to unlock this research was outlined in Chapter 3.

Table 7.1 summarizes the novel algorithms introduced by this dissertation.

In Chapter 4, we outlined ways of making PWC algorithms more effective, and

applied those methods to three previously existing algorithms, eSTR2, eSTR2w, and

PW-AC, greatly enhancing their performance. We then created a new algorithm,

155

Table 7.1: Algorithms introduced in this thesis.

Algorithm Consistency Property
AllSolFB m-wise
PW-AC2 PWC
PW-CT fPWC
Directional PW-CT Partial fPWC
PerFB m-wise
Dangle Identification Search procedure

PW-CT, that incorporated the advances in PWC algorithms with the state-of-the-

art for enforcing GAC, and showed that PW-CT is far and away the best algorithm

for enforcing PWC.

In Chapter 5, we extended the lessons learned from PWC to algorithms for en-

forcing R(∗,m)C, and again showed that the resulting algorithms, PerFB and All-

SolFB, are superior to other algorithms used for enforcing R(∗,m)C.

Finally, in Chapter 6, we used PW-CT to enforce minimality on dynamically

discovered tractable subproblems of CSPs during search and showed it to be beneficial

for relational consistencies in particular.

7.2 Future Work

Below we identify potential directions for future work.

1. Better ordering heuristics for HLC and relational consistencies : As shown in

Chapter 6, the most commonly used ordering heuristics, |dom|ddeg and |dom|wdeg , are un-

predictable when applied to non-traditional techniques. Both heuristics can

explore radically different trees when dangle identification removes constraints

from the problem. This is also a problem for HLC and relational consistencies

with respect to |dom|wdeg since the constraint weight to increment upon detecting

an inconsistency when enforcing relational consistencies is not obvious. Inves-

156

tigating potential alternatives to these ordering heuristics that are more robust

and stable while maintaining or improving upon the performance of |dom|wdeg would

be immensely helpful for research, as the current heuristics can be too erratic

to make drawing conclusions about the performance of two or more algorithms

fraught.

2. Integrating PW-CT into R(∗,m)C : We were able to show large improvements

when using bitsets and lazy enforcement of PWC in our algorithm PW-CT.

It is not inconceivable that techniques similar to those used for PW-CT could

be incorporated into PerFB or AllSolFB to achieve similar gains in perfor-

mance.

3. Investigate the use of GPUs to power relational consistencies : Several of the

algorithms presented in this dissertation are potentially good candidates for

GPUs. PW-CT, in particular, could likely be transformed into a set of matrix

multiplications using the bitsets introduced by CompactTable. If that avenue

proves fruitful, extending it to R(∗,m)C would likely show significant benefits

as the core operation of PerTuple is embarrassingly parallelizable (i.e., all of

the tuple searches in a given combination can be executed independently).

4. Better incorporate dangle identification into consistency algorithms and Stam-

pede: The current implementation of dangle identification in Stampede marks

a boolean in the constraints and variables indicating whether they have been

removed from the problem. This was an ad-hoc solution to incorporate removals

of constraints due to dangle identification into a select group of propagators.

Stampede should be extended to support this mechanism for arbitrary prop-

agators, at least to some extent. Some propagators, such as those used to

157

enforce R(∗,m)C, could further benefit from dangle identification by altering

which constraints they incorporate in their subproblem searches.

5. Integrate all recent innovations for improving relational consistencies : Along-

side this dissertation, the Constraint Systems Laboratory has published a cor-

pus of work describing a multitude of ways that relational consistencies can be

made more viable. Isolating enforcement of consistencies along specific struc-

tures, partially enforcing them, and improvements to the search performed over

combinations in PerTuple and AllSol are just a few of the directions that

have been explored and empirically verified. Unifying these approaches into new

hybrid algorithms could be a viable alternative to the current state-of-the-art

GAC propagators.

6. Extended relational propagators in Stampede to support intension constraints :

Most, if not all, of the algorithms currently implemented in Stampede implic-

itly assume they’re operating on table constraints. However, it seems to be a

somewhat straightforward task to offer an abstraction layer on top of other types

of constraints that make them compatible with algorithms that operate on table

constraints without fully enumerating the allowed tuples (i.e., the combinations

of variable-value assignments the constraint supports). For example, a sparse

bit set could be used to store the indices of the valid combinations, rather than

explicitly enumerating all tuples. This approach could be extended to table

constraints as well to limit the memory overhead of storing table constraints,

though approaches such as MDDs could also be explored in both cases.

7. Use concurrency in dangle identification to amortize the cost of enforcing PWC

on dangles : One of the largest hits to performance in dangle identification

is enforcing PWC along dangles, even when using PW-CT. If running GAC

158

on the the cyclic portion of the subproblem would expose an inconsistency,

the extra effort used to enforce PW-CT along dangles is wasted. This could

be mitigated by parallelizing the enforcement of PW-CT along dangles while

another propagator enforces its consistency on the remaining cyclic portion of

the CSP, terminating early if either thread discovers an inconsistency.

The work presented in this dissertation has succeeded in showing that relational

consistencies can be a pragmatic choice for CSP solving by creating a solver tailor

made for the incorporation of HLC and relational consistencies and by pushing the

state-of-the-art forward for multiple relational consistency properties.

159

Appendix A

Per-Benchmark Results for GAC Algorithms

Tables A.1 and A.2 show detailed results for GAC algorithms used in this dissertation

on binary and non-binary problems, respectively.

Table A.1: Aggregated instances results for GAC algorithms for all tested binary
benchmarks.

Solved ΣCPU (sec)

#
In
st
an

ce
s

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

BH-4-13 7 0 0 0 0 0.0 0.0 0.0 0.0

BH-4-4 10 10 10 10 10 203.2 411.9 670.8 206.2

BH-4-7 20 0 0 0 0 0.0 0.0 0.0 0.0

QCP-10 15 15 15 15 15 3.4 3.4 4.4 3.7

QCP-15 15 15 15 15 15 520.3 591.2 1,049.3 607.6

QCP-20 15 5 5 4 5 1,153.2 1,312.8 >3,830.0 1,404.9

QCP-25 15 1 1 1 1 14.1 14.0 16.3 15.2

QWH-10 10 10 10 10 10 1.7 1.6 1.9 1.9

QWH-15 10 10 10 10 10 18.5 18.7 26.9 20.6

QWH-20 10 9 9 9 9 1,020.8 1,119.2 2,003.6 1,202.8

QWH-25 10 0 0 0 0 0.0 0.0 0.0 0.0

bqwh-15-106 100 100 100 100 100 21.1 22.5 34.4 25.1

bqwh-18-141 100 100 100 100 100 335.9 406.4 704.3 388.5

coloring 22 22 22 22 22 378.8 403.5 671.4 415.2

composed-25-1-2 10 10 10 10 10 0.8 1.0 1.7 1.2

composed-25-1-25 10 10 10 10 10 1.0 1.2 2.1 1.3

160

Table A.1 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

composed-25-1-40 10 10 10 10 10 1.0 1.3 2.4 1.4

composed-25-1-80 10 10 10 10 10 1.2 1.5 2.8 1.6

composed-25-10-20 10 10 10 10 10 2.1 2.3 3.2 2.7

composed-75-1-2 10 10 10 10 10 2.4 2.8 4.7 3.4

composed-75-1-25 10 10 10 10 10 2.6 3.2 5.7 3.7

composed-75-1-40 10 10 10 10 10 2.7 3.4 6.2 3.8

composed-75-1-80 10 10 10 10 10 2.8 3.4 6.0 3.7

domino 24 22 22 21 21 698.3 1,080.1 >4,567.0 >4,567.2

driver 7 7 7 7 7 64.4 61.5 88.4 73.3

ehi-85 100 100 100 100 100 251.3 257.5 354.7 294.1

ehi-90 100 100 100 100 100 270.7 271.2 365.8 311.8

fapp-fapp01 11 0 0 0 0 0.0 0.0 0.0 0.0

frb30-15 10 10 10 10 10 8.6 15.1 34.2 12.6

frb35-17 10 10 10 10 10 86.7 162.6 390.0 130.6

frb40-19 10 10 10 10 10 687.3 1,294.0 3,128.2 1,024.4

frb45-21 10 10 8 6 10 6,051.8 >13,487.0 >24,504.0 8,860.8

frb50-23 10 6 2 2 2 13,727.5 >15,050.0 >15,970.6 >14,901.7

frb53-24 10 2 0 0 2 3,035.3 >7,200.0 >7,200.0 4,464.3

frb56-25 10 0 0 0 0 0.0 0.0 0.0 0.0

frb59-26 10 0 0 0 0 0.0 0.0 0.0 0.0

geom 100 100 100 100 100 1,197.4 2,443.4 6,750.3 1,766.2

graphColoring-hos 14 9 12 10 9 >10,887.9 1,133.4 >7,609.8 >10,892.4

graphColoring-insertion-full-insertion 41 34 33 32 32 6,043.8 >7,558.4 >10,739.2 >8,871.2

graphColoring-insertion-k-insertion 32 17 16 16 17 1,662.9 >3,807.2 >3,927.2 2,132.0

graphColoring-leighton-leighton-15 28 9 8 7 8 3,167.4 >6,379.7 >10,167.8 >5,466.3

161

Table A.1 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

graphColoring-leighton-leighton-25 32 6 6 6 6 100.7 103.7 113.1 111.5

graphColoring-leighton-leighton-5 8 8 8 8 8 52.3 47.7 55.4 54.0

graphColoring-mug 8 4 4 4 4 0.1 0.1 0.1 0.1

graphColoring-myciel 16 13 13 13 13 1,460.2 1,787.9 2,828.7 1,639.6

graphColoring-register-fpsol 37 5 5 5 5 72.2 85.5 87.0 89.8

graphColoring-register-inithx 32 5 5 5 5 155.5 174.7 180.5 186.2

graphColoring-register-mulsol 49 9 9 9 9 56.3 79.6 77.1 84.0

graphColoring-register-zeroin 31 6 6 6 6 40.7 60.2 56.7 63.3

graphColoring-school 8 3 3 3 3 85.3 87.2 90.5 92.5

graphColoring-sgb-book 26 24 23 22 23 5,440.2 >8,934.9 >13,619.0 >7,592.2

graphColoring-sgb-games 4 4 4 4 4 171.0 242.4 562.4 216.1

graphColoring-sgb-miles 42 11 10 10 11 1,848.1 >3,743.3 >3,729.2 2,405.9

graphColoring-sgb-queen 50 16 15 15 15 4,812.0 >6,161.4 >10,101.3 >5,357.3

hanoi 5 5 5 5 4 2.7 35.7 2.5 >3,602.4

haystacks 51 2 2 2 2 1.0 1.1 1.9 1.3

jobShop-e0ddr1 10 7 5 5 7 3,686.9 >7,526.2 >9,257.3 4,572.2

jobShop-e0ddr2 10 6 5 4 6 1,476.0 >4,119.8 >7,248.9 2,664.1

jobShop-enddr1 10 9 9 9 9 88.0 169.0 169.5 184.1

jobShop-enddr2 6 4 4 3 4 892.8 1,402.0 >3,640.6 1,668.1

jobShop-ewddr2 10 10 10 10 10 127.4 272.6 142.7 301.9

knights 19 10 10 10 10 118.7 460.6 2,262.7 576.7

langford 4 4 4 4 4 27.7 43.9 93.4 36.8

langford2 24 16 16 16 16 61.7 108.5 95.6 88.1

langford3 23 16 15 14 15 2,682.5 >4,984.9 >9,873.7 >4,758.6

langford4 24 14 13 12 13 1,794.6 >4,306.7 >8,960.3 >4,186.3

162

Table A.1 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

lard 10 10 10 10 10 444.5 717.9 475.0 565.9

marc 10 10 10 10 10 456.7 783.3 488.8 692.8

os-taillard-4 30 30 30 30 30 246.3 643.9 2,194.8 482.8

os-taillard-5 30 19 15 13 18 8,818.6 >17,033.9 >28,115.6 >11,082.0

os-taillard-7 30 1 7 6 7 >22,214.3 5,459.1 >11,459.4 5,171.0

pigeons 25 13 13 13 13 1,869.3 1,786.2 3,110.6 2,056.1

queenAttacking 10 4 4 4 4 156.3 288.9 668.7 201.4

queens 14 9 9 9 9 51.2 95.4 73.4 106.9

queensKnights 18 11 11 10 11 467.2 1,107.2 >5,490.3 1,091.8

rand-2-23 10 10 10 10 10 1,071.2 1,925.2 4,083.5 1,621.8

rand-2-24 10 10 10 10 10 2,383.3 4,295.6 9,005.2 3,587.7

rand-2-25 10 10 10 10 10 4,840.6 8,690.1 18,018.4 7,244.0

rand-2-26 10 10 3 3 10 14,471.8 >28,766.1 >32,482.5 21,478.0

rand-2-27 10 4 1 1 4 5,666.1 >12,298.9 >13,822.4 8,380.3

rand-2-30-15-fcd 50 50 50 50 50 55.5 96.9 217.9 80.6

rand-2-30-15 50 50 50 50 50 95.1 169.6 389.7 139.0

rand-2-40-19-fcd 50 50 50 50 50 5,450.4 10,028.1 23,355.0 7,956.0

rand-2-40-19 50 50 50 50 50 10,921.7 20,191.8 47,567.4 15,995.8

rand-2-50-23-fcd 50 12 7 3 10 16,180.0 >27,833.1 >40,818.9 >22,098.5

rand-2-50-23 50 12 3 1 5 25,007.6 >37,142.3 >43,083.2 >33,035.5

rlfapGraphs 14 14 14 14 14 134.1 172.2 145.6 169.3

rlfapGraphsMod 12 12 12 12 12 92.5 144.0 382.5 125.7

rlfapScens11 12 7 5 5 6 3,798.3 >7,784.1 >9,995.0 >5,591.2

rlfapScens 11 11 11 11 11 121.7 156.6 137.4 146.9

rlfapScensMod 13 13 13 13 13 58.8 86.1 164.7 77.3

163

Table A.1 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

subs 9 9 9 9 9 11.5 15.6 14.0 14.0

super-jobShop-super-jobShop-e0ddr1 10 3 3 2 3 353.9 548.1 >3,660.6 509.0

super-jobShop-super-jobShop-e0ddr2 10 0 0 0 0 0.0 0.0 0.0 0.0

super-jobShop-super-jobShop-enddr1 10 3 2 2 3 1,439.9 >3,764.2 >3,967.7 1,880.2

super-jobShop-super-jobShop-enddr2 6 2 2 2 2 82.0 168.5 183.4 191.5

super-jobShop-super-jobShop-ewddr2 10 7 7 6 7 1,411.9 2,153.7 >3,884.5 2,678.3

super-os-super-os-taillard-4 30 30 28 27 30 3,382.3 >9,786.8 >16,242.8 5,466.2

super-os-super-os-taillard-5 30 11 10 7 11 4,581.5 >8,461.3 >23,326.7 4,658.5

super-queens 14 5 5 5 5 946.9 1,533.8 2,793.3 1,299.1

tightness0.1 100 100 100 100 100 2,209.7 3,338.2 6,279.2 2,566.3

tightness0.2 100 100 100 100 100 2,394.4 3,861.6 7,892.1 3,116.2

tightness0.35 100 100 100 100 100 1,665.3 3,069.3 7,015.5 2,464.9

tightness0.5 100 100 100 100 100 2,016.1 4,283.2 10,884.4 3,396.1

tightness0.65 100 100 100 100 100 1,437.9 3,426.3 9,574.1 2,674.9

tightness0.8 100 100 100 100 100 1,403.1 3,357.3 10,438.7 2,662.2

tightness0.9 100 100 100 100 100 2,321.4 4,498.5 14,264.9 3,574.4

164

Table A.2: Aggregated instances results for GAC algorithms for all tested non-binary
benchmarks.

Solved ΣCPU (sec)

#
In
st
an

ce
s

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

QG3 7 7 7 7 7 0.3 0.3 0.3 0.3

QG4 7 7 7 7 7 0.3 0.3 0.3 0.3

QG5 7 0 0 0 0 0.0 0.0 0.0 0.0

QG6 7 7 7 7 7 0.3 0.3 0.3 0.4

QG7 7 7 7 7 7 0.3 0.3 0.3 0.4

aim-100 24 24 24 24 24 17.9 19.0 28.0 21.4

aim-200 24 24 24 24 24 1,831.8 1,989.3 3,142.1 2,323.9

aim-50 24 24 24 24 24 0.6 0.6 0.7 0.7

allIntervalSeries 25 17 16 16 17 2,447.8 >3,625.1 >3,647.1 2,945.6

bddLarge 35 35 35 35 35 2,924.3 7,896.1 5,352.0 2,751.0

bddSmall 35 35 35 35 35 1,423.9 10,676.4 2,000.3 1,403.6

bmc 24 1 1 1 1 70.4 69.6 69.8 70.1

bqwh-15-106_glb 100 100 100 100 100 2.6 2.7 2.6 2.8

bqwh-18-141_glb 100 100 100 100 100 4.3 4.8 4.5 4.7

chessboardColoration 20 13 14 14 14 >4,270.9 1,793.7 2,430.2 1,450.9

dag-half 25 23 2 7 22 13,110.6 >76,820.4 >67,679.4 >23,827.7

dag-rand 25 25 9 25 25 890.5 >85,734.6 2,334.1 1,533.4

dubois 13 6 6 6 6 3,770.9 3,738.6 4,560.8 4,383.3

golombRulerArity3 14 10 9 9 9 1,949.2 >4,527.9 >8,391.8 >4,352.9

golombRulerArity4 14 2 2 2 2 413.7 413.8 413.8 413.7

graceful 4 3 3 2 3 553.7 1,297.1 >3,606.0 1,041.8

jnhSat 16 16 16 16 16 8.0 16.1 14.8 8.3

jnhUnsat 34 34 34 34 34 16.7 32.1 33.2 17.2

latinSquare 10 5 5 5 5 0.6 0.9 0.6 0.7

165

Table A.2 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

lexVg 63 63 63 63 63 434.1 4,868.3 2,243.9 662.6

mknap 6 2 2 2 2 122.4 122.4 122.4 122.4

modifiedRenault 50 50 50 50 50 51.2 71.0 70.8 61.8

nengfa 10 4 4 4 4 165.6 195.6 245.3 172.8

ogdVg 65 46 40 41 46 5,635.9 >31,226.9 >27,153.2 3,431.5

ortholatin 9 1 1 1 1 0.0 0.0 0.0 0.0

pret 8 4 4 4 4 297.4 294.9 363.7 349.5

primes-10 32 12 12 12 12 7.2 10.2 7.0 7.1

primes-15 32 8 8 8 8 0.9 1.4 0.9 1.0

primes-20 32 8 8 8 8 2.9 5.4 2.9 3.2

primes-25 32 8 8 8 8 4.3 9.5 4.2 4.6

primes-30 32 6 6 6 6 2.4 5.6 2.3 3.4

pseudo-aim 48 48 48 48 48 883.0 958.0 1,430.0 1,071.6

pseudo-chnl 21 1 0 0 1 2,739.4 >3,600.0 >3,600.0 2,896.1

pseudo-circuits 7 3 3 3 3 15.7 16.4 15.0 14.9

pseudo-fpga 36 3 2 2 3 3,169.4 >5,861.6 >5,675.0 3,258.6

pseudo-garden 7 6 7 6 6 >3,600.1 25.4 >3,600.1 >3,600.1

pseudo-ii 41 9 9 9 9 217.2 223.9 571.1 350.7

pseudo-jnh 16 16 16 16 16 9.6 21.4 21.2 9.9

pseudo-logic-synthesis 17 1 1 1 1 26.3 27.1 23.6 25.1

pseudo-mps 49 7 8 7 7 >5,646.0 2,076.6 >5,641.6 >5,644.1

pseudo-mpsReduced 105 1 1 1 1 234.7 235.0 234.7 234.7

pseudo-niklas 19 3 3 3 3 1,743.1 1,743.9 1,738.6 1,741.2

pseudo-par 30 20 20 20 20 520.1 558.2 763.4 549.6

pseudo-primesDimacs 11 4 4 3 3 3,078.1 3,316.6 >3,646.5 >3,646.0

166

Table A.2 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

C
o
m
pa

ct
T
a
bl

e

G
A

C
20

01

S
T

R
2

S
T

R
bi
t

pseudo-radar 12 6 6 6 6 126.0 132.1 113.1 120.2

pseudo-routing 15 7 7 7 7 552.7 2,659.6 1,225.9 639.5

pseudo-ssa 8 7 7 7 7 230.2 217.2 294.6 255.7

pseudo-ttp 8 2 2 2 2 0.7 0.8 1.1 0.8

pseudo-uclid 39 8 8 8 8 3,181.8 3,278.4 3,559.6 3,396.8

ramsey3 8 2 2 2 2 0.1 0.1 0.1 0.1

ramsey4 8 1 1 1 1 1.0 0.9 1.0 1.1

rand-10-20-10 20 20 20 20 20 7.8 105.2 20.2 11.4

rand-3-20-20-fcd 50 50 50 50 50 853.6 5,391.0 14,363.0 1,661.3

rand-3-20-20 50 50 50 50 50 1,549.3 10,213.2 28,326.3 3,120.1

rand-3-24-24-fcd 50 41 22 14 39 24,043.0 >92,063.8 >116,608.0 >42,871.2

rand-3-24-24 50 32 8 3 25 34,079.1 >95,905.8 >108,393.4 >55,948.0

rand-3-28-28-fcd 50 8 2 2 5 13,297.4 >22,865.8 >24,247.5 >17,726.8

rand-3-28-28 50 4 1 1 4 3,384.2 >11,386.5 >12,904.6 5,449.9

rand-8-20-5 20 20 19 20 20 374.2 >23,989.3 2,786.2 746.3

renault 2 2 2 2 2 1.9 2.4 1.9 2.3

schurrLemma 10 9 9 9 9 616.0 1,907.3 2,296.7 983.1

small 5 4 4 4 4 213.5 360.4 228.1 347.9

socialGolfers 12 1 1 1 1 >3,999.3 >4,067.5 >3,862.9 >4,102.8

ssa 8 7 7 7 7 148.6 148.5 193.5 170.5

travellingSalesman-20 15 15 15 15 15 110.9 308.6 257.2 128.0

travellingSalesman-25 15 15 15 15 15 1,302.0 3,315.0 3,963.0 1,570.0

ukVg 65 40 34 36 40 9,427.6 >28,733.8 >20,980.2 8,968.5

varDimacs 9 9 9 9 9 1,543.3 2,483.9 2,538.0 1,831.6

wordsVg 65 65 63 65 65 1,386.4 >19,670.8 8,239.4 1,946.9

167

Appendix B

Per-Benchmark Results for PWC Algorithms

Table B.1 shows detailed results for the PWC algorithms tested in Chapter 4.

168

Table B.1: Aggregated instance results for PWC algorithms for all tested benchmarks with at least one non-trivial
subscope.

Solved ΣCPU (sec)
#

In
st
an

ce
s

P
W

-A
C

P
W

-A
C

2f

P
W

-A
C

2-
C

T
P
W

-A
C

2
P
W

-A
C

2f

P
W

-C
T

eS
T

R
2

eS
T

R
2w

eS
T

R
2w

m

eS
T

R
2m

P
W

-A
C

P
W

-A
C

2f

P
W

-A
C

2-
C

T

P
W

-A
C

2

P
W

-C
T

f

P
W

-C
T

eS
T

R
2

eS
T

R
2w

eS
T

R
2w

m

eS
T

R
2r
r

aim-100 24 24 24 24 24 24 24 24 24 24 24 3.8 2.5 3.9 2.8 1.7 2.5 3.1 4.0 4.4 3.4

aim-200 24 24 24 24 24 24 24 24 24 24 24 16.1 15.3 18.8 19.1 9.4 11.3 18.5 48.7 45.2 17.8

aim-50 24 24 24 24 24 24 24 24 24 24 24 1.3 0.9 1.3 1.0 0.6 1.0 0.9 0.9 1.1 1.1

bddLarge 35 0 0 0 0 35 0 0 0 0 0 >126,000.0 >126,000.0 >126,000.0 >126,000.0 3,188.2 >126,000.0 >126,000.0 >126,000.0 >126,000.0 >126,000.0

bddSmall 35 0 0 0 0 35 35 0 0 0 0 >126,000.0 >126,000.0 >126,000.0 >126,000.0 1,245.5 1,463.0 >126,000.0 >126,000.0 >126,000.0 >126,000.0

bmc 24 1 1 1 1 1 1 1 1 1 1 93.6 80.6 80.6 75.8 76.6 77.0 88.9 86.5 75.7 76.2

chessboardColoration 20 9 11 10 10 12 10 10 10 10 10 >11,424.1 >4,423.5 >7,624.8 >7,441.0 490.3 >7,419.7 >10,139.8 >9,998.6 >7,800.2 >7,786.2

dag-half 25 2 2 7 5 11 15 2 2 3 3 >48,572.7 >47,768.5 >35,168.8 >40,229.5 >33,263.4 24,368.2 >48,712.8 >50,007.3 >47,217.6 >45,562.2

dag-rand 25 25 25 25 25 25 25 25 25 25 25 1,346.2 1,935.0 1,868.0 1,876.0 668.5 675.1 1,327.9 1,315.6 1,283.1 1,295.0

dubois 13 7 7 7 7 9 9 7 6 6 7 >11,552.6 >12,295.3 >10,843.3 >12,292.2 5,871.8 5,885.5 >13,270.9 >15,256.1 >15,300.9 >13,331.0

golombRulerArity4 14 2 2 2 2 2 2 2 2 2 2 414.8 414.4 414.0 414.1 413.7 413.7 414.8 414.6 414.0 414.0

jnhSat 16 16 16 16 16 16 16 16 16 16 16 331.4 220.7 50.4 99.7 17.1 26.0 680.1 497.5 175.6 186.9

jnhUnsat 34 34 34 34 34 34 34 34 34 34 34 814.8 490.9 107.8 217.8 34.2 54.7 1,341.5 1,161.6 372.6 419.9

modifiedRenault 50 50 50 50 50 50 50 50 50 50 50 317.4 191.5 97.7 102.6 69.5 64.1 462.6 411.6 87.6 89.8

nengfa 10 2 4 4 4 4 4 4 4 4 4 >7,317.0 622.5 730.5 372.3 178.9 190.8 2,054.4 1,219.2 316.8 425.0

169

Table B.1 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
W

-A
C

P
W

-A
C

2f

P
W

-A
C

2-
C

T
P
W

-A
C

2
P
W

-A
C

2f

P
W

-C
T

eS
T

R
2

eS
T

R
2w

eS
T

R
2w

m

eS
T

R
2m

P
W

-A
C

P
W

-A
C

2f

P
W

-A
C

2-
C

T

P
W

-A
C

2

P
W

-C
T

f

P
W

-C
T

eS
T

R
2

eS
T

R
2w

eS
T

R
2w

m

eS
T

R
2r
r

primes-10 32 12 12 12 12 12 12 12 12 12 12 10.4 10.6 9.5 10.4 7.3 7.3 7.4 7.4 7.4 7.4

primes-15 32 8 8 8 8 8 8 8 8 8 8 1.6 1.6 1.4 1.5 1.0 1.0 1.0 1.0 1.0 1.0

primes-20 32 8 8 8 8 8 8 8 8 8 8 4.7 4.7 4.3 4.6 3.0 3.0 3.2 3.2 3.2 3.2

primes-25 32 8 8 8 8 8 8 8 8 8 8 7.0 7.1 6.4 7.0 4.5 4.5 4.8 4.7 4.7 4.7

primes-30 32 6 6 6 6 6 6 6 6 6 6 3.3 3.5 3.1 3.4 2.4 2.4 2.5 2.5 2.5 2.5

pseudo-aim 48 48 48 48 48 48 48 48 48 48 48 2,663.3 1,809.1 1,981.3 2,288.8 816.8 818.2 3,974.7 3,877.7 3,546.9 3,765.9

pseudo-circuits 7 3 3 3 3 3 3 3 3 3 3 56.7 62.4 26.2 29.2 19.7 19.4 68.1 62.2 27.9 29.4

pseudo-fpga 36 1 2 2 2 2 2 0 1 2 2 >7,147.8 5,730.6 2,829.0 4,514.1 1,678.6 1,680.0 >7,200.0 >7,124.0 4,392.3 5,365.3

pseudo-garden 7 6 7 6 7 6 6 6 6 6 6 >3,600.2 36.6 >3,600.3 41.8 >3,600.2 >3,600.2 >3,600.2 >3,600.2 >3,600.2 >3,600.2

pseudo-ii 41 8 9 9 8 9 9 8 8 8 9 >3,744.8 2,076.8 980.4 >3,664.8 996.2 585.0 >3,705.7 >3,688.7 >3,668.4 3,076.2

pseudo-jnh 16 16 16 16 16 16 16 16 16 16 16 427.1 211.4 47.2 82.6 14.3 21.0 520.9 446.1 175.4 210.2

pseudo-logic-synthesis 17 0 0 1 1 1 1 1 1 1 1 >3,600.0 >3,600.0 55.2 56.7 53.2 46.0 139.3 121.0 42.4 44.9

pseudo-mps 49 6 7 6 7 7 7 6 6 7 7 >9,199.2 >5,632.6 >9,199.1 >5,633.4 >5,781.5 >5,713.5 >9,198.9 >9,198.9 >5,692.0 >5,698.9

pseudo-mpsReduced 105 1 1 1 1 1 1 1 1 1 1 235.0 234.9 234.8 234.9 234.7 234.7 234.7 234.7 234.7 234.7

pseudo-niklas 19 2 2 2 2 3 3 2 2 3 3 >5,299.9 >5,299.3 >5,298.0 >5,297.6 1,887.7 1,812.0 >5,300.4 >5,299.8 1,790.2 1,797.4

pseudo-par 30 20 20 20 20 20 20 20 20 20 20 2,395.1 1,127.0 1,063.5 964.9 538.5 542.7 1,680.0 1,840.4 1,305.2 1,166.0

pseudo-primesDimacs 11 3 3 1 3 3 3 3 3 3 3 44.5 41.8 >7,216.9 44.5 59.3 62.7 66.2 66.0 68.3 68.4

170

Table B.1 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
W

-A
C

P
W

-A
C

2f

P
W

-A
C

2-
C

T
P
W

-A
C

2
P
W

-A
C

2f

P
W

-C
T

eS
T

R
2

eS
T

R
2w

eS
T

R
2w

m

eS
T

R
2m

P
W

-A
C

P
W

-A
C

2f

P
W

-A
C

2-
C

T

P
W

-A
C

2

P
W

-C
T

f

P
W

-C
T

eS
T

R
2

eS
T

R
2w

eS
T

R
2w

m

eS
T

R
2r
r

pseudo-ssa 8 7 7 7 7 7 7 7 7 7 7 474.9 284.4 404.7 318.9 241.4 244.7 465.4 477.9 472.6 459.4

pseudo-ttp 8 2 2 2 2 2 2 2 2 2 2 5.2 3.2 2.4 2.0 1.3 1.3 6.2 5.8 2.8 2.6

pseudo-uclid 39 7 9 8 8 9 9 7 8 8 9 >9,393.1 5,313.3 >7,908.5 >6,427.1 4,522.2 4,719.8 >11,631.0 >9,280.9 >7,966.1 6,562.8

rand-10-20-10 20 20 20 20 20 20 20 20 20 20 20 14.1 14.7 14.0 14.1 6.9 7.0 10.0 10.0 9.7 9.8

rand-3-20-20-fcd 50 44 49 50 50 50 50 49 49 50 50 >51,805.8 >28,167.4 8,517.2 16,664.4 1,946.8 1,959.3 >35,709.3 >37,268.7 23,610.2 23,082.7

rand-3-20-20 50 36 46 50 49 50 50 46 45 49 48 >88,116.9 >54,064.6 17,572.5 >35,684.0 3,950.5 3,945.1 >67,747.5 >70,110.4 >48,272.9 >46,253.3

rand-3-24-24-fcd 50 4 5 18 11 37 37 5 5 11 11 >124,213.0 >120,747.5 >88,001.9 >108,554.0 41,039.2 40,262.8 >121,367.7 >121,266.2 >112,492.4 >112,710.2

rand-3-24-24 50 0 1 6 3 24 24 1 1 3 3 >86,400.0 >83,954.6 >72,514.1 >81,504.4 34,752.9 34,506.2 >84,660.7 >85,532.6 >82,387.9 >82,161.0

rand-3-28-28-fcd 50 0 1 2 1 6 6 1 1 2 2 >21,600.0 >20,130.3 >15,673.4 >18,981.0 11,934.8 11,931.2 >20,419.8 >20,383.7 >19,288.8 >19,260.5

rand-3-28-28 50 0 1 1 1 3 3 1 1 1 1 >10,800.0 >9,678.3 >7,842.4 >9,785.6 3,372.2 3,369.4 >10,198.8 >9,954.9 >8,821.5 >8,962.1

rand-8-20-5 20 20 20 20 20 20 20 20 20 20 20 5,765.4 3,860.3 1,872.6 3,005.0 2,423.1 2,054.4 6,421.5 10,985.4 7,447.2 4,144.9

renault 2 2 2 2 2 2 2 2 2 2 2 11.7 7.0 3.8 3.9 2.6 2.6 17.8 14.7 3.1 3.5

schurrLemma 10 6 7 8 8 9 9 7 7 8 8 >12,466.9 >8,616.4 >5,668.7 >5,874.8 1,741.4 1,749.8 >8,958.0 >8,767.4 >5,251.3 >5,579.5

small 5 0 2 2 2 4 4 0 0 3 3 >14,400.0 >7,307.1 >7,351.1 >7,306.4 301.8 307.6 >14,400.0 >14,400.0 >3,862.6 >3,909.7

socialGolfers 12 0 1 0 0 0 0 1 1 1 1 >3,600.0 31.9 >3,600.0 >3,600.0 >3,600.0 >3,600.0 674.4 175.1 151.8 501.0

ssa 8 7 7 7 7 7 7 7 7 7 7 201.2 213.1 257.8 248.8 146.4 147.1 359.4 322.1 305.9 334.0

171

Appendix C

Per-Benchmark Results for R(∗,m)C Algorithms

Tables C.1, C.2, C.3, C.4, C.5, C.6 show detailed results for the R(∗,m)C algorithms

tested in Chapter 5.

172

Table C.1: Aggregated instances results for AllSol algorithms for all tested binary benchmarks.

Solved ΣCPU (sec)

#
In
st
an

ce
s

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

BH-4-13 7 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

BH-4-4 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

BH-4-7 20 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

QCP-10 15 0 0 12 12 0 12 >43,200.0 >43,200.0 638.9 625.6 >43,200.0 633.6

QCP-15 15 0 0 1 1 0 1 >3,600.0 >3,600.0 1,012.5 1,011.0 >3,600.0 1,003.7

QCP-20 15 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

QCP-25 15 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

QWH-10 10 0 0 10 10 0 10 >36,000.0 >36,000.0 129.8 129.9 >36,000.0 126.0

QWH-15 10 0 0 4 4 0 4 >14,400.0 >14,400.0 3,114.6 3,119.0 >14,400.0 3,089.7

QWH-20 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

QWH-25 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

bqwh-15-106 100 1 1 100 100 1 100 >356,915.8 >356,950.9 11,987.7 12,300.5 >356,910.8 11,188.4

bqwh-18-141 100 0 0 62 62 0 63 >226,800.0 >226,800.0 >76,302.3 >77,646.6 >226,800.0 71,895.4

coloring 22 17 17 21 21 17 21 >14,753.5 >14,772.4 1,287.5 1,259.2 >14,758.9 1,308.6

composed-25-1-2 10 10 10 10 10 10 10 2.1 2.1 3.3 3.3 1.9 3.2

composed-25-1-25 10 10 10 10 10 10 10 2.7 2.7 4.9 4.9 2.4 4.7

173

Table C.1 (continued)

Instances completed ΣCPU (sec)

#
In
st
an

ce
s

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

composed-25-1-40 10 10 10 10 10 10 10 24.4 25.6 5.8 5.7 24.3 5.6

composed-25-1-80 10 9 9 10 10 9 10 >5,096.8 >5,182.2 23.0 21.5 >5,104.9 24.9

composed-25-10-20 10 0 0 5 5 0 5 >18,000.0 >18,000.0 258.4 249.2 >18,000.0 268.7

composed-75-1-2 10 10 10 10 10 10 10 7.7 7.7 24.3 23.7 7.4 25.6

composed-75-1-25 10 10 10 10 10 10 10 8.4 8.4 28.3 27.5 8.0 29.8

composed-75-1-40 10 10 10 10 10 10 10 306.4 292.9 54.2 52.0 295.4 58.8

composed-75-1-80 10 1 2 10 10 1 10 >32,459.9 >31,310.7 62.2 59.3 >32,456.4 67.4

domino 24 7 7 7 7 7 6 6,015.7 6,015.8 6,015.7 6,015.9 6,011.1 >7,873.2

driver 7 1 1 4 4 1 4 >10,800.1 >10,800.1 3,897.6 3,727.7 >10,800.1 3,813.3

ehi-85 100 1 1 50 50 1 50 >176,527.7 >176,539.6 2,003.2 1,960.3 >176,531.0 2,115.9

ehi-90 100 0 0 54 54 0 54 >194,400.0 >194,400.0 2,662.2 2,598.6 >194,400.0 2,802.4

fapp-fapp01 11 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

frb30-15 10 0 0 10 10 0 10 >36,000.0 >36,000.0 10,874.4 10,145.5 >36,000.0 11,091.6

frb35-17 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

frb40-19 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

frb45-21 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

174

Table C.1 (continued)

Instances completed ΣCPU (sec)

#
In
st
an

ce
s

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

frb50-23 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

frb53-24 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

frb56-25 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

frb59-26 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

geom 100 0 0 72 72 0 72 >259,200.0 >259,200.0 26,030.9 23,403.1 >259,200.0 29,355.4

graphColoring-hos 14 1 1 6 6 1 6 >18,369.8 >18,398.8 1,611.0 1,560.1 >18,371.0 1,694.7

graphColoring-insertion-full-insertion 41 5 5 16 16 5 17 >43,609.8 >43,567.5 >7,732.9 >7,607.7 >43,594.5 7,766.2

graphColoring-insertion-k-insertion 32 7 7 15 15 7 15 >29,843.1 >29,823.0 4,327.8 4,420.7 >29,811.3 4,145.2

graphColoring-leighton-leighton-15 28 4 4 2 2 6 2 >7,653.1 >7,651.9 >18,471.9 >18,228.3 1,348.4 >18,855.2

graphColoring-leighton-leighton-25 32 2 2 2 2 2 2 157.7 157.7 2,450.4 2,309.3 164.5 2,666.8

graphColoring-leighton-leighton-5 8 4 4 7 7 4 7 >11,138.2 >11,138.8 5,106.7 4,953.8 >11,151.6 5,288.9

graphColoring-mug 8 8 8 4 4 8 4 347.9 352.1 >14,400.4 >14,400.4 341.9 >14,400.4

graphColoring-myciel 16 5 5 10 10 5 10 >18,223.5 >18,240.4 2,906.5 2,927.5 >18,222.6 2,787.5

graphColoring-register-fpsol 37 3 3 2 2 3 2 255.8 255.8 >5,563.2 >5,481.3 270.5 >5,657.6

graphColoring-register-inithx 32 3 4 2 2 5 2 >10,012.0 >9,283.7 >13,773.9 >13,662.5 5,850.8 >13,924.0

graphColoring-register-mulsol 49 9 9 5 5 9 5 10,185.5 10,621.2 >17,731.5 >17,615.1 10,406.9 >17,848.4

175

Table C.1 (continued)

Instances completed ΣCPU (sec)

#
In
st
an

ce
s

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

graphColoring-register-zeroin 31 5 5 3 3 5 3 4,975.4 5,198.8 >8,467.8 >8,417.4 5,070.7 >8,537.6

graphColoring-school 8 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

graphColoring-sgb-book 26 19 19 10 10 19 10 >19,309.4 >19,578.0 >47,225.4 >47,198.0 >19,353.3 >47,257.4

graphColoring-sgb-games 4 3 3 2 2 3 2 >3,702.8 >3,708.9 >9,811.7 >9,812.5 >3,702.5 >9,746.2

graphColoring-sgb-miles 42 7 7 7 7 7 7 >5,307.6 >5,386.8 >6,736.6 >6,476.5 >5,335.2 >7,196.5

graphColoring-sgb-queen 50 3 3 6 6 3 6 >14,475.9 >14,481.1 >8,178.1 >8,090.1 >14,476.4 >8,219.4

hanoi 5 5 4 5 5 5 4 2,330.1 >3,607.5 2,330.1 2,330.2 2,324.5 >3,607.4

haystacks 51 7 7 3 3 7 3 1,435.7 1,517.4 >14,444.1 >14,445.1 1,448.4 >14,441.0

jobShop-e0ddr1 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

jobShop-e0ddr2 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

jobShop-enddr1 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

jobShop-enddr2 6 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

jobShop-ewddr2 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

knights 19 6 6 7 7 6 7 >3,790.5 >3,790.9 2,879.7 1,797.6 >3,797.4 3,328.3

langford 4 4 4 2 2 4 2 2,744.0 2,837.6 >7,438.2 >7,405.5 2,824.0 >7,467.6

langford2 24 9 9 14 14 9 14 >21,914.7 >21,928.8 >8,878.7 >8,060.8 >21,922.7 >10,285.1

176

Table C.1 (continued)

Instances completed ΣCPU (sec)

#
In
st
an

ce
s

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

langford3 23 10 10 9 9 9 9 1,587.2 1,641.7 >4,948.3 >4,766.0 >3,833.8 >5,091.0

langford4 24 10 10 8 8 10 8 1,185.9 1,218.2 >10,069.1 >9,587.0 1,217.8 >10,613.7

lard 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

marc 10 7 7 10 10 7 8 >11,619.5 >11,619.5 13,111.5 10,911.7 >11,593.7 >16,338.2

os-taillard-4 30 4 4 19 19 4 15 >62,519.6 >62,598.8 >24,484.8 >23,130.3 >62,844.5 >36,281.1

os-taillard-5 30 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

os-taillard-7 30 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

pigeons 25 9 9 11 11 9 11 >11,790.0 >11,843.1 >5,046.3 >4,985.4 >11,802.1 >5,158.1

queenAttacking 10 2 2 2 2 2 2 4.3 4.5 52.0 47.3 4.4 57.9

queens 14 4 4 7 7 4 7 >10,878.0 >10,882.1 712.6 607.4 >10,879.3 948.4

queensKnights 18 5 5 7 7 5 7 >12,601.2 >12,708.5 >5,673.8 >5,040.1 >12,778.9 >5,973.6

rand-2-23 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-24 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-25 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-26 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-27 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

177

Table C.1 (continued)

Instances completed ΣCPU (sec)

#
In
st
an

ce
s

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

rand-2-30-15-fcd 50 0 0 46 46 0 46 >165,600.0 >165,600.0 52,848.9 49,427.5 >165,600.0 54,035.2

rand-2-30-15 50 0 0 38 39 0 37 >140,400.0 >140,400.0 >66,254.9 62,129.2 >140,400.0 >67,538.0

rand-2-40-19-fcd 50 0 0 1 1 0 1 >3,600.0 >3,600.0 932.9 870.8 >3,600.0 970.0

rand-2-40-19 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-50-23-fcd 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-50-23 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rlfapGraphs 14 5 5 9 9 5 9 >18,858.8 >17,457.0 6,208.3 5,425.5 >18,875.4 7,899.3

rlfapGraphsMod 12 6 6 5 5 6 5 >4,918.4 >4,969.3 >7,658.8 >7,618.4 >4,892.3 >7,690.6

rlfapScens11 12 5 5 2 2 5 2 1,761.2 1,811.0 >12,001.5 >11,874.0 1,788.1 >12,264.4

rlfapScens 11 7 7 8 8 7 8 >4,541.2 >4,570.9 2,865.6 2,542.1 >4,562.9 3,601.7

rlfapScensMod 13 7 7 9 9 7 8 >7,683.9 >7,690.2 3,935.9 3,506.8 >7,682.4 >4,004.9

subs 9 9 9 9 9 9 9 20.6 20.7 209.9 179.5 19.4 272.6

super-jobShop-super-jobShop-e0ddr1 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

super-jobShop-super-jobShop-e0ddr2 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

super-jobShop-super-jobShop-enddr1 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

super-jobShop-super-jobShop-enddr2 6 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

178

Table C.1 (continued)

Instances completed ΣCPU (sec)

#
In
st
an

ce
s

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

super-jobShop-super-jobShop-ewddr2 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

super-os-super-os-taillard-4 30 3 3 12 13 3 9 >41,698.2 >41,811.6 >18,270.1 16,905.9 >42,031.0 >27,312.3

super-os-super-os-taillard-5 30 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

super-queens 14 4 4 3 3 4 3 178.9 188.0 >3,775.1 >3,768.6 181.9 >3,775.1

tightness0.1 100 0 0 6 6 0 5 >21,600.0 >21,600.0 12,130.3 10,978.7 >21,600.0 >12,552.7

tightness0.2 100 0 0 5 7 0 5 >25,200.0 >25,200.0 >15,822.2 15,088.3 >25,200.0 >15,790.7

tightness0.35 100 0 0 10 13 0 10 >46,800.0 >46,800.0 >24,325.8 23,545.1 >46,800.0 >24,446.4

tightness0.5 100 0 0 13 13 0 13 >46,800.0 >46,800.0 23,784.4 22,669.6 >46,800.0 24,628.8

tightness0.65 100 0 0 33 39 0 30 >140,400.0 >140,400.0 >74,684.1 71,495.0 >140,400.0 >76,991.4

tightness0.8 100 17 20 64 64 17 62 >198,615.5 >186,915.2 73,348.6 68,902.0 >199,513.5 >78,522.3

tightness0.9 100 73 76 79 81 73 79 >97,407.5 >87,323.7 >74,478.6 >71,008.2 >105,932.0 >78,987.1

179

Table C.2: Aggregated instances results for AllSol algorithms for all tested non-binary benchmarks.

Solved ΣCPU (sec)

#
In
st
an

ce
s

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

QG3 7 7 7 7 7 7 7 0.5 0.5 0.5 0.5 0.5 0.5

QG4 7 7 7 7 7 7 7 0.5 0.5 0.5 0.5 0.5 0.5

QG5 7 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

QG6 7 7 7 7 7 7 7 0.6 0.6 0.6 0.6 0.6 0.6

QG7 7 7 7 7 7 7 7 0.6 0.6 0.6 0.6 0.6 0.6

aim-100 24 7 6 18 18 7 18 >47,210.6 >47,647.6 9,530.5 9,883.4 >46,800.5 8,626.2

aim-200 24 0 0 3 3 0 3 >10,800.0 >10,800.0 16.9 17.0 >10,800.0 17.3

aim-50 24 24 24 24 24 24 24 306.2 339.1 72.4 75.1 300.8 65.3

allIntervalSeries 25 6 6 9 9 6 9 >11,824.4 >11,887.2 4,211.1 4,046.8 >11,822.6 4,051.1

bddLarge 35 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

bddSmall 35 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

bmc 24 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

bqwh-15-106_glb 100 34 35 100 100 34 100 >261,863.6 >261,331.5 70.8 61.1 >260,525.0 73.1

bqwh-18-141_glb 100 1 1 100 100 1 100 >356,509.3 >356,524.1 385.1 293.2 >356,504.1 425.2

chessboardColoration 20 6 6 6 7 6 6 >10,950.5 >10,957.7 >11,300.6 >10,514.2 >10,953.6 >11,345.3

dag-half 25 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

180

Table C.2 (continued)

Instances completed ΣCPU (sec)

#
In
st
an

ce
s

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

dag-rand 25 22 22 22 22 22 22 1,561.7 1,562.1 1,584.1 1,589.1 870.9 874.8

dubois 13 3 3 3 3 3 3 4,231.4 4,257.6 4,232.0 4,257.9 4,074.5 4,074.0

golombRulerArity3 14 0 0 2 2 0 2 >7,200.0 >7,200.0 763.6 672.8 >7,200.0 886.4

golombRulerArity4 14 2 2 2 2 2 2 414.4 414.4 414.6 414.6 414.0 414.3

graceful 4 1 1 1 1 1 1 67.9 72.5 13.0 12.6 67.7 12.5

jnhSat 16 0 0 0 3 0 0 >10,800.0 >10,800.0 >10,800.0 7,955.7 >10,800.0 >10,800.0

jnhUnsat 34 0 0 5 10 0 4 >36,000.0 >36,000.0 >24,467.6 11,196.5 >36,000.0 >26,732.5

latinSquare 10 4 4 4 5 4 4 >3,607.6 >3,607.9 >3,791.8 2,571.2 >3,607.4 >4,452.8

lexVg 63 37 35 39 39 37 39 >30,430.7 >31,522.4 >19,577.2 >18,204.2 >30,310.7 >23,874.0

mknap 6 2 2 2 2 2 2 122.4 122.4 122.4 122.4 122.4 122.4

modifiedRenault 50 50 50 50 50 50 50 1,862.2 1,885.6 2,848.5 2,738.6 1,673.8 2,754.4

nengfa 10 1 1 2 2 1 2 >3,737.1 >3,741.5 437.4 379.0 >3,733.8 497.1

ogdVg 65 8 8 14 14 8 10 >29,029.7 >29,047.0 >16,918.5 >14,498.3 >29,025.7 >26,147.4

ortholatin 9 1 1 1 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0

pret 8 4 4 4 4 4 4 7,607.6 7,669.2 7,605.3 7,672.7 7,382.6 7,382.7

primes-10 32 12 12 12 12 12 12 36.5 35.7 36.7 35.7 28.4 33.0

181

Table C.2 (continued)

Instances completed ΣCPU (sec)

#
In
st
an

ce
s

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

primes-15 32 8 8 8 8 8 8 5.6 5.7 5.8 5.8 5.0 5.1

primes-20 32 8 8 8 8 8 8 14.7 14.7 15.8 15.8 12.6 13.7

primes-25 32 8 8 8 8 8 8 24.6 24.1 25.3 24.8 21.7 22.3

primes-30 32 6 6 6 6 6 6 9.8 9.8 9.8 9.8 9.1 9.1

pseudo-aim 48 11 11 25 25 11 25 >56,171.3 >56,459.9 2,984.4 3,040.1 >56,033.1 2,821.2

pseudo-chnl 21 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

pseudo-circuits 7 3 3 2 2 3 3 182.6 195.0 >3,600.2 >3,600.2 124.2 542.3

pseudo-fpga 36 12 12 12 12 12 12 3,729.6 4,048.3 4,464.0 4,583.8 3,672.6 4,246.8

pseudo-garden 7 6 6 6 6 6 6 4.3 4.7 3.5 3.4 4.0 3.3

pseudo-ii 41 1 1 1 1 1 1 0.4 0.4 0.5 0.5 0.4 0.5

pseudo-jnh 16 0 0 2 5 0 2 >18,000.0 >18,000.0 >12,969.3 9,065.5 >18,000.0 >13,735.8

pseudo-logic-synthesis 17 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

pseudo-mps 49 6 6 6 6 6 6 2,002.6 2,002.7 2,009.0 2,009.9 2,001.6 2,006.5

pseudo-mpsReduced 105 1 1 1 1 1 1 238.0 238.2 244.3 245.2 237.1 242.0

pseudo-niklas 19 2 2 2 2 2 2 1,736.8 1,741.0 1,800.7 1,771.6 1,731.5 1,795.2

pseudo-par 30 12 12 11 11 12 11 3,634.1 3,751.5 >6,685.0 >6,777.4 3,602.4 >6,445.7

182

Table C.2 (continued)

Instances completed ΣCPU (sec)

#
In
st
an

ce
s

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

pseudo-primesDimacs 11 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

pseudo-radar 12 3 3 3 3 3 2 735.4 717.4 4,384.8 795.4 660.3 >6,899.2

pseudo-routing 15 4 4 4 4 4 4 3,365.1 3,626.6 4,066.4 4,032.7 3,061.2 3,371.6

pseudo-ssa 8 1 1 1 1 1 1 382.1 383.9 388.9 390.6 382.1 386.8

pseudo-ttp 8 2 2 2 2 2 2 1,293.0 1,453.8 3,001.6 3,053.5 1,300.2 2,691.3

pseudo-uclid 39 3 3 3 3 3 3 1,831.0 1,833.6 1,832.9 1,833.7 1,827.5 1,828.9

ramsey3 8 0 0 2 2 0 2 >7,200.0 >7,200.0 6.3 5.8 >7,200.0 6.5

ramsey4 8 0 0 3 3 0 3 >10,800.0 >10,800.0 1,243.8 1,039.1 >10,800.0 1,449.1

rand-10-20-10 20 20 20 20 20 20 20 44.8 44.8 45.1 45.1 40.7 40.9

rand-3-20-20-fcd 50 0 0 4 5 0 3 >18,000.0 >18,000.0 >11,161.9 7,494.3 >18,000.0 >14,259.7

rand-3-20-20 50 0 0 3 3 0 1 >10,800.0 >10,800.0 6,248.0 4,099.4 >10,800.0 >8,001.3

rand-3-24-24-fcd 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-3-24-24 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-3-28-28-fcd 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-3-28-28 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-8-20-5 20 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

183

Table C.2 (continued)

Instances completed ΣCPU (sec)

#
In
st
an

ce
s

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

A
ll

S
o
lF

B
Ψ
-r

A
ll

S
o
lF

B
Ψ

A
ll

S
o
lF

B
m

3
-r

A
ll

S
o
lF

B
m

3

A
ll

S
o
lΨ

A
ll

S
o
lm

3

renault 2 2 2 2 2 2 2 13.9 14.4 17.7 18.5 8.9 12.6

schurrLemma 10 6 6 4 4 6 3 3,504.5 3,547.9 >12,119.5 >11,550.7 3,529.8 >12,587.0

small 5 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

socialGolfers 12 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

ssa 8 6 6 6 6 6 6 42.7 42.8 44.9 45.0 43.5 45.4

travellingSalesman-20 15 0 0 7 7 0 7 >25,200.0 >25,200.0 4,195.8 4,001.7 >25,200.0 4,353.6

travellingSalesman-25 15 0 0 3 3 0 2 >10,800.0 >10,800.0 8,342.3 7,792.5 >10,800.0 >8,763.9

ukVg 65 8 7 10 11 8 9 >35,705.5 >36,516.1 >30,646.6 >28,516.2 >35,675.1 >38,154.4

varDimacs 9 6 6 6 6 6 6 238.3 262.3 273.3 285.9 232.8 240.6

wordsVg 65 30 30 36 36 30 35 >33,201.1 >34,773.6 >12,047.6 >10,265.0 >33,116.1 >17,382.8

184

Table C.3: Aggregated instances results for PerTuple algorithms for all tested binary benchmarks.

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

BH-4-13 7 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

BH-4-4 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

BH-4-7 20 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

QCP-10 15 0 0 0 12 12 12 >43,200.0 >43,200.0 >43,200.0 431.0 835.5 443.5

QCP-15 15 0 0 0 1 1 1 >3,600.0 >3,600.0 >3,600.0 865.4 1,233.4 861.3

QCP-20 15 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

QCP-25 15 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

QWH-10 10 7 7 7 10 10 10 >17,247.1 >19,830.2 >17,418.2 113.7 164.5 115.7

QWH-15 10 0 0 0 4 4 4 >14,400.0 >14,400.0 >14,400.0 2,684.6 3,770.5 2,661.8

QWH-20 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

QWH-25 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

bqwh-15-106 100 29 25 30 100 100 100 >278,561.2 >284,931.8 >280,799.1 9,310.6 17,177.9 9,179.3

bqwh-18-141 100 0 0 0 69 56 67 >248,400.0 >248,400.0 >248,400.0 75,171.2 >125,904.1 >74,852.9

coloring 22 18 18 18 18 21 18 >10,950.5 >10,961.0 >10,953.5 >10,896.6 1,464.8 >10,899.2

composed-25-1-2 10 10 10 10 10 10 10 1.9 1.9 1.9 2.9 2.9 2.9

185

Table C.3 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

composed-25-1-25 10 10 10 10 10 10 10 2.6 2.6 2.6 4.3 4.4 4.3

composed-25-1-40 10 10 10 10 10 10 10 3.3 3.3 3.3 5.1 5.2 5.0

composed-25-1-80 10 10 10 10 10 10 10 23.4 23.3 23.4 18.2 18.7 18.0

composed-25-10-20 10 0 0 0 5 5 5 >18,000.0 >18,000.0 >18,000.0 173.0 296.7 177.3

composed-75-1-2 10 10 10 10 10 10 10 7.2 7.2 7.2 21.0 18.0 20.8

composed-75-1-25 10 10 10 10 10 10 10 7.8 7.8 7.8 24.4 20.8 24.1

composed-75-1-40 10 10 10 10 10 10 10 8.5 8.5 8.5 46.5 37.0 45.8

composed-75-1-80 10 10 10 10 10 10 10 24.3 23.9 24.2 54.5 44.5 53.6

domino 24 7 7 7 7 7 7 6,018.3 6,018.4 6,019.4 6,018.3 6,018.4 6,018.5

driver 7 2 1 1 1 4 1 >10,152.4 >10,800.1 >10,800.1 >10,800.3 5,485.6 >10,800.3

ehi-85 100 8 6 8 50 50 50 >167,899.1 >173,101.4 >167,898.2 >12,975.4 >12,703.9 >12,956.6

ehi-90 100 7 7 7 54 54 54 >194,042.0 >195,401.0 >194,040.9 >17,155.4 >17,028.5 >17,142.8

fapp-fapp01 11 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

frb30-15 10 0 0 0 10 10 10 >36,000.0 >36,000.0 >36,000.0 7,388.7 17,129.9 7,316.5

frb35-17 10 0 0 0 0 0 0 >7,200.0 >7,200.0 >7,200.0 >7,200.0 >7,200.0 >7,200.0

frb40-19 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

186

Table C.3 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

frb45-21 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

frb50-23 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

frb53-24 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

frb56-25 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

frb59-26 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

geom 100 30 24 27 77 71 77 >238,539.3 >258,814.2 >245,679.0 >45,017.6 >68,631.8 >45,326.8

graphColoring-hos 14 2 2 2 4 6 4 >14,899.2 >14,899.1 >14,899.3 >7,324.5 1,804.2 >7,324.9

graphColoring-insertion-full-insertion 41 12 12 12 15 16 15 >30,550.0 >30,991.2 >30,664.6 >22,844.1 >18,877.1 >22,879.9

graphColoring-insertion-k-insertion 32 10 10 10 15 14 15 >18,647.8 >18,693.8 >18,665.8 3,715.2 >4,981.3 3,730.4

graphColoring-leighton-leighton-15 28 6 6 6 0 2 0 >6,522.1 >6,521.9 >6,522.0 >25,200.0 >22,163.2 >25,200.0

graphColoring-leighton-leighton-25 32 4 4 4 0 2 0 4,687.7 4,687.5 4,687.7 >14,400.0 >9,792.9 >14,400.0

graphColoring-leighton-leighton-5 8 4 4 4 0 7 0 >11,144.5 >11,144.5 >11,144.5 >25,200.0 5,446.9 >25,200.0

graphColoring-mug 8 8 8 8 4 4 4 351.6 356.5 352.0 >14,400.4 >14,400.4 >14,400.4

graphColoring-myciel 16 8 8 7 10 10 10 >9,925.4 >9,629.1 >11,910.8 2,351.7 4,122.5 2,516.1

graphColoring-register-fpsol 37 3 3 3 0 2 0 269.2 269.2 269.2 >10,800.0 >5,793.7 >10,800.0

graphColoring-register-inithx 32 3 3 3 0 2 0 >7,607.9 >7,607.9 >7,607.9 >18,000.0 >14,279.2 >18,000.0

187

Table C.3 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

graphColoring-register-mulsol 49 5 5 5 0 5 0 >14,490.6 >14,490.6 >14,490.6 >32,400.0 >18,713.1 >32,400.0

graphColoring-register-zeroin 31 5 5 5 0 3 0 4,988.2 4,988.2 4,988.2 >18,000.0 >8,798.3 >18,000.0

graphColoring-school 8 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

graphColoring-sgb-book 26 23 23 23 10 10 10 >7,756.6 >7,769.5 >7,763.1 >50,603.9 >50,859.1 >50,617.4

graphColoring-sgb-games 4 4 4 4 2 2 2 97.1 129.4 107.1 >8,771.5 >10,446.0 >8,814.2

graphColoring-sgb-miles 42 7 7 7 6 7 6 >5,321.9 >5,322.6 >5,322.3 >8,196.6 >7,360.0 >8,255.7

graphColoring-sgb-queen 50 4 4 4 7 5 7 >11,000.9 >11,049.9 >11,001.9 5,590.2 >8,887.1 5,609.5

hanoi 5 4 5 5 5 5 5 >3,615.3 2,461.3 2,461.5 2,461.5 2,461.4 2,461.5

haystacks 51 8 8 8 3 3 3 3,194.2 3,258.9 3,194.2 >18,048.6 >18,065.0 >18,051.3

jobShop-e0ddr1 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

jobShop-e0ddr2 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

jobShop-enddr1 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

jobShop-enddr2 6 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

jobShop-ewddr2 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

knights 19 6 6 6 4 4 4 >3,800.1 >3,800.1 >3,800.1 >11,469.8 >11,467.7 >11,469.2

langford 4 2 3 4 2 2 2 >7,260.7 >5,855.9 4,450.1 >7,320.2 >7,490.0 >7,323.8

188

Table C.3 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

langford2 24 10 10 10 15 14 15 >20,084.7 >20,217.7 >20,109.5 4,713.4 >9,222.7 4,706.6

langford3 23 10 10 10 9 9 9 2,607.3 2,614.9 2,607.3 >4,272.1 >5,296.9 >4,283.4

langford4 24 10 9 9 9 8 9 1,919.4 >4,023.1 >4,023.1 >7,148.9 >10,418.8 >7,150.9

lard 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

marc 10 5 5 5 5 10 5 >18,504.3 >18,504.3 >18,504.3 >18,326.1 9,960.3 >18,326.1

os-taillard-4 30 1 1 1 12 8 12 >73,687.8 >73,687.8 >73,687.8 >47,620.4 >55,519.3 >47,973.2

os-taillard-5 30 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

os-taillard-7 30 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

pigeons 25 9 9 9 11 11 11 >11,851.4 >11,851.4 >11,851.4 >5,137.9 >5,569.1 >5,149.5

queenAttacking 10 2 2 2 2 2 2 5.1 5.1 5.1 36.6 69.2 36.3

queens 14 5 5 5 7 7 7 >11,336.6 >11,474.3 >11,389.2 >3,779.9 >4,321.4 >3,793.6

queensKnights 18 6 6 6 5 4 5 >9,707.6 >9,845.0 >9,760.3 >13,927.1 >15,074.9 >13,866.2

rand-2-23 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-24 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-25 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-26 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

189

Table C.3 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

rand-2-27 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-30-15-fcd 50 2 1 1 48 37 48 >170,212.5 >172,211.6 >170,811.2 41,864.1 >81,533.2 41,273.3

rand-2-30-15 50 1 0 0 44 26 44 >161,764.9 >162,000.0 >162,000.0 >64,771.8 >114,227.2 >64,086.6

rand-2-40-19-fcd 50 0 0 0 2 1 2 >7,200.0 >7,200.0 >7,200.0 3,377.0 >5,044.4 3,213.5

rand-2-40-19 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-50-23-fcd 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-50-23 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rlfapGraphs 14 7 6 7 7 7 7 >10,939.6 >12,445.8 >11,175.1 >8,465.6 >10,345.1 >8,506.5

rlfapGraphsMod 12 8 8 8 5 5 5 >3,837.1 >3,851.2 >3,836.3 >14,685.6 >14,988.1 >14,691.5

rlfapScens11 12 5 5 5 0 2 0 255.2 253.9 254.6 >18,000.0 >12,042.6 >18,000.0

rlfapScens 11 7 7 7 7 7 7 >4,229.4 >4,323.2 >4,231.0 >4,461.1 >4,641.3 >4,462.7

rlfapScensMod 13 9 9 9 8 8 8 >4,567.8 >5,178.5 >4,581.9 >7,523.7 >7,693.3 >7,528.3

subs 9 9 9 9 9 9 9 21.5 21.9 21.5 277.7 350.9 281.0

super-jobShop-super-jobShop-e0ddr1 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

super-jobShop-super-jobShop-e0ddr2 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

super-jobShop-super-jobShop-enddr1 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

190

Table C.3 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

super-jobShop-super-jobShop-enddr2 6 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

super-jobShop-super-jobShop-ewddr2 10 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

super-os-super-os-taillard-4 30 2 2 2 4 4 4 >43,148.3 >43,148.3 >43,148.3 >36,036.4 >37,071.7 >36,039.0

super-os-super-os-taillard-5 30 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

super-queens 14 4 4 4 3 3 3 293.7 293.7 293.7 >3,738.8 >3,870.9 >3,756.2

tightness0.1 100 0 0 0 8 5 8 >36,000.0 >36,000.0 >36,000.0 >19,135.2 >29,134.4 >19,175.0

tightness0.2 100 0 0 0 8 3 8 >28,800.0 >28,800.0 >28,800.0 13,494.3 >22,545.6 13,209.3

tightness0.35 100 0 0 0 22 9 20 >90,000.0 >90,000.0 >90,000.0 >57,117.4 >74,219.9 >56,795.4

tightness0.5 100 0 0 0 17 7 18 >72,000.0 >72,000.0 >72,000.0 >42,416.7 >61,234.8 >40,449.5

tightness0.65 100 12 7 10 34 19 39 >172,655.0 >183,770.8 >173,823.6 >124,462.0 >157,460.4 >120,086.3

tightness0.8 100 67 59 66 58 39 59 >103,364.1 >132,386.3 >104,315.4 >133,804.1 >193,606.9 >129,158.4

tightness0.9 100 77 72 79 66 50 67 >98,575.9 >126,323.3 >95,561.8 >143,477.3 >195,727.5 >141,663.6

191

Table C.4: Aggregated instances results for PerTuple algorithms for all tested non-binary benchmarks.

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

QG3 7 7 7 7 7 7 7 0.5 0.5 0.5 0.5 0.5 0.5

QG4 7 7 7 7 7 7 7 0.5 0.5 0.5 0.5 0.5 0.5

QG5 7 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

QG6 7 7 7 7 7 7 7 0.6 0.6 0.6 0.6 0.6 0.6

QG7 7 7 7 7 7 7 7 0.6 0.6 0.6 0.6 0.6 0.6

aim-100 24 15 15 15 18 17 18 >18,789.9 >22,528.0 >18,882.3 9,540.8 >12,122.8 9,487.2

aim-200 24 2 2 2 3 3 3 >3,613.6 >3,616.1 >3,614.8 18.2 17.8 18.4

aim-50 24 24 24 24 24 24 24 104.4 133.3 121.9 74.9 96.9 76.0

allIntervalSeries 25 7 7 7 9 8 9 >7,409.3 >7,465.3 >7,417.2 3,232.3 >5,162.5 3,184.5

bddLarge 35 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

bddSmall 35 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

bmc 24 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

bqwh-15-106_glb 100 98 98 98 100 100 100 >9,199.5 >11,237.1 >10,144.0 74.9 92.3 73.8

bqwh-18-141_glb 100 54 53 55 100 100 100 >187,567.0 >184,130.9 >180,876.1 377.9 531.8 348.7

chessboardColoration 20 8 8 8 7 6 7 >3,743.5 >3,786.7 >3,766.1 >9,062.5 >11,385.6 >9,025.2

192

Table C.4 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

dag-half 25 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

dag-rand 25 22 22 22 22 22 22 873.5 873.1 873.5 915.8 909.1 915.3

dubois 13 3 3 3 3 3 3 4,082.6 4,116.6 4,063.7 4,082.8 4,118.2 4,065.5

golombRulerArity3 14 0 0 0 2 2 2 >7,200.0 >7,200.0 >7,200.0 339.3 892.7 357.2

golombRulerArity4 14 2 2 2 2 2 2 414.1 414.1 414.1 415.2 415.0 415.2

graceful 4 1 1 1 1 1 1 3.3 4.2 3.7 10.9 19.7 10.8

jnhSat 16 0 0 0 0 0 0 >32,400.0 >32,400.0 >32,400.0 >32,400.0 >32,400.0 >32,400.0

jnhUnsat 34 0 0 0 1 6 1 >61,200.0 >61,200.0 >61,200.0 >57,826.0 >46,186.3 >57,823.5

latinSquare 10 4 4 4 4 4 4 >3,601.6 >3,601.6 >3,601.6 >3,758.2 >3,836.1 >3,781.9

lexVg 63 47 47 47 39 36 39 9,746.1 10,911.4 9,782.7 >38,086.3 >49,216.9 >36,761.8

mknap 6 2 2 2 2 2 2 122.4 122.4 122.4 122.4 122.4 122.4

modifiedRenault 50 50 50 50 50 50 50 2,572.0 3,278.5 2,535.0 11,357.2 18,520.8 11,129.3

nengfa 10 1 1 1 2 2 2 >3,716.4 >3,721.9 >3,715.8 527.8 865.9 527.7

ogdVg 65 18 18 19 11 10 11 >9,702.3 >11,531.9 8,193.1 >36,060.8 >39,722.2 >36,073.3

ortholatin 9 1 1 1 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0

pret 8 4 4 4 4 4 4 7,297.5 7,490.6 7,279.4 7,297.0 7,491.7 7,278.2

193

Table C.4 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

primes-10 32 12 12 12 12 12 12 964.6 966.3 964.1 1,059.8 1,065.2 1,059.5

primes-15 32 8 8 8 8 8 8 10.3 10.3 10.3 10.4 10.4 10.4

primes-20 32 8 8 8 8 8 8 89.6 89.5 89.6 90.6 91.0 90.6

primes-25 32 8 8 8 8 8 8 122.8 122.5 122.7 123.3 123.9 123.2

primes-30 32 6 6 6 6 6 6 252.1 252.0 252.1 252.1 252.0 252.1

pseudo-aim 48 21 20 21 25 25 25 >22,372.8 >24,301.7 >23,201.4 2,895.2 3,423.2 2,886.6

pseudo-chnl 21 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

pseudo-circuits 7 2 2 2 2 2 2 >3,600.1 >3,600.2 >3,600.1 >3,600.6 >3,600.9 >3,600.6

pseudo-fpga 36 12 11 13 11 9 11 >4,922.5 >14,143.5 3,159.4 >13,489.5 >20,219.7 >13,435.4

pseudo-garden 7 6 6 6 6 6 6 2.3 3.3 2.6 3.6 4.2 3.6

pseudo-ii 41 1 1 1 1 1 1 0.4 0.5 0.4 0.6 0.7 0.6

pseudo-jnh 16 0 0 0 0 2 0 >32,400.0 >32,400.0 >32,400.0 >32,400.0 >27,214.1 >32,400.0

pseudo-logic-synthesis 17 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

pseudo-mps 49 6 6 6 6 6 6 2,031.5 2,044.2 2,031.2 2,042.2 2,056.3 2,041.9

pseudo-mpsReduced 105 1 1 1 1 1 1 251.4 264.0 251.2 262.0 276.0 261.7

pseudo-niklas 19 2 2 2 1 1 1 2,925.7 3,309.6 2,868.7 >5,309.6 >5,309.6 >5,309.6

194

Table C.4 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

pseudo-par 30 12 12 12 11 10 11 3,810.2 3,921.2 4,042.3 >6,921.1 >7,231.1 >6,945.7

pseudo-primesDimacs 11 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

pseudo-radar 12 2 2 2 0 0 0 >4,800.1 >6,130.2 >4,714.9 >10,800.0 >10,800.0 >10,800.0

pseudo-routing 15 4 4 4 4 4 5 >7,429.7 >8,812.7 >7,231.7 >7,247.6 >8,700.4 5,153.4

pseudo-ssa 8 1 1 1 1 1 1 381.6 383.0 381.2 388.5 393.2 387.4

pseudo-ttp 8 2 2 2 2 2 2 463.2 802.9 608.4 2,754.9 4,342.4 2,549.0

pseudo-uclid 39 3 3 3 3 3 3 2,018.1 2,077.3 2,004.6 2,490.7 2,802.8 2,468.0

ramsey3 8 2 2 2 2 2 2 1,724.3 213.0 1,028.2 5.5 7.0 5.7

ramsey4 8 0 0 0 1 3 1 >10,800.0 >10,800.0 >10,800.0 >7,334.2 1,230.1 >7,338.8

rand-10-20-10 20 20 20 20 20 20 20 157.7 157.5 157.7 158.1 158.0 158.1

rand-3-20-20-fcd 50 16 4 15 3 1 3 >42,218.7 >57,614.0 >46,258.1 >61,237.5 >62,354.7 >60,554.3

rand-3-20-20 50 9 4 9 2 1 3 17,959.5 >26,312.1 19,903.8 >28,796.0 >29,973.1 >28,414.3

rand-3-24-24-fcd 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-3-24-24 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-3-28-28-fcd 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

rand-3-28-28 50 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

195

Table C.4 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

P
er

T
u
pl

eΨ
-a
s

P
er

T
u
pl

eΨ
-n
s

P
er

T
u
pl

eΨ

P
er

T
u
pl

em
3
-a
s

P
er

T
u
pl

em
3
-n
s

P
er

T
u
pl

em
3

rand-8-20-5 20 1 0 0 0 0 0 2,754.8 >3,600.0 >3,600.0 >3,600.0 >3,600.0 >3,600.0

renault 2 2 2 2 2 2 2 88.2 138.9 87.7 976.0 1,262.8 974.4

schurrLemma 10 6 7 7 4 3 3 >5,013.9 2,803.8 2,690.0 >16,120.4 >17,132.8 >16,356.5

small 5 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

socialGolfers 12 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

ssa 8 6 6 6 6 6 6 43.8 43.9 43.7 46.0 47.1 45.9

travellingSalesman-20 15 1 0 1 7 6 7 >27,673.4 >28,800.0 >27,908.3 >7,129.0 >8,964.7 >6,919.7

travellingSalesman-25 15 0 0 0 3 1 4 >14,400.0 >14,400.0 >14,400.0 >9,285.0 >12,739.7 8,809.5

ukVg 65 20 20 20 7 5 7 10,558.0 13,449.6 10,383.6 >55,291.5 >58,460.1 >55,293.4

varDimacs 9 6 6 6 6 6 6 >3,863.3 >3,991.2 >3,913.1 >3,883.5 >3,955.1 >3,880.6

wordsVg 65 42 42 42 37 33 37 >12,322.0 >13,715.1 >12,360.7 >36,254.6 >44,263.5 >34,586.6

196

Table C.5: Aggregated instances results for PerFB algorithms for all tested binary benchmarks.

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

BH-4-13 7 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

BH-4-4 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

BH-4-7 20 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

QCP-10 15 0 0 0 0 12 12 12 12 >43,200.0 >43,200.0 >43,200.0 >43,200.0 683.4 731.8 443.9 463.8

QCP-15 15 0 0 0 0 1 1 1 1 >3,600.0 >3,600.0 >3,600.0 >3,600.0 1,137.2 1,181.6 877.5 893.8

QCP-20 15 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

QCP-25 15 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

QWH-10 10 7 7 7 7 10 10 10 10 >19,301.1 >19,732.8 >17,143.8 >17,466.2 151.1 160.3 117.0 121.4

QWH-15 10 0 0 0 0 4 4 4 4 >14,400.0 >14,400.0 >14,400.0 >14,400.0 3,526.3 3,661.6 2,715.4 2,762.8

QWH-20 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

QWH-25 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

bqwh-15-106 100 26 25 26 25 100 100 100 100 >290,575.3 >291,818.5 >288,637.5 >289,816.0 16,387.9 17,762.0 10,083.5 10,597.9

bqwh-18-141 100 0 0 0 0 60 58 64 63 >248,400.0 >248,400.0 >248,400.0 >248,400.0 >119,518.6 >126,466.1 >80,993.5 >84,188.5

coloring 22 18 18 18 18 21 21 18 18 >10,959.0 >10,963.4 >10,951.6 >10,955.9 1,247.2 1,334.2 >10,900.1 >10,902.8

composed-25-1-2 10 10 10 10 10 10 10 10 10 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.1

composed-25-1-25 10 10 10 10 10 10 10 10 10 2.8 2.9 2.8 2.9 4.4 4.4 4.4 4.4

197

Table C.5 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

composed-25-1-40 10 10 10 10 10 10 10 10 10 3.5 3.5 3.5 3.5 5.0 5.1 5.0 5.0

composed-25-1-80 10 10 10 10 10 10 10 10 10 14.3 15.1 14.4 15.2 14.3 14.9 15.0 15.5

composed-25-10-20 10 0 0 0 0 5 5 5 5 >18,000.0 >18,000.0 >18,000.0 >18,000.0 216.4 229.2 162.7 169.0

composed-75-1-2 10 10 10 10 10 10 10 10 10 7.6 7.6 7.6 7.6 16.8 17.1 18.9 19.2

composed-75-1-25 10 10 10 10 10 10 10 10 10 8.1 8.1 8.1 8.1 19.1 19.5 21.6 22.1

composed-75-1-40 10 10 10 10 10 10 10 10 10 8.9 8.9 8.9 8.9 31.7 32.9 38.5 39.6

composed-75-1-80 10 10 10 10 10 10 10 10 10 22.0 23.1 22.0 23.1 37.2 38.6 44.4 45.8

domino 24 7 7 7 7 7 7 7 7 6,023.6 6,023.5 6,023.7 6,023.7 6,023.7 6,023.8 6,023.9 6,023.7

driver 7 1 1 1 1 4 4 1 1 >10,800.2 >10,800.2 >10,800.1 >10,800.1 4,491.1 4,802.1 >10,800.3 >10,800.3

ehi-85 100 7 5 7 6 50 50 50 50 >176,954.6 >177,921.2 >174,841.5 >175,932.8 >12,593.7 >12,681.7 >12,884.9 >12,960.8

ehi-90 100 7 7 8 8 54 54 54 54 >198,527.5 >199,811.3 >195,193.9 >196,503.5 >16,813.9 >16,942.4 >17,053.5 >17,153.7

fapp-fapp01 11 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

frb30-15 10 0 0 0 0 10 10 10 10 >36,000.0 >36,000.0 >36,000.0 >36,000.0 10,298.8 11,061.6 6,170.4 6,530.5

frb35-17 10 0 0 0 0 0 0 1 2 >7,200.0 >7,200.0 >7,200.0 >7,200.0 >7,200.0 >7,200.0 >6,423.6 5,961.2

frb40-19 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

frb45-21 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

198

Table C.5 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

frb50-23 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

frb53-24 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

frb56-25 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

frb59-26 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

geom 100 24 24 27 27 72 72 81 78 >253,623.3 >255,892.1 >240,073.4 >242,092.9 >51,795.1 >52,830.3 35,060.0 >37,964.8

graphColoring-hos 14 2 2 2 2 6 6 4 4 >14,631.0 >14,605.7 >14,592.2 >14,605.8 1,409.5 1,506.6 >7,305.2 >7,306.4

graphColoring-insertion-full-insertion 41 12 12 12 12 17 17 15 14 >31,428.4 >31,643.0 >31,108.0 >31,291.4 >17,628.8 >18,058.6 >23,171.0 >23,320.8

graphColoring-insertion-k-insertion 32 10 10 10 10 14 14 15 15 >18,727.0 >18,756.1 >18,686.6 >18,707.4 >4,923.6 >4,962.8 3,979.6 4,062.0

graphColoring-leighton-leighton-15 28 5 5 5 5 2 2 0 0 >9,603.6 >9,696.9 >9,604.0 >9,697.7 >21,206.9 >21,437.9 >25,200.0 >25,200.0

graphColoring-leighton-leighton-25 32 4 4 4 4 2 2 0 0 4,504.6 4,706.6 4,505.0 4,707.0 >9,225.0 >9,367.2 >14,400.0 >14,400.0

graphColoring-leighton-leighton-5 8 4 4 4 4 7 7 0 0 >11,130.8 >11,131.3 >11,131.0 >11,131.3 4,771.5 5,091.4 >25,200.0 >25,200.0

graphColoring-mug 8 8 8 8 8 4 4 4 4 366.8 373.8 360.5 365.7 >14,400.5 >14,400.5 >14,400.4 >14,400.4

graphColoring-myciel 16 7 7 7 7 10 9 9 10 >11,969.7 >12,039.4 >11,962.5 >12,032.0 3,973.0 >4,165.1 >3,977.0 2,861.5

graphColoring-register-fpsol 37 3 3 3 3 2 2 0 0 255.3 255.4 255.3 255.6 >5,376.5 >5,510.6 >10,800.0 >10,800.0

graphColoring-register-inithx 32 2 2 2 2 2 2 0 0 >10,959.8 >10,959.9 >10,960.7 >10,960.3 >13,674.7 >13,886.5 >18,000.0 >18,000.0

graphColoring-register-mulsol 49 5 5 5 5 5 5 0 0 >14,489.1 >14,489.2 >14,489.0 >14,489.2 >18,052.9 >18,339.3 >32,400.0 >32,400.0

199

Table C.5 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

graphColoring-register-zeroin 31 5 5 5 5 3 3 0 0 4,790.2 5,012.2 4,790.2 5,012.2 >8,570.1 >8,670.3 >18,000.0 >18,000.0

graphColoring-school 8 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

graphColoring-sgb-book 26 23 23 23 23 10 10 10 10 >7,566.9 >7,794.2 >7,559.6 >7,785.9 >50,683.2 >50,699.7 >50,592.6 >50,601.1

graphColoring-sgb-games 4 4 4 4 4 2 2 2 2 92.1 100.3 69.5 75.3 >10,010.3 >10,243.6 >8,884.3 >8,976.0

graphColoring-sgb-miles 42 7 7 7 7 7 7 6 6 >5,238.6 >5,318.0 >5,238.2 >5,317.6 >5,768.8 >5,889.7 >8,081.5 >8,119.5

graphColoring-sgb-queen 50 4 4 4 4 5 5 7 6 >11,061.3 >11,080.7 >11,028.1 >11,044.4 >8,462.6 >8,539.2 5,940.1 >6,860.5

hanoi 5 5 5 5 5 5 5 5 5 2,461.4 2,461.4 2,461.6 2,461.3 2,461.2 2,461.2 2,461.5 2,461.3

haystacks 51 8 8 8 8 3 3 3 3 3,062.0 3,214.4 2,970.9 3,118.8 >18,062.6 >18,067.7 >18,052.2 >18,055.5

jobShop-e0ddr1 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

jobShop-e0ddr2 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

jobShop-enddr1 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

jobShop-enddr2 6 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

jobShop-ewddr2 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

knights 19 6 6 6 6 5 4 5 5 >3,793.2 >3,793.7 >3,793.2 >3,793.7 >9,020.8 >11,003.8 >9,022.6 >9,024.0

langford 4 3 3 4 3 2 2 2 2 >5,733.5 >5,809.1 4,207.0 >5,808.2 >7,354.6 >7,362.7 >7,292.1 >7,295.9

langford2 24 10 10 10 10 14 14 15 15 >20,093.2 >20,192.1 >19,987.5 >20,080.8 >6,128.9 >6,216.0 4,089.4 4,273.7

200

Table C.5 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

langford3 23 10 10 10 9 9 9 9 9 2,474.8 2,567.7 2,467.5 >4,015.1 >4,515.1 >4,564.7 >4,125.8 >4,148.5

langford4 24 10 10 9 10 9 9 9 9 1,849.8 1,899.2 >4,008.9 1,899.2 >8,406.7 >8,594.3 >5,982.6 >6,062.2

lard 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

marc 10 5 5 5 5 10 10 5 5 >18,523.3 >18,526.3 >18,523.4 >18,526.3 4,100.2 4,130.8 >18,341.0 >18,341.2

os-taillard-4 30 1 1 1 1 11 11 18 18 >73,614.6 >73,656.8 >73,614.6 >73,656.8 >44,975.4 >45,005.6 >32,154.9 >32,577.1

os-taillard-5 30 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

os-taillard-7 30 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pigeons 25 9 9 9 9 11 11 11 11 >11,804.0 >11,860.5 >11,804.0 >11,860.5 >5,174.1 >5,279.7 >4,913.4 >4,979.5

queenAttacking 10 2 2 2 2 2 2 2 2 4.8 5.2 4.8 5.2 39.6 42.1 26.9 28.2

queens 14 5 5 5 5 7 7 8 8 >11,427.2 >11,455.9 >11,342.4 >11,367.1 >3,888.7 >3,894.7 2,334.8 2,353.9

queensKnights 18 6 6 6 6 6 6 6 6 >9,553.7 >9,686.4 >9,469.1 >9,598.0 >10,519.4 >10,545.2 >9,680.2 >9,692.5

rand-2-23 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-24 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-25 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-26 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-27 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

201

Table C.5 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

rand-2-30-15-fcd 50 1 1 2 1 46 46 48 47 >171,981.8 >172,125.0 >170,501.7 >170,719.3 >57,648.6 >61,388.4 35,372.9 >39,016.0

rand-2-30-15 50 0 0 0 0 38 36 43 45 >162,000.0 >162,000.0 >162,000.0 >162,000.0 >85,079.6 >89,452.4 >56,074.9 58,437.8

rand-2-40-19-fcd 50 0 0 0 0 1 1 2 2 >7,200.0 >7,200.0 >7,200.0 >7,200.0 >4,464.6 >4,524.4 2,691.7 2,834.7

rand-2-40-19 50 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-50-23-fcd 50 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rand-2-50-23 50 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rlfapGraphs 14 6 6 7 7 9 9 8 8 >12,524.9 >12,567.7 >11,017.2 >11,182.3 5,450.7 5,541.3 >5,200.8 >5,221.0

rlfapGraphsMod 12 8 8 8 8 5 5 5 5 >3,832.1 >3,840.9 >3,818.9 >3,826.9 >14,721.0 >14,732.2 >14,613.0 >14,618.1

rlfapScens11 12 5 5 5 5 2 2 2 2 243.3 250.9 243.9 251.4 >11,456.4 >11,473.1 >11,382.5 >11,395.1

rlfapScens 11 7 7 7 7 8 8 8 8 >4,286.1 >4,315.4 >4,201.2 >4,225.4 2,211.5 2,240.5 1,556.8 1,574.5

rlfapScensMod 13 9 9 9 9 9 9 8 8 >5,073.8 >5,154.3 >4,519.5 >4,568.3 >6,104.0 >6,159.6 >7,423.8 >7,427.9

subs 9 9 9 9 9 9 9 9 9 22.8 23.2 22.4 22.8 159.4 162.4 140.0 142.2

super-jobShop-super-jobShop-e0ddr1 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

super-jobShop-super-jobShop-e0ddr2 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

super-jobShop-super-jobShop-enddr1 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

super-jobShop-super-jobShop-enddr2 6 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

202

Table C.5 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

super-jobShop-super-jobShop-ewddr2 10 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

super-os-super-os-taillard-4 30 2 2 2 2 9 9 11 11 >42,933.7 >43,039.0 >42,933.7 >43,039.0 >30,643.4 >30,682.3 >24,858.3 >24,900.4

super-os-super-os-taillard-5 30 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

super-queens 14 4 4 4 4 3 3 3 3 278.3 292.7 278.3 292.7 >3,788.9 >3,804.6 >3,735.4 >3,744.4

tightness0.1 100 0 0 0 0 6 6 10 9 >36,000.0 >36,000.0 >36,000.0 >36,000.0 >25,405.8 >26,195.4 17,949.5 >19,176.2

tightness0.2 100 0 0 0 0 6 5 8 7 >28,800.0 >28,800.0 >28,800.0 >28,800.0 >19,586.4 >20,294.1 12,650.1 >13,874.0

tightness0.35 100 0 0 0 0 9 9 24 21 >90,000.0 >90,000.0 >90,000.0 >90,000.0 >68,057.1 >68,826.0 >50,235.7 >53,164.6

tightness0.5 100 0 0 0 0 11 11 20 20 >72,000.0 >72,000.0 >72,000.0 >72,000.0 >50,941.3 >52,087.4 34,069.5 35,699.3

tightness0.65 100 7 7 13 12 27 26 53 51 >182,037.7 >182,256.9 >171,769.7 >171,914.3 >135,141.1 >137,080.0 96,619.5 >99,910.1

tightness0.8 100 64 64 71 72 55 55 67 65 >111,777.4 >112,868.0 >89,559.9 >90,746.4 >140,980.0 >142,969.9 >100,109.4 >101,675.3

tightness0.9 100 83 83 84 83 70 69 75 74 >84,043.5 >84,925.5 >71,378.0 >73,425.7 >132,899.1 >134,886.5 >102,873.4 >103,709.5

203

Table C.6: Aggregated instances results for PerFB algorithms for all tested non-binary benchmarks.

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

QG3 7 7 7 7 7 7 7 7 7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

QG4 7 7 7 7 7 7 7 7 7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

QG5 7 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

QG6 7 7 7 7 7 7 7 7 7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

QG7 7 7 7 7 7 7 7 7 7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

aim-100 24 8 8 8 8 17 17 18 18 >42,925.1 >43,678.0 >40,923.2 >41,416.3 >12,801.9 >13,360.8 10,378.3 10,781.8

aim-200 24 1 1 2 2 3 3 3 3 >7,207.4 >7,207.9 >3,940.4 >3,959.2 17.8 18.4 18.6 19.0

aim-50 24 24 24 24 24 24 24 24 24 140.7 158.7 121.5 135.8 102.6 110.1 82.8 86.9

allIntervalSeries 25 7 7 7 7 8 8 9 9 >7,458.1 >7,474.9 >7,412.1 >7,425.9 >4,722.1 >4,807.9 2,934.9 3,095.1

bddLarge 35 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

bddSmall 35 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

bmc 24 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

bqwh-15-106_glb 100 98 98 98 98 100 100 100 100 >12,708.9 >13,360.9 >10,264.8 >10,597.0 49.1 50.8 48.8 50.1

bqwh-18-141_glb 100 55 56 58 58 100 100 100 100 >183,924.6 >181,034.0 >176,460.3 >172,453.8 193.1 200.9 185.2 191.0

chessboardColoration 20 8 8 8 8 7 7 7 7 >3,773.5 >3,787.2 >3,753.0 >3,764.2 >10,861.5 >11,089.1 >8,994.7 >9,084.8

dag-half 25 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

204

Table C.6 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

dag-rand 25 22 22 22 22 22 22 22 22 1,563.3 1,565.5 1,563.7 1,566.0 1,639.3 1,647.6 1,644.4 1,652.3

dubois 13 3 3 3 3 3 3 3 3 4,263.6 4,295.1 4,243.5 4,266.3 4,263.1 4,294.7 4,240.6 4,266.7

golombRulerArity3 14 0 0 0 0 2 2 2 2 >7,200.0 >7,200.0 >7,200.0 >7,200.0 453.6 480.5 272.5 286.4

golombRulerArity4 14 2 2 2 2 2 2 2 2 414.4 414.4 414.4 414.4 415.2 415.3 415.4 415.4

graceful 4 1 1 1 1 1 1 1 1 4.1 4.6 3.6 4.0 13.4 14.5 9.1 9.6

jnhSat 16 0 0 0 0 9 9 2 2 >32,400.0 >32,400.0 >32,400.0 >32,400.0 13,680.2 14,244.9 >27,179.0 >27,256.3

jnhUnsat 34 0 0 0 0 17 16 4 4 >61,200.0 >61,200.0 >61,200.0 >61,200.0 18,223.4 >18,775.1 >47,260.8 >47,274.2

latinSquare 10 4 4 4 4 5 5 5 5 >3,601.8 >3,601.8 >3,601.8 >3,601.8 153.3 130.4 158.8 136.2

lexVg 63 47 46 47 46 42 42 42 42 11,121.6 >11,863.7 10,001.5 >10,663.2 >27,094.5 >27,228.8 >24,203.7 >24,286.0

mknap 6 2 2 2 2 2 2 2 2 122.4 122.4 122.4 122.4 122.4 122.4 122.4 122.4

modifiedRenault 50 50 50 50 50 50 50 50 50 3,371.0 3,412.8 2,678.0 2,705.5 10,468.1 10,589.3 6,303.8 6,340.2

nengfa 10 1 1 1 1 2 2 2 2 >3,724.6 >3,725.6 >3,719.4 >3,719.9 427.0 437.5 285.1 289.8

ogdVg 65 18 19 19 19 17 17 16 16 >9,010.5 9,082.9 6,412.6 6,688.5 >11,713.4 >11,734.9 >13,229.0 >13,241.7

ortholatin 9 1 1 1 1 1 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pret 8 4 4 4 4 4 4 4 4 7,860.8 7,963.2 7,593.9 7,654.1 7,859.9 7,964.1 7,593.8 7,656.4

primes-10 32 12 12 12 12 12 12 12 12 919.2 919.4 918.9 919.0 910.5 910.5 910.6 910.7

205

Table C.6 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

primes-15 32 8 8 8 8 8 8 8 8 10.8 10.8 10.8 10.8 10.9 10.9 10.9 10.9

primes-20 32 8 8 8 8 8 8 8 8 82.4 82.5 82.5 82.5 82.9 82.9 82.9 82.9

primes-25 32 8 8 8 8 8 8 8 8 111.9 112.0 112.1 112.1 112.7 112.7 112.4 112.5

primes-30 32 6 6 6 6 6 6 6 6 248.6 248.6 248.7 248.7 248.6 248.6 248.7 248.7

pseudo-aim 48 13 13 13 13 25 25 25 25 >46,049.8 >46,199.1 >45,713.3 >45,805.7 3,605.4 3,750.9 3,068.6 3,136.3

pseudo-chnl 21 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pseudo-circuits 7 2 2 2 2 2 2 2 2 >3,600.2 >3,600.2 >3,600.1 >3,600.2 >3,600.3 >3,600.3 >3,600.2 >3,600.2

pseudo-fpga 36 11 11 13 13 13 13 13 13 >12,980.0 >13,402.9 2,370.8 2,459.0 541.9 558.5 479.7 488.6

pseudo-garden 7 6 6 6 6 6 6 6 6 3.3 3.6 2.7 2.9 3.7 3.9 3.5 3.6

pseudo-ii 41 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6

pseudo-jnh 16 0 0 0 0 8 8 6 6 >32,400.0 >32,400.0 >32,400.0 >32,400.0 >14,734.0 >15,286.6 >19,084.7 >19,448.0

pseudo-logic-synthesis 17 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pseudo-mps 49 6 6 6 6 6 6 6 6 2,018.7 2,018.8 2,017.6 2,017.7 2,017.7 2,017.8 2,017.6 2,017.6

pseudo-mpsReduced 105 1 1 1 1 1 1 1 1 238.7 238.8 237.6 237.6 237.7 237.7 237.6 237.6

pseudo-niklas 19 2 2 2 2 2 2 2 2 2,765.0 2,778.6 2,508.5 2,514.6 1,818.6 1,819.5 1,813.1 1,813.7

pseudo-par 30 12 12 12 12 10 10 10 10 4,195.2 4,409.3 4,153.5 4,362.4 >7,231.0 >7,232.3 >7,228.4 >7,229.1

206

Table C.6 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

pseudo-primesDimacs 11 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pseudo-radar 12 2 2 2 2 3 3 3 3 >4,907.8 >4,954.3 >4,109.4 >4,122.8 546.9 548.5 545.2 546.4

pseudo-routing 15 4 4 4 4 5 5 5 5 >7,399.3 >7,692.5 >6,363.8 >6,563.9 2,782.3 2,897.0 2,312.6 2,382.8

pseudo-ssa 8 1 1 1 1 1 1 1 1 386.8 387.5 384.3 385.1 398.3 399.9 391.7 392.3

pseudo-ttp 8 2 2 2 2 2 2 2 2 886.5 1,012.1 654.4 741.4 4,591.8 4,971.5 2,996.9 3,150.7

pseudo-uclid 39 3 3 3 3 3 3 3 3 2,045.1 2,046.4 1,974.8 1,975.4 2,218.2 2,220.1 2,027.2 2,028.2

ramsey3 8 2 2 1 1 2 2 2 2 812.1 876.3 >3,604.7 >3,605.2 5.7 6.0 5.3 5.6

ramsey4 8 0 0 0 0 3 3 1 1 >10,800.0 >10,800.0 >10,800.0 >10,800.0 862.6 897.6 >7,314.2 >7,317.8

rand-10-20-10 20 20 20 20 20 20 20 20 20 161.6 161.6 161.7 161.7 162.7 162.7 162.8 162.9

rand-3-20-20-fcd 50 5 4 16 16 4 4 6 6 >57,338.8 >57,613.7 >44,713.1 >46,036.0 >56,725.4 >56,841.9 >51,859.7 >52,003.2

rand-3-20-20 50 4 4 9 9 3 3 3 3 >25,933.8 >26,223.6 19,041.7 19,777.3 >26,572.4 >26,656.3 >24,287.1 >24,325.1

rand-3-24-24-fcd 50 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rand-3-24-24 50 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rand-3-28-28-fcd 50 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rand-3-28-28 50 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

rand-8-20-5 20 0 0 0 0 0 0 0 0 >3,600.0 >3,600.0 >3,600.0 >3,600.0 >3,600.0 >3,600.0 >3,600.0 >3,600.0

207

Table C.6 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

P
er

F
B

Ψ
-n
s-
r

P
er

F
B

Ψ
-n
s

P
er

F
B

Ψ
-o
s-
r

P
er

F
B

Ψ
-o
s

P
er

F
B

m
3
-n
s-
r

P
er

F
B

m
3
-n
s

P
er

F
B

m
3
-o
s-
r

P
er

F
B

m
3
-o
s

renault 2 2 2 2 2 2 2 2 2 142.1 143.0 91.8 92.3 654.1 655.3 460.0 460.6

schurrLemma 10 7 6 7 6 3 3 4 4 2,702.5 >5,105.4 2,607.0 >4,998.8 >16,303.3 >16,435.7 >15,384.5 >15,642.5

small 5 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

socialGolfers 12 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ssa 8 6 6 6 6 6 6 6 6 43.2 43.4 42.9 43.0 46.7 47.3 45.5 45.7

travellingSalesman-20 15 2 1 2 2 7 7 8 7 >27,879.3 >28,227.4 >27,310.7 >27,718.0 >7,549.5 >7,650.6 6,136.4 >6,765.5

travellingSalesman-25 15 0 0 0 0 3 3 3 3 >14,400.0 >14,400.0 >14,400.0 >14,400.0 >10,618.8 >10,843.4 >8,552.7 >8,628.0

ukVg 65 20 20 20 20 13 13 15 15 11,521.7 12,421.5 9,377.5 10,212.5 >31,411.5 >31,479.8 >28,878.2 >28,984.3

varDimacs 9 6 6 6 6 6 6 6 6 >4,002.8 >4,054.9 >3,897.5 >3,934.3 >4,006.5 >4,032.8 >3,925.1 >3,938.9

wordsVg 65 41 41 42 41 39 39 40 40 >13,747.1 >14,183.4 >12,501.6 >13,060.0 >22,704.9 >22,788.2 >20,192.6 >20,268.9

#VALUE! 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Summar 0 607 605 630 627 707 706 691 690 >698,333.5 >703,928.2 >644,046.7 >648,962.0 >352,195.7 >356,729.1 >373,541.3 >376,535.1

208

Appendix D

Per-Benchmark Results for Dangle Identification Algorithms

Table D.1 shows detailed results for the dangle identification algorithms tested in

Chapter 6.

209

Table D.1: Aggregated instance results for dangle identification algorithms for all tested benchmarks using |dom|wdeg .

Solved ΣCPU (sec)
#

In
st
an

ce
s

D
i-
A

ll
S
o
lF

B
Ψ

D
i-
A

ll
S
o
lF

B
m

3

D
i-
C
T

D
i-
P
er

F
B

Ψ
-o
s-
r

D
i-
P
er

F
B

m
3
-o
s-
r

H
-A

ll
S
o
lF

B
Ψ

H
-A

ll
S
o
lF

B
m

3

H
-C

T

H
-P

er
F
B

Ψ
-o
s-
r

H
-P

er
F
B

m
3
-o
s-
r

D
i-
A

ll
S
o
lF

B
Ψ

D
i-
A

ll
S
o
lF

B
m

3

D
i-
C
T

D
i-
P
er

F
B

Ψ
-o
s-
r

D
i-
P
er

F
B

m
3
-o
s-
r

H
-A

ll
S
o
lF

B
Ψ

H
-A

ll
S
o
lF

B
m

3

H
-C

T

H
-P

er
F
B

Ψ
-o
s-
r

H
-P

er
F
B

m
3
-o
s-
r

QG3 7 7 7 7 7 7 7 7 7 7 7 0.6 0.6 0.4 0.7 0.7 0.6 0.6 0.4 0.7 0.7

QG4 7 7 7 7 7 7 7 7 7 7 7 0.6 0.6 0.4 0.7 0.7 0.6 0.6 0.4 0.7 0.7

QG5 7 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

QG6 7 7 7 7 7 7 7 7 7 7 7 0.8 0.8 0.6 0.9 0.9 0.8 0.8 0.6 0.9 0.9

QG7 7 7 7 7 7 7 7 7 7 7 7 0.8 0.8 0.6 0.9 0.9 0.8 0.8 0.6 0.9 0.9

aim-100 24 10 24 24 15 24 6 16 24 8 16 >53,318.2 5,769.6 4.9 >36,890.8 5,852.3 >65,795.8 >30,456.8 8.2 >61,651.3 >30,375.3

aim-200 24 5 13 24 7 13 5 10 23 6 10 >68,411.4 >43,595.1 260.8 >61,274.9 >43,324.3 >68,411.5 >53,020.9 >5,373.2 >64,819.9 >52,827.5

aim-50 24 24 24 24 24 24 24 24 24 24 24 343.9 30.3 1.2 38.7 32.5 422.0 51.8 1.0 62.2 59.4

allIntervalSeries 25 6 14 17 8 14 6 14 17 8 14 >40,828.7 >11,866.3 2,839.7 >34,106.8 >11,239.5 >40,839.6 >13,163.7 1,042.6 >34,115.4 >12,004.8

bddLarge 35 0 0 0 0 0 0 0 0 0 0 >126,000.0 >126,000.0 >126,000.0 >126,000.0 >126,000.0 >126,000.0 >126,000.0 >126,000.0 >126,000.0 >126,000.0

bddSmall 35 0 0 35 0 0 0 0 35 0 0 >126,000.0 >126,000.0 1,604.7 >126,000.0 >126,000.0 >126,000.0 >126,000.0 1,593.9 >126,000.0 >126,000.0

bmc 24 0 0 1 0 0 0 0 1 0 0 >3,600.0 >3,600.0 82.4 >3,600.0 >3,600.0 >3,600.0 >3,600.0 81.5 >3,600.0 >3,600.0

bqwh-15-106_glb 100 46 100 100 99 100 45 100 100 99 100 >219,648.9 55.6 3.4 >4,811.9 46.2 >220,447.2 56.1 3.3 >4,807.8 46.4

bqwh-18-141_glb 100 6 100 100 60 100 6 100 100 61 100 >338,931.1 258.3 5.7 >169,449.4 168.3 >338,927.7 257.8 5.5 >171,195.6 168.2

210

Table D.1 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

D
i-
A

ll
S
o
lF

B
Ψ

D
i-
A

ll
S
o
lF

B
m

3

D
i-
C
T

D
i-
P
er

F
B

Ψ
-o
s-
r

D
i-
P
er

F
B

m
3
-o
s-
r

H
-A

ll
S
o
lF

B
Ψ

H
-A

ll
S
o
lF

B
m

3

H
-C

T

H
-P

er
F
B

Ψ
-o
s-
r

H
-P

er
F
B

m
3
-o
s-
r

D
i-
A

ll
S
o
lF

B
Ψ

D
i-
A

ll
S
o
lF

B
m

3

D
i-
C
T

D
i-
P
er

F
B

Ψ
-o
s-
r

D
i-
P
er

F
B

m
3
-o
s-
r

H
-A

ll
S
o
lF

B
Ψ

H
-A

ll
S
o
lF

B
m

3

H
-C

T

H
-P

er
F
B

Ψ
-o
s-
r

H
-P

er
F
B

m
3
-o
s-
r

chessboardColoration 20 6 8 11 8 8 6 7 12 8 7 >25,366.2 >22,419.4 >8,436.6 >18,162.7 >20,538.1 >25,366.2 >24,872.1 >4,445.7 >18,161.6 >23,698.2

dag-half 25 0 0 16 0 0 0 0 21 0 0 >82,800.0 >82,800.0 >46,356.7 >82,800.0 >82,800.0 >82,800.0 >82,800.0 >14,309.0 >82,800.0 >82,800.0

dag-rand 25 22 22 25 22 22 22 22 25 22 22 >12,567.2 >12,567.7 733.0 >12,564.6 >12,564.9 >12,567.2 >12,567.7 733.0 >12,564.6 >12,564.9

dubois 13 5 5 9 5 5 4 4 6 4 4 >19,217.6 >19,218.4 6,453.9 >19,182.4 >19,182.4 >22,798.2 >22,798.6 >15,412.2 >22,796.7 >22,797.1

golombRulerArity3 14 0 2 8 0 3 0 2 9 0 2 >36,000.0 >29,243.2 >7,957.8 >36,000.0 >26,637.5 >36,000.0 >29,452.5 >4,369.2 >36,000.0 >29,062.2

golombRulerArity4 14 2 2 2 2 2 2 2 2 2 2 414.3 414.5 413.8 414.4 414.6 414.3 414.5 413.8 414.4 414.6

graceful 4 1 1 3 1 2 1 1 3 1 1 >7,273.7 >7,210.1 1,138.4 >7,205.5 >5,245.5 >7,294.5 >7,217.8 418.8 >7,207.6 >7,213.7

jnhSat 16 0 3 16 0 2 0 3 16 0 3 >57,600.0 >52,844.2 44.2 >57,600.0 >52,981.5 >57,600.0 >54,891.8 15.7 >57,600.0 >50,406.3

jnhUnsat 34 2 11 34 2 4 2 11 34 2 4 >115,218.6 >96,971.7 77.2 >115,218.5 >108,296.8 >115,218.6 >98,199.3 33.0 >115,218.5 >108,296.7

latinSquare 10 4 5 5 4 5 4 5 5 4 5 >3,607.8 2,434.2 0.7 >3,601.8 145.1 >3,607.8 2,435.1 0.7 >3,601.8 145.6

lexVg 63 36 39 63 47 44 36 39 63 47 44 >105,230.8 >97,023.6 449.3 >68,967.9 >81,986.9 >105,361.8 >98,593.6 405.0 >70,415.4 >82,750.3

mknap 6 2 2 2 2 2 2 2 2 2 2 122.4 122.4 122.4 122.4 122.4 122.4 122.4 122.4 122.4 122.4

modifiedRenault 50 50 50 50 50 50 50 49 50 50 49 544.4 553.7 67.9 965.8 2,812.2 4,111.7 >4,769.9 65.4 4,787.7 >6,986.9

nengfa 10 1 2 4 1 2 1 2 4 1 2 >10,926.6 >7,567.5 394.6 >10,913.9 >7,448.1 >10,926.7 >7,573.9 178.9 >10,914.0 >7,449.4

211

Table D.1 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

D
i-
A

ll
S
o
lF

B
Ψ

D
i-
A

ll
S
o
lF

B
m

3

D
i-
C
T

D
i-
P
er

F
B

Ψ
-o
s-
r

D
i-
P
er

F
B

m
3
-o
s-
r

H
-A

ll
S
o
lF

B
Ψ

H
-A

ll
S
o
lF

B
m

3

H
-C

T

H
-P

er
F
B

Ψ
-o
s-
r

H
-P

er
F
B

m
3
-o
s-
r

D
i-
A

ll
S
o
lF

B
Ψ

D
i-
A

ll
S
o
lF

B
m

3

D
i-
C
T

D
i-
P
er

F
B

Ψ
-o
s-
r

D
i-
P
er

F
B

m
3
-o
s-
r

H
-A

ll
S
o
lF

B
Ψ

H
-A

ll
S
o
lF

B
m

3

H
-C

T

H
-P

er
F
B

Ψ
-o
s-
r

H
-P

er
F
B

m
3
-o
s-
r

ogdVg 65 8 14 46 19 16 8 14 46 19 16 >140,578.5 >125,363.2 >9,306.0 >106,283.6 >113,463.9 >140,584.2 >125,305.8 >13,055.0 >106,271.3 >113,461.5

ortholatin 9 1 1 1 1 1 1 1 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

pret 8 4 4 4 4 4 4 4 4 4 4 2,875.3 2,875.3 217.7 2,846.6 2,847.5 4,713.4 4,713.6 303.6 4,827.6 4,827.3

primes-10 32 12 12 12 12 12 12 12 12 12 12 33.7 33.2 8.0 51.7 51.8 33.7 33.2 8.0 51.7 51.7

primes-15 32 8 8 8 8 8 8 8 8 8 8 5.4 5.5 1.1 6.3 6.3 5.4 5.5 1.1 6.3 6.3

primes-20 32 8 8 8 8 8 8 8 8 8 8 14.1 14.2 3.4 31.7 31.7 14.1 14.2 3.3 31.7 31.7

primes-25 32 8 8 8 8 8 8 8 8 8 8 22.7 22.8 4.9 33.8 33.9 22.7 22.7 4.9 33.8 33.9

primes-30 32 6 6 6 6 6 6 6 6 6 6 8.7 8.7 2.7 211.5 211.5 8.7 8.7 2.7 211.5 211.5

pseudo-aim 48 13 32 46 19 32 14 32 43 19 31 >127,860.8 >63,612.9 >10,468.2 >110,004.8 >63,352.9 >124,575.4 >61,029.7 >18,650.8 >106,577.8 >64,358.2

pseudo-chnl 21 0 0 0 0 0 0 0 1 0 0 >3,600.0 >3,600.0 >3,600.0 >3,600.0 >3,600.0 >3,600.0 >3,600.0 2,761.1 >3,600.0 >3,600.0

pseudo-circuits 7 3 2 3 2 2 3 2 3 2 2 200.3 >3,600.2 21.2 >3,600.1 >3,600.2 201.8 >3,600.2 20.7 >3,600.1 >3,600.2

pseudo-fpga 36 0 0 1 0 0 0 0 2 0 0 >46,800.0 >46,800.0 >45,646.3 >46,800.0 >46,800.0 >46,800.0 >46,800.0 >41,838.9 >46,800.0 >46,800.0

pseudo-garden 7 6 6 6 6 6 6 6 6 6 6 4.4 3.2 0.2 2.6 3.3 4.6 3.4 0.2 3.0 3.6

pseudo-ii 41 6 6 12 6 6 8 8 9 8 8 >28,380.3 >27,040.9 2,407.0 >27,208.8 >27,000.6 >18,120.9 >16,999.0 >10,904.4 >16,878.8 >16,983.7

212

Table D.1 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

D
i-
A

ll
S
o
lF

B
Ψ

D
i-
A

ll
S
o
lF

B
m

3

D
i-
C
T

D
i-
P
er

F
B

Ψ
-o
s-
r

D
i-
P
er

F
B

m
3
-o
s-
r

H
-A

ll
S
o
lF

B
Ψ

H
-A

ll
S
o
lF

B
m

3

H
-C

T

H
-P

er
F
B

Ψ
-o
s-
r

H
-P

er
F
B

m
3
-o
s-
r

D
i-
A

ll
S
o
lF

B
Ψ

D
i-
A

ll
S
o
lF

B
m

3

D
i-
C
T

D
i-
P
er

F
B

Ψ
-o
s-
r

D
i-
P
er

F
B

m
3
-o
s-
r

H
-A

ll
S
o
lF

B
Ψ

H
-A

ll
S
o
lF

B
m

3

H
-C

T

H
-P

er
F
B

Ψ
-o
s-
r

H
-P

er
F
B

m
3
-o
s-
r

pseudo-jnh 16 0 6 16 0 5 0 6 16 0 5 >57,600.0 >50,155.8 44.4 >57,600.0 >45,798.6 >57,600.0 >49,799.5 17.7 >57,600.0 >45,145.1

pseudo-logic-synthesis 17 0 0 1 0 0 0 0 1 0 0 >3,600.0 >3,600.0 43.8 >3,600.0 >3,600.0 >3,600.0 >3,600.0 43.5 >3,600.0 >3,600.0

pseudo-mps 49 6 6 7 6 6 6 6 7 6 6 >5,604.2 >5,611.0 2,118.0 >5,619.5 >5,619.4 >5,606.6 >5,614.7 2,107.1 >5,622.0 >5,622.5

pseudo-mpsReduced 105 1 1 1 1 1 1 1 1 1 1 239.6 246.3 234.7 239.4 239.2 242.0 250.0 234.7 241.8 242.4

pseudo-niklas 19 2 2 3 2 2 2 2 3 2 2 >5,335.6 >5,360.4 1,816.4 >6,065.1 >5,433.7 >5,336.9 >5,361.6 1,805.0 >6,066.7 >5,439.0

pseudo-par 30 13 11 20 12 11 13 11 20 13 11 >31,264.4 >34,073.5 1,366.8 >32,127.6 >34,243.9 >31,044.7 >34,101.5 856.0 >31,547.6 >34,279.4

pseudo-primesDimacs 11 0 0 1 0 0 0 0 2 0 0 >14,400.0 >14,400.0 >10,818.5 >14,400.0 >14,400.0 >14,400.0 >14,400.0 >8,519.4 >14,400.0 >14,400.0

pseudo-radar 12 3 3 6 3 3 3 3 6 3 3 >11,589.7 >11,426.2 158.2 >13,491.1 >11,253.6 >11,649.4 >11,427.5 156.9 >13,496.1 >11,255.1

pseudo-routing 15 3 3 6 4 5 3 3 6 3 5 >18,243.9 >18,397.7 >4,081.7 >16,907.7 >11,526.4 >18,862.5 >18,780.1 >3,610.5 >17,564.0 >12,944.0

pseudo-ssa 8 2 2 7 2 2 2 2 7 2 2 >18,152.2 >18,155.0 316.3 >18,151.8 >18,155.4 >18,319.1 >18,326.6 314.4 >18,319.8 >18,327.9

pseudo-ttp 8 2 2 2 2 2 2 2 2 2 2 868.6 423.1 3.0 339.7 728.7 782.4 514.8 1.2 298.6 2,200.7

pseudo-uclid 39 3 3 8 3 3 3 3 8 3 3 >19,826.5 >19,826.6 2,581.9 >19,967.7 >20,020.1 >19,837.4 >19,837.6 3,346.4 >19,978.6 >20,031.0

ramsey3 8 0 2 2 1 2 0 2 2 1 2 >7,200.0 6.7 0.2 >3,604.4 6.2 >7,200.0 9.8 0.1 >3,606.5 9.2

ramsey4 8 0 1 2 0 1 0 1 1 0 1 >14,400.0 >10,968.7 >9,045.2 >14,400.0 >10,917.9 >14,400.0 >10,996.2 >10,802.6 >14,400.0 >10,934.5

213

Table D.1 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

D
i-
A

ll
S
o
lF

B
Ψ

D
i-
A

ll
S
o
lF

B
m

3

D
i-
C
T

D
i-
P
er

F
B

Ψ
-o
s-
r

D
i-
P
er

F
B

m
3
-o
s-
r

H
-A

ll
S
o
lF

B
Ψ

H
-A

ll
S
o
lF

B
m

3

H
-C

T

H
-P

er
F
B

Ψ
-o
s-
r

H
-P

er
F
B

m
3
-o
s-
r

D
i-
A

ll
S
o
lF

B
Ψ

D
i-
A

ll
S
o
lF

B
m

3

D
i-
C
T

D
i-
P
er

F
B

Ψ
-o
s-
r

D
i-
P
er

F
B

m
3
-o
s-
r

H
-A

ll
S
o
lF

B
Ψ

H
-A

ll
S
o
lF

B
m

3

H
-C

T

H
-P

er
F
B

Ψ
-o
s-
r

H
-P

er
F
B

m
3
-o
s-
r

rand-10-20-10 20 20 20 20 20 20 20 20 20 20 20 45.1 45.1 7.6 44.9 44.9 45.1 45.1 7.6 44.9 44.9

rand-3-20-20-fcd 50 0 4 50 16 7 0 4 50 15 5 >180,000.0 >173,092.0 897.3 >161,694.3 >168,838.4 >180,000.0 >173,569.3 851.0 >161,546.7 >169,894.8

rand-3-20-20 50 0 1 50 6 3 0 0 50 6 1 >180,000.0 >179,764.8 1,763.3 >169,810.8 >177,595.3 >180,000.0 >180,000.0 1,546.2 >169,738.3 >179,066.8

rand-3-24-24-fcd 50 0 0 41 0 0 0 0 40 0 0 >147,600.0 >147,600.0 29,742.2 >147,600.0 >147,600.0 >147,600.0 >147,600.0 >30,171.8 >147,600.0 >147,600.0

rand-3-24-24 50 0 0 30 0 0 0 0 28 0 0 >126,000.0 >126,000.0 >53,995.2 >126,000.0 >126,000.0 >126,000.0 >126,000.0 >46,527.5 >126,000.0 >126,000.0

rand-3-28-28-fcd 50 0 0 7 0 0 0 0 7 0 0 >32,400.0 >32,400.0 >15,939.1 >32,400.0 >32,400.0 >32,400.0 >32,400.0 >17,119.0 >32,400.0 >32,400.0

rand-3-28-28 50 0 0 4 0 0 0 0 4 0 0 >14,400.0 >14,400.0 6,002.6 >14,400.0 >14,400.0 >14,400.0 >14,400.0 4,118.1 >14,400.0 >14,400.0

rand-8-20-5 20 0 0 20 0 0 0 0 20 1 0 >72,000.0 >72,000.0 1,487.2 >72,000.0 >72,000.0 >72,000.0 >72,000.0 420.7 >71,028.2 >72,000.0

renault 2 2 2 2 2 2 2 2 2 2 2 15.0 19.1 2.8 92.4 460.6 15.1 19.2 2.7 92.5 460.7

schurrLemma 10 6 5 9 7 5 6 4 9 7 4 >14,348.1 >20,290.8 1,943.9 >9,807.6 >20,042.2 >14,348.1 >22,706.0 609.9 >9,807.6 >23,139.9

small 5 0 0 3 0 0 0 0 3 0 0 >14,400.0 >14,400.0 >3,778.4 >14,400.0 >14,400.0 >14,400.0 >14,400.0 >3,755.1 >14,400.0 >14,400.0

socialGolfers 12 0 0 2 0 0 0 0 2 0 0 >10,800.0 >10,800.0 >3,701.1 >10,800.0 >10,800.0 >10,800.0 >10,800.0 >4,111.9 >10,800.0 >10,800.0

ssa 8 4 4 7 4 4 6 6 7 6 6 >11,176.7 >11,187.2 906.5 >11,174.7 >11,187.2 >3,821.4 >3,826.1 228.1 >3,821.0 >3,826.6

travellingSalesman-20 15 0 9 15 2 9 0 8 15 1 8 >54,000.0 >29,426.4 125.0 >48,312.3 >27,877.2 >54,000.0 >30,227.3 85.4 >50,651.4 >29,143.2

214

Table D.1 (continued)

Solved ΣCPU (sec)

#
In
st
an

ce
s

D
i-
A

ll
S
o
lF

B
Ψ

D
i-
A

ll
S
o
lF

B
m

3

D
i-
C
T

D
i-
P
er

F
B

Ψ
-o
s-
r

D
i-
P
er

F
B

m
3
-o
s-
r

H
-A

ll
S
o
lF

B
Ψ

H
-A

ll
S
o
lF

B
m

3

H
-C

T

H
-P

er
F
B

Ψ
-o
s-
r

H
-P

er
F
B

m
3
-o
s-
r

D
i-
A

ll
S
o
lF

B
Ψ

D
i-
A

ll
S
o
lF

B
m

3

D
i-
C
T

D
i-
P
er

F
B

Ψ
-o
s-
r

D
i-
P
er

F
B

m
3
-o
s-
r

H
-A

ll
S
o
lF

B
Ψ

H
-A

ll
S
o
lF

B
m

3

H
-C

T

H
-P

er
F
B

Ψ
-o
s-
r

H
-P

er
F
B

m
3
-o
s-
r

travellingSalesman-25 15 0 2 15 0 6 0 1 15 0 4 >54,000.0 >49,275.6 2,110.3 >54,000.0 >43,831.0 >54,000.0 >50,753.2 995.3 >54,000.0 >47,960.5

ukVg 65 7 11 40 21 16 7 11 40 21 15 >129,564.2 >116,415.2 >13,121.2 >81,746.6 >99,112.5 >129,608.3 >116,881.3 >10,143.2 >82,020.8 >101,585.7

varDimacs 9 7 7 8 7 7 6 6 8 6 6 >8,920.8 >8,600.6 >3,915.8 >9,061.9 >8,647.9 >11,034.3 >11,017.8 >3,982.2 >11,075.1 >11,040.5

wordsVg 65 30 37 65 42 41 30 37 65 42 41 >133,815.8 >110,286.7 1,407.6 >90,597.8 >98,167.3 >133,818.2 >110,427.5 1,347.3 >90,670.2 >98,226.8

215

Bibliography

Daniel Aarno. Templatized C++ Command Line Parser, 2022. Accessed: 2022-09-11.

Amine Balafrej, Christian Bessière, Gilles Trombettoni, and El Houssine Bouyakhf.

Adaptive Singleton-based Consistencies. In AAAI Conference on Artificial Intelli-

gence, pages 2601–2607, July 2014.

Amine Balafrej, Christian Bessière, and Anastasia Paparrizou. Multi-Armed Bandits

for Adaptive Constraint Propagation. In Proc. of IJCAI 2015, pages 290–296, 2015.

Ken Bayer, Josh Snyder, and Berthe Y. Choueiry. An Interactive Constraint-Based

Approach to Minesweeper. In Proceedings of AAAI-2006, pages 1933–1934, 2006.

Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desir-

ability of Acyclic Database Schemes. J. ACM, 30(3):479–513, July 1983.

Hachemi Bennaceur and Mohamed-Salah Affane. Partition-k-AC: An Efficient Fil-

tering Technique Combining Domain Partition and Arc Consistency. In Principles

and Practice of Constraint Programming, pages 560–564. Springer Berlin Heidel-

berg, 2001.

Christian Bessière, Kostas Stergiou, and Toby Walsh. Domain Filtering Consistencies

for Non-Binary Constraints. Artificial Intelligence, 172:800–822, 2008.

Christian Bessiere. Handbook of Constraint Programming, chapter Constraint Prop-

agation, pages 29–83. Elsevier, 2006.

Bozhena Bidyuk and Rina Dechter. On Finding Minimal w-Cutset Problem. In

Proceedings of the Conference on Uncertainty in AI (UAI 04), 2004.

216

Christian Bliek and Djamilla Sam-Haroud. Path Consistency for Triangulated Con-

straint Graphs. In Proceedings of the 16 th International Joint Conference on Ar-

tificial Intelligence, pages 456–461, Stockholm, Sweden, 1999.

Boost. Boost C++ Libraries. http://www.boost.org/, 2022. Accessed: 2022-09-30.

Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting

Systematic Search by Weighting Constraints. In Proc. ECAI 2004, pages 146–150,

2004.

Preston Briggs and Linda Torczon. An Efficient Representation for Sparse Sets. ACM

Lett. Program. Lang. Syst., 2(1-4):59–69, March 1993.

James O. Coplien. Curiously recurring template patterns. C++ Rep., 7(2):24–27, feb

1995.

Romuald Debruyne and Christian Bessière. From Restricted Path Consistency to

Max-Restricted Path Consistency. In Principles and Practice of Constraint Pro-

gramming (CP 97), volume 1330 of Lecture Notes in Computer Science, pages

312–326. Springer, 1997.

Romuald Debruyne and Christian Bessière. Some Practicable Filtering Techniques

for the Constraint Satisfaction Problem. In Proceedings of the 15 th International

Joint Conference on Artificial Intelligence, pages 412–417, 1997.

Romuald Debruyne and Christian Bessière. Domain Filtering Consistencies. Journal

of Artificial Intelligence Research, 14:205–230, 2001.

Romuald Debruyne. A Strong Local Consistency for Constraint Satisfaction. In

Proceedings of ICTAI 99, pages 202–209, 1999.

http://www.boost.org/

217

Rina Dechter and Judea Pearl. The Cycle-Cutset Method for improving Search Per-

formance in AI Applications. In Third IEEE Conference on AI Applications, pages

224–230, Orlando, FL, 1987.

Rina Dechter and Judea Pearl. Network-Based Heuristics for Constraint-Satisfaction

Problems. Artificial Intelligence, 34:1–38, 1988.

Rina Dechter and Judea Pearl. Tree Clustering for Constraint Networks. Artificial

Intelligence, 38:353–366, 1989.

Rina Dechter and Peter van Beek. Local and Global Relational Consistency. Theor.

Comput. Sci., 173(1):283–308, 1997.

Rina Dechter, Kalev Kask, and Javier Larrosa. A General Scheme for Multiple Lower

Bound Computation in Constraint Optimization. In Proceedings of the Seventh

International Conference on Principle and Practice of Constraint Programming

(CP 01), pages 346–360, 2001.

Rina Dechter. Bucket Elimination: A Unifying Framework for Probabilistic Inference

Algorithms. In Proceedings of the Conference on Uncertainty in AI (UAI 96), pages

211–219, 1996.

Rina Dechter. Mini-Buckets: A General Scheme of Generating Approximations in

Automated Reasoning. In Proceedings of the 15th Joint Conference on Artificial

Intelligence (IJCAI 97), pages 1297–1302, 1997.

Rina Dechter. Constraint Processing, chapter Directional Consistency, pages 91–101.

Morgan Kaufmann, 2003.

Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

218

Rina Dechter. Constraint Processing, chapter Directional Consistency, page 89. Mor-

gan Kaufmann, 2003.

Rina Dechter. Constraint Processing, chapter Directional Consistency, page 90. Mor-

gan Kaufmann, 2003.

Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre, Guillaume Perez, Lau-

rent Perron, Jean-Charles Régin, and Pierre Schaus. Compact-table: Efficiently

filtering table constraints with reversible sparse bit-sets. In Michel Rueher, editor,

Principles and Practice of Constraint Programming, pages 207–223, Cham, 2016.

Springer International Publishing.

Guilherme Alex Derenievicz and Fabiano Silva. Epiphytic Trees: Relational Consis-

tency Applied to Global Optimization Problems. In Willem-Jan van Hoeve, editor,

Integration of Constraint Programming, Artificial Intelligence, and Operations Re-

search, pages 153–169. Springer International Publishing, 2018.

David Duris. Some Characterizations of γ and β-acyclicity of Hypergraphs. Inf.

Process. Lett., 112(16):617–620, August 2012.

Eugene C. Freuder and Charles D. Elfe. Neighborhood Inverse Consistency Prepro-

cessing. In Proceedings of AAAI-96, pages 202–208, Portland, Oregon, 1996.

Eugene C. Freuder. A Sufficient Condition for Backtrack-Free Search. JACM,

29 (1):24–32, 1982.

Eugene C. Freuder. A sufficient condition for backtrack-free search. J. ACM, 29:24–

32, 1982.

Eugene C. Freuder. A Sufficient Condition for Backtrack-Bounded Search. JACM,

32 (4):755–761, 1985.

219

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Professional Com-

puting Series. Pearson Education, 1994.

Daniel J. Geschwender, Robert J. Woodward, Berthe Y. Choueiry, and Stephen D.

Scott. A Portfolio Approach for Enforcing Minimality in a Tree Decomposition. In

Proc. of CP 2016, page 10 pages, 2016.

Daniel J. Geschwender. Effectively Enforcing Minimality During Backtrack Search.

Master’s thesis, Department of Computer Science and Engineering, University of

Nebraska-Lincoln, Lincoln, NE, May 2018.

Martin C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press

Inc., New York, NY, 1980.

Georg Gottlob. On Minimal Constraint Networks. In Proceedings of 17th International

Conference on Principle and Practice of Constraint Programming (CP 11), volume

6876 of Lecture Notes in Computer Science, pages 325–0339. Springer, 2011.

Marc H. Graham. On the Universal Relation. Technical report, University of Toronto,

1979.

Marc Gyssens. On the Complexity of Join Dependencies. ACM Trans. Database

Systems, 11(1):81–108, 1986.

Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng. A Generic Arc Consis-

tency Algorithm and its Specializations. Artificial Intelligence, 57:291–321, 1992.

Ian S. Howell, Berthe Y. Choueiry, and Hongfeng Yu. Visualizations to Summarize

Search Behavior. In Helmut Simonis, editor, Proceedings of the 26th International

220

Conference on Principles and Practice of Constraint Programming, pages 392–409,

2020.

Philippe Janssen, Philippe Jégou, Bernard Nouguier, and Marie-Catherine Vi-

larem. A Filtering Process for General Constraint-Satisfaction Problems: Achieving

Pairwise-Consistency Using an Associated Binary Representation. In IEEE Work-

shop on Tools for AI, pages 420–427, 1989.

Philippe Jégou and Cyril Terrioux. Hybrid Backtracking Bounded by Tree-

Decomposition of Constraint Networks. Artificial Intelligence, 146:43–75, 2003.

Philippe Jégou and Cyril Terrioux. Hybrid Backtracking Bounded by Tree-

Decomposition of Constraint Networks. Artificial Intelligence, 146:43–75, 2003.

Philippe Jégou, Samba Ndiaye, and Cyril Terrioux. Computing and Exploiting Tree-

Decompositions for Solving Constraint Networks. In CP 05, pages 777–781, 2005.

Philippe Jégou. On the Consistency of General Constraint-Satisfaction Problems. In

AAAI 1993, pages 114–119, 1993.

Shant Karakashian, Robert Woodward, Christopher Reeson, Berthe Y. Choueiry,

and Christian Bessiere. A First Practical Algorithm for High Levels of Relational

Consistency. In 24th AAAI Conference on Artificial Intelligence (AAAI 10), pages

101–107, 2010.

Shant Karakashian, Robert J. Woodward, Berthe Y. Choueiry, and Christian Bessiere.

Relational Consistency by Constraint Filtering. In 25th ACM Symposium On Ap-

plied Computing (ACM SAC 10), pages 2073–2074, Sierre, Switzerland, 2010.

Shant Karakashian, Robert J. Woodward, and Berthe Y. Choueiry. Reformulating

R(∗,m)C with Tree Decomposition. In Ninth International Symposium on Abstrac-

221

tion, Reformulation and Approximation (SARA 2011), pages 62–69. AAAI Press,

2011.

Shant Karakashian, Robert J. Woodward, and Berthe Y. Choueiry. Practical

Tractability of CSPs by Higher Level Consistency and ree Decomposition. In

Eighteenth International Conference on Principles and Practice of Constraint Pro-

gramming (CP 2012), volume 7514 of Lecture Notes in Computer Science, pages –.

Springer, 2012.

Shant Karakashian, Robert Woodward, and Berthe Y. Choueiry. Improving the Per-

formance of Consistency Algorithms by Localizing and Bolstering Propagation in a

Tree Decomposition. In Proceedings of the 27th Conference on Artificial Intelligence

(AAAI 2013), pages 466–473, 2013.

Shant Karakashian. Practical Tractability of CSPs by Higher Level Consistency and

Tree Decomposition. PhD thesis, University of Nebraska-Lincoln, 2013.

Kalev Kask, Rina Dechter, Javier Larrosa, and Avi Dechter. Unifying Tree Decompo-

sitions for Reasoning in Graphical Models. Artificial Intelligence, 166(1-2):165–193,

2005.

Uffe Kjærulff. Triangulation of Graphs - Algorithms Giving Small Total State Space.

Research Report R-90-09, Aalborg University, Denmark, 1990.

Javier Larrosa. Boosting Search with Variable Elimination. In Proceedings of

CP 2000, volume 1894 of LNCS, pages 291–305, 2000.

Vianney le Clément, Pierre Schaus, Christine Solnon, and Christophe Lecoutre.

Sparse-Sets for Domain Implementation. In Proc. of the CP Workshop on

TRICS 2013, 2013.

222

Christophe Lecoutre, Chavalit Likitvivatanavong, and Roland H. C. Yap. A Path-

Optimal GAC Algorithm for Table Constraints. In Proc. of ECAI 2012, pages

510–515, 2012.

Christophe Lecoutre, Anastasia Paparrizou, and Kostas Stergiou. Extending STR to a

Higher-Order Consistency. In Proceedings of the Twenty-Seventh AAAI Conference

on Artificial Intelligence (AAAI 2013), pages 576–582, 2013.

Christophe Lecoutre. STR2: Optimized Simple Tabular Reduction for Table Con-

straints. Constraints, 16(4):341–371, 2011.

Chavalit Likitvivatanavong, Wei Xia, and Roland Yap. Higher-Order Consistencies

Through GAC on Factor Variables. In Proc. of CP 2014, pages 497–513, 2014.

Chavalit Likitvivatanavong, Wei Xia, and Roland Yap. Decomposition of the Factor

Encoding for CSPs. In Proc. of IJCAI 2015, pages 353–359, 2015.

Alan K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,

8:99–118, 1977.

David Maier. The Theory of Relational Databases. Pitman Publishing Limited, 1983.

Jean-Baptiste Mairy, Yves Deville, and Christophe Lecoutre. Domain k-Wise Consis-

tency Made as Simple as Generalized Arc Consistency. In Proc. of CPAIOR 2014,

pages 235–250, 2014.

Sylvain Merchezn, Christophe Lecoutre, and Frédéric Boussemart. AbsCon: A Pro-

totype to Solve CSPs with Abstraction. In Proceedings of the 7th International

Conference on Principles and Practice of Constraint Programming, pages 730–744,

2001.

223

Ugo Montanari. Networks of Constraints: Fundamental Properties and Application

to Picture Processing. Information Sciences, 7:95–132, 1974.

Bernard A. Nadel. Constraint Satisfaction Algorithms. Computational Intelligence,

5:188–224, 1989.

Anastasia Paparrizou and Kostas Stergiou. An Efficient Higher-Order Consistency

Algorithm for Table Constraints. In Proc. AAAI 2012, 2012.

Anastasia Paparrizou and Kostas Stergiou. Strong local consistency algorithms for

table constraints. Constraints, 21(2):163–197, Apr 2016.

Anastasia Paparrizou and Kostas Stergiou. On Neighborhood Singleton Consistencies.

In Proc. of IJCAI 2017, pages 736–742, 2017.

Guilluame Perez and Jean-Charles Régin. Improving GAC-4 for Table and MDD

Constraints. In Proc. of CP 2014, pages 606–621, 2014.

Patrick Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Com-

putational Intelligence, 9 (3):268–299, 1993.

Charles Prud’homme. Choco Solver Search Loop Documentation. https:

//choco-solver.org/docs/advanced-usages/search-loop/, 2022. Accessed:

2022-09-25.

Charles Prud’homme. Choco Solver v4.0.6: N-Ary Constraint Documentation.

https://javadoc.io/doc/org.choco-solver/choco-solver/4.0.6/org/

chocosolver/solver/constraints/extension/nary/package-summary.html,

2022. Accessed: 2022-09-10.

Irina Rish and Rina Dechter. Resolution versus Search: Two Strategies for SAT. J.

Autom. Reasoning, 24(1/2):225–275, 2000.

https://choco-solver.org/docs/advanced-usages/search-loop/
https://choco-solver.org/docs/advanced-usages/search-loop/
https://javadoc.io/doc/org.choco-solver/choco-solver/4.0.6/org/chocosolver/solver/constraints/extension/nary/package-summary.html
https://javadoc.io/doc/org.choco-solver/choco-solver/4.0.6/org/chocosolver/solver/constraints/extension/nary/package-summary.html

224

Daniel Sabin and Eugene C. Freuder. Understanding and improving the mac algo-

rithm. In Gert Smolka, editor, Principles and Practice of Constraint Programming-

CP97, pages 167–181, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

Nikolaos Samaras and Kostas Stergiou. Binary Encodings of Non-binary Constraint

Satisfaction Problems: Algorithms and Experimental Results. Journal of Artificial

Intelligence Research, 24:641–684, 2005.

Anthony Schneider and Berthe Y. Choueiry. Pw-ct: Extending compact-table to

enforce pairwise consistency on table constraints. In John Hooker, editor, Principles

and Practice of Constraint Programming, Lecture Notes in Computer Science, pages

345–361. Springer International Publishing, 2018.

Anthony Schneider, Robert J. Woodward, Berthe Y. Choueiry, and Christian

Bessiere. Improving relational consistency algorithms using dynamic relation par-

titioning. In Barry O’Sullivan, editor, Principles and Practice of Constraint Pro-

gramming, pages 688–704, Cham, 2014. Springer International Publishing.

Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and Programming

With Gecode v.6.2.0. https://www.gecode.org/doc-latest/MPG.pdf, 2022. Ac-

cessed: 2022-09-10, page 71.

Kostas Stergiou. Strong Inverse Consistencies for Non-Binary CSPs. In Proceedings

of the 19th IEEE International Conference on Tools with Artificial Intelligence,

volume 1 of ICTAI 07, pages 215–222, 2007.

Trieu Hung Tran. Modeling and Solving the Nonogram Puzzle Using Constraint

Programming. Undergraduate Thesis, Department of Computer Science and Engi-

neering, University of Nebraska-Lincoln, 2019.

https://www.gecode.org/doc-latest/MPG.pdf

225

Julian R. Ullmann. Partition Search for Non-binary Constraint Satisfaction. Infor-

mation Sciences, 177(18):3639–3678, September 2007.

Julien Vion, Thierry Petit, and Narendra Jussien. Integrating Strong Local Consis-

tencies into Constraint Solvers. In Recent Advances in Constraints, pages 90–104,

2011.

Richard J. Wallace. SAC and Neighbourhood SAC. AI Communications, 28(2):345–

364, January 2015.

David Waltz. Understanding Line Drawings of Scenes with Shadows. In P.H. Winston,

editor, The Psychology of Computer Vision, pages 19–91. McGraw-Hill, Inc., 1975.

Ruiwei Wang, Wei Xia, Roland H. C. Yap, and Zhanshan Li. Optimizing simple

tabular reduction with a bitwise representation. In Proceedings of the Twenty-Fifth

International Joint Conference on Artificial Intelligence, IJCAI’16, pages 787–793.

AAAI Press, 2016.

Robert Woodward, Shant Karakashian, Berthe Y. Choueiry, and Christian Bessiere.

Adaptive Neighborhood Inverse Consistency as Lookahead for Non-Binary CSPs.

In 25th AAAI Conference on Artificial Intelligence (AAAI 11), pages 1830–1831,

2011.

Robert Woodward, Shant Karakashian, Berthe Y. Choueiry, and Christian Bessiere.

Solving Difficult CSPs with Relational Neighborhood Inverse Consistency. In 25th

AAAI Conference on Artificial Intelligence (AAAI 11), pages 112–119, 2011.

Robert J. Woodward, Shant Karakashian, Berthe Y. Choueiry, and Christian Bessiere.

Reformulating the Dual Graphs of CSPs to Improve the Performance of Relational

226

Neighborhood Inverse Consistency. In Ninth International Symposium on Abstrac-

tion, Reformulation and Approximation (SARA 2011), pages 140–148. AAAI Press,

2011.

Robert J. Woodward, Shant Karakashian, Berthe Y. Choueiry, and Christian Bessiere.

Revisiting Neighborhood Inverse Consistency on Binary CSPs. In Eighteenth In-

ternational Conference on Principles and Practice of Constraint Programming (CP

2012), volume 7514 of Lecture Notes in Computer Science, pages 688–703. Springer,

2012.

Robert J. Woodward, Berthe Y. Choueiry, and Christian Bessiere. Cycle-Based Sin-

gleton Local Consistencies. In Proc. of AAAI 2017, pages 5005–5006, 2017.

Robert J. Woodward, Berthe Y. Choueiry, and Christian Bessiere. A Reactive Strat-

egy for High-Level Consistency During Search. In Proceedings of the 27 th Inter-

national Joint Conference on Artificial Intelligence, pages 1390–1397, 2018.

Robert Woodward. Higher Level Consistencies: Where, When, and How Much. PhD

thesis, University of Nebraska-Lincoln, 2018.

Clement T. Yu and Meral Z. Ozsoyoglu. An Algorithm for Tree-Query Membership

of a Distributed Query. In Proceedings of the Third IEEE International Conference

on Computer Software and Applications (COMPSAC 1979), pages 306–312, 1979.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation & Claim
	Approach
	Rethinking Constraint Solvers
	A New Generation of Relational Consistency Algorithms
	Dangle Identification: Identifying Opportunities For Selectively Applying Relational Consistencies

	Contributions
	Outline of Dissertation

	Background
	Constraint Satisfaction Problem
	Solving CSPs
	Graphical Representations
	Properties of the Dual Graph
	Tree Decomposition

	Consistency Properties and Algorithms
	Global Consistency Properties
	Generalized Arc Consistency
	Pairwise Consistency
	m-wise Relational Consistency

	Related Work
	Constraint Solvers
	Consistency Algorithms
	Structural Tractability

	Stampede: A CSP Solver Designed for Research, Extensibility, and Composability
	Motivating the Creation of Stampede
	The Shortcomings of Existing Alternatives
	scsp: A Precursor to Stampede
	Design Philosophies and Goals of Stampede

	Extensibility: Lowering the Burden of Entry for Novel Ideas and Algorithms
	Core Classes
	Run-time Configurable Algorithms: tclap and the CLIFactory
	Consistency Propagators and Configuration

	Leveraging Modularity to Give Rise to Novel Relational Consistencies
	Algorithms for Enforcing Hyper-3 Consistency
	Drivers

	Research Oriented
	Ordering and Reproducibility
	Interacting with Stampede

	Pairwise Consistency Algorithms
	Current State-of-the-Art for enforcing PWC
	Techniques for Improving Pairwise Consistency
	Piecewise Functionality
	Refocusing Propagation on Subscopes
	Minimal Dual Graph
	Determining when GAC is enough to enforce PWC

	Integrating Improvements into existing PWC Algorithms
	Empirical Evaluation of PW/AC2 and eSTR2(w)m
	PW/CT: Efficiently and Lazily Enforcing Pairwise Consistency
	A Brief Overview of Algorithm CompactTable
	Data Structures
	Enforcing PW/CT

	Empirical Evaluation of PW/CT
	Future work

	Improving m-wise Consistency Algorithms Via Dynamic Relation Partitioning
	Background
	PerFB Algorithm
	Replacing the Index Tree with Coarse Blocks
	Additional Equivalence Classes of Relations
	The PerFB and AllSolFB Algorithms

	Empirical Evaluation
	Binary Benchmarks
	Non-Binary Benchmarks

	Dangle Identification: Dynamically Identifying and Solving Tractable Branches of Search
	Background and Related Work
	Dangle Identification
	Which Graph to Use
	Fast Hyperedge Removal

	Dangle Identification Algorithm
	Ensuring Satisfiability of Dangles
	Empirical Evaluation of Dangle Identification

	Conclusions
	Summary of Contributions
	Future Work

	Per-Benchmark Results for GAC Algorithms
	Per-Benchmark Results for PWC Algorithms
	Per-Benchmark Results for R(*,m)C Algorithms
	Per-Benchmark Results for Dangle Identification Algorithms
	Bibliography

