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Abstract

In recent years, scheduling problems have been advantslgenadeled as Constraint Satisfaction
Problems (CSPs) and effectively solved by constraint pyapian and processing techniques. In this
document, we discuss one such application: the assignmgnaduate teaching assistants (GTAS) to
courses as instructors or grading assistants in a uniyeseiting. We analyze and model this problem
in the real-world setting of the Department of Computer B8céeand Engineering of the University of
Nebraska-Lincoln. This problem has traditionally beenres@nstrained. The results of our investiga-
tions are as follows. We enrich the definition of the problgmnzluding students’ own preferences
to be assigned to courses. We propose, implement, and &vauapresentational model of the enti-
ties and constraints that constitute this problem, andagéxiow the current model has emerged from,
and improves upon, a series of modeling attempts. We algoopey implement, and test various op-
timization criteria that model 'satisfactory’ solutionginally, we describe, implement and test various
computational mechanisms for solving this problem suchrdsring heuristics, constraint propagation
mechanisms, and search mechanisms.
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1 Introduction

Constraint Satisfaction has emerged as a powerful paraftigmodeling and solving large combinatorial
problems. One of the earliest application domains has adddescheduling problems [4]. Today, and less
than 15 years after these initial efforts, commercial comgmmsuch as llog (http://www.ilog.com/), On Time
Systems (http://www.cirl.uoregon.edu/otsys/), and EBwards (http://www.numetrix.com/) are success-
fully commercializing this technology. In this documente wiscuss a specific application of constraint
satisfaction techniques to a real-world application. Thihe assignment of graduate teaching assistants to
courses in the Computer Science department of the UniyarsNebraska at Lincoln.

There are multiple goals to our study. The idea for this paldir application is borrowed from Rina
Dechter, at the University of California, Irvine. The imitimotivation for our investigations was the collec-
tion of data in order to articulate interesting homeworkicegor CSCE476/876 and CSE421/821. We soon
realized that what at first appeared to be a relatively simppiblem was actually quite complex.

One of our intents is to define and carry out a challengingishrastivated by a real-world application.
In this vein, we seek to understand and evaluate the applicat theoretical concepts that exist in the
literature, while gaining insight into the research expece.

We also undertake this research in order to aid our depattmehis task. This task is a difficult and
time-consuming undertaking as it is currently performethinithe department. It is carried out manually
each semester, and involves at least three administratersi{e department chair, the vice-chair, and the
Graduate Program secretary) in addition to the faculty &mtests involved. In addition to the disadvantage
of a large and painful investment of effort, the results @ throcess tend to be less than satisfactane
expect that automation of this process will facilitate tisedvery of substantially less problematic solutions.

A final important research objective is the identificatiomlivéctions for future research that is relevant to
real-world applications. Such direction can only servetibdoand strengthen tools for critical applications,
and benefit the community as a whole.

Before we delve into the details of the data collection ptaseur system development, we introduce

the reader to the terminology of constraint satisfactiabfgms then explain the structure of this report.

1.1 Definitions

A Constraint Satisfaction Problem (CSP) is representedude = (V, D, C), whereV = {V},V,, ..., V,}

is a set of variables, an® = {Dy,, Dy,, ..., Dy, } is the set variable domains, such ttia{; is the do-

1GTAs are often assigned to help with courses that have timBicts with their other commitments, or assigned to couises
which they have inadequate proficiency, among other diffesil



main of variableV;. C = {C;,Cjk,...,Cij...m,--. Cpn} is a set of constraints such th@j ; indicates a
constraint between variablé$ andV;. For a given constraint’; ; . ., the set of variable¥;,V;,...,V,,

is called the constraint'scopeand the size of this set is the constrairatity. Formally a CSP is defined as
follows. Given the tupleP = (V, D, C), find an assignment to eaéh € V from its domainDy; such that
no constraint is violated.

A constraintCy; v, specifies the allowable tuples that can be assigned to th&blesV;andV;. The
set of all such allowable tuples constitute the constmidéfinition. If all allowable tuples are completely
enumerated and stored, the constraigxignsivehdefined. If allowable tuples are functionally represented,
the constraint isntensivelydefined.

An instantiationto a variabléeV; is the assignment of valuec Dy, to V;. We write such an instantiation
as an ordered paiiV;, a). An instantiation that does not violate any constraintsoissistent it; otherwise,
it is inconsistent. A solution to a CSP is a set of instaruiai{(V;,a), (V},b),..., (Vi,x)}. We use the
term global solution to describe a solution that instantiates all \des; if some but not all variables are
instantiated, then it is partial solution.

For a specific example of a constraint satisfaction problemn yisit the map coloring problem. The
map coloring problem is defined as follows. Given a set okstadnd a set af different colors, color each
state such that no two states that share a border have thecstomeAn example of such a problem, and a

subsequent mapping to a CSP, are given in the following eleamp

Example 1.1 Imagine that we want to color the map of the US, as shown indiguwith the 5 colors red,
blue, green, gold, and orange.
Each state must have one color and no two neighboring statebave the same color. Additionally,

suppose we have the following restrictions:
e NE must be colored red.
e FL must be colored either green or orange.
e Exactly one of NV, CA, or OR must be colored gold.

We model this problem instance as a CSP choosing as varihiglasates on the map:

V ={CA,OR,WA,ID,NV,AZ,...} 1)



Figure 1:Map of the United States of America.

Each of these variables has the set of coloesl, blue, green, gold, orangas its domain. For example:
Dy = {red, blue, green, gold, orange} (2)

The constraints in the problem specify that no two adjactates can have the same color. For example,

there would be a binary constraint between GA and AL :

Coanr ={((GA,z),(AL,y)) | (x € Dga) A (y € Dar)(Ax #y)} ®3)

We also model each of the restrictions listed above as areamstThe first and second ones are unary
constraints:
CNE = {(NE,?“t?d)} (4)

Crr, = {(FL,green),(FL,orange)} (5)
The last is a ternary constraint:
Cnecaor ={((NE,z),(CA,y),(OR,z2)) | (z=gold Ay # gold Az # gold) V (6)

(x # gold Ny = gold \ z # gold) V

(x # gold Ny # gold \ z = gold)}



1.2 Overview

This document is structured as follows. In Section 2, wewdisdhe data collection process. In particular,
we identify the attributes of courses and graduate teach#sgstants that need to be specified for the task
of assigning GTAs to courses. In Section 3, we report on categies for modeling GTAs, courses, and
the constraints that dictate under what conditions we wlieeta assign a given GTA to a particular course.
In Section 4, we discuss the constraint processing techaigue have considered for solving this problem.
Section 5 describes our current implementation. Sectiore$gnts and discusses the results of our experi-
ments on two data sets pertaining to the academic semegieing 3001 and Fall 2001. Finally, Section 7

concludes this documents and draws directions for futlseareh.

2 Data Collection

In this section, we discuss our methods for data collectibhis includes the methods in place when we
began our study, our modifications to this process, as welldescription of the collected data. The type of
data collected heavily impacts the types of relationshipscan model. For a parallel, in the map coloring
example earlier, if we were given the name of the states toolmwex, but not their relative locations and
borders, it would not be possible to model the problem in armimegul fashion. By this same token, without
acquiring key data for our problem, it is impractical to aif# to solve a model of the problem, as it will

bear little or no resemblance to the actual problem seersictipe.

2.1 Background

Previous to our study, when a graduate student applies faching assistantship (TAship) in the Depart-
ment of Computer Science and Engineering (CSE) at the Usityasf Nebraska-Lincoln (UNL), he or she
is asked to submit information about his or her academiohjisiThe department has designed paper forms
that the students fill to provide this information. A sampdent is included as an appendix to this paper.
Once assistantships are awarded, the information sulohibfteeach graduate teaching assistant (GTA) is
then used, in addition to other information such as ITA iegtion status and previous TA experience. This
data is then used to determine the courses that the studgriatentially be assigned to.

Further, depending upon the availability of funds or theolvement in research projects, graduate stu-

dents may receive one of two types of teaching assistastshiese are half or full teaching assistantships.



Typically, GTAs that receive a half TAship are assigned tedieor smaller courses, while students with full
TAships receive a more demanding workload.

With the above information in hand, faculty and administratmembers then proceed to manually
assign the GTAs to scheduled courses. Typically this pnargecksults in barely satisfactory assignments.
GTAs frequently have time conflicts with courses that they assigned to and requiring their physical
attendance. Sometimes, they are inadequately preparedefonaterial of their assigned courses. These
conflicts are sometimes detected and GTAs are swapped betoeeses or brought up to speed. The
detection and correction of these conflicts result in fat&in and a loss of time and effort for for the
students enrolled in the classes, the GTASs, the teachindtyaand the administrators.

Our goal in automating this task is to reduce the quantityraadnitude of conflicts observed in prac-
tice, while proposing solutions that better satisfy theolmegd parties — the faculty, students, and the GTAs
themselves.

At the time that we began this project, the information tisteas collected by the department for each

GTA. The majority of these items are briefly mentioned here.
e Enroliment status: A list of courses that a GTA is enrolled in.

e |ITA Certification: A boolean value that indicates whether an internationadesttihas or has not

passed the International Teaching Assistant Evaluation.
e Half/Full TAship: Indicates whether a GTA is employed full-time or half-time.
e Faculty advisor: The GTAs individual advisor.

e Course deficiencies: Courses required for completion of the graduate prograrnhiwee yet to be

taken.
e Past TA experienceA list of courses that the GTA has been assigned to in pre\seusesters.
e Grade point average (GPA)AnN indicator of scholastic aptitude.
Of the above, a GTAs advisor, deficiencies, experience, &#ddse not taken into account in the current
version of the problem model. The rest of these attributesimcussed in Section 3.
2.2 Refining data collection: preferences

We observed that the data collected by the department fresttidents thus far is actually sufficient to avoid

conflicting decisions such as the ones mentioned above.eguastly, it is quite realistic to implement an
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automated system that monitors decisions to avoid the geoerof conflicting assignments. We are able
to utilize past procedures for data collection for a largdipo of relevant data, including course attributes
such as meeting times and types, as well as GTA informatioh asi ITA certification and enrollment status.

The information and mechanisms for evaluating how satisfga given solution is and for rating and
comparing distinct solutions, however, were not existdartha outset of this study. For this reason, we
introduced a range of six (6) integer values, from 0 to 5, agliested students to rate each offered course
using this scale. A rating of 5 indicates a strong preferdace course, while 0 indicates that the GTA has
a demonstrable justification for why he or she should not bigasd to the course.

This mechanism provides us with a basis for comparing twsistent solutions, thus otherwise equally
acceptable. We designed an optimization function thatilsepreference schema to better fit the preference
of GTAs with their actual assignments, see Section 3.4. \We&xhat matching GTAs to courses for which
they declare a stronger preference will enhance the qualityeir performance in their duties.

We generated a supplement to the existing questionnairgddents to fill out shown in the Appendix.
The collected data now has the information necessary faguieg a representation of the problem, imple-
menting it and processing it on a computer. We choose the @&fligm for its simplicity, flexibility, and
the wealth of propagation methods and processing techmianaglable. In the next section we specify our

constraint satisfaction problem model formulation.

3 Modeling

Many of the challenges inherent to this problem are bestesddd during the modeling stage. The CSP
paradigm, as introduced in Section 1.1, provides a mostalatay to formulate scheduling problems such
as the one we address here. In this section, we describe hdarmalate the GTA assignment problem
during a single academic semester as a CSP. We choose to coodsts as variables and GTAs as domain
values. Further, we elicit and translate the relationshigtsveen GTAs and courses as seen in practice into

constraints that can be processed.

3.1 Variables

Each course constitutes a CSP variable and is representdeé fyllowing attributes in our model:

e Course type:There are three (3) types of courses offered by the CSE degatt namely lecture,
laboratory, and recitation. A course of a given type may irega GTA as either an instructor or a

grading assistant. Some courses may require both. Labseaitdtion courses require a graduate
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student as an instructor, while lectures utilize GTAs asligiaassistants in most cases. for example,

in the Fall 2001 semester, there were 44 lectures, 25 lab@at and 3 recitations.

Course duration:The duration of most courses offered during a semester spanghe entire length

of the semester. However, a few exceptions exist. Thereoane sourses that occupy only either the
first or second half of a semester. These courses typicajlyireboth one GTA as grading assistant
and another GTA as instructor. For example, in the Fall 2@0hester, there were 37 full-semester
courses and 7 half semester courses, 4 of which were heldgdiine first half, and the rest during the

second half.

Meeting times:It is important to include the meeting times of each coursertter to avoid time
conflicts in the assignments. For example, a GTA assignedsaisictor to a course must be able to
attend all sessions of this course and thus should not bdezhio another course that overlaps with
the course he or she is assigned to. The course schedulemsagvnput to the system. Each course
has one, two, or three sessions per week. For example, irath2d®1 semester, CSCE310 was held

on Mondays, Wednesdays and Fridays between 9:30 a.m. a2@ 4.0n.

Expected load:The load of the course is a relative measure of the amountfarft ¢hiat a GTA is
expected to spend on the course in question. This value &rdigeied by department staff mem-
bers, based on anticipated enrollment in the course, asasdhe typical amount of course work.
Typical values for courses are 0.5 and 1, where a course whbtto@d is a course with lower en-
rollment and small course work expectations, and a cour$ie lead of 1 has a larger number of
students enrolled, and may require a moderate to large a@mbaaurse workl For example, during
the Fall 2001 semester, CSCE155, an introductory levelseoir computer science, had load of 1,
while CSCE496/896, a senior-level special topics courad,lbad of 0.5. This reflects the fact that
CSCE155 tends to have enrollment of more than 100 studehite ®SCE496/896 is likely to see
between 20 and 30 students.

In general, each course is represented by a single variatiismwhe CSP. More specifically, each vari-

able represents the task an assigned GTA is expected tamperfith respect to a given course. For this

reason, half semester courses requiring a GTA as an instratd another one as a grading assistant are

2A typical semester will have several courses with 0 load db Whis indicates that these courses do not require thécasof
a GTA, and therefore are not considered for assignment imthgel. These courses tend to be graduate level courses@sp |
or seminar sections that have relatively low enrollmend, e advanced nature of the course precludes the major@fAs from
possessing sufficient proficiency in the area.



represented by two variables. Similarly, classes with lo@d do not have a variable representation. Typi-
cally a given semester in CSE has around 70 variables; fonpbea the Fall 2001 semester is modeled with

66 variables.

3.2 Domains

The domain of a CSP variable is the set of values that can lgnasisto it. In our model, each value is a
graduate teaching assistant. Initially, the domain of eaclable consists of the pool of all available GTAs.
Each GTA has a number of relevant attributes that should bekeld before including him or her in the

domain of a variable. These include the following:

¢ Enroliment: The enroliment status is a list of courses that a GTA indg&ie or she will enroll in
during the semester in question. It serves two purposesrimadlel. First, it is used to determine
when a given GTA is not available as an instructor. Seconsgused to prevent a student from being

assigned as either a grader or instructor to a course thatdieas actually enrolled in.

¢ ITA Certification: International students constitute the majority of our paioGTAs. Due to various
considerations, it is required for these students to aeduiernational Teaching Association (ITA)
certification prior to assignment as instructors for cosirdecoming international students are usually
not ITA certified. This procedure may take a semester or tvimrben incoming international student
becomes ITA certified; in the meanwhile, he or she can be regdignly as a grading assistant. For
instance, during the Fall 2001 semester, 14 out of all 34 Giiresl required but did not possess ITA

certification.

e Half/Full TAship: As mentioned in Section 2.1, graduate students may recélver & half or full
TAship. Typically, it is desirable to rely more directly onl@s with full teaching assistantships. In
practice, a GTA with a half-TAship will be assigned coursdthwhe sum of their loads equal to 1,

while a GTA with a half-TAship is assigned a to courses witbadl total of 0.5.

e PreferencesPreferences, as discussed in Section 2.2, are integesvaluging from 0 to 5 associated
with each class for a given GTA. These are used in the opttioizariterion that discriminates among

consistent solutions.

Each of these attributes is taken into account before asgignGTA to a given course. The values of

these attributes are checked by the constraints, which Wdigaguss next.



3.3 Constraints

There are several different types of constraints consitdetteen assigning a GTA to a course. This system
uses unary (arity = 1), binary (arity = 2), amdary constraints to represent the variety of relations that
dictate valid instantiations. Several of these constsaivitre hinted at in previous sections; all constraints

that we model are covered in detail here. The unary consdrane:

¢ ITA certification- As touched on in Section 3.2, international students aeired to be ITA certified
prior to instructing any courses. The ITA certification doamt is a unary constraint that enforces

this condition upon any variable that requires a GTA agatructor.

e Enrollment- The enrollment constraint is a unary constraint that presy&TAs from being assigned
to courses that they are taking. Clearly it would be disathgeous to allow a student to grade his or

her own work!

e Overlap- Overlap constraints prevent any GTA from being assigneahaastructor to a course that
he or she cannot attend. This is based on the GTAs enrolint&tuss using the meeting times of

courses he or she is enrolled in to indicate when he or sheasilable.

e Zero Preference Zero preference constraints prevent any GTA from beingyaed to a course for
which he or she has indicated preference value zero. Thigtrednt serves to restrict attention only

to those GTAs that have some desire (or little objectionpstructing or grading for a given course.
There is only one type of binary constraint used in this nmodel

e Mt ex - Mut ex constraintd are binary constraints in place between any two coursesrélaire
GTAs as instructors and meet during overlapping times. &hferces the condition that a GTA must

attend courses he or she is instructing.

We choose to use non-binary constraints to model the cgpastrictions and containment situations
observed in practice. While the majority of processing meghes in CSPs have focussed on binary con-
straints and relied on reformulation techniques for magpij non-binary formulations into binary ones,
it is commonly acknowledged that the representation shiarthin as faithful to the real-world constraint
(i.e., a capacity constraint should be represented as dinany constraint) and the processing should use

the encoding that is most likely to yield efficient procegsif-ew investigations have been carried out to

3a.k.a. constraints of difference, or coloring constraints
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establish the superiority of a binary versus a non-binargnitdation with respect to the efficiency of the
processing technigue. This is a new research area and ndatelefinclusions exist yet. We implement 3

types of high arity constraints:

e Equality - Equality constraints are-ary constraints between a set of courses, all of which shbel

assigned the same GTA.

e Capacity- Capacity constraints are-ary constraints that prevent any GTAfrom being assigned
more than some maximum loadax,. This is enforced by restrictings current loadcurr, < maz,,

wherecurr, is the sum of the load of all courses tlghas been assigned to.

e Containment Containment constraints areary constraints, similar in spirit to the aforementioned
nmut ex constraint. In general, a number of lab and recitation @sirnsay be associated with a given
lecture course; for instance, the lecture course “Intradado Computer Science 17, section 1, has
had as many as five associated labs. It is desirable that GS3hgneed to instruct one of these labs
not be assigned to any other course, unless it is anothestalziated with this same lecture section.
Containment constraints enforce this condition. Since & @dn be assigned to multiple courses,
containment constraints enforce assignments of a speci#ict@a subset of labs or recitations asso-

ciated to a same lecture section after he or she has beenesigany one of these sections.

In addition to our stated goals — to find good solutions thaecmany courses while optimizing solution
preference —we have two other goals in mind while modelirgtoblem. First, we wish to obtain solutions
that match the criteria used in practice. Secondly, we waproduce a model that does not force model
processing to be too complex. The introduction of many cempbnstraints can often increase the amount
of effort that is expended in finding a solution. We intend mardel to be descriptive, yet practical.

In order to do this, we feel that non-binary constraints heamost effective technique for modeling these
complex criteria, such as capacity and containment canstraWhile the superiority of non-binary over
binary representations is still an open question BaccBugle non-binary approach allows an intuitive
approach to handling these constraints. The capacity am@ioment constraints, in particular, are very
loose, highly disjunctive constraints, and as such, typriegthods for translating binary problems into non-
binary ones can become expensive using either an intensiggtensive constraint definition. An initial

approach to our problem, that utilized only unary and biramystraints is discussed in Section 3.5.
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3.4 Optimization objectives

The goal of modeling is to provide the basis for finding carrgeactical solutions. Thus far, we have
discussed the aspects of problem modeling that deal wittidbision portion of our problem. That is, given
the variables, values, and constraints, determine whethast a solution that satisfies all constraints exists.

The problem of GTA assignment also involves an optimizasispect as well. While a given instance of
the GTA decision problem may or may not be satisfiable, we t@reesjuired to discover the best solution
possible. We optimize solutions with respect to three Gateconsistency, solution size, and GTA course
preferences.

We will only select a solution that does not violate any caists. All constraints in our model are
consistent provided that all assigned variables in the es@fpeach constraint is consistent. This allows
solutions to leave some variables unassigned. This is aortamt consideration, as this problem is often
overconstrained. Most algorithms that deal with CSPs witipby exit if no solution that satisfies all con-
straints and assigns all variables can be found. A notaldepgion is work by Freuder and Mackworth on
MAX-CSP [5].

If consistency were our only consideration, our system @agelect its initial state, in which no course is
assigned a GTA, as a good solution and exit. To resolve tlsyptimize the returned solution with respect
to solution size. Solution size is defined as the number ¢thntsated variables.

This begs the question, what if two solutions have the same?sin this case, we rely on the third
optimization criteria, GTA preferences. The preferencea @olution is the preference of each GTA for
the course that he or she is assigned to in a given instamtiatVe have experimented with two different
measures that optimize solution preference — maximiziagggometric mean and maximizing the minimum
preference.

The geometric mean of preferences is straightforward. riiwe consistent instantiations with the same
solution size, we will select the solution with the greateometric mean of preferences. This is defined as
Y/TI7 pref;, wherei corresponds to thé” variableV; that receives an assignment in the current solution.
The second optimization measure is maximization of the mmimn preference. In this measure, given our
two instantiations from earlier, we will select the one wighwer preferences of 1. If there are an equal
number of 1's, we’ll select the one with fewer 2’s, and so ohe Tollowing example illustrates each of the

optimization criteria discussed here.

Example 3.1 We are given a semester with four courses and four GTAs. Fhisrnset, we have several

possible solutions.
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e Courses CSCE 310, CSCE 155, CSCE 235, CSCE 476

e GTAs -Kurt Godel, Alan Turing, David Hilbert, Alonzo Church

Each GTAs preference for each course is shown in table 1

\ GTA H 155\ 235\ 310\ 476\
Alonzo Churchf| 1 2 3 0
Kurt Godel 3 5 5 2
David Hilbert 2 5 1 3
Alan Turing 5 3 2 5

Table 1: Example set of courses and GTAs with preferences

Given the following two instantiations denoted by tuplesurse, GTA, preferenge

(1) (155, Turing, 5) (235, Hilbert, 5) (310, Godel, 5) (479,
(2) (155, Hilbert, 2) (235, Church, 2) (310, Turing, 5) (4Gxdel, 2)

We will choose instantiation (2), since it covers more aasthan (1) does. Comparing the next two

instantiations using the maximization of minimum prefemevaluation function

(3) (155, Church, 1) (235, Godel, 5) (310, Hilbert, 1) (4T6ring, 5)
(2) (155, Hilbert, 2) (235, Church, 2) (310, Turing, 5) (4Bxdel, 2)

We will again choose instantiation (2), as instantiationias 2 assignments with preference 1, while
instantiation (2) has 0 assignments of preference 1. lgjr@mparing the next two instantiations according

to the maximization of geometric mean,

(4) (155, Gdel, 3) (235, Turing, 3) (310, Church, 3) (476 bdit, 3)
(3) (155, Church, 1) (235, Godel, 5) (310, Hilbert, 1) (4T6ring, 5)

In this last case, instantiation (4) has geometric mean 8ewWB) has geometric mean of about 2.24.
Therefore, we prefer (4) to (3). Notice also that this last plistrates the benefit of geometric versus

arithmetic mean, as (4) and (3) both have arithmetic mean of 3
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3.5 Previous models

Our model is the result of several prior attempts. While thgables, domains, and optimization criteria
have remained fairly unchanged, the constraints have gaderseveral modifications. The past models can
be broken up into two distinct precursors — an initial modehwinary constraints, and a previous model
using non-binary constraints. Examination of these two @®oavill yield some insight into the design

decisions and problems we faced in representing the GTAm@s&nt problem.

3.5.1 Binary model

Early in this project we tried to model this problem usingyonhary and binary constraints, in order to
take better advantage of and build off of existing reseafdhof the unary and binary constraints in this
early model we still utilize in the current model. Contaimmheonstraints and equality constraints were
not modeled. Capacity constraints were simulated by remathe currentt-ary constraint with a fully-
connected graph afut ex constraints between atl variables in the simulated capacity constraint’s scope.
This solves the problem of preventing GTAs from being owadled; however, it restricts GTAs to at most
one assignment. As a workaround, GTAs were then replicatkalying each GTA to be assigned to a
maximum of two courses.

This replication strategy increased the size of the CSPtautiglly. For a given CSP with = |V|
andd = |D|, the size, or number of possible solutions of a CS#'isMethods for solving CSPs rely on
navigating this search space in order to find a solution; liptmly doubling domain size, we increase the
size of the solution space by a factor 23, with a direct impact on run-time and effectiveness of dearc

This size problem was the primary motivation for moving to second, non-binary model.

3.5.2 Initial non-binary model

In the second model, we eliminated the fully-connected muetworks and replaced them with a non-
binary capacity constraint. In addition to maintaining gwution space tal" size, this also allows a
degree of flexibility in specifying workload. Capacity ctmaénts can be given a parametemxi num
capaci t y, that sets a cutoff limit to the amount of load GTAs can begaesd. While we have only utilized
capacity constraints with a maximum capacity of two loadsufar full GTASs, it is possible to configure this
maximum to allow GTAs to take larger loads when an insufficrmmmber of GTAs is available, or it can be
lowered if there is a surplus of GTAs.

The difference between this non-binary model and the madeise is the inclusion of the equality
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constraint, and the containment constraint. The additidhese two constraints was motivated by a desire

for increased accuracy in fitting to new department strategi

4 Processing

Generally, problem instances involve around 70 courses38n@dTAs. Courses tend to have an expected
load of about 1 unit, though many have less, and few have lpatbee than 1. Due to this and many of
the constraints on the problem, it is expected that manyl@nolinstances will be unsatisfiable. However,
it is essential that we find some partial solution in the absef any global solutions. For this reason, the
assignment of the empty valueto a a variableV; is considered consistent with any constraint; . .,
such thatl; € Scope(C; ;,...m). In other words, this system necessarily will consider ataintiation to be
consistent even when some courses are not assigned GTAs.

We focus our research on the use of systematic techniqueslfong CSPs. These methods are based
on a systematic, depth-first search of the solution spacesaléet these methods for their soundness and
completeness. Other solution techniques, such as loaahseae powerful methods, but lack completeness.
As this project presents proof-of-concept, we desire tlarantee to find a consistent global solution, when
one exists.

In addition to the solution methods mentioned above, wekgeemented with various methods for
constraint propagation. These methods attempt to redeaftirt of search by eliminating domain elements
in a variable’s domain if they are found to be inconsisterihwhie constraints. For example, enforcement of
node consistency is used to propagate the effects of unastraints prior to search. For instance, if GTA
Winston Smith is enrolled Information Retrieval, he will lamoved from Information Retrieval’s domain
when node consistency is enforced due to the enrolimentreamisthat is in place on the course. In this
section, we will first examine some of the propagation meshwe have experimented with, and then discuss

the solution methods that we have implemented.

4.1 Propagation

The most basic propagation algorithm is node consisten@).(Node consistency is enforced by examining
each value: in the domain of each variablé. If a is not consistent with some unary constraihtlefined
onV;, a is removed from the domain df;. This simple algorithm tends to yield a significant reductio
the size of GTA assignment problems, increasing the spegddifg a solution.

In Section 3.5.1, we referred to an earlier model that repriesl the capacity constraint as a network
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of mut ex constraints. It is worth mentioning here some of our findimggsing the arc-consistency propa-
gation method forrut ex constraints proposed by Régin [10]. This filtering aldumitis based on finding
a variable-to-value maximal matching in a fully-connectedwork ofmut ex constraints. The network of
variables is first transformed into a bipartite graph, witle get of nodes representing variables and the other
representing values. Edges between these sets tie eaghledn the values in its domain. A matching in
this graph is a set of edges such that each variable is assbeiéth a unique valué. Independent of all
other constraints besides the mutices, this matching septe a solution to this set of variables. However,
due to the presence of other constraints, Régin’s algoritien uses this initial matching to find all possible
matchings. For each value in the graph, if it is not incidgmiruan edge in any matching, it can be filtered
from the problem, as it cannot be included in any global smhut

This algorithm proves useful when we are searching speltyfifta a global consistent solution. How-
ever, since we do not focus on finding a global solution (dudedact that in many cases they do not exist),
this algorithm was not often particularly useful. Once thmebtem model evolved away from the binary
model, and large networks alut ex constraints were replaced by capacity constraints, tigerdhm was
removed from the solver system.

Node consistency and Régimisit ex filtering algorithm are the two stand-alone constraint pigation
algorithms that we've implemented and used in this systenthelOmethods for constraint propagation
that we have tested are forward-checking [6], and forwdmekking for non-binary constraints [2]. These

methods are used during search; they will be covered in tkieseetion.

4.2 Solution techniques

We utilize systematic search techniques based on deptisdmsch to solve the GTA assignment problem. In
order to cope with the problem size, we include some looladlstrategies when searching. Earlier models
have used standard forward-checking to propagate the effpast assignments; the current implementation
uses a form of forward-checking for non-binary constraifdsanch-and-bound mechanisms are another
feature integrated into our search strategy.

Forward checking (FC) is perhaps best described by Pras$e}. iThis is a strategy used in CSPs con-
taining only unary and binary constraints. Each time argassent is made, afuture variables (variables
that have not yet been assigned at the current point in gehasle values removed from their domains if
these values are not consistent with the new assignment.

Alterations to the model that involved the inclusion of rimnary constraints forced a change in the

4The algorithm used to compute this matching is attributeddpcroft and Karp [8].
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look-ahead strategy used. We implement and use forwarckitgefor non-binary constraints, as discussed
in [2]. Specifically, at each assignment, we filter futureiafalies with respect to all constraints that involve
the new assignment, and check with respect to all assigrables in the scope of the constraint. This is an
improvement over earlier methods for FC with non-binarystaints that required that all but one variable
in the scope of a constraint be assigned before any filteangpccur.

Each of the prior methods attempt to ease computationatt éffdhe average case by eliminating the
need to check against past assignments when making newTmeeext augmentation to search, a branch-
and-bound mechanism, attempts to reduce computatiorat &ff detecting and rejecting when a partial
solution will not yield a better solution than one that'sealdy been encountered.

The branch-and-bound mechanism we include in search orptbidem keeps track of the size and
evaluation value of the best solution seen up to any poirganch. As depth-first search expands nodes in a
search path by assigning values to variables, we check tibtheesearch path being expanded can improve
on the current best solution. Once the current best canniotfm®ved upon, search backtracks until a path
that presents the potential for improvement is encountered

One alternative to the search methods mentioned above isthef Least Discrepancy Search (LDS).
LDS is another type of systematic search that alters the ofdede expansion significantly in order to give
better coverage of the search space. LDS operates by firmhéxyg every node that is suggested by some
variable/value ordering heuristic. If this fails to find actaptable global solution, it then expands all search
paths according to the ordering heuristic, except thatibigs the heuristic at exactly one node. Ignoring
this one point is referred to asdiscrepancy If this second set of search paths is also unsatisfacteaych
then allows 2 discrepancies, and so on up20[7].

Least discrepancy search attempts to navigate around tyeo difficulties present in systematic search.
First, backtrack search is pronettorashing it tends to spend a large amount of time trying to repair path
that cannot yield a good solution due to mistakes early ircke&econd, ordering heuristics are much more
discriminative later in search, but tend not to have a sicguifi effect early in search; due to this, mistakes
tend to be made early in search. Combined, these difficuiied to induce a large amount of wasted
computation. LDS allows search to reconsider early assgmisrmuch sooner than these same assignments
would be reconsidered in other systematic searches [7].

Least Discrepancy search was considered prior to the chang@&on-binary model. However, it has

not yet been adapted to the current non-binary model.
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5 Implementation

This system is implemented in ANSI Common Lisp. We rely on@wenmon Lisp Object System (CLOS)
for implementation of the CSP structures (the variablelieg constraints, and the problem itself), as well
as the GTAs and courses. We choose this language for the sppeatotyping and the potential the ease of
incremental development. Here we discuss the design of Gdétse, and CSP objects, such as variables,
values, constraints, and a solution container.

Each course is represented by a class object with slots ¢briggportant attribute. GTAs are represented
similarly; each GTA object stores an associative list ofifse, preference) pairs that are used when building
variable domains. These structures are read in from AS@8H &ihd stored in globally-accessible hash tables.

A CSP object is then built, which stores its essential corepts1— the variables, values, and constraints.
The CSP object also has slots for storage of a solution, anikieeping elements used during search.
Variables are stored in the CSP object as a list, as the priation performed on this list is a sort operation.
Values are stored the same way. Constraints are stored shadlale that is keyed by scope; each entry to
the hash table is a list of constraints on the key. The bogkkgeelements stored in a CSP object are the
future and past variables; these are lists that operat@elsstiuring search, and are initialized from the list
of variables by one of the variable ordering functions.

The solution structure is used to preserve the instantigtiat best satisfies the evaluation function
during search. It stores a list of assignments in triplebiefform (variable, value, preference). The solution
object has several methods that compute the size and aevalvatue of the stored instantiation.

The hash table of GTAs is used to build each CSP value. Eachv@lee is a wrapper for a GTA
structure that serves to provide a named value object. Ongesdt is constructed, it is stored in the CSP
object. The set is also made available to CSP variables gsatkeconstructed, in order to construct each
variable’s domain.

The CSP variables are then constructed for each coursablésistore their associated course, domain,
assignment, and some bookkeeping information for use glwgarch. The domain of each variable is
constructed from the pool of available CSP values. The donsastored as a list of (value, preference)
pairs; each pair is drawn from the CSP value’s stored GTAabbjAssignments made during search are
stored in the variable as a pair drawn from the variable’'sa@lamEach variable stores a list of references to
constraints involving itself. The variable also storesfhllowing for bookkeeping during search: a list of
future-checked variables, and a list of reductions, bothu® during forward checking. The list of future-

checked variables keeps track of which variables the varialbgquestion has been checked against, and the
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reductions list acts as a stack of values filtered from thealor(Gee [9] for a more in-depth discussion of
each of these structures).

There are a wide variety of constraint objects in our systéfa.use an extensive enumeration of valid
tuples for the unary constraints, while using an intensiwengeration of the valid tuples for constraints with
arity > 1. Extensively defined constraints use a list to store aabéptuples, and have a generic associated
consistency check method. Each intensively-defined cinstises a specialized consistency check method.

This could be remedied by storing a constraint predicaterasraber of the constraint object.

6 Experiments

6.1 Data

We studied and experimented with two sets of data obtaired fhe CSE department. These sets pertained
to the Spring and Fall 2001 semesters. GTA half and full TAstand course loads were not defined in
our data for Spring 2001. In our tests, we used the defaulalbTAship, and a default course load of 0.5.
Preferences were not provided for the entire Fall 2001 datthis case we artificially enforced a default

preference value of 3 for GTAs who did not report preferen@sGTAs did not report preferences in this

data set.
Spring 2001| Fall 2001
GTAs 25 34
Lectures 40 44
Labs 24 24
Recitations 3 3
Half-semester 6 7

Table 2: Description of test data

6.2 Experiment Design

We tested our system’s performance on these two data sety 8dests per data set. Each test involved
one of the two possible evaluation functions, maximizingtiinimum or the geometric mean. Values were
ordered according to one of two value ordering heuristiog, \ariables were ordered according to one of
two variable ordering heuristics. These heuristics areriteedd briefly below.

We implemented static value ordering heuristics; the firdered all values by sorting according to

preference such that values with high preference would bsidered first. The second heuristic considered
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values that occurred in the fewest domains before thosetatred in many. Ties were broken according
to preference, with higher preferences considered firsts@ meuristics were used in conjunction with either
least-domain variable ordering, or domain-degree ratiging. Least domain variable ordering considers

first the variable with smallest domain, while domain-degr&tio ordering chooses the variable that has the

smallest ratigemein|

|[degree] ?

Each test was run for approximately one hour. We report inierbest solution found during that time by

wheredegree is the number of constraints on the variable.

each test. Table 3 shows these results in terms of constitaéaks, nodes visited, CPU time, and solution

quality in terms of solution size and the two evaluationecid.

Preferences

Test CcC NNV Time | Size GM 1 2 3 4 5
Spring 2001
GM-DP-LD 167301144| 219282| 3454900 49 | 3.7717085 5 1 6 8 29
GM-DP-DD 295782625/ 87074 | 2943150 51 | 3.8908036| 3 5 4 6 33
GM-MIN-LD 72185616| 51698| 1288900| 49 | 2.2945633| 16 7 10 4 12
GM-MIN-DD 9889354 4853| 155170| 52 | 2.8628445/ 11 4 11 9 17
MM-DP-LD 166043703| 212144| 3444040 49 | 3.7717085 5 1 6 8 29
MM-DP-DD 193803188 50099| 1901350| 51 | 3.8908036] 3 5 4 6 33
MM-MIN-LD 71184570| 50068| 1277380 49 | 2.2945633| 16 7 10 4 12
MM-MIN-DD 9176961 3668| 124400| 52 | 2.8628445/ 11 4 11 9 17
Fall 2001
GM-DP-LD 5886422 112 32690| 56 [ 3.167192 | 7 0O 28 0 21
GM-DP-DD 3249132 51 18820 40 |3.8350053] 1 0 15 6 18
GM-MIN-LD 7094746 1764 65880| 51 | 2.8961947| 8 0 28 3 12
GM-MIN-DD 5249870 123 27100| 48 | 2976746 | 4 3 29 4 8
MM-DP-LD 5886422 106 31680| 56 |3.167192 | 7 0 28 0 21
MM-DP-DD 3249132 51 19340 40 |3.8350053] 1 0 15 6 18
MM-MIN-LD 6978914 1448 53970| 51 | 2.8961947] 8 0 28 3 12
MM-MIN-DD 97282099| 51256| 1640270| 48 | 3.0200438 3 4 29 4 8

Table 3: Best solution found during one hour interval forletast; each test is described by GM (geometric
mean) or MM (maximize minimum) evaluation, DP (preferenmeoed) or MIN (value that occurs in fewest
domain) value ordering, and LD (Least-domain) or DD (dond®gree ratio) variable ordering. Categories
are CC (constraint checks), NNV (number of nodes visite@®UGime (10ms resolution), GM (geometric
mean) and the number of occurrences of each preference.

When viewing the results in table 3, it is important to keenimd how constraint checks are counted.
In the binary case, it is typical to count each constraintckhence. However, in the non-binary case, a
single count is not likely to be indicative of the amount offlwperformed. For this reason, every constraint
check increments the total number of checks according taribeof the constraint. For example, checking

a 57-ary capacity constraint increases the number of @nsthecks by 57.
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Our tests indicate that the geometric mean and maximizatianinimum preference evaluation func-
tions lead to the same result in most cases. The only excejatithis are the GM-MIN-DD and MM-MIN-
DD tests. In these tests, the maximization of minimum pesfees (MM) evaluation function seems to find
these similar solutions with slightly less effort, in terofsriode expansion, constraint checks, and CPU time
than does the Geometric mean function. Maximizing the mimmwas likely able to backtrack earlier, as
some path was discarded more quickly under this strategyithreas using maximization of the geometric
mean. This allowed the MM test to improve its solution at leage more time before the time limit was
reached.

No single variable-value ordering combination appearsaimidate in these tests. It appears that the
effectiveness of each combination varies strongly betvileese two test sets. Since variable/value ordering
heuristics seem to have a strong effect on the performanoarafystem, experiments with more powerful

orderings is likely to be beneficial.

7 Conclusions and future research

We have shown that it is feasible to use CSPs to model and #ub/eroblem using this approach. There
are several apparent improvements that can be made to tieensykat we briefly discuss in this section.
This system has been used in practice at the time of thisngritith satisfactory results. We were able
to reduce the amount of time spent on this task by a largevaitdin practice, scheduling GTAs often would
take four or five days before a satisfactory solution was doas GTAs were shuffled between courses. We
were able to generate solutions that reduced the time spenetday. We intend to further reduce this over

the course of further work on this project.

7.1 Future research

There are many possible approaches that may improve themamperformance and accuracy of our system.

Below are some of the techniques we intend to employ in futesearch on this task.

e Aggregation and Reformulation - We expect that the implelat@n of the methods discussed in

section 7.2 will improve the performance of this system.

e Parallelization - The implementation of parallel solveregents an interesting approach to CSPs in
general. We intend to explore the usefulness of asyncheommihods (as described in [11] and [3]),

as well as the potential for using decomposition strateigiesnjunction with parallel programming.
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e Local search strategies - Local search strategies, basedamplete hill-climbing strategies, present
a powerful method for solving scheduling problems. We idtémexamine the quality of solutions
and time necessary to find solutions using local strategidscamparing the results with systematic

approaches.

e A weakness with our implementation is the storage of GTA anatse data. This data is currently
stored in ASCII format. The design of an interface for onlidaa input has exposed the weakness
and difficulty of this strategy; we hope to replace this applowith a database for storage to increase

flexibility and reduce effort.

7.2 l|deas for reformulation

We hope to improve the performance of our solver at a high lavthe use of some reformulation strategies.
In particular, the approach to containment constraintsesnality constraints may be modified in order to
enhance performance.

Equality constraints are used to indicate that all coursescope should be assigned the same GTA.
Under the current formulation, it is possible that some sesiin scope may be given an empty assignment.
To alleviate this, we intend to aggregate variables comukeloy an equality constraint into a single variable.
The union operation will most likely be used to establishstaints on these variables, as well as to establish
the time intervals of the course offering. Refinement of nscess can then occur, once we have evaluated
its effectiveness in practice.

The second reformulation strategy is an alteration to thdetng of containment constraints. We do
not wish to abandon this constraint altogether, but our e&pee has shown it to be unwieldy in prac-
tice. Further, we wish to retain it as an explicit constraMte intend to evaluate the cost effectiveness of
implementing these constraints as a networkrot ex constraints, in terms of CPU time and constraint
checks.

A third reformulation step involves the translation of sooomtainment constraints into equality con-
straints. For sufficiently small containment sets, it isiddse that all courses in the contained set of the
constraint be assigned the same GTA, in order to maximizeseatoverage. While an equality constraint
does not explicitly prevent courses out of scope from bessipmed the same GTA as is assigned to variables
in scope, the capacity constraint in conjunction with theadity constraint tend to prevent the “outside” as-
signments. The motivation for this change is a hope thathiseduce the amount of time to find a solution

by eliminating some expensive containment constraints.
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Figure 2:GTA data collection sheet

SURVEY ON SPRING 2001 ASSISTANTSHIP

(Complete both sides and return to Marilyn Augustyn, by Monday, January 29, 2001)
INCOMPLETE FORMS WILL BE SUBJECT TO PENALTY!

Name Advisor:

Degree program: |:| M.S. (thesis) D M.S. (project) D Ph.D.

Semester admitted Expected graduation date # Years supported by CSE

Undergraduate GPA (if available): Graduate GPA:
I currently D have |:| do not have  a teaching assistantship in the CSE Dept.

My current assistantship is in the amount of § (per semester)

Last 2 teaching assignments: Course Semester Instructor

Deficiencies still to be taken:

GRE:
D General D Subject
Verbal % Area
Quantitative % Score %
Analytical %

Number of talks attended in the past year: Colloquia D Ph.D. oral |:| M.S. oral |:|

Foreign students only

SPEAK test: Date Score

ITA (Institute for International Teaching Assistants): Date passed
Date failed Did not attend

COMMENTS:

(over)
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Figure 3:GTA preference collection sheet

NAME, SPRING 2001 - TA Preferences Courses you Tlease indicate your preferences

are taking in ranking all courses between 0 and 5
Course Course#  Sec.  Time Day Spting 2001 {5 indicating highest preference)
Computer Science Fundamentals 101 001 0200-0315P T

Computer Science Fundamentals Lab 101L 001 1030-1220P
Computer Science Fundamentals Lab 10IL 002 90130-0320P W
Computer Scienoe Fundamentals Lab J0IL 003 0600-0750P T
Intro to Computer Programming 150 150 0800-0915A T
Lab 150 151 1230-0120P M
Lab 150 152 1230-0120p T
Lab 150 153 0830-09204 M
Intro Cormp Sci 1 155 350 0830-0920A M W F
Lab 155 151 0930-1020A M
Lab 155 152 0930-1020A T
Lab 155 153 1130-1220P W
Lab 155 154 1130-1220P M
Intro Comp Sei I 155 250 0130-0220P M W _F
Lab 155 251 0830-0920A W
Lab 155 252 1030-1120A M
Lab 155 253 1230-0120P
Intro Comp Sei } 155H 150 0130-0220P M W F
Lab 155H 151 0230-0320P F
Intro Comp Sci I1 N 156 150 1030-1120A M W _F
Lab 156 151 0830-0920A T
Lab 156 152 0930-1030A W
Lab 156 153 1130-1220P F
Lab 156 154 0230-0320P M
Intro Comp Sci 11 156H 150 1030-1120A MW F
Lab 156H 151 0200-0250P
Lab 156H 152 0130-0220P M
Computer Organization 230 001 0330-0420P M W F
Computer Organization Lab 230L ool 0830-1020A
Computer { ization Lab 230L 002 0830-1020A F
Computer Organization Lab 230L 003 1030-1220P T
Contputer Organization 230H (g1 0330-0420P M W F
Computer Organization Lab-Honars 230HL  0p4 0130-0320P T
Intro lo Discrete Structures 235 150 1130-1220P MW F
Reci 235 151 0830-0920A
Reci 235 152 0130-0226P W
Reci 235 153 0230-0320P w
C Programming 3/1-4/26/2001 251K 951 083009204 T
UNIX T 1/9-2/27/2001 251U 951 0830-09204 T
UNIX P 1/10-2/28/2001 251U 952 0130-0220P W _F
UNIX F 1/9-2/27/2001 251U 953 0700-0850P T
X-Windows 3/2-4/27/2001 251Y 951 0130-0220P W _F
X-Windows 3/6-4/24/2001 251Y 952 0700-0850P T
Cobol Programming 2524 001 0430-0520P W
Fortran Programming 252D o1 0430-0520P M
Data Struc, & Algorithms 316 001 0230-0320P MW F
Numerical Analysis | 340/840 p01 _0200-0315P T
Human-Computer Enteraction 378 003 1230-0120P M W F
Design and Analysis of Algorithms 423/1823 001 1100-1215P T
Compiler Consrruction 425/825 o1 0130-0220P M W F
Compurer Architecture 430/830 001 1030-1120A M W _F
VLSI Design A34/834 001 0230-0320F MW F
Operating Systems Principles 4517851 001 1230-0145P T
Distributed Operating Systems 455/855 001 1230-0120P M W F
Software Engineering 461/861 001  0930-1045A T
Comm. Networks 462/862 001 0330-0445P M W
Software Des Methodologies 466/866 002 1100-1215P T
Computer Graphics 470/870 pp1  0200-0315P T
Intro to Artificial Intelligence 476/876 001 1130-1220P M W F
Compuier Enginecring Prof Dev 488 001 0930-1120A W
Compuier Eng Senior Design Course 489 001 0930-10204 M W F
Spec Topics-Clastered Computing A96/896 004 0330-0420P M W F
Masters Project-Software Design 897 002 0200-0315P T
Adv Topics in Database Systems 913 001 1230-0145P T
Graph Algorithms 924 001 0200-0315P T
Adv Computer Architecture 930 001 0930-1030A MW F
Math Theory of Finite Automata 935 001 0230-0320P M W _F
Pattern Recognition 970 001 1130-1220P M W F
Genetic Algorithms 974 001 0130-0220p M W F
Seminar-Optical Comm Networks 990 001 0930-1045A T
Seminar-Network Systems 990 003 110011504 T
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