
GTAAP: AN ONLINE SYSTEM FOR MANAGING AND ASSIGNING

GRADUATE TEACHING ASSISTANTS TO ACADEMIC TASKS

by

Lim Way Hoong Ryan

A PROJECT

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

August, 2006

GTAAP: AN ONLINE SYSTEM FOR MANAGING AND ASSIGNING

GRADUATE TEACHING ASSISTANTS TO ACADEMIC TASKS

Lim Way Hoong Ryan, M.S.

University of Nebraska, 2006

Advisor: Berthe Y. Choueiry

We have developed GTAAP (Graduate Teaching Assistants Assignment Project),

a fully operational prototype system for the management of GTAs in the Department

of Computer Science & Engineering at the University of Nebraska-Lincoln. This

online system assists in the assignment of Graduate Teaching Assistants (GTAs),

based on their qualifications, availability, and preferences, to academic tasks such

as grading, supervising laboratory sessions, and conducting recitations and lectures

for introductory courses. Our system includes the following interacting components:

(1) a MySQL database for storing courses and students data; (2) a web-based, secure

interface for the candidate GTAs and another one for the department manager that

are accessible even beyond the university network; (3) a web-based, secure interface

for collecting the instructors’ evaluations of the performance of their assigned GTAs;

and (4) a new Java-based, interactive solver that is an improvement on the existing

web-based interactive solver built by Thota [2004]. Additionally, our system smoothly

integrates the components developed by other members of the Constraint Systems

Laboratory for completing their graduate work [Zou, 2003; Guddeti, 2004b; Thota,

2004].

We have demonstrated the working prototype at the International Conference on

Automated Planning and Scheduling (ICAPS 2004) and the International Conference

on Principle and Practice of Constraint Programming (CP 2004) [Lim et al., 2004a].

We have also discussed our work at the Conference on Prestigious Applications In-

telligent Systems (PAIS/ECAI) [Lim et al., 2004b] and the 2005 Annual Meeting of

the Institute for Operations Research and the Management Sciences (INFORMS).

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Berthe Y. Choueiry who has made enormous

contributions in making this project a reality. I am grateful for her constant

support, insights, and guidance.

I also thank my colleagues (present and former) at the Constraint Systems

Laboratory, especially Chris Reeson and Venkateshwar Rao Thota for their direct

contributions to this project. Special thanks also to the CSE system-administrator,

Mr. Charles Daniel who has graciously provided us with technical support.

Special thanks also to all my other colleagues at the Center on Children, Families,

and the Law (especially Allison Jones and Charlie Lewis) who have all been very

supportive and have provided continuous encouragement.

I am also grateful to my best friends Seng Yee Wong, Wei Jet Hew, and Chi Min

Seow all of whom have not only have provided moral support, but also have at

many times, taken my mind off work and have been great people to hang out with.

To my good friends, Hooi Ling Lee, Hui Nee Chin, and Alvin Woon, thanks for

being very supportive!

Lastly, but certainly the greatest, my parents, Mr. Lim Yen Chung and Mrs. Irene

Lim, both whom have always supported me financially and morally. I am greatly

indebted to them for everything.

This work was supported by the Department of Computer Science and Engineering of the

University of Nebraska-Lincoln and CAREER Award #0133568 from the National Science

Foundation.

5

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Constraint model . 3
1.3 Previous work . 4
1.4 Contributions . 5
1.5 Organization of the report . 6

2 System Implementation 8
2.1 System architecture . 8
2.2 Database design . 11
2.3 Password protected web-access . 12

2.3.1 Web-access for the GTAs . 13
2.3.2 Web-access for the manager 16

2.4 Instructors evaluations of GTAs . 23
2.5 Interactive solver . 23

2.5.1 Methodology . 24
2.5.2 Features and benefits . 25
2.5.3 Interface of the interactive solver 26

3 Conclusions and future work 30

A Process description 33

B Database Documentation 36
B.1 Authentication and logging . 36

B.1.1 Detail description . 36
B.2 GTA . 39

B.2.1 Detail description . 40
B.3 Manager . 53

B.3.1 Detail description . 54
B.4 Auxiliary tables . 66

B.4.1 Detail description . 66

C Documentation for the Web-interface and SQL Queries 70
C.1 Web-interface file structure and hierarchy 70
C.2 MySQL queries . 83

C.2.1 Queries posted from the GTA mode 83
C.2.2 Queries posted from the Classes mode 94

D Interactive Solver: Java API Documentation 96
D.1 Package edu.unl.consystlab.gui 99
D.2 Interfaces . 102

D.2.1 Interface CanEnable . 102
D.3 Classes . 103

D.3.1 Class AboutBox . 103
D.3.2 Class ComboItem . 104
D.3.3 Class ComboListener . 106
D.3.4 Class DisplayPreferences 107
D.3.5 Class GTAComboBox . 108
D.3.6 Class GTAComboBox.horizontalScrollComboUI 111
D.3.7 Class GTAComboBoxEditor 111
D.3.8 Class GTAComboBoxRenderer 113
D.3.9 Class Interactive . 114
D.3.10 Class JCheckBoxRenderer 127
D.3.11 Class JComboBoxEditor 129
D.3.12 Class JComboBoxRenderer 130
D.3.13 Class OpenDialog . 131
D.3.14 Class PortForwardingL . 133
D.3.15 Class PortForwardingL.MyUserInfo 134
D.3.16 Class PrintPage . 135
D.3.17 Class RAButton . 137
D.3.18 Class ResourceAssignmentCellEditor 139
D.3.19 Class ResourceAssignmentCheckBox 142
D.3.20 Class ResourceAssignmentCourseCellEditor 145
D.3.21 Class ResourceAssignmentDialog 147
D.3.22 Class ResourceAssignments 151
D.3.23 Class SaveDialog . 154
D.3.24 Class SemesterYearSelector 157
D.3.25 Class StringRenderer . 161
D.3.26 Class TunnelAuthenticationDialog 162

D.4 Package edu.unl.consystlab.gtaap.constraints 164
D.5 Classes . 165

D.5.1 Class CapacityConstraint 165
D.5.2 Class CertificationConstraint 168
D.5.3 Class EqualityConstraint 170
D.5.4 Class MutexConstraint . 173

6

D.5.5 Class NilPrefConstraint 176
D.5.6 Class OverlapConstraint 178
D.5.7 Class TakingCourseConstraint 180

D.6 Package edu.unl.consystlab.gtaap 183
D.7 Classes . 184

D.7.1 Class Course . 184
D.7.2 Class GTA . 187
D.7.3 Class Preference . 190

D.8 Package edu.unl.consystlab.gtajava 192
D.9 Classes . 193

D.9.1 Class GTAAPConfig . 193
D.9.2 Class Main . 197
D.9.3 Class RandomGTAAPGenerator 198
D.9.4 Class YearSemester . 200

D.10 Package edu.unl.consystlab . 203
D.11 Classes . 205

D.11.1 Class CSPConstraint . 205
D.11.2 Class CSPProblem . 206
D.11.3 Class CSPUtils . 210
D.11.4 Class CSPValue . 211
D.11.5 Class CSPVariable . 214
D.11.6 Class CSPVVP . 218
D.11.7 Class EVector . 219
D.11.8 Class FC Solver . 220
D.11.9 Class jAssignment . 226
D.11.10Class LabelParams . 231
D.11.11Class Log . 233
D.11.12Class Setup . 234
D.11.13Class Utils . 236

Bibliography 251

List of Figures

1.1 Constraint network of a simple problem instance. 4

2.1 System architecture of GTAAP. 9
2.2 GTAAP access for GTAs. 14
2.3 The page for updating one’s academic record. 14
2.4 The page for input teaching preferences. 15
2.5 Results of the optional online survey of GTAAP by applicants. 17
2.6 The modes available to the manager. 17
2.7 The GTA mode in the manager’s web-interface. 18
2.8 Manager’s view of the GTAs who applied. 19
2.9 Selective queries used to filter GTAs based on a number of criteria. 19
2.10 GTAAP access for the department manager. 20
2.11 List of available and unavailable GTAs in the web-based interactive-selections. 22
2.12 Summarized results of the instructor evaluations of their assigned GTAs. . 24
2.13 Interactive solver main screen. Two perspectives are visible in the same

window pane. 27
2.14 Interactive solver doing a task assignment. 28
2.15 Interactive solver doing a resource assignment. 28

List of Tables

B.1 Table auth log . 37
B.2 Table users . 38
B.3 Table consider application . 40
B.4 Table exams comps . 41
B.5 Table exams quals . 42
B.6 Table gta apply . 43
B.7 Table gta assignments . 43
B.8 Table gta attendance . 44
B.9 Table gta data . 45
B.10 Table gta deficiencies . 47
B.11 Table gta gre . 48
B.12 Table gta prefs . 49
B.13 Table gta prefs ts . 50
B.14 Table gta speak . 51
B.15 Table gta survey . 52
B.16 Table classes . 55
B.17 Table class confinements . 58
B.18 Table consider application semesters 59
B.19 Table facEvals . 60
B.20 Table hired . 62
B.21 Table hired info . 63
B.22 Table jassignments . 64
B.23 Table preassignment . 65
B.24 Table same ta . 65
B.25 Table deficiencies . 67
B.26 Table duty . 67
B.27 Table faculty . 67
B.28 Table grad program . 68
B.29 Table ita . 69
B.30 Table semesters . 69

1

Chapter 1

Introduction

This report describes a system we have designed and implemented for the management

of Graduate Teaching Assistants (GTAs) in the Department of Computer Science &

Engineering (CSE) at the University of Nebraska-Lincoln. The task at hand is to

assign GTAs based on their qualifications, availability, and preferences, to academic

tasks such as grading, supervising laboratory sessions, and conducting recitations

and lectures for introductory courses. This project originated from an idea listed

on the web-page of Professor Rina Dechter of the University of California, Irvine.

The project was started in Fall 2001 by Robert Glaubius as an undergraduate honors

thesis [2001]. This application is a critical and demanding responsibility that the

department’s administration has to drudge through each semester. We set ourselves

the challenge of building and testing a system that allows the students to make and

revise their applications online and that effectively supports the department manager

in making consistent decisions.

In this chapter, we state our motivation for this project, briefly outline the constraint-

model, discuss our previous work, summarize our contributions, and state the orga-

nization of this report.

2

1.1 Motivation

The task of assigning GTAs to tasks is particularly difficult for humans because of all

of the hard constraints about students’ availability, qualification, and load that one

has to keep track of. In our department, it is acknowledged to be the “most difficult

duty of the department chair” [Reichenbach, 2001].

In a typical semester, CSE hires between 25 to 40 GTAs to be assigned approxi-

mately 70 different academic tasks. These tasks include teaching in lecturer courses

and recitations, lab supervision, and grading. The problem is often tight (i.e., has few

solutions in a large search space) and sometimes over-constrained (i.e., has no solution

that satisfies all constraints). Historically, this task was performed by hand first by

the department chair, then by the secretary of the Graduate Program, and currently

it is carried out by a faculty member. Preliminary schedules were iteratively refined

and updated based on the feedback from supervising faculty members and the GTAs

themselves in a tedious and error-prone process that lasted over the first 3 weeks of

the semester. These preliminary assignments often contained a number of conflicts

and inconsistencies that negatively affected the quality of the CSE program. For ex-

ample, when a course is assigned a GTA with little knowledge of the subject matter,

the GTA has to invest significant effort to adjust to the situation. When the effort

invested by the GTA is not sufficient to provide the adequate support, the course

instructor has to perform a large portion of the GTA’s duties. Moreover, students

enrolled in the course may receive unfair grading or feedback.

Before this project was started, the entire process was carried out manually and

on paper. It was obvious that any level of automation to maintain up-to-date data

from the applicant students and any level of computer-support to support sound and

consistent decision making by the department were badly needed.

3

1.2 Constraint model

It is not the goal of this report to discuss the model and computational mecha-

nisms built in this project, which are the contributions of other members of the

Constraint Systems Laboratory [Glaubius, 2001; Zou, 2003; Guddeti, 2004b; Thota,

2004]. Rather, we focus on the system’s architecture and implementation, which are

our own contribution. Nevertheless, we summarize below the adopted model.

Informally speaking, the problem is to assign GTAs to academic tasks under

a number of constraints while covering as many courses as possible (as a primary

optimization criterion) and maximizing the GTAs’ preferences (as a secondary opti-

mization criterion). As the first task undertaken by Glaubius in his undergraduate

honors thesis, Glaubius modeled this combinatorial problem as a Constraint Satis-

faction Problem (CSP) [2001]. A CSP is defined as a set of variables with associated

domains and a set of constraints that restrict the combination of values that the vari-

ables can simultaneously take from their respective domains, the task being to find

an assignment of values to variables that satisfies all the constraints. Glaubius mod-

eled the academic tasks1 as variables in a CSP and the GTAs as the values that the

variables may take. The constraints restricting the allowable assignments of GTAs

to courses are expressed as either unary, binary, and non-binary relations. Figure 1.1

shows the constraint network associated with a CSP with three variables and three

constraints.

In GTAAP, the unary constraints include whether or not the student has the

appropriate teaching certifications (i.e., ITA certified); whether or not the student is

enrolled in the course in question or (for laboratory sessions, recitations, or lectures

tasks) enrolled in another course at the same time; and whether or not the student

1We sometimes use the generic terms ‘course’ to refer to any academic task carried out by a GTA,
such as grading, supervising a laboratory session, and teaching a lecture course or recitations.

4

Figure 1.1: Constraint network of a simple problem instance.

has expressed his/her inability to teach the course (represented by a zero-preference

constraint). Binary constraints include constraints stating that a student can be

assigned to at most one of two courses (i.e., mutex constraint) or to exactly any

two courses. Finally, non-binary constraints include constraints stating that the load

assigned to any GTA cannot exceed the capacity at which he/she has been hired (i.e.,

capacity constraint), and constraints restricting the assignment of a GTA to a specific

set of courses.

1.3 Previous work

In addition to modeling the problem as a CSP, the Constraint Systems Laboratory

has developed a portfolio of automated algorithms for solving this problem. These

algorithms include a Environment-Reactive-Agents search (ERA) [Zou, 2003; Zou

and Choueiry, 2003a; 2003b], a stochastic local search [Zou and Choueiry, 2003b],

backtrack search with various ordering heuristics [Glaubius, 2001; Guddeti, 2004b],

and a randomized backtrack search [Guddeti, 2004b; 2004a; Guddeti and Choueiry,

2004; 2005]. All of those algorithms focus on automatically finding consistent solutions

5

(i.e., all constraints are satisfied) while trying to maximize the quality of the solution

in terms of the two criteria listed above. That previous work was able to identify

regimes (e.g., over-constrained or under-constrained problems) where a technique

outperforms the others. However, all those search techniques are automated and do

not allow the user (i.e., manager) to intervene in the decision making once the search

has started.

While the above approaches were being pursued, our group remained particu-

larly aware of the limitations of automated search. Indeed, in reality, the manager

has plenty of information about the GTAs, the courses, and the teaching faculty at

his/her fingertips. It is illusive to attempt to formally model such constraints be-

cause they are typically subjective and infinite. Also, they would complicate the

problem solving without necessarily improving the quality of the solutions. Fortu-

nately in our particular setting, computers seem to be most effective in exactly the

same tasks where humans fail (e.g., keeping track of hard constraints), and vice versa

(e.g., quickly evaluating alternatives and making compromises). In response to these

observations, Thota [2004] developed an ‘Interactive Search’ that allows the human

user (i.e., the manager) to make decisions interactively while being prompted, at each

step, with the set of choices consistent with the manager’s past decisions. The inter-

active search keeps the human user in the decision loop while removing the need for

tedious (and error-prone) manual assignments.

1.4 Contributions

I started working on the project as an undergraduate student in Spring 2003. Our

contributions, which we describe in the rest of this report, are as follows:

1. We have designed a MySQL database to store the data of students applications

6

and class information.

2. We have built web-access interfaces for data-entry by candidate GTAs and the

department manager.

3. We have co-developed a facility for collecting evaluations by the supervising

instructors of the performance of their assigned GTAs. The set of supervising

instructors includes student instructors, teaching staff, instructors from outside

CSE, and CSE faculty members.

4. We have rebuilt an interactive solver in Java based on Thota’s [2004] web

interactive-solver.

The resulting system is a significant step towards streamlining the GTA hiring and

management process. The system has already significantly contributed in making

decisions accountable and ‘traceable,’ while archiving the data collected and the deci-

sions made over the semesters. It is only fair to say that the system has contributed to

making the management of GTAs in the department far smoother and more effective

than it was before the project had started.

1.5 Organization of the report

The rest of this report is organized as follows. Chapter 2 discusses our work on

GTAAP. We draw our conclusions and propose future work in Chapter 3. The ap-

pendices provide a relatively detailed description of the implementation. The infor-

mation included in the appendices is useful for using and maintaining the system

and for carrying out further developments. Appendix A outlines the tasks for setting

up and using the system before the beginning of any given semester. Appendix B

is concerned with the database (tables and attributes). Appendix C describes the

7

content of the files associated with the web-interfaces. Finally, Appendix D has the

documentation for the Java API (JavaDoc).

8

Chapter 2

System Implementation

In this chapter, we present the architecture and components of the system we have

implemented. We first discuss the design of the database. Then, we describe the

web-interfaces (for the potential GTAs, for department manager, for GTA evaluation

by instructors). Finally, we discuss our new interactive solver.

2.1 System architecture

Figure 2.1 shows how these components interact to form the system. In this figure, we

mark with a ‘*’ the components of GTAAP that we entirely developed in the course

of this project, and with a ‘+’ those to which we have substantially contributed.

The components of the system are currently as follows:

1. A password-protected web-access for applicant students to enter and update

their record and another one for the manager to input and manage data. The

system is accessible, both for the GTAs and department manager, via the web

at http://cse.unl.edu/~gta/. Potential GTAs must register and enter their

academic data and teaching preferences at the web interface. After a given

9

Other structured,
semi-structured,
or unstructured

DBs

In progress

Cooperative, hybrid
search strategies

Visualization
Widgets

Password protected
access for Manager

* *

Local
DB

*

Faculty Evaluations
for GTA assignments

+Password protected
access for GTAs

*

* Components we built

Interactive Search
Java Interface

Web Interface [Thota]

Automated Search
Heuristic BT [Glaubius]

Stochastic LS [Hui]
Multi-agent Search [Hui]

Randomized BT [Guddeti]

*

+ Components we co-developed

Figure 2.1: System architecture of GTAAP.

deadline, the manager accesses the web interface to hire GTAs. He/She can

view data about the candidate GTAs, set up courses, make pre-assignments,

perform search and view historical data.

2. A password-protected web-access for instructors to evaluate their assigned GTAs.

This part of the system is accessible via the web at

http://cse.unl.edu/~gta/fac evals/

and uses the CSE authentication mechanism and was co-developed Ms. Traci

Fink.

3. A central data store (MySQL database). This database stores information about

the candidate GTAs and courses.

10

4. Problem-solving algorithms, both interactive and automated methods. This

category include a ‘Java Interactive Solver’ that we implemented as an im-

provement of the the solver developed by Thota [2004].

5. An interface to UNL’s central database via the department’s mirror database.

In order to retrieve course data for the next semester, we import the course data

from other structured, semi-structured, or unstructured databases provided by

the university into our MySQL database. These data are obtained from the

university class schedule database and the SIS+ database.

6. The following components are still under early stages of development: Cooper-

ative, hybrid search strategies that allow the department manager to compose

partial solutions built using the interactive or automated solvers in order to

build complete solutions. Also remaining to be addressed are visualization wid-

gets that provide a graphical representation of the solution space and enable

the manager to monitor the search process while receiving pertinent statistics

about a problem as solutions are being built.

The various components are implemented in different programming languages. In

the late 2001, Chris Hammack wrote the web-interface for GTAs in JSP (Java Server

Pages). We rewrote all the web-access interfaces in PHP4 (www.php.net). PHP is

the language of choice for the interface because it is the dominant web programming-

language and contains a vast variety of built-in functions. Further, it has a built-

in MySQL driver for access to the MySQL database. The automated search, its

data structures and supporting propagation algorithms are written in Common LISP.

Thota [2004] wrote the initial Interactive Search as a web-based application running

on the departmental web-server. Thota’s propagation algorithms are written in Com-

mon LISP and his web-interface in PHP4. These two components communicate via

11

TCP sockets.

Once all the required data (course data, course setups, GTA applications and

teaching preferences) are in the database, the manager is ready to make assignments

either using automated search or interactive search. The various tasks for setting up

and using the system for a given semester are described in details in Appendix A.

In the rest of the chapter, we discuss each of our contributions in details. These

include the database, the password protected web-access for the GTAs and the man-

ager, the instructor evaluation of the GTAs, and the interactive solver.

2.2 Database design

When this system was started in Fall 2001, the data was collected by the department

on paper forms, and the data was manually entered and stored in plain-text files.

We stored the information of each GTA on separate files. With the numerous files

and manual data-entry, there was bound to be inconsistencies in the files. Flat-

files do not satisfy the database ACID properties (atomicity, concurrency, isolation,

and durability [Garcia-Molina et al., 2002]) that proper databases have. The fields

in the flat-files are position dependent, and no attributes may be added between the

attributes without making significant changes to the file reading methods. In addition

to these limitations, flat-file storage does not scale up well.

In Spring 2003, I decided to transition away from using flat-files to a MySQL

database. We chose MySQL because it was a popular and open-source database with

APIs available to most programming languages. (If the decision was to be revised

today, we recommend using a more feature-rich database system such as Oracle.)

Along with the move to MySQL, we also imported data such as course schedules from

external databases with the gracious help of the department’s system administrator,

12

Mr. Charles Daniel. We group our MySQL tables into 4 categories:

1. Authentication and Logging: These tables are related to user information, au-

thentication, and access logging. The tables are: auth log, users.

2. GTA: These tables are related to GTA academic data and teaching preferences.

The tables are: exams comps, exams quals, gta apply, gta assignments,

gta attendance, gta data, gta deficiencies, gta gre, gta prefs,

gta prefs ts, gta speak, gta survey.

3. Manager: These tables are related to courses, the constraints setup, hiring infor-

mation, and GTA evaluations. The tables are: classes, class confinements,

consider application semester, facEvals, hired, hired info, preassignment,

same ta.

4. Auxiliary tables: These tables are read-only to provide frequently accessed in-

formation. The tables are: deficiencies, duty, faculty, grad program, ita,

semester.

In Appendix B, we discuss the above-mentioned tables in details listing their at-

tributes, types, and default values.

2.3 Password protected web-access

The next logical step after transitioning to a MySQL database was to provide web-

access for data collection. We developed the web-access for GTAs and the department

manager using PHP4. With this web-access, GTAs and the manager input data di-

rectly into our MySQL database, eliminating inconsistency resulting from the manual

data-entry. We first developed the GTA web-access for potential GTAs to apply for

a position, updating their academic record and specifying their teaching. Next, we

13

developed the manager web-access for the department manager to setup classes for

GTA assignments and view assignment data. Details about the web-interface file

locations and the SQL queries in these modes are in Appendix C. Below, we discuss

in detail our interfaces for the GTAs and the department manager.

2.3.1 Web-access for the GTAs

The GTA web-access provides access to the potential GTAs to manage their academic

data and input their teaching preferences. Accounts are password protected. Grad-

uate students can access this page at any time. However, a deadline for receiving

applications can optionally be enforced. It is crucial that the system be not restricted

to applicants who already have accounts in the department. Indeed, admitted grad-

uate students from foreign countries need to be able to register on the system and

input their academic data and preferences over the Internet prior to arrival. Fig-

ure 2.2 shows a screen-capture of the GTA’s main web-page. The interface offers nine

modes listed in a line on the top of the screen shot: ‘Print’ the displayed page, ac-

cess the ‘Main Page,’ the student’s ‘Academic Record,’ ‘Teaching Preference,’ ‘Login

Info,’ ‘Course Descriptions,’ a ‘Survey,’ ‘Email webmaster,’ and ‘Logout.’ The first

two modes (i.e., academic record and teaching preferences) display the time-stamp of

the last modifications made by the applicant. Importantly, every time an applicant

modifies his/her record or preference selections, a message confirming the new data

input is sent via email to the applicant for his/her personal record. The ‘main page’

the student instructs the student to complete the three most important step: updat-

ing the academic record, inputing teaching preferences, and, optionally, filling out a

survey. It also allows the student to check a semester to be considered for.

GTAs are hired based on their qualifications. It is critical that GTAs maintain an

up-to-date academic data information in the system. Figure 2.3 shows the page for

14

Figure 2.2: GTAAP access for GTAs.

updating one’s academic record. The information on this page includes the number

Figure 2.3: The page for updating one’s academic record.

15

of semesters supported so far, the level of support, the current advisor, previous

teaching experience, GPA, English proficiency level, ITA qualification1, the list of

course deficiencies, etc.

Figure 2.4 is a screen shot of the page presented to a student to update his/her

teaching preference for a given semester. This page the list of courses offered during

Figure 2.4: The page for input teaching preferences.

the semester and their meeting times. For each course, an applicant can specify

his/her preferences: ‘5 Best choice,’ ‘4 Favorite,’ ‘3 Qualified,’ ‘2 Able to handle,’

‘1 Avoid if possible,’ ‘0 Cannot handle.’ The student can check a box indicating that

he/she is enrolled in given course, which automatically sets up the preference value

to 0. In all other cases where the applicant specifies a preference value of 0, the

system prompts the applicant to provide a justification for the inability to handle the

course. A preference value is set to 3 by default to reduce the applicants’ burden in

1International Teaching Assistant (ITA) is a university monitored training that foreign students
are required to complete to qualify for classroom instruction.

16

specifying preferences. At the bottom of the page, a permanent legend reminds the

students of the meaning of the different preference values.

The third mode provides students with direct access to the official course de-

scriptions at CSE, which is useful for incoming students who have not yet joined the

department.

The ‘Survey’ button allows students to express their opinion about the site. The

questions asked are about:

1. Navigation: Ease, flexibility, robustness.

2. Data entry: Ease, flexibility, robustness.

3. Other aspects: Whether the online form or paper form is preferable; The number

of times the student revised his/her application; Whether any question was

superfluous or missed; and the student had a constructive comment.

Figure 2.5 shows the satisfaction of the candidate GTAs using our system. We always

address the feedback provided by the students through the survey as soon as we receive

it in order to enhance the system.

2.3.2 Web-access for the manager

The interface for the manager permanently displays, in a horizontal frame on the

top of the page, five buttons representing the operational modes (see Figure 2.6).

These modes are: ‘GTAs,’ ‘Classes,’, ‘Interactive selections’ (for interactive problem

solving), ‘Search’ (for automatic problem solving), ‘Server console’ (for system level

commands), and ‘Logout.’ These modes are controlled by a semester selector (left-

most in Figure 2.6), set up by default to the most recent semester in the database.

When any of these 5 modes is selected, additional buttons for selecting functionalities

17

Figure 2.5: Results of the optional online survey of GTAAP by applicants.

Figure 2.6: The modes available to the manager.

specific to the mode appear in a vertical frame in the left margin. These buttons are

displayed as long as the mode is active. The MySQL queries that implement the

functionalities in both modes are given in Appendix C.2. Below, we discuss the

following modes: GTAs, Classes, Interactive selections, Search, and Server console.

2.3.2.1 GTAs

The first mode allows the manager to access information about GTAs in the system.

Selecting this mode displays an empty page with several functionalities listed in the

left margin of the page (see Figure 2.7). These functionalities are clustered in two

main groups: ‘GTAs in Selected Semester’ and ‘GTA All Semesters Information.’ The

18

Figure 2.7: The GTA mode in the manager’s web-interface.

functionalities included in the former group allow the manager to work on a particular

semester and is discussed below. The ones included in the latter allow the manager to

view, for a particular student, the employment, evaluation, and academic records for

all semesters, and to add or remove a GTA in the database. The functionalities under

‘GTAs in Selected Semester’ are the most important for managing a given semester.

They allow the manager to view the list of students who have applied for the semester

(‘Applied’), those that have been hired for the semester (‘Hired’), those that fit a set

of criteria (‘Filter’), etc.

The ‘Applied’ button, which displays the page shown in Figure 2.8, gives the

manager has the ability to hire, release, and specify the hiring percentage (i.e., GTA

capacity) of a particular applicant, and to view and print reports about any number

of the listed applicants. Further, the manager can send an email message to any

subset of these applicants. A similar page, restricted to hired GTAs, is displayed by

19

Figure 2.8: Manager’s view of the GTAs who applied.

the ‘Hired’ button.

The ‘Filter’ allows the manager to select a subset of the applicants based on their

performance history and according to a set of pre-defined criteria with user-selectable

values. The ‘Filter’ functionality is shown in Figure 2.9.

Figure 2.9: Selective queries used to filter GTAs based on a number of criteria.

Similar to the ‘GTAs’ mode, the remaining functionalities display pre-set queries

from the database to support the user in decision making.

20

2.3.2.2 Classes

The second mode of the manager’s web interface allows the manager to manipulate

information about the classes in a semester, specify course loads, course types (i.e.,

grading, lab, recitation, or lecture), and set-up various dependencies among courses.

Figure 2.10 shows a screen shot of a page of the second mode. The ‘Preassignment’

Figure 2.10: GTAAP access for the department manager.

functionality in this mode allows the manager to enforce the assignments of GTAs to

classes to satisfy some requirement external to the system. For each class, a pull-down

menu lists all hired GTAs (regardless of whether they are available, appropriate for

the task, etc.) from which manager can select. Such pre-assignments are considered

fixed, can be enforced only through this specific page, and cannot be undone by the

interactive or automated search facilities.

The ‘Confinement’ functionality allows the manager to specify a subset of courses

such a GTA assigned to course in the subset cannot be assigned to a course outside

the subset. The ‘Same-TA’ functionality allows the manager to specify a subset of

courses to be serviced by the same GTA.

21

Similar to the ‘GTAs’ mode, the remaining functionalities display pre-set queries

from the database to support the user in decision making.

2.3.2.3 Interactive selections

The ‘Interactive selections’ is the web-based interactive solver developed by Thota

[2004]. This mode is currently thought to be the most useful by our users because it

assists the manager in interactively making individual or group assignments manually

in an efficient way. The manager remains in total control of the decisions, but is

relieved of the burden of keeping track of the consistency among decisions.

The manager can adopt one of two dual perspectives on the problem and switch

between them: assigning GTAs for courses or vice versa. We use constraint propaga-

tion to determine the list of available and busy GTAs (alternatively, courses), and to

propagate the effects of the manager decisions on the remaining open choices.

Figure 2.11 shows how the appropriate GTAs (i.e., those that have passed node

consistency) are listed to the user. The upper portion of the pull-down displays the

GTAs that can be assigned to the course without reservation. In terms of the CSP,

these are the values in the current domain of the variable. The lower portion lists the

GTAs who could potentially be assigned but are ‘busy’ in assignments from which

they should be first relieved. These GTAs correspond to the values eliminated from

the domain of the variable by constraint propagation. In each portion, the GTAs

are listed in decreasing preference order, as a primary criterion, then in increasing

lexicographical of their last name, as a secondary criterion. Next to the name, the

‘current’ capacity of each GTA is displayed (which is the hired capacity of the GTA

discounted by the load of his/her other assignments). Every time a new assignment

is made, an efficient consistency algorithm (a full arc-consistency) is executed to filter

the domains of the unassigned variables. When assignments are undone or changed,

22

Figure 2.11: List of available and unavailable GTAs in the web-based interactive-selections.

the domains of all the variables are first re-filtered from scratch while maintaining

the intermediate selections.

Based on this web-based interactive solver, we have developed a new interactive

solver as a Java application. We discuss our implementation in Section 2.5.

2.3.2.4 Search

The fourth mode of the manager’s web interface offers several search algorithms

for automatically solving the problem. The algorithms currently available are an

‘Environment-Reactive-Agents’ search (ERA) [Zou, 2003; Zou and Choueiry, 2003a;

2003b], a stochastic local search [Zou and Choueiry, 2003b], backtrack search with var-

ious ordering heuristics [Glaubius, 2001; Guddeti, 2004b], and a randomized backtrack

search [Guddeti, 2004b; Guddeti and Choueiry, 2005; 2004; Guddeti, 2004a]. These

algorithms consider the pre-assignments made in the second mode of the manager’s

web interface as hard constraints, but do not (yet) take into account the interactive

23

decisions made in the third mode. These algorithms run independently whenever

selected by the user. Their integration among themselves and with the interactive

solver should be addressed in the future.

2.3.2.5 Server console

This mode allows the manager to perform server-level commands including restarting

the LISP-PHP communication socket and viewing the LISP-PHP daemon informa-

tion.

2.4 Instructors evaluations of GTAs

At the completion of a semester, supervising instructors evaluate the performance of

their assigned GTAs based on a number of criteria set by the department and provide

their recommendations about re-hiring their assigned GTAs. These evaluations are

important for the department in the selection process for the following semesters.

The evaluator is asked questions pertaining to the GTA’s knowledge of the course

material, communication skills, quality of work, organization and planning skills,

overall effectiveness, students’ feedback, evaluator’s feedback, and the evaluator’s

overall recommendation for the GTA. The evaluation page was initially done by Traci

Fink, but we re-designed it in Spring 2005 to enhance flexibility.

We summarize the results of these evaluations and make available through the

manager’s web-page as shown in Figure 2.12.

2.5 Interactive solver

The task addressed in GTAAP is ideally suited to an interactive approach. Interac-

tivity keeps the manager in control of the decision-making process. In our context,

24

Figure 2.12: Summarized results of the instructor evaluations of their assigned GTAs.

an interactive solver must fulfill the following criteria:

• Keep the user in-control of any decisions.

• Maintain at all times a consistent state even when the assignment is partial.

In order to fulfill these criteria, the interactive solver may not make any assignments

but just maintain the list of possible (i.e., consistent) values for each variable.

Below, we discuss our methodology, the features and benefits of our new interactive

solver, and the interface for our interactive solver.

2.5.1 Methodology

Thota wrote the initial interactive solver (Section 2.3.2.3) in Common LISP, and

the web interface for this solver in PHP4. For these two vastly different languages

to communicate to support interactivity, the languages had to communicate via net-

work sockets. This solution was an ingenious way to enable Common LISP to interact

with PHP4 (vice-versa), but it was not robust. Because Thota’s interactive solver was

25

server-side, the network socket(s) had to be recreated each time the server rebooted

or when the LISP-PHP socket server crashed, which significantly affected the reliabil-

ity of the interactive solver in practice. In order to make the interactive-solver more

robust, we rewrote the interactive-solving component entirely in Java. This compo-

nent now runs independently of the web interface and accesses the MySQL database

directly to collect the relevant information about GTAs, courses, and constraints.

The algorithms used in the Interactive Solver were adapted from Thota’s MS

Project (see Chapter 2 in [Thota, 2004]). Our interactive solver has the two dual

perspectives on the problem (i.e., task and resource perspectives) displayed side-by-

side. In addition to all the functionalities of Thota’s interface, this new interface has

the features described below that firmly support interactivity.

2.5.2 Features and benefits

Rewriting the Interactive Solver has yielded many features and benefits. This new

solver:

• eliminates the need of recreating the socket server when the server is rebooted

or the socket server has crashed;

• provides a better interactive experience by securing a quicker response time;

• provides cross-platform support in a full fledge Java application that runs on

the client-side, and is not affected by CSE’s web-server downtime;

• provides secured and authenticated access (via transparent SSH tunneling) to

the MySQL database;

• supports multi-user and simultaneous access and assignments;

• provides a Save/Delete/Restore assignments feature for the user; and

26

• allows to print the output of the GTA assignment on a single sheet.

2.5.3 Interface of the interactive solver

Figures 2.13, 2.14, and 2.15 are screen captures of the Java interactive solver. While

implementing this new interactive solver, we strived to keep our interface as similar

as possible to the Excel sheet used by the faculty member in charge of the assignment

while integrating all functionalities provided by Thota’s web-based interactive-solver

[2004].

The main window, shown in Figure 2.13, displays both the task perspective and

the resource perspective. As these two perspectives use the same underlying CSP

model, the user is able to make assignments in either perspective and these decisions

are immediately reflected on the other perspective, which is not possible in the Excel

sheet.

27

{ .
..

}
{ .

..
}

{ A
lic

e,

Bo
b,

Ch

ris
tin

e,

Da
ni

el
, .

..
}

{ .
..

}

{ .
..

}

{ .
..

}

{ .
..

}

{ .
..

}

{ .
..

}

...

...

...

...

...
...

...

...
...

...

...

...

...

Ta
sk

 P
er

sp
ec

tiv
e

Re
so

ur
ce

 P
er

sp
ec

tiv
e

{ .
..

}

Figure 2.13: Interactive solver main screen. Two perspectives are visible in the same
window pane.

28

Figure 2.14 shows a class being assigned a GTA and Figure 2.15 shows that GTA

is assigned to class. Assignments may be made in either the task-perspective or the

resource-perspective because they use the same model. Details about the (Java)

Figure 2.14: Interactive solver doing a task assignment.

Figure 2.15: Interactive solver doing a resource assignment.

classes, its associated attributes, and methods are in Appendix D.

29

Summary

In this chapter we reviewed the general system architecture and discussed each of the

components that we have implemented or co-developed. These components include a

MySQL database to store data pertaining to GTAAP, a GTA web-page and a manager

web-page for data entry, and a facility for course instructors to evaluate their assigned

GTA. We have also redesigned and implemented a new interactive solver, which runs

as a Java graphical interface on the manager’s local computer.

30

Chapter 3

Conclusions and future work

We have designed and built the main components of a prototype system for the

management and hiring of GTAs at CSE. Our contributions comprise a relational

database, web-interfaces for GTAs and the department manager, a facility for GTA

evaluations, and an interactive-problem solver. We have also deployed the system

since its inception and supported its use in the department by the students and

faculty, providing reliable and continuous support under tight working conditions.

Our approach to system development has been pragmatic, and we have not carry

out a formal longitudinal study of usability and usefulness. However, anecdotal ev-

idence of the value of the system is demonstrated in the form of financial support

by CSE, satisfaction of the Graduate Secretary and the manager (relieved from han-

dling application forms and massive paperwork), and enthusiastic anonymous on-line

reviews from the students (see Figure 2.5). Invariably, assignments are now made

quickly (from a 3 week duration after the beginning of the semester down to a day

or two before the beginning of the semester), they are more stable, and, above all,

they are more satisfactory to the course instructor, the GTAs, and the students in

the classrooms.

31

This system has constantly evolved and changed over time. We have made the

conscious decision to solicit users’ feedback at every step of the development of the

prototype and immediately addressed users’ concerns communicated to us by email or

via the online survey. We also systematically and immediately deployed the incremen-

tal improvements and made them available to the users. We maintained the system

in use even through major transitions, preserving the data consistency throughout

the changes.

If we were to redesign this system from scratch today, we would make significant

changes. First, the web-interfaces available to the GTAs and the manager would have

to be redesigned and reorganized to reduce clutter and facilitate navigation. Second,

the database would have to be reorganized and redesigned. As we have been collecting

data attributes for new functionalities, new fields are often added to the database

tables and existing ones modified making the table layout ‘messy.’ Reorganizing

the tables by decomposing or normalizing them may allow the manager to compute

queries that are more complex than available in the current system. In addition to

this, we recommend migrating away from the MySQL database to a database that

has more powerful features such table views, transactions, and triggers.

GTAAP opens new directions for research in problem solving (e.g., collaborative

strategies among the human manager and the various automated solvers), and in

human-computer interaction (e.g., supporting the human manager in navigating the

solution space). It also gives us an opportunity to push the envelop in system design

and implementation in terms of integrating advanced scientific techniques such as

Constraint Processing with technological solutions such as web-design and database

integration.

In conclusion, we think that while the development of GTAAP should continue

in the above listed directions, it may be time now to explore using GTAAP beyond

32

CSE, at UNL and other institutions, world-wide, that have expressed interest in using

it.

33

Appendix A

Process description

Below are the steps that must be followed for using the system every semester. The

sequence of these steps may vary depending on how the department chooses to conduct

the process.

Before the semester starts,

1. The person maintaining GTAAP imports the data about the classes offered

during the semester. This includes CSE classes and some JDEHP classes. The

task is achieved by running the script

~gta/upload db.pl.

2. The person maintaining GTAAP sets up the courses in the manager’s web-

interface by setting course loads and canceling courses. A link for the GTA is

also provided in the GTA page

~gta/public html/gta/gta classes instructions.php

to enable the GTA to enter his/her teaching preferences.

34

3. The secretary of the Graduate Program at CSE sends an email requesting grad-

uate students to apply for GTA position by updating their academic record

and/or expressing their teaching preferences for the courses listed for the semester.

This message can be either sent to the mailing list grads@cse.unl.edu or directly

through the GTAAP interface to the students currently employed.

4. The Graduate Committee reviews the applications to the GTA positions (the

selective query facility discussed in Section 2.3.2.1 and shown in Figure 2.9 can

be very useful to this end) in light of the applicants past performance, and

choose the students to be hired for the semester.

5. The manager responsible for the assignment must specify/adjust the load of each

course depending on the number of students enrolled in the course. He/she may

cancel or add courses.

In parallel, the manager and/or the secretary of the Graduate Program at CSE

must specify the students hired and their hiring capacity. Further, they must

ensure that all students hired have entered correctly and completely their data.

This last step must be repeated for every new students hired later on in the

process.

6. The manager may choose to run the interactive solver to build solutions or

the automatic solver to come up with seed solutions that he/she can improve.

(Currently, assignments done interactively can be copied to, and saved in, the

database).

One month before the end of the semester,

1. The manager must specify the final employment of each GTA along with the

name of the supervising instructor. This information can be entered by the

35

manager by selecting the functionality labeled ‘Employment Tasks’ under the

mode labeled ‘GTAs.’

2. One month before the end of the semester, the secretary of the graduate program

at CSE must send an email requesting all teaching instructors for the current

semester (including student instructors, teaching staff, instructors from outside

CSE, and CSE faculty members) to evaluate the performance of their respective

assigned GTAs. Further, he/she must monitor that all evaluations have been

entered before the end of the semester.

36

Appendix B

Database Documentation

This appendix chapter contains the MySQL table names, their attributes and types,

and default values in GTAAP

We group the tables into 4 categories: Authentication and logging, GTA, Manager,

and Auxiliary tables. In each section, we describe the function of each table and then

provide the details of each tables.

B.1 Authentication and logging

These tables are related to user information, authentication, and access logging.

1. auth log: The log of database accesses from the web interface (see Table B.1).

2. users: This table contains user, contact, authentication and authorization in-

formation. Each GTA and manager must be listed in this table (see Table B.2).

B.1.1 Detail description

Below, we provide the low-level details about the tables in this category.

37

B.1.1.1 auth log

Table B.1: Table auth log

Field Type Null Default

eventId int(12) No

date time datetime No 0000-00-00 00:00:00

userId varchar(15) No

ip addr varchar(20) No

url varchar(200) No

eventId : This is the unique event identifier for the records in the auth log table.

date time: This is the date and time of the event in the format YYYY-MM-DD

hh:mm:ss where the YYYY is the 4 digit representation of the year, MM is

the 2 digit representation of the months, DD is the 2 digit representation of the

day of the month, hh is the 24-hour representation of the hour of the day, mm

is the 2 digit representation of the minute and ss is the 2 digit representation

of the second.

userId: This is the userId (refer to Table B.2) that caused this event to be logged.

ip addr: This is the Internet Protocol address (IPv4) used by the user that caused

this event to be logged.

url: This is the Uniform Resource Locator (page) that was accessed by the user.

38

B.1.1.2 users

Table B.2: Table users

Field Type Null Default

id int(11) No

userId varchar(15) No

userPw varchar(15) No

acl level tinyint(4) No 0

status tinyint(4) No 0

firstName varchar(20) No

lastName varchar(20) No

cse login varchar(10) Yes NULL

email varchar(50) No

id : This is the unique identifier for this user.

userId: This is the username used for identification and login purposes.

userPw This is the plain-text password for this user.

acl level: This is the user authorization level. These values should be positive in-

tegers (negative integers denote a disabled account). The values below are the

authorization levels used in GTAAP.

• 1: manager

• 2: instructor

• 3: GTA

status: This is the account status. These values should be positive integers (negative

integers denote a disabled account). The values below are the account status

values used in GTAAP.

• 1: manager

39

• 2: instructor

• 3: GTA

firstName: This is the user’s first name.

lastName: This is the user’s last name.

cse login: This is the user’s departmental (CSE) UNIX username.

B.2 GTA

These tables are related to GTA academic data and their teaching preferences.

1. consider application: This table contains the GTAs who want to be consid-

ered for positions in the upcoming semesters. (see Table B.3).

2. exams comps: This table stores comprehensive exam records for Ph.D. seeking

GTAs (see Table B.4).

3. exams quals: This table stores qualifiers exam records for Ph.D. seeking GTAs

(see Table B.5).

4. gta apply: This table stores the list of GTAs and the semesters they have

applied to (see Table B.6).

5. gta assignments: This table stores the previous GTA assignments saved by

the GTA in their academic record page (see Table B.7).

6. gta attendance: This table stores the colloquia/department talks saved by the

GTA in their academic record page (see Table B.8).

7. gta data: This table stores the GTA academic record data (see Table B.9).

40

8. gta deficiencies: For GTAs who have yet to completed deficiency courses,

the GTAs are listed in this table along with the deficiency courses to be com-

pleted (see Table B.10).

9. gta gre: The GTAs’ GRE records (see also Table B.9) (see Table B.11).

10. gta prefs: The GTAs’ preference values for the courses offered (see Table B.12).

11. gta prefs ts: The time stamp values for when the GTAs updated their pref-

erence values. Updates to each semester are stored in different entries (see also

Table B.12) (see Table B.13).

12. gta speak: Table for non-citizen GTAs who are required to complete the

SPEAK test (see Table B.14).

13. gta survey: Data collection (GTAs’ web-interface). evaluation by the GTAs

(see Table B.15).

B.2.1 Detail description

Below, we provide the low-level details about the tables in this category.

B.2.1.1 consider application

Table B.3: Table consider application

Field Type Null Default

id int(11) No 0

c year year(4) No 0000

c semester tinyint(4) No 0

id: This is the identifier for the GTA (refer to Table B.2) who wants to be considered

for the semester c year and c semester .

41

c year: This is the year the GTA would like to be considered for.

c semester: This is the semester the GTA would like to be considered for.

B.2.1.2 exams comps

Table B.4: Table exams comps

Field Type Null Default

id int(11) No 0

done enum(’true’, ’false’) Yes NULL

yr year(4) No 0000

mo tinyint(3) No 0

da tinyint(3) No 0

id : This is the identifier for the GTA (refer to Table B.2) who has taken the com-

prehensive exam.

done: This attribute is set to true if the GTA has completed the comprehensive

exam, or false otherwise.

yr: This is the year in 4-digit format the GTA took the comprehensive exam.

mo: This is the month in 2-digit format the GTA took the comprehensive exam.

day: This is the day in 2-digit format the GTA took the comprehensive exam.

42

B.2.1.3 exams quals

Table B.5: Table exams quals

Field Type Null Default

id int(11) No 0

a theory enum(’na’, ’hp’, ’p’, ’f’) No na

a systems enum(’na’, ’hp’, ’p’, ’f’) No na

a applications enum(’na’, ’hp’, ’p’, ’f’) No na

a applications s varchar(50) Yes NULL

yr year(4) No 0000

mo tinyint(3) No 0

da tinyint(3) No 0

id : This is the identifier for the GTA (refer to Table B.2) who has taken the qualifiers

exam.

a theory: This attribute is set to na if it is not applicable, hp if the GTA received a

high pass, p if the GTA passed, f if the GTA failed the theory section for the

qualifiers exam.

a systems: This attribute is set to na if it is not applicable, hp if the GTA received

a high pass, p if the GTA passed, f if the GTA failed the systems section for

the qualifiers exam.

a applications: This attribute is set to na if it is not applicable, hp if the GTA

received a high pass, p if the GTA passed, f if the GTA failed the applications

section for the qualifiers exam.

a applications s: This is a text value for the application subject area the GTA took

for the qualifiers exam.

yr: This is the year in 4-digit format the GTA took the qualifiers exam.

43

mo: This is the month in 2-digit format the GTA took the qualifiers exam.

day: This is the day in 2-digit format the GTA took the qualifiers exam.

B.2.1.4 gta apply

Table B.6: Table gta apply

Field Type Null Default

id int(11) No 0

c semester tinyint(4) No 0

c year year(4) No 0000

apply enum(’true’, ’false’) Yes NULL

id : This is the is identifier for the GTA (refer to Table B.2) who has applied for a

position in c semester and c year .

c semester : This is the semester the GTA applied for.

c year : This is the year the GTA applied for.

apply: This attribute is set to true if the the GTA applied for this semester and

year, or false otherwise.

B.2.1.5 gta assignments

Table B.7: Table gta assignments

Field Type Null Default

id int(11) No 0

course varchar(10) No

a semester enum(’FALL’, ’SPRING’, ’SUMMER’) No FALL

a year year(4) No 0000

instructor varchar(50) Yes NULL

duties tinyint(3) Yes NULL

44

id : This is the identifier for the GTA (refer to Table B.2) whose teaching assignments

(from the Academic Record page) is stored.

course: This is the course identifier (refer to Table B.16) of the course this GTA

was previously assigned to.

a semester : This is the semester the GTA was assigned the course course.

a year : This is the year the GTA was assigned the course course.

instructor: This is the instructor identifier (refer to Table B.27) who supervised this

GTA in the course course.

duties: This is the task the GTA performed (refer to Table B.26) in the course

course.

B.2.1.6 gta attendance

Table B.8: Table gta attendance

Field Type Null Default

id int(11) No 0

colloquia tinyint(3) No 0

ms tinyint(3) No 0

phd tinyint(3) No 0

id : This is the GTA identifier (refer to Table B.2) for which this attendance record

pertains to.

colloquia: This is the number of department colloquia talks this GTA has attended.

ms: This is the number of department M.S. Thesis defenses this GTA has attended.

phd: This is the number of department Ph.D. Dissertation defenses this GTA has

attended.

45

B.2.1.7 gta data

Table B.9: Table gta data

Field Type Null Default

id int(11) No 0

lastmodified datetime Yes NULL

advisor int(11) No 0

program tinyint(3) No 0

admitted semester enum(’FALL’, ’SPRING’, ’SUMMER’) No FALL

admitted year year(4) No 0000

graduation semester enum(’FALL’, ’SPRING’, ’SUMMER’) Yes NULL

graduation year year(4) Yes NULL

support gta tinyint(3) Yes NULL

support gra tinyint(3) Yes NULL

support amount int(10) Yes NULL

ugrd GPA float Yes NULL

grad GPA float Yes NULL

ita tinyint(3) Yes NULL

ta ship enum(’true’, ’false’) Yes NULL

ra ship enum(’true’, ’false’) Yes NULL

ta ship load smallint(3) No 999

ra ship load smallint(3) No 999

thesis project title varchar(100) Yes NULL

thesis project advisor varchar(100) Yes NULL

research experience text Yes NULL

npublications tinyint(3) No 0

foreign student tinyint(1) No 1

id : This is the identifier for the GTA (refer to Table B.2) this academic record

pertains to.

lastmodified: This is the date and time this record was last updated in the format

YYYY-MM-DD hh:mm:ss where the YYYY is the 4 digit representation of

the year, MM is the 2 digit representation of the months, DD is the 2 digit

representation of the day of the month, hh is the 24-hour representation of the

46

hour of the day, mm is the 2 digit representation of the minute and ss is the 2

digit representation of the second.

advisor: This is the identifier for the advisor (refer to Table B.27) of this GTA.

program: This is the program identifier (refer to Table B.28) this GTA is enrolled

as.

admitted semester: This is the semester this GTA was admitted into the program.

admitted year: This is the year this GTA was admitted into the program.

graduation semester: This is the expected graduation semester for this GTA.

graduation year: This is the expected graduation year for this GTA.

support gta: This is the number of semesters this GTA has received support as a

teaching assistant from the department.

support gra: This is the number of semesters this GTA has received support as a

research assistant from the department.

support amount: This is the most recent dollar amount of support received by this

GTA (This field is deprecated and should not be used).

ugrd GPA: This is this GTA’s undergraduate grade-point average.

grad GPA: This is this GTA’s graduate grade-point average.

ita: This is this GTA’s ITA (International Teaching Assistants) qualification status

(refer to Table B.29).

ta ship: This attribute is set to true if this GTA is currently supported as a teaching

assistant, or false otherwise.

47

ra ship: This attribute is set to true if this GTA is currently supported as a research

assistant, or false otherwise.

ta ship load: This is the expected current workload of this GTA as a teaching as-

sistant (values 0.00, 0.16, 0.25, 0.33, 0.50, 0.66, 0.75, 0.83, 1.00).

ra ship load: This is the expected current workload of this GTA as a research as-

sistant (values 0.00, 0.16, 0.25, 0.33, 0.50, 0.66, 0.75, 0.83, 1.00).

thesis project title: This is the text value for this GTA’s thesis/project title.

thesis project advisor: This is is the text value for the candidate GTA’s advisor

(this should be the same as the advisor attribute; this field is deprecated and

should not be used).

research experience: This is a variable length text value for this GTA’s research

experience.

npublications: This is the number of publications this GTA has published to-date.

foreign student: This attribute is set to 1 if the GTA is a foreign student, or 0

otherwise.

B.2.1.8 gta deficiencies

Table B.10: Table gta deficiencies

Field Type Null Default

id int(11) No 0

deficiency int(11) No 0

id: This is the identifier for the GTA (refer to Table B.2) who has yet to complete

deficiency courses.

48

deficiency: This is the deficiency course (this list of deficiency courses are in Ta-

ble B.25).

B.2.1.9 gta gre

Table B.11: Table gta gre

Field Type Null Default

id int(11) No 0

greType enum(’VERBAL’, ’QUANTITATIVE’, ’ANALYTICAL’,

’SUBJECT’)

No VERBAL

subjectArea varchar(50) Yes NULL

score int(11) No 0

percent float(10,2) No 0.00

id : This is the identifier for GTA (refer to Table B.2) for which this GRE record

pertains to.

greType: This attribute is either VERBAL, QUANTITATIVE, ANALYTICAL, or SUBJECT

depending on the GRE area.

subjectArea: This attribute is the text value for the subject area (if greType is

SUBJECT).

score: This is the GTA’s score (this may be different depending on the subject area)

on the specific area of GRE.

percent: This is the score percentile this GTA achieved.

49

B.2.1.10 gta prefs

Table B.12: Table gta prefs

Field Type Null Default

id int(11) No 0

c semester tinyint(4) No 0

c year year(4) No 0000

classId int(11) No 0

enrolled enum(’true’, ’false’) No true

preference tinyint(3) No 0

justification varchar(50) Yes NULL

id : This is the identifier for the GTA (refer to Table B.2) this preference value per-

tains to.

c semester : This is the is the semester this preference is valid for.

c year : This is the year this preference is valid for.

classId : This is the identifier for the course (refer to Table B.16) this preference is

for.

enrolled: This attribute is set to true if this GTA is enrolled in the course corre-

sponding to the classId , or false otherwise.

preference: This is the preference value ranging from 0 (unable to handle) to 5 (best

choice) for the course-preference pair for this GTA.

justification: This is a text value justifying why this GTA is unable to serve this

course (if a preference value 0 is specified).

B.2.1.11 gta prefs ts

50

Table B.13: Table gta prefs ts

Field Type Null Default

id int(11) No 0

c semester tinyint(4) No 0

c year year(4) No 0000

lastmodified datetime No 0000-00-00 00:00:00

id : This is identifier for the GTA (refer to Table B.2) this preference timestamp is

for.

c semester : This is the semester that this preference timestamp is for.

c year : This is the year that this preference timestamp is for.

lastmodified: This is the date and time of this preference timestamp in the format

YYYY-MM-DD hh:mm:ss where the YYYY is the 4 digit representation of

the year, MM is the 2 digit representation of the months, DD is the 2 digit

representation of the day of the month, hh is the 24-hour representation of the

hour of the day, mm is the 2 digit representation of the minute and ss is the 2

digit representation of the second.

51

B.2.1.12 gta speak

Table B.14: Table gta speak

Field Type Null Default

id int(11) No 0

yr year(4) No 0000

mo tinyint(3) No 0

da tinyint(3) No 0

score tinyint(3) No 0

id : This is the identifier for the GTA (refer to Table B.2) that pertains to this SPEAK

test.

yr: This is the year that this GTA took the SPEAK test.

mo: This is the month that this GTA took the SPEAK test.

da: This is the day that this GTA took the SPEAK test.

score: This is the GTA’s score (maximum 60) for the SPEAK test.

52

B.2.1.13 gta survey

Table B.15: Table gta survey

Field Type Null Default

id int(11) No 0

survey id int(11) No 0

navigate ease tinyint(4) Yes NULL

navigate flex tinyint(4) Yes NULL

navigate rbst tinyint(4) Yes NULL

dataentry ease tinyint(4) Yes NULL

dataentry flex tinyint(4) Yes NULL

dataentry rbst tinyint(4) Yes NULL

online paper enum(’online’, ’paper’) Yes NULL

revised tinyint(4) Yes NULL

superfluous p enum(’true’, ’false’) Yes NULL

superfluous c text Yes NULL

missinginfo p enum(’true’, ’false’) Yes NULL

missinginfo c text Yes NULL

other comments text Yes NULL

id : This is the identifier for the GTA (refer to Table B.2) associated with this survey

result.

survey id : This is the survey identifier number. Each semester should have an

incremented survey id from the previous semesters.

navigate ease: This is the response for the navigation ease ranging from 0 (bad) to

5 (very good).

navigate flex: This is the response for the navigation flexibility ranging from 0 (bad)

to 5 (very good).

navigate rbst: This is the response for the navigation robustness ranging from 0

(bad) to 5 (very good).

53

dataentry ease: This is the response for the data entry ease ranging from 0 (bad)

to 5 (very good).

dataentry flex: This is the response for the data entry flexibility ranging from 0

(bad) to 5 (very good).

dataentry rbst: This is the response for the data entry robustness ranging from 0

(bad) to 5 (very good).

online paper: This attribute is set to online if the GTA prefers to submit an online

GTA application, or paper if the GTA prefers to submit a paper copy of the

GTA application.

revised: This is the number of times that this GTA revised his/her application.

superfluous p: This attribute is set to true if the GTA felt there were any super-

fluous questions, or false otherwise.

superfluous c: This is a text value explaination if superfluous p was set to true.

missinginfo p: This attribute is set to true if the GTA felt there were any missing

questions, or false otherwise.

missinginfo c: This is a text value explaination if missinginfo p was set to true.

other comments: This is a text value attribute for the GTA to submit additional

comments about their experience using GTAAP.

B.3 Manager

These tables are related to courses, the constraints setup, hiring information and

GTA evaluations.

54

1. classes: All courses offered by the department (since Spring 2002). are stored

in this table. (see Table B.16).

2. class confinements: Lists courses that must have the GTA assigned to them

be exclusive to all courses in the set (associated by a unique identifier). i.e.,

GTAs cannot be also assigned to courses outside this set (see Table B.17).

3. consider application semesters: This table holds all semesters that can be

applied for, or have been filled out in the past. This table is only read and not

written to (see Table B.18).

4. facEvals: Faculty evaluation of GTAs for each semester (see Table B.19).

5. hired: General hired information (hired, capacity, salary) about the GTAs (see

also Table B.21) (see Table B.20).

6. hired info: Specific hired information (course assigned to, task, task load,

supervising instructor) (see also Table B.20). (see Table B.21).

7. jassignments: The Java Interactive Solver uses this table to store the saved

scenarios. (see Table B.22).

8. preassignment: Preassignments are made and stored here. The constraint

solvers must honor these preassignments (see Table B.23).

9. same ta: The same-TA table. Courses listed here must have the GTA assigned

to all courses in the set (associated by a unique identifier) (see Table B.24).

B.3.1 Detail description

Below, we provide the low-level details about the tables in this category.

55

B.3.1.1 classes

Table B.16: Table classes

Field Type Null Default

c semester tinyint(4) No 0

c year year(4) No 0000

id int(11) No

parent int(11) No -1

classId varchar(10) No

name varchar(60) No

section varchar(5) No

startTime varchar(4) No

endTime varchar(4) No

day m enum(’true’, ’false’) No true

day t enum(’true’, ’false’) No true

day w enum(’true’, ’false’) No true

day r enum(’true’, ’false’) No true

day f enum(’true’, ’false’) No true

day s enum(’true’, ’false’) No true

courseLoad float No 1

canceled enum(’true’, ’false’) No false

startDate varchar(8) No 00000000

endDate varchar(8) No 00000000

class type int(11) No 0

type lec enum(’true’, ’false’) Yes NULL

type grad enum(’true’, ’false’) Yes NULL

type lab enum(’true’, ’false’) Yes NULL

type rec enum(’true’, ’false’) Yes NULL

type s lec enum(’true’, ’false’) Yes NULL

type s grad enum(’true’, ’false’) Yes NULL

type s lab enum(’true’, ’false’) Yes NULL

type s rec enum(’true’, ’false’) Yes NULL

instructor id int(11) Yes 99999

c semester : This is the semester this course is offered.

c year : This is the year this course is offered.

56

id : This is the course identifier used across the database to identify this specific

course.

parent: This is the parent course for this course. A parent course is the lecture

course associated with a lab or recitation course. If this course has no parent,

a value of ‘-1’ is set.

classId: This is the course number for this course.

name: This is the descriptive name for this course.

section: This is the section number for this course.

startTime: This is the start time for this course in HHMM format. HH is the

24-hour representation of the hour and MM is the minute of the hour (2-digit)

representation of minute.

endTime: This is the end time for this course in HHMM format. HH is the 24-

hour representation of the hour and MM is the minute of the hour (2-digit)

representation of minute.

day m: This attribute is set to true if it meets on Monday, or false otherwise.

day t: This attribute is set to true if it meets on Tuesday, or false otherwise.

day w: This attribute is set to true if it meets on Wednesday, or false otherwise.

day r: This attribute is set to true if it meets on Thursday, or false otherwise.

day f: This attribute is set to true if it meets on Friday, or false otherwise.

day s: This attribute is set to true if it meets on Saturday, or false otherwise.

57

courseLoad: This is the commitment level expected of the GTA for serving this

course. The course load is defined by the double values 0.00, 0.16, 0.25, 0.33,

0.50, 0.66, 0.75. 0.83, 1.00.

canceled: This attribute is set to true if the course is cancelled, or false otherwise.

startDate: This is the start date for courses that do not begin at the begining

of the semester. The format is YYYYMMDD where YYYY is the 4 digit

representation of the year, MM is the 2 digit representation of the months, and

DD is the 2 digit representation of the day of the month.

endDate: This is the end date for courses that do not complete at the end of the

semester. The format is YYYYMMDD where YYYY is the 4 digit represen-

tation of the year, MM is the 2 digit representation of the months, and DD is

the 2 digit representation of the day of the month.

class type: This is the course type. (This field is deprecated and should not be

used).

type lec: This attribute is set to true if this course is a lecture course, or false

otherwise.

type grad: This attribute is set to true if this course is a grading course, or false

otherwise.

type lab: This attribute is set to true if this course is a lab course, or false other-

wise.

type rec: This attribute is set to true if this course is a recitation course, or false

otherwise.

58

type s lec: This attribute is set to true if this course is a short lecture course, or

false otherwise. (This field is deprecated and should not be used).

type s grad: This attribute is set to true if this course is a short grading course,

or false otherwise. (This field is deprecated and should not be used).

type s lab: This attribute is set to true if this course is a short lab course, or false

otherwise. (This field is deprecated and should not be used).

type s rec: This attribute is set to true if this course is a recitation course, or false

otherwise. (This field is deprecated and should not be used).

instructor id: is identifier used to identify the instructor from Table B.27.

B.3.1.2 class confinements

Table B.17: Table class confinements

Field Type Null Default

c semester tinyint(4) No 0

c year year(4) No 0000

class id int(11) No 0

confinement int(10) No 0

c semester: This is the semester which this confinement applies to.

c year: This is the year which this confinement applies to.

class id: This is the class id (refer to Table B.16) of the confined course.

confinement: This is the (semester) unique confinement identifier. A group of con-

fined courses must have the same confinement identifier number.

B.3.1.3 consider application semesters

59

Table B.18: Table consider application semesters

Field Type Null Default

c year year(4) No 0000

c semester tinyint(4) No 0

dates varchar(50) Yes NULL

comments varchar(50) Yes NULL

c year: This is the year in YYYY 4 digit format.

c semester: This is the semester.

dates: This is a text field that represents the start and end date. The convention

used is “MM/DD/YY - mm/dd/yy” where MM is the start month, DD is the

start day, YY is the start year, mm is the end month, dd is the end month,

and yy is the end year.

comments: This is a text field for comments.

60

B.3.1.4 facEvals

Table B.19: Table facEvals

Field Type Null Default

id int(11) No 0

instructor int(11) No 0

courseID int(11) No 0

task tinyint(3) No 0

c semester tinyint(4) No 0

c year year(4) No 0000

knowledge tinyint(4) Yes NULL

communicate tinyint(4) Yes NULL

effort tinyint(4) Yes NULL

plan tinyint(4) Yes NULL

overall tinyint(4) Yes NULL

witness int(11) Yes NULL

comments text Yes NULL

studentComments text Yes NULL

recommend tinyint(4) Yes NULL

date time datetime Yes 0000-00-00 00:00:00

id : This is the identifier for the GTA (refer to Table B.2) this evaluation pertains to.

instructor : This is the identifier for the instructor (refer to Table B.27) who eval-

uated this GTA.

courseID: This is the course identifier (refer to Table B.16) this evaluation pertains

to.

task : This is the task identifier (refer to Table B.26) this evaluation pertains to.

c semester : This is the semester this evaluation pertains to.

c year : This is the year in 4-digit representation that this evaluation pertains to.

61

knowledge: This is the rating for the GTA’s knowledge on the course material rang-

ing from 1 (little/bad) to 6 (very good). A value 0 represents an unknown value.

communicate: This is the rating for the GTA’s communication skills ranging from

1 (little/bad) to 6 (very good). A value 0 represents an unknown value.

effort: This is the rating for the GTA’s quality of work ranging from 1 (little/bad)

to 6 (very good). A value 0 represents an unknown value.

plan: This is the rating for the GTA’s planning skills ranging from 1 (little/bad) to

6 (very good). A value 0 represents an unknown value.

overall: This is the rating for the GTA’s overall evaluation ranging from 1 (lit-

tle/bad) to 6 (very good). A value 0 represents an unknown value.

witness: This is the number of times the course instructor witnessed/supervised the

grading/lab/recitation instructor (presence/grading).

comments: This is a text field (variable length) for the instructor’s comments on

the GTA.

studentComments: This is a text field (variable length) for the students’ comments

on the GTA.

recommend: This is the overall recommendation for the GTA. A value 4 represents

a strong recommend, a 3 represents a recommend for another course, a 2 rep-

resents a recommend but only for grading, a 1 represents do not recommend,

and a 0 represents an unknown value.

date time: This is the date and time of that this evaluation was submitted in the

format YYYY-MM-DD hh:mm:ss where the YYYY is the 4 digit representation

of the year, MM is the 2 digit representation of the months, DD is the 2 digit

62

representation of the day of the month, hh is the 24-hour representation of the

hour of the day, mm is the 2 digit representation of the minute and ss is the 2

digit representation of the second.

B.3.1.5 hired

Table B.20: Table hired

Field Type Null Default

id int(11) No 0

c semester tinyint(4) No 0

c year year(4) No 0000

hired enum(’true’, ’false’) No true

capacity float No 0

salary float Yes 0

id: This is the identifier for the GTA (refer to Table B.2).

c semester: This is the semester.

c year: This is the year.

hired: This is set to true if the GTA is hired for this semester and year, false

otherwise.

capacity: This is the capacity which the GTA is expected to work at (0.00, 0.16,

0.25, 0.33, 0.50, 0.66, 0.75, 0.83, 1.00).

salary: This is the salary the GTA receives per semester.

63

B.3.1.6 hired info

Table B.21: Table hired info

Field Type Null Default

id int(11) No 0

c semester tinyint(4) No 0

c year year(4) No 0000

courseId int(11) No 0

task tinyint(3) No 0

task load float No 0

instructor int(11) Yes 99999

id: This is the identifier for the GTA (refer to Table B.2).

c semester: This is the semester.

c year: This is the year.

courseId: This is the course identifier (refer to Table B.16)

task: This is the task the GTA performed (refer to Table B.26).

task load: This is the GTA’s expected load with values 0.00, 0.16, 0.25, 0.33, 0.50,

0.66, 0.75, 0.83, 1.00.

instructor: This is the instructor identifier (refer to Table B.27) who supervises this

class.

64

B.3.1.7 jassignments

Table B.22: Table jassignments

Field Type Null Default

c semester tinyint(4) No 0

savedId int(11) No 0

savedName varchar(50) No 0

c year year(4) No 0000

c semester tinyint(4) No 0

classId int(11) No 0

gtaId int(11) No 0

savedId: This is the saved scenario’s identifier. All GTA assignments in this scenario

have the same savedId.

savedName: This is the saved scenario’s name. All GTA assignments in this sce-

nario have the same savedName.

c semester: This is the semester the saved scenario is for.

c year: This is the year the saved scenario is for.

classId: This is the course identifier (refer to Table B.16) of the course saved in this

scenario.

gtaId: This is the GTA identifier (refer to Table B.2) of the GTA saved in this

scenario.

65

B.3.1.8 preassignment

Table B.23: Table preassignment

Field Type Null Default

gta id int(11) Yes NULL

class id int(11) No 0

c semester tinyint(4) No 0

c year year(4) No 0000

gta id: This is the identifier for the GTA (see Table B.2).

class id : This is the class identifier (see Table B.16).

c semester: This is the semester.

c year: This is the year.

B.3.1.9 same ta

Table B.24: Table same ta

Field Type Null Default

c semester tinyint(4) No 0

c year year(4) No 0000

class id int(11) No 0

sameta int(10) No 0

c semester: This is the semester the same-TA constraint applies to.

c year: This is the year the same-TA constraint applies to.

class id: This is the course identifier (refer to Table B.16) of the course with the

same-TA constraint.

sameta: This is the (semester) unique same-TA identifier. A group of same-TA

courses must have the same sameta identifier number.

66

B.4 Auxiliary tables

These tables are read-only to provide frequently accessed information.

1. deficiencies: The list of all possible deficiency courses. Deficiencies are

courses that a GTA must complete before completing the program (see also

Table B.10). This table is only read and not written to (see Table B.25).

2. duty: A list of duties a GTA may have (course instructor, lab instructor, grader,

recitation instructor, other). This table is only read and not written to (see

Table B.26).

3. faculty: List of faculty members, staff, lecturers and other instructors who

may complete a GTA evaluation (see Table B.27).

4. grad program: List of graduate programs. This table is only read and not

written to (see Table B.28).

5. ita: International Teaching-Assistant Association qualifications values. This

table is only read not written to (see Table B.29).

6. semesters: The list of semesters (Fall, Spring, Summer).. This table is only

read and not written to (see Table B.30).

B.4.1 Detail description

Below, we provide the low-level details about the tables in this category.

B.4.1.1 deficiencies

67

Table B.25: Table deficiencies

Field Type Null Default

id tinyint(3) No 0

value varchar(30) No

id: This is the identifier for the deficiency course.

value: This is the text value for the deficiency course (the course name and number,

e.g. CSCE 322).

B.4.1.2 duty

Table B.26: Table duty

Field Type Null Default

id tinyint(3) No 0

value varchar(30) No

id: This is the identifier for the task.

value: This is the text value for the task (the task name, e.g. Course instructor).

B.4.1.3 faculty

Table B.27: Table faculty

Field Type Null Default

id int(11) No 0

rank tinyint(3) No 0

firstName varchar(20) Yes NULL

lastName varchar(20) Yes NULL

cse login varchar(15) Yes NULL

id : This is the unique identifier for the instructor.

68

rank: This is the title/rank associated with this instructor.

• 0: professor (tenure)

• 1: associate professor (tenure)

• 2: assistant professor (tenure)

• 3: professor (research)

• 4: associate professor (research)

• 5: assistant professor (research)

• 6: Senior lecturer

• 7: Lecturer

• 8: Instructor

• 9: GTA Instructor

firstName: This is the instructor’s first name.

lastName: This is the instructor’s last name.

cse login: This is the instructor’s departmental (CSE) UNIX username.

B.4.1.4 grad program

Table B.28: Table grad program

Field Type Null Default

id tinyint(3) No 0

program varchar(20) Yes NULL

id : This is the identifier for the program.

program: This is the text value for the programs offered at the department.

69

B.4.1.5 ita

Table B.29: Table ita

Field Type Null Default

id tinyint(3) No 0

value varchar(30) No

id: This is the identifier for the ITA value.

value: This is the text value for the ITA qualification status (e.g., passed, failed).

B.4.1.6 semesters

Table B.30: Table semesters

Field Type Null Default

semester varchar(10) Yes NULL

semesters: This is the text value for the available semesters (name).

70

Appendix C

Documentation for the

Web-interface and SQL Queries

This appendix shows the web-interface file structure and hierarchy. We also list the

MySQL query statements and explains their meaning and significance in the system.

C.1 Web-interface file structure and hierarchy

Below we give a brief summary of the directory structures listed:

• The configs directory contains configuration files used by the system. These

files provide predefined values for the system’s default value for the semester,

define the paths to the search algorithms, and define the authentication creden-

tials required to access the MySQL database.

• The gta directory contains files for the GTA web-interface. These files provide

the functionalities described in Section 2.3.1.

• The manager directory contains files for the manager web-interface. These files

provide the functionalities described in Section 2.3.2.

71

• The fac evals directory contains files used for instructors evaluations of GTAs

as described in Section 2.4.

• The include directories (at the root or nested below the gta or manager direc-

tories) are PHP4 functions that support the features for the GTA or manager

web-access built into our system.

• The perl modules directory contains Perl modules used by GTAAP that CSE

does not have installed on the server.

• The scripts directory contain Perl scripts that assists us in the database

queries.

• The db directory contain the MySQL table structures and the SQL queries to

to build the database tables.

Below is the file structure and hierarchy for the web-interface.

public_html

|-- admin

| |-- frame_layout

| | |-- class_opts.php

| | |-- gta_opts.php

| | |-- main.php

| | |-- main_opts.php

| | ‘-- search_opts.php

| ‘-- index.php

|-- array.php

|-- blank.html

|-- check_acl.inc.php

|-- config.inc.php

|-- configs

| |-- CONFIG -> CONFIG-live

| |-- CONFIG-demo

| |-- CONFIG-dev

| |-- CONFIG-live

| |-- Makefile

| |-- _htaccess_gta_template

72

| |-- _htaccess_manager_template

| |-- _htaccess_template

| |-- change.pl

| |-- config.inc.php

| |-- config.lisp

| |-- config_template.lisp

| |-- config_template.php

| |-- config_template.pl

| |-- configure-load.lisp

| |-- copy.pl

| |-- header_template.php

| |-- make_template.lisp

| |-- manager_index_template.php

| |-- owninits_template.lisp

| |-- read-data_global-var_template.lisp

| |-- replicate_db.pl

| |-- set-config.pl

| ‘-- setup_tmp.pl

|-- contact_us.php

|-- db

| |-- README

| |-- accessdb.sh

| |-- auth_log.sql

| |-- backup-20031116.sql.gz

| |-- class_confinements.sql

| |-- classes

| | |-- classes_populate_fall03.sql

| | |-- classes_populate_spring03.sql

| | |-- summer03

| | | |-- 1st 5wks.sql

| | | |-- 2nd 5wks.sql

| | | |-- 8weeks.sql

| | | |-- parse.pl

| | | |-- presession.txt

| | | ‘-- summer-files

| | | |-- 1st 5wks.txt

| | | |-- 2nd 5wks.txt

| | | |-- 8wk.txt

| | | ‘-- presession.txt

| | ‘-- summer04

| | |-- 1st 5wks.sql

| | |-- 2nd 5wks.sql

| | |-- 8weeks.sql

73

| | |-- parse.pl

| | |-- presession.txt

| | ‘-- summer-files

| | |-- 1st 5wks.txt

| | |-- 2nd 5wks.txt

| | |-- 8wk.txt

| | ‘-- presession.txt

| |-- classes.sql

| |-- consider_application.sql

| |-- dump

| | ‘-- database.sql

| |-- exams_.sql

| |-- facEvals.sql

| |-- faculty.sql

| |-- faculty_populate.sql

| |-- gta_apply.sql

| |-- gta_assignments.sql

| |-- gta_attendance.sql

| |-- gta_data.sql

| |-- gta_deficiencies.sql

| |-- gta_gre.sql

| |-- gta_prefs.sql

| |-- gta_prefs_ts.sql

| |-- gta_speak.sql

| |-- gta_survey.sql

| |-- hired.sql

| |-- hired_info.sql

| |-- jassignments.sql

| |-- misc.sql

| |-- preassignment.sql

| |-- proposals.sql

| |-- users.sql

| ‘-- users_populate.sql

|-- fac_evals

| |-- auth_user.php

| |-- evaluate.php

| |-- form.php

| |-- index.php

|-- find.sh

|-- footer.inc.php

|-- functions.inc.php

|-- gta

| |-- email_webmaster.php

74

| |-- gta_classes.php

| |-- gta_classes_frames.php

| |-- gta_classes_help.html

| |-- gta_classes_instructions.php

| |-- gta_data.php

| |-- gta_include

| | |-- db

| | | |-- insert_gta_courses.inc.php

| | | ‘-- insert_gta_dta.inc.depreciated.php

| | |-- forms

| | | |-- consider_application.inc.php

| | | |-- get_survey_data.inc.php

| | | |-- include.php

| | | |-- list_courses_form.inc.php

| | | ‘-- survey_form.inc.php

| | |-- function_template.INC.php

| | |-- html

| | | |-- gta_email_data.inc.php

| | | ‘-- gta_navigator.inc.php

| | |-- include.php

| | |-- make.pl

| | ‘-- register

| | ‘-- register_form1.inc.php

| |-- index.php

| |-- new_register.php

| |-- register.php

| |-- survey.php

| ‘-- update_info.php

|-- gta-evals

| |-- FacEval.php

| ‘-- index.php

|-- header.inc.php

|-- images

| |-- emailbutton.jpg

| |-- prettyprintpagebutton.jpg

| |-- printbutton.jpg

| |-- printer.jpg

| |-- printpagebutton.jpg

| ‘-- qmark.gif

|-- include

| |-- auth

| | |-- auth.inc.php

| | ‘-- check_acl.inc.php

75

| |-- db

| | |-- db_query.inc.php

| | |-- insert_gta_data.inc.php

| | |-- insert_new_user.inc.php

| | |-- uname2uid.inc.php

| | ‘-- unique_userId.inc.php

| |-- forms

| | |-- duty_menu.inc.php

| | |-- gta_data.inc.php

| | |-- login.inc.php

| | |-- register.inc.php

| | |-- select_course.inc.php

| | |-- select_deficiencies.inc.php

| | |-- select_faculty.inc.php

| | |-- select_ita.inc.php

| | |-- select_phd_quals.inc.php

| | |-- select_program.inc.php

| | |-- select_ra_ship.inc.php

| | |-- select_semester.inc.php

| | |-- select_ta_ship.inc.php

| | ‘-- update_info.inc.php

| |-- function_template.INC.php

| |-- html

| | ‘-- gta_show_data.inc.php

| |-- include.php

| |-- make.pl

| |-- masks

| | |-- get_className.inc.php

| | |-- get_class_name.inc.php

| | |-- get_class_name_working.inc.php

| | |-- get_deficiency_name.inc.php

| | |-- get_dutyName.inc.php

| | |-- get_email.inc.php

| | |-- get_fac_name.inc.php

| | |-- get_flName.inc.php

| | |-- get_gpa.inc.php

| | |-- get_gta_data.inc.php

| | |-- get_ita_name.inc.php

| | |-- get_lfName.inc.php

| | |-- get_myId.inc.php

| | |-- get_program_name.inc.php

| | |-- get_ra_ship_load.inc.php

| | |-- get_ta_ship_load.inc.php

76

| | ‘-- get_usersLastId.inc.php

| |-- misc

| | |-- check_validEmail.inc.php

| | |-- check_valid_gta_data.inc.php

| | |-- class_id2name.inc.php

| | |-- duty_name.inc.php

| | |-- invalid_user.inc.php

| | ‘-- semester_name.inc.php

| |-- session

| | |-- end_session.inc.php

| | ‘-- reg_session.inc.php

| ‘-- test.php

|-- index.php

|-- information

| |-- ita.html

| |-- semesters_supported.html

| ‘-- speak.html

|-- login.php

|-- logout.php

|-- lost_pw.php

|-- make.pl

|-- manager

| |-- alisp_iface.sh

| |-- checkall.js

| |-- class_add_rm.php

| |-- class_add_rm_choose_semester.php

| |-- class_confinement.php

| |-- class_confinement_choose_semester.php

| |-- class_dependencies.php

| |-- class_dependencies_choose_semester.php

| |-- class_edit.php

| |-- class_edit_ajax.js

| |-- class_edit_choose_semester.php

| |-- class_group_confinement.php

| |-- class_group_confinement_choose_semester.php

| |-- class_group_sameta.php

| |-- class_group_sameta_choose_semester.php

| |-- class_preassign.php

| |-- class_preassign_choose_semester.php

| |-- class_preference_ranking.php

| |-- compose_rater_email.php

| |-- frame_layout

| | |-- advanced_options.php

77

| | |-- blank.html

| | |-- blank.php

| | |-- class_opts.php

| | |-- courses.html

| | |-- edit_constraints_opts.php

| | |-- employment_opts.php

| | |-- evals_legend.php

| | |-- gta_opts.php

| | |-- gtas.html

| | |-- interactive_selections_opts.php

| | |-- lispfuncs.inc.php

| | |-- main.php

| | |-- main_opts.php

| | |-- search_opts.php

| | |-- sys_admin_opts.php

| | ‘-- test.php

| |-- gta-search

| | |-- results.txt

| | |-- search_era.pl

| | |-- search_lisp

| | | |-- era.lisp

| | | |-- systematic_dsbt.lisp

| | | ‘-- systematic_rrbt.lisp

| | |-- search_local.pl

| | |-- search_rl.pl

| | |-- search_systematic_dsbt.pl

| | ‘-- search_systematic_rrbt.pl

| |-- gta_add.php

| |-- gta_change_view.php

| |-- gta_del.php

| |-- gta_edit.php

| |-- gta_edit_employment_history.php

| |-- gta_edit_multiple_employment_history.php

| |-- gta_employment_history.php

| |-- gta_evaluations.php

| |-- gta_evaluations_new.php

| |-- gta_historical_decider.php

| |-- gta_list.php

| |-- gta_list.php-dumb

| |-- gta_list_consider.php

| |-- gta_list_filter.php

| |-- gta_list_filter_query.php

| |-- gta_list_semester.php

78

| |-- gta_list_semester_action.php

| |-- gta_multiple_edit_ajax.js

| |-- gta_preassign.php

| |-- gta_preference_ranking.php

| |-- gta_pull.php

| |-- gta_user_all_evaluations.php

| |-- gta_view_prefs.php

| |-- i_selections_gta_list.php

| |-- index.php

| |-- lisp-interface

| | |-- blank.html

| | |-- class_course.inc.php

| | |-- class_gta.inc.php

| | |-- commonfuncs.inc.php

| | |-- config.pl

| | |-- configvars.inc.php

| | |-- courses-new.php

| | |-- courses-tst.php

| | |-- courses.php

| | |-- courses1.php

| | |-- courses2.php

| | |-- debugpage.php

| | |-- dotask.php

| | |-- dotask.php-old

| | |-- dotask.pl

| | |-- exp

| | |-- gtas.php

| | |-- gtas.phpt

| | |-- gtayearsem.php

| | |-- lispfuncs.inc.php

| | |-- messages.php

| | |-- misc-funcs.php

| | |-- restartDaemon.exp

| | |-- sort.inc.php

| | |-- startDaemon.exp

| | |-- stopDaemon.exp

| | |-- style.css

| | |-- syslogin.php

| | |-- test.exp

| | ‘-- test.php

| |-- manager_include

| | |-- GTA

| | | |-- manager_gta_edit_all_employment_history.inc.php

79

| | | |-- manager_gta_edit_employment_history.inc.php

| | | |-- manager_gta_employment_history.inc.php

| | | |-- manager_gta_evaluations.inc.php

| | | |-- manager_gta_evaluations_summary.inc.php

| | | |-- manager_gta_evaluations_summary_new.inc.php

| | | |-- manager_gta_evaluations_view.inc.php

| | | |-- manager_gta_list.inc.php

| | | |-- manager_gta_list_semester.inc.php

| | | |-- manager_gta_list_semester_summary.inc.php

| | | ‘-- manager_gta_view_prefs.inc.php

| | |-- class

| | | |-- course_menu.inc.php

| | | |-- manager_add_rm_courses_form.inc.php

| | | |-- manager_class_dependencies.inc.php

| | | |-- manager_class_dependencies_edit.inc.php

| | | |-- manager_class_preassign_form.inc.php

| | | |-- manager_edit_class_group.inc.php

| | | |-- manager_edit_courses_form.inc.php

| | | |-- manager_new_class_group.inc.php

| | | ‘-- manager_view_class_groups.inc.php

| | |-- function_template_inc.php

| | |-- include.php

| | |-- interactive_selections

| | | |-- interactive_selections_class_confinement_form.inc.php

| | | |-- interactive_selections_gta_form.inc.php

| | | ‘-- interactive_selections_gta_list.inc.php

| | |-- make.pl

| | |-- misc

| | | |-- all_semesters_menu.inc.php

| | | |-- class_type_menu.inc.php

| | | |-- compose_email.inc.php

| | | |-- doHire.inc.php

| | | |-- gta_list_menu.inc.php

| | | |-- hired_sem_menu.inc.php

| | | |-- lispfuncs.inc.php

| | | |-- load_menu.inc.php

| | | |-- print_all_evaluations.inc.php

| | | |-- print_gta.inc.php

| | | |-- print_gta_evals.inc.php

| | | ‘-- print_prefs.inc.php

| | |-- pdf

| | | |-- class.ezpdf.php

| | | |-- class.pdf.php

80

| | | |-- data.txt

| | | |-- fonts

| | | | |-- Courier-Bold.afm

| | | | |-- Courier-BoldOblique.afm

| | | | |-- Courier-Oblique.afm

| | | | |-- Courier.afm

| | | | |-- Helvetica-Bold.afm

| | | | |-- Helvetica-BoldOblique.afm

| | | | |-- Helvetica-Oblique.afm

| | | | |-- Helvetica.afm

| | | | |-- Symbol.afm

| | | | |-- Times-Bold.afm

| | | | |-- Times-BoldItalic.afm

| | | | |-- Times-Italic.afm

| | | | |-- Times-Roman.afm

| | | | |-- ZapfDingbats.afm

| | | | |-- php_Courier-Bold.afm

| | | | |-- php_Courier-BoldOblique.afm

| | | | |-- php_Courier-Oblique.afm

| | | | |-- php_Courier.afm

| | | | |-- php_Helvetica-Bold.afm

| | | | |-- php_Helvetica-BoldOblique.afm

| | | | |-- php_Helvetica-Oblique.afm

| | | | |-- php_Helvetica.afm

| | | | |-- php_Symbol.afm

| | | | |-- php_Times-Bold.afm

| | | | |-- php_Times-BoldItalic.afm

| | | | |-- php_Times-Italic.afm

| | | | |-- php_Times-Roman.afm

| | | | |-- php_ZapfDingbats.afm

| | | | |-- php_a0100131.afm

| | | | ‘-- php_a010013l.afm

| | | |-- pdf_print.inc.php

| | | |-- print_gta_info.php

| | | |-- readme.pdf

| | | |-- readme.php

| | | ‘-- ros.jpg

| | |-- reports

| | | |-- class_report.inc.php

| | | ‘-- gta_report.inc.php

| | ‘-- search

| |-- old

| | |-- class_group_confinement.php

81

| | |-- class_group_confinement_choose_semester.php

| | |-- i_selections_class.php -> class_preassign.php

| | ‘-- i_selections_class_choose_semester.php

| | -> class_preassign_choose_semester.php

| |-- pdf_files

| |-- phpinfo.php

| |-- print.php

| |-- print_gta_info.php

| |-- search

| | |-- config.pl

| | |-- index.php

| | |-- lisp

| | | |-- era.lisp

| | | |-- heuristic_bt.lisp

| | | |-- local.lisp

| | | ‘-- rbt.lisp

| | |-- out-no-subcourses

| | |-- out-with-subcourses

| | |-- results.txt

| | |-- search.pl

| | |-- search_era.pl

| | |-- search_heuristic_bt.pl

| | |-- search_local.pl

| | |-- search_query

| | |-- search_rbt.pl

| | ‘-- semester_config

| |-- search.php

| |-- search_fc-bound.pl

| |-- search_lisp

| | |-- era.lisp

| | |-- local.lisp

| | |-- systematic_dsbt.lisp

| | ‘-- systematic_rrbt.lisp

| |-- search_test.php

| |-- sel_all.png

| |-- template.php

| ‘-- x.php

|-- perl_modules

| |-- Exporter

| | ‘-- Lite.pm

| |-- PHP

| | |-- Session

| | | ‘-- Serializer

82

| | | ‘-- PHP.pm

| | ‘-- Session.pm

| |-- Test

| | |-- Builder.pm

| | |-- Harness

| | | |-- Assert.pm

| | | |-- Iterator.pm

| | | ‘-- Straps.pm

| | |-- Harness.pm

| | |-- More.pm

| | |-- Simple.pm

| | ‘-- Tutorial.pod

| |-- UNIVERSAL

| | |-- exports.pm

| | ‘-- require.pm

| |-- auto

| | |-- Exporter

| | | ‘-- Lite

| | |-- PHP

| | | ‘-- Session

| | |-- Test

| | | ‘-- Simple

| | ‘-- UNIVERSAL

| | ‘-- exports

| ‘-- sources.tar

|-- phpinfo.php

|-- postlogin.php

|-- prepend.php

|-- print_gta_info.php

|-- scripts

| |-- anonymizer

| | |-- anonymizer.pl

| | |-- dist.all.first

| | |-- dist.all.last

| | |-- dist.female.first

| | |-- dist.male.first

| | |-- first

| | |-- get_first.pl

| | |-- get_last.pl

| | ‘-- last

| |-- config.pl

| |-- deleteUser.pl

| |-- fix_gtaName_cases.pl

83

| |-- gta_apply.pl

| |-- insertPref.pl

| |-- log_clean.pl

| |-- log_view.cgi

| |-- log_view.pl

| |-- survey_results.pl

| |-- svn-add-unversioned

| |-- svn-clean

| |-- userEmailList.pl

| ‘-- userList.pl

|-- session_files

‘-- template.php

C.2 MySQL queries

In this section, we specify all the MySQL queries executed when pushing a button

in the system. They are divided into two groups: one for the ‘GTA’ mode and the

other for the ‘Classes’ mode. We use the variables denoted by $semester and $year

to represent the selected semester and year respectively.

C.2.1 Queries posted from the GTA mode

Below are the SQL queries used in the GTA mode:

• In the GTA mode, to show data in the “Select Applied” button, we execute this

query:

SELECT * FROM users WHERE id IN

(SELECT id FROM gta_apply WHERE c_year=’$year’

AND c_semester=’$semester’ AND apply=’true’)

ORDER BY lastName;

Then, for each user, the academic data information is obtained from the gta data

table (each user is denoted by $id).

84

SELECT support_gta, support_gra, lastmodified FROM gta_data

WHERE id = ’$id’;

For each user, the timestamp for the preference is obtained from the gta prefs ts

table (each user is denoted by $id).

SELECT lastmodified FROM gta_prefs_ts WHERE id = ’$id’

AND c_year = ’$year’ AND c_semester = ’$semester’;

The hired checkbox state and capacity information is then obtained from the

hired table.

SELECT hired, capacity FROM hired WHERE id = ’$id’

AND c_year = ’$year’ AND c_semester = ’$semester’;

• In the GTA mode, to show data in the “Select Hired” button, we execute this

query:

SELECT * FROM users WHERE id IN

(SELECT id FROM hired c_year = ’$year’ AND

c_semester = ’$semester’ AND hired = ’true’)

ORDER BY lastName;

Then, for each user, the academic data information is obtained from the gta data

table (each user is denoted by $id).

SELECT support_gta, support_gra, lastmodified FROM gta_data

WHERE id = ’$id’;

For each user, the timestamp for the preference is obtained from the gta prefs ts

table (each user is denoted by $id).

85

SELECT lastmodified FROM gta_prefs_ts WHERE id = ’$id’

AND c_year = ’$year’ AND c_semester = ’$semester’;

The hired checkbox state and capacity information is then obtained from the

hired table.

SELECT hired, capacity FROM hired WHERE id = ’$id’

AND c_year = ’$year’ AND c_semester = ’$semester’;

• In order to filter the GTAs (the “Select Filter” button), we execute this query:

SELECT * FROM users WHERE id IN

(SELECT id FROM gta_data, consider_application WHERE

program=’$program’ AND gta_data.ita=’$ita’

AND gta_data.grad_GPA = ’$gpa’

AND gta_data.ta_ship = ’$ta_ship’ AND gta_data.ra_ship = ’$ra_ship’

AND gta_data.support_gta = ’$support_gta’

AND gta_data.support_gra = ’$support_gra’

AND consider_application.c_year = ’$year’

AND consider_application.c_semester = ’$semester’

AND consider_application.id = gta_data.id) ORDER BY lastName;

Then, for each user, the academic data information is obtained from the gta data

table (each user is denoted by $id).

SELECT support_gta, support_gra, lastmodified FROM gta_data

WHERE id = ’$id’;

For each user, the timestamp for the preference is obtained from the gta prefs ts

table (each user is denoted by $id).

86

SELECT lastmodified FROM gta_prefs_ts WHERE id = ’$id’

AND c_year = ’$year’ AND c_semester = ’$semester’;

The hired checkbox state and capacity information is then obtained from the

hired table.

SELECT hired, capacity FROM hired WHERE id = ’$id’

AND c_year = ’$year’ AND c_semester = ’$semester’;

• In the GTA mode, to show data in the “Preference Ranking Applied” button,

we execute this query:

SELECT * FROM users WHERE id IN

(SELECT id FROM gta_apply WHERE c_year=’$year’

AND c_semester=’$semester’ AND apply=’true’)

ORDER BY lastName;

To get the advisor name, we execute this query (each user is denoted by $id):

SELECT faculty.lastName, faculty.firstName FROM faculty, gta_data

WHERE gta_data.id = ’$id’ AND gta_data.advisor = faculty.id;

To obtain the top preferences (at least a preference value of 4), we execute this

query (each user is denoted by $id):

SELECT classId, section FROM classes WHERE id IN

(SELECT classId FROM gta_prefs WHERE id = ’$id’

AND c_semester = ’$semester’ AND c_year = ’$year’

AND (preference = 4 OR preference = 5));

87

• In the GTA mode, to show data in the “Preference Ranking Hired” button, we

execute this query:

SELECT * FROM users WHERE id IN

(SELECT id FROM hired WHERE id = ’$id’

AND c_year=’$year’ AND c_semester=’$semester’

AND hired = ’true’)

ORDER BY lastName;

To get the advisor name, we execute this query (each user is denoted by $id):

SELECT faculty.lastName, faculty.firstName FROM faculty, gta_data

WHERE gta_data.id = ’$id’ AND gta_data.advisor = faculty.id;

To obtain the top preferences (at least a preference value of 4), we execute this

query (each user is denoted by $id):

SELECT classId, section FROM classes WHERE id IN

(SELECT classId FROM gta_prefs WHERE id = ’$id’

AND c_semester = ’$semester’ AND c_year = ’$year’

AND (preference = 4 OR preference = 5));

• In the GTA mode, to show data in the “Pull Preference” button, we execute

this query (the user is denoted by $id):

SELECT * FROM gta_prefs WHERE id = ’$id’;

• In the GTA mode, to show data in the “Employment Tasks” button, we execute

this query (the user is denoted by $id):

88

SELECT * FROM users WHERE id IN

(SELECT id FROM hired WHERE id = ’$id’ AND c_year=’$year’

AND c_semester=’$semester’ AND hired = ’true’)

ORDER BY lastName;

The hired capacity and salary information is then obtained from the hired table

(each user is denoted by $id).

SELECT capacity, salary FROM hired WHERE id = ’$id’

AND c_year = ’$year’ AND c_semester = ’$semester’;

The specific hired information is then obtained from the hired info table (each

user is denoted by $id).

SELECT courseId, task, task_load, instructor FROM hired_info

WHERE id = ’$id’ AND c_year = ’$year’ AND c_semester = ’$semester’;

• In the GTA mode, to show data in the “GTA Evaluations” button, we execute

this query (the user is denoted by $id):

SELECT * FROM users WHERE id IN

(SELECT id FROM hired WHERE id = ’$id’ AND

c_year=’$year’ AND c_semester=’$semester’ AND hired = ’true’)

ORDER BY lastName;

Then, for each user, the academic data information is obtained from the gta data

table (each user is denoted by $id).

SELECT program, admitted_semester, admitted_year, advisor,

grad_gpa, ita, support_gta, support_gra

FROM gta_data WHERE id = ’$id’

89

To translate the program id obtained above:

SELECT program FROM grad_program WHERE id = ’$program’

To translate the advisor id obtained above:

SElECT lastName, firstName FROM faculty WHERE id = ’$faculty’

The hired capacity information is then obtained from the hired table.

SELECT hired, capacity FROM hired WHERE id = ’$id’

AND c_year = ’$year’ AND c_semester = ’$semester’;

The courses the GTA was assigned to:

SELECT courseId, task FROM hired_info WHERE id = ’$id’

AND c_semester = ’$semester’ AND c_year = ’$year’;

The evaluations:

SELECT knowledge, communicate, effort, plan, overall, instructor

FROM facEvals WHERE id = ’$id’ AND courseID = ’$courseId’

AND c_semester = ’$semester’ AND c_year = ’$year’;

The rater:

SELECT lastName, firstName FROM faculty WHERE id = ’$instructor’;

• In the GTA mode, to show “All GTAs in system”, we execute this query:

SELECT lastName, firstName, id FROM users ORDER BY lastName;

90

For each user (denoted as $id) to obtain the data on the table, we execute the

following queries:

SELECT lastmodified FROM gta_data;

SELECT lastmodified FROM gta_prefs_ts WHERE c_semester = ’1’

AND c_year = ’$year’ AND id = ’$id’;

SELECT apply FROM gta_apply WHERE c_semester = ’1’

AND c_year = ’$year’ AND id = ’$id’;

SELECT lastmodified FROM gta_prefs_ts WHERE c_semester = ’2’

AND c_year = ’$year’ AND id = ’$id’;

SELECT apply FROM gta_apply WHERE c_semester = ’2’

AND c_year = ’$year’ AND id = ’$id’;

SELECT lastmodified FROM gta_prefs_ts WHERE c_semester = ’11’

AND c_year = ’$year’ AND id = ’$id’;

SELECT apply FROM gta_apply WHERE c_semester = ’11’

AND c_year = ’$year’ AND id = ’$id’;

SELECT lastmodified FROM gta_prefs_ts WHERE c_semester = ’12’

AND c_year = ’$year’ AND id = ’$id’;

SELECT apply FROM gta_apply WHERE c_semester = ’12’

91

AND c_year = ’$year’ AND id = ’$id’;

SELECT lastmodified FROM gta_prefs_ts WHERE c_semester = ’13’

AND c_year = ’$year’ AND id = ’$id’;

SELECT apply FROM gta_apply WHERE c_semester = ’13’

AND c_year = ’$year’ AND id = ’$id’;

SELECT lastmodified FROM gta_prefs_ts WHERE c_semester = ’14’

AND c_year = ’$year’;

SELECT apply FROM gta_apply WHERE c_semester = ’14’

AND c_year = ’$year’ AND id = ’$id’;

• In the GTA mode, to show data in the “Employment Record” button, we exe-

cute this query:

SELECT * FROM users WHERE id = ’$id’;

The hired capacity and salary information is then obtained from the hired

table.

SELECT capacity, salary FROM hired WHERE id = ’$id’

AND c_year = ’$year’ AND c_semester = ’$semester’;

The specific hired information is then obtained from the hired info table.

SELECT courseId, task, task_load, instructor FROM hired_info

WHERE id = ’$id’ AND c_year = ’$year’ AND c_semester = ’$semester’;

92

• In the GTA mode, to show the data from the “Evaluation Record” button, we

execute this query:

SELECT instructor, courseID, task, knowledge, communicate,

effort, plan, overall, witness, comments, studentComments,

recommend, date_time FROM facEvals WHERE id = ’$id’

AND c_semester = ’$semester’ AND c_year = ’$year’;

In order to obtain the instructor’s name:

SELECT lastName, firstName FROM faculty WHERE id = ’$instructor’;

• In the GTA mode, to show the data from the “Edit Academic Record” button,

we execute the following queries:

SELECT program, advisor, admitted_year, admitted_semester,

graduation_year, graduation_semester, support_gta,

support_gra, ta_ship_load, ra_ship_load, ugrad_GPA,

grad_GPA, thesis_project_title, research_experience,

extra_experience FROM gta_data WHERE id = ’$id’;

SELECT score, percent FROM gta_gre WHERE id = ’$id’

AND greType = "VERBAL";

SELECT score, percent FROM gta_gre WHERE id = ’$id’

AND greType = "QUANTITATIVE";

SELECT score, percent FROM gta_gre WHERE id = ’$id’

93

AND greType = "ANALYTICAL";

SELECT score, percent, subjectArea FROM gta_gre

WHERE id = ’$id’ AND greType = "SUBJECT";

SELECT value FROM deficiencies WHERE id IN

(SELECT deficiency FROM gta_deficiencies WHERE id = ’$id’);

SELECT colloquia, ms, phd FROM gta_attendance WHERE id = ’$id’;

SELECT done, yr, mo, da FROM exams_comps WHERE id = ’$id’;

SELECT a_theory, a_systems, a_applications, a_applications_s,

yr, mo, da FROM exams_quals WHERE id = ’$id’;

SELECT course, instructor, duties, a_semester, a_year

FROM gta_assignments WHERE id = ’$id’;

SELECT classId FROM classes WHERE id = ’$course’;

SELECT lastName, firstName FROM faculty WHERE id = ’$instructor’;

SELECT value FROM duty WHERE id = ’$duties’;

• In order to delete a GTA, this query is performed:

UPDATE users SET acl_level = ’-3’, status = ’-3’ WHERE id = ’$id’;

94

C.2.2 Queries posted from the Classes mode

Below are the SQL queries used in the Classes mode:

• In the Classes mode, to show data in the “Setup” button, we execute this query:

SELECT canceled, classId, section, name, startTime, endTime,

day_m, day_t, day_w, day_r, day_f, courseLoad, type_lec,

type_grad, type_lab, type_rec FROM classes

WHERE c_semester = ’$semester’ AND c_year = ’$year’;

• In the Classes mode, to show data in the “Preassignment” button, we execute

this query:

SELECT gta_id, class_id FROM preassignment WHERE

c_semester = ’$semester’ AND c_year = ’$year’;

For each $class id, we obtain the class number, section, name, and course load:

SELECT classId, section, name, courseLoad FROM classes

WHERE id = ’$class_id’;

For each $gta id, we obtain the GTA’s name:

SELECT lastName, firstName FROM users WHERE id = ’$gta_id’;

• In the Classes mode, to show data in the “Confinement” button, we execute

this query:

SELECT DISTINCT(confinement) FROM class_confinements

WHERE c_semester = ’$semester’ AND c_year = ’$year’;

95

For each $confinement group, we find out the members of the group.

SELECT classId, section FROM classes WHERE id IN

(SELECT class_id FROM class_confinements

WHERE c_semester = ’$semester’ AND c_year = ’$year’ AND

confinement = ’$confinement’);

• In the Classes mode, to show data in the “Same-TA” button, we execute this

query:

SELECT DISTINCT(sameta) FROM same_ta

WHERE c_semester = ’$semester’ AND c_year = ’$year’;

For each $sameta group, we find out the members of the group.

SELECT classId, section FROM classes WHERE id IN

(SELECT class_id FROM same_ta WHERE c_semester = ’$semester’

AND c_year = ’$year’ AND sameta = ’$sameta’);

• In the Classes mode, to show data in the “Preference ranking” button, we

execute this query:

SELECT id, classId, section FROM classes

WHERE c_semester = ’$semester’ AND c_year = ’$year’;

For each $id, we find GTAs who have preference value 5 or value 4.

SELECT lastName, firstName FROM users IN

(SELECT id FROM gta_prefs WHERE classId = ’$id’ AND preference = ’5’);

SELECT lastName, firstName FROM users IN

(SELECT id FROM gta_prefs WHERE classId = ’$id’ AND preference = ’4’);

96

Appendix D

Interactive Solver: Java API

Documentation

This appendix contains the details of the Java application programming interface

(API). Further Java code may be developed that reuses these classes, data structures,

and methods. Below is the listing of the Java source code for the Java Interactive

Solver.

edu/

‘-- unl

‘-- consystlab

|-- CSPConstraint.java

|-- CSPProblem.java

|-- CSPUtils.java

|-- CSPVVP.java

|-- CSPValue.java

|-- CSPVariable.java

|-- EVector.java

|-- FC_Solver.java

|-- LabelParams.java

|-- Log.java

|-- Setup.java

|-- Utils.java

|-- gtaap

97

| |-- Course.java

| |-- GTA.java

| |-- Preference.java

| ‘-- constraints

| |-- CapacityConstraint.java

| |-- CertificationConstraint.java

| |-- EqualityConstraint.java

| |-- MutexConstraint.java

| |-- NilPrefConstraint.java

| |-- OverlapConstraint.java

| ‘-- TakingCourseConstraint.java

|-- gtajava

| |-- GTAAPConfig.java

| |-- Main.java

| |-- RandomGTAAPGenerator.java

| ‘-- YearSemester.java

|-- gui

| |-- AboutBox.java

| |-- CanEnable.java

| |-- ComboItem.java

| |-- ComboListener.java

| |-- DisplayPreferences.java

| |-- GTAComboBox.java

| |-- GTAComboBoxEditor.java

| |-- GTAComboBoxRenderer.java

| |-- Interactive.java

| |-- JCheckBoxRenderer.java

| |-- JComboBoxEditor.java

| |-- JComboBoxRenderer.java

| |-- OpenDialog.java

| |-- PortForwardingL.java

| |-- PrintPage.java

| |-- RAButton.java

| |-- ResourceAssignmentCellEditor.java

| |-- ResourceAssignmentCheckBox.java

| |-- ResourceAssignmentCourseCellEditor.java

| |-- ResourceAssignmentDialog.java

| |-- ResourceAssignments.java

| |-- SaveDialog.java

| |-- SemesterYearSelector.java

| |-- StringRenderer.java

| ‘-- TunnelAuthenticationDialog.java

|-- jAssignment.java

98

|-- java

|-- javac

‘-- tests

|-- AC.java

|-- BTNode.java

|-- TestCapacityConstraint.java

‘-- TestCertificationConstraint.java

99

Following are the generated JavaDoc source code documentation for the Java

Interactive Solver.

D.1 Package edu.unl.consystlab.gui
Package Contents Page

Interfaces

CanEnable . 102
This is an interface for the JComboBox to show enabled/disabled items

in the JComboBox.

Classes

AboutBox . 103

The About box.

ComboItem . 104
This class forms the object that is used in JComboBox so that we have

items that are enabled, and items that are disabled.
ComboListener . 106

This class is the combo box listener that handles actions.

DisplayPreferences .107

This class forms the dialog box for the display preferences.

GTAComboBox . 108

This is an extended JComboBox used to display GTAs.

GTAComboBox.horizontalScrollComboUI . 111

This method enables horizontal scroll bars on the combobox.

GTAComboBoxEditor . 111
This class is the JComboBox editor for GTAs in the resource perspec-

tive.
GTAComboBoxRenderer . 113

100

This class is the renderer for the elements for the GTAComboBox.

Interactive . 114

This class is primarily for the display of the Interactive Selections.

JCheckBoxRenderer . 127

This class is the JCheckBox renderer.

JComboBoxEditor . 129

This class is the JCheckBox editor.

JComboBoxRenderer . 130

This class is the table cell renderer for JComboBox.

OpenDialog . 131

This class generates the “Open” dialog box.

PortForwardingL .133
This class enables and sets up SSH port forwarding for the MySQL

access.
PortForwardingL.MyUserInfo . 134

Retrieves the user login credentials.

PrintPage . 135
This class enables the printing of both the resource and task perspective

as one.
RAButton . 137

This class is the resource assignment button.

ResourceAssignmentCellEditor . 139

The cell editor for the resource perspective.

ResourceAssignmentCheckBox . 142
This class extends from JCheckBox by adding additional attributed that

are kept track of – namely the CSPVariable and ResourceAssignments

variables.
ResourceAssignmentCourseCellEditor . 145

101

This class is the checkbox editor for the resource assignment dialog

(ResourceAssignmentDialog) box.

ResourceAssignmentDialog . 147
This class generates the graphical interface for the resource perspective

allocation.
ResourceAssignments .151

This class is used for the resource perspective.

SaveDialog . 154

This class generates the ”Save” dialog box.

SemesterYearSelector . 157
This class is the dialog box that prompts the user to select a semester

and year.
StringRenderer .161

This class just is an extended cell renderer.

TunnelAuthenticationDialog . 162

This class prompts the user for their CSE username and password.

102

D.2 Interfaces

D.2.1 Interface CanEnable

This is an interface for the JComboBox to show enabled/disabled items in the JCom-

boBox.

D.2.1.1 Declaration

public interface CanEnable

D.2.1.2 Methods

• isEnabled

public boolean isEnabled()

– Usage

∗ If an item is enabled, this method returns true, otherwise it is false.

– Returns - true if it is enabled, false otherwise.

• setEnabled

public void setEnabled(boolean isEnabled)

– Usage

∗ Enable/Disable this item.

– Parameters

∗ isEnabled - true if this item is enabled, false otherwise.

103

D.3 Classes

D.3.1 Class AboutBox

The About box.

D.3.1.1 Declaration

public class AboutBox

extends javax.swing.JDialog

implements java.awt.event.ActionListener

D.3.1.2 Serializable Fields

• private JPanel About

– This about box.

• private JLabel TitleText

– The title text.

• private JButton buttonOK

– The OK button.

• private int width

– The window height.

• private int height

104

– The window height.

• private final String OK

– The constant used for the method actionPerformed(...).

• private JLabel CopyrightInformation

– Copyright information.

D.3.1.3 Constructors

• AboutBox

public AboutBox()

– Usage

∗ Constructor.

D.3.1.4 Methods

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

D.3.2 Class ComboItem

This class forms the object that is used in JComboBox so that we have items that are

enabled, and items that are disabled.

105

D.3.2.1 Declaration

public class ComboItem

extends java.lang.Object

implements CanEnable, java.lang.Comparable

D.3.2.2 Fields

• public Object obj

– The object (Course/GTA) treated as the JComboBox item.

• public boolean isEnabled

– Is the object enabled?

D.3.2.3 Methods

• compareTo

public int compareTo(java.lang.Object nCompare)

• hashCode

public int hashCode()

• isEnabled

public boolean isEnabled()

– Usage

106

∗ If an item is enabled, this method returns true, otherwise it is false.

– Returns - true if it is enabled, false otherwise.

• setEnabled

public void setEnabled(boolean isEnabled)

– Usage

∗ Enable/Disable this item.

– Parameters

∗ isEnabled - true if this item is enabled, false otherwise.

• toString

public String toString()

D.3.3 Class ComboListener

This class is the combo box listener that handles actions.

D.3.3.1 Declaration

public class ComboListener

extends java.lang.Object

implements java.awt.event.ActionListener

D.3.3.2 Methods

107

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

D.3.4 Class DisplayPreferences

This class forms the dialog box for the display preferences. Here we allow turning on/off

table columns such the section name, number, etc.

D.3.4.1 Declaration

public class DisplayPreferences

extends java.lang.Object

implements java.awt.event.ActionListener

D.3.4.2 Constructors

• DisplayPreferences

public DisplayPreferences(edu.unl.consystlab.gui.Interactive

parent)

– Usage

∗ Constructor.

– Parameters

∗ parent - Our parent window, Interactive.

108

D.3.4.3 Methods

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

• setVisible

public void setVisible(boolean b)

– Usage

∗ Shows or hides the display preferences.

– Parameters

∗ b - true to set as visible, false otherwise.

D.3.5 Class GTAComboBox

This is an extended JComboBox used to display GTAs.

D.3.5.1 Declaration

public class GTAComboBox

extends javax.swing.JComboBox

D.3.5.2 Serializable Fields

• private int filteredOutIndex

109

– The position of the filtered-out item separator.

D.3.5.3 Constructors

• GTAComboBox

public GTAComboBox()

– Usage

∗ Constructor.

• GTAComboBox

public GTAComboBox(javax.swing.JComboBox jcb)

– Usage

∗ Constructor.

– Parameters

∗ jcb - Items from this is copied over to our new GTAComboBox.

D.3.5.4 Methods

• getComboBox

public JComboBox getComboBox()

– Usage

∗ Returns the JComboBox representation of myself.

– Returns - The JComboBox representation of myself.

110

• getFilteredOutIndex

public int getFilteredOutIndex()

– Usage

∗ This method returns the filtered out index location.

– Returns - The index.

• getVariable

public CSPVariable getVariable()

– Usage

∗ Gets the CSPVariable for this combo box.

– Returns - Returns the variable.

• setFilteredOutIndex

public void setFilteredOutIndex(int index)

– Usage

∗ This method sets the index for the ”– Filtered Out –” separator so the

renderer will know where to change the color.

– Parameters

∗ index -

• setVariable

public void setVariable(edu.unl.consystlab.CSPVariable variable

)

– Usage

111

∗ Sets the CSPVariable for this combo box.

– Parameters

∗ variable - The variable to set.

D.3.6 Class GTAComboBox.horizontalScrollComboUI

This method enables horizontal scroll bars on the combobox.

D.3.6.1 Declaration

public class GTAComboBox.horizontalScrollComboUI

extends javax.swing.plaf.basic.BasicComboBoxUI

D.3.6.2 Constructors

• GTAComboBox.horizontalScrollComboUI

public GTAComboBox.horizontalScrollComboUI()

D.3.6.3 Methods

• createPopup

protected ComboPopup createPopup()

D.3.7 Class GTAComboBoxEditor

This class is the JComboBox editor for GTAs in the resource perspective.

112

D.3.7.1 Declaration

public class GTAComboBoxEditor

extends javax.swing.AbstractCellEditor

implements javax.swing.table.TableCellEditor, java.awt.event.ActionListener

D.3.7.2 Serializable Fields

• private GTAComboBox combobox

– The internal combobox used by this class.

D.3.7.3 Constructors

• GTAComboBoxEditor

public GTAComboBoxEditor(edu.unl.consystlab.gui.GTAComboBox

gcb)

– Usage

∗ Default constructor.

– Parameters

∗ gcb - Sets the internal combo box value to this.

D.3.7.4 Methods

113

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

• getCellEditorValue

public Object getCellEditorValue()

• getTableCellEditorComponent

public Component getTableCellEditorComponent(

javax.swing.JTable table, java.lang.Object value, boolean isSe-

lected, int row, int column)

D.3.8 Class GTAComboBoxRenderer

This class is the renderer for the elements for the GTAComboBox.

D.3.8.1 Declaration

public class GTAComboBoxRenderer

extends javax.swing.JLabel

implements javax.swing.ListCellRenderer

D.3.8.2 Serializable Fields

• private GTAComboBox cb

– The internal combobox used by this class.

114

D.3.8.3 Constructors

• GTAComboBoxRenderer

public GTAComboBoxRenderer()

– Usage

∗ Constructor.

• GTAComboBoxRenderer

public GTAComboBoxRenderer(edu.unl.consystlab.gui.GTAComboBox

gcb)

– Usage

∗ Constructor.

– Parameters

∗ gcb - Sets the internal combo box value to this.

D.3.8.4 Methods

• getListCellRendererComponent

public Component getListCellRendererComponent(

javax.swing.JList list, java.lang.Object value, int index,

boolean isSelected, boolean cellHasFocus)

D.3.9 Class Interactive

This class is primarily for the display of the Interactive Selections.

115

D.3.9.1 Declaration

public class Interactive

extends javax.swing.JFrame
implements java.awt.event.ActionListener,

javax.swing.event.TableModelListener

D.3.9.2 Serializable Fields

• private boolean fromDatabase

– If the problem data is loaded from the database, this is set to true. Oth-

erwise, it is set to false

• private JPanel jContentPane

– The JPanel for the content pane.

• private JMenuBar jJMenuBar

– The JMenuBar that is displayed for the file, edit, and help menu.

• private JMenu fileMenu

– The JMenu for the file menu.

• private JMenu editMenu

– The JMenu for the edit menu.

• private JMenu helpMenu

– The JMenu for the help menu.

116

• private JMenuItem exitMenuItem

– The JMenuItem to exit/quit the program.

• private JMenuItem aboutMenuItem

– The JMenuItem to call the about box.

• private JMenuItem displayPreferenceMenuItem

– The JMenuItem to display and set preferences.

• private DisplayPreferences displayPreferences

– The DisplayPreferences object fpr setting the preferences

• private JMenuItem openMenuItem

– The JMenuItem to call the open box.

• private JMenuItem saveMenuItem

– The JMenuItem to call the save box.

• private JMenuItem refetchDataMenuItem

– The JMenuItem to call the refetch-data box.

• private JMenuItem printMenuItem

– The JMenuItem to print.

• private JScrollPane taskPerspectiveScroller

– The JScrollPane for the task perspective.

• private JScrollPane taskTallyScroller

– The JScrollPane for the task tally.

117

• private JScrollPane resourcePerspectiveScroller

– The JScrollPane for the resource perspective.

• private JScrollPane resourceTallyScroller

– The JScrollPane for the resource tally.

• private JTable taskPerspective

– The JTable for the task perspective.

• private JPanel taskTally

– The JPanel for the task tally.

• private JTable resourcePerspective

– The JTable for the resource perspective.

• private JPanel colorLegend

– The JPanel for the color legend.

• private CSPProblem problem

– The CSPProblem for this problem.

• private boolean takeNoAction

– If set to true, no action is taken when a table change happens.

• private boolean doAssign

– If set to true, then assignments are made, otherwise nothing happens.

• private boolean hasPreassignments

118

– When there are preassignments (preassignments are loaded and there is at

least one preassignment) from the database, this is set to true, otherwise

false.

• private double totalNeeded

– The tally for the total needed capacity from the GTAs.

• private double totalAssigned

– The total assigned load made so far.

• private double totalPreassignedLoad

– The total preassigned load.

• private int totalPreassigned

– The total number of courses preassigned.

• private YearSemester ys

– This is used to store the selected year and semester.

• private boolean firstTime

– If this is the first time the Interactive window is displayed, it is true.

• private boolean doRefetch

– If we want to refetch the data, then this is true.

• private int width

– The width of this Interactive window. This is used to determine the width

of the window and set the position on screen.

• private int height

119

– The height of this Interactive window. This is used to determine the height

of the window and set the position on screen.

• private Interactive self

– Just a reference to this Interactive object so we can pass it to other

classes.

D.3.9.3 Constructors

• Interactive

public Interactive()

– Usage

∗ This is the default constructor

D.3.9.4 Methods

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

– See Also

∗ java.awt.event.ActionListener.actionPerformed(

java.awt.event.ActionEvent)

• Assign

public void Assign(edu.unl.consystlab.CSPVariable c,

edu.unl.consystlab.CSPValue g)

120

– Usage

∗ Makes an assignment of a value (GTA) to a variable (course). This

method first does an unassignment before making an assignment to

ensure that an already assigned course is not assigned twice and prop-

agation is done properly.

– Parameters

∗ c - The variable to assign with value g.

∗ g - The value to assign to variable c.

• calculateTotalAssigned

public double calculateTotalAssigned()

– Usage

∗ Calculates the total assigned courses load.

– Returns - The double value for the total assigned courses load.

• getCourse

public Course getCourse(edu.unl.consystlab.CSPVariable var)

– Usage

∗ Returns the Course object from a CSPVariable.

– Parameters

∗ var - The CSPVariable.

– Returns - The Course.

121

• getGTA

public GTA getGTA(edu.unl.consystlab.CSPValue val)

– Usage

∗ Returns the GTA object from a CSPValue.

– Parameters

∗ val - The CSPValue.

– Returns - The GTA.

• getResourcePerspective

public JTable getResourcePerspective()

– Usage

∗ This method returns resourcePerspective. If it was not previously

initialized, it is initialized, then returned.

– Returns - javax.swing.JTable The initialized resourcePerspective

• getTaskPerspective

public JTable getTaskPerspective()

– Usage

∗ This method returns taskPerspective. If it was not previously ini-

tialized, it is initialized, then returned.

– Returns - javax.swing.JTable The initialized taskPerspective

• getTotalAssigned

public double getTotalAssigned()

122

– Usage

∗ Returns the total assigned courses load by calling

calculateTotalAssigned()

– Returns - The double value for the total assigned courses load.

– See Also

∗ edu.unl.consystlab.gui.Interactive.calculateTotalAssigned()

• getTotalNeeded

public double getTotalNeeded()

– Usage

∗ Returns the totalNeeded.

– Returns - Returns the totalNeeded.

• getTotalPreassigned

public int getTotalPreassigned()

– Usage

∗ Returns the totalPreassigned.

– Returns - Returns the totalPreassigned.

• getTotalPreassignedLoad

public double getTotalPreassignedLoad()

– Usage

∗ Returns the totalPreassignedLoad.

– Returns - Returns the totalPreassignedLoad.

123

• main

public static void main(java.lang.String [] args)

– Usage

∗ Launches this application

• restoreAssignments

public void restoreAssignments(java.util.Vector save)

– Usage

∗ Restores an assignment from the save Vector. The save Vector must

contain elements of type jAssignment.

– Parameters

∗ save - Vector of elements jAssignment

• restoreAssignmentsFrom

public void restoreAssignmentsFrom(java.lang.String saved-

Name)

– Usage

∗ Restores an assignment from the saveName parameter.

– Parameters

∗ savedName - String containing the name of the saved assignments to

restore from.

124

• saveAssignments

public void saveAssignments(edu.unl.consystlab.gui.SaveDialog

sd)

– Usage

∗ Saves the current assignments to the database. The name to save as

is obtained from the SaveDialog parameter.

– Parameters

∗ sd -

• setDoRefetch

public void setDoRefetch(boolean doRefetch)

– Usage

∗ Sets the boolean value doRefetch.

– Parameters

∗ doRefetch - The boolean value to be set for the class variable

doRefetch.

• setTotalAssigned

public void setTotalAssigned(double totalAssigned)

– Usage

∗ Sets the total assigned value.

– Parameters

∗ totalAssigned - The totalAssigned to set.

125

• setTotalNeeded

public void setTotalNeeded(double totalNeeded)

– Usage

∗ The totalNeeded to set.

– Parameters

∗ totalNeeded - The totalNeeded to set.

• setTotalPreassigned

public void setTotalPreassigned(int totalPreassigned)

– Usage

∗ The totalPreassigned to set.

– Parameters

∗ totalPreassigned - The totalPreassigned to set.

• setTotalPreassignedLoad

public void setTotalPreassignedLoad(double totalPreassigned-

Load)

– Usage

∗ The totalPreassignedLoad to set.

– Parameters

∗ totalPreassignedLoad - The totalPreassignedLoad to set.

• tableChanged

public void tableChanged(javax.swing.event.TableModelEvent

e)

126

– See Also

∗ javax.swing.event.TableModelListener.tableChanged(

javax.swing.event.TableModelEvent)

• Unassign

public void Unassign(edu.unl.consystlab.CSPVariable c)

– Usage

∗ Makes an unassignment of a variable c.

– Parameters

∗ c - The variable to unassign.

• updateResourcePerspective

public void updateResourcePerspective()

– Usage

∗ This method will update the GUI resource perspective to reflect the

assignment.

• updateTaskPerspective

public void updateTaskPerspective()

– Usage

∗ This method will update the GUI task perspective to reflect the as-

signment.

• updateTaskTally totalAssigned

public void updateTaskTally totalAssigned()

127

– Usage

∗ Updates the task tally by calculating the total assigned load.

• updateTaskTally totalAssigned

public void updateTaskTally totalAssigned(double total)

– Usage

∗ Updates the task tally by using the parameter total.

– Parameters

∗ total - The value we update the task tally with.

D.3.10 Class JCheckBoxRenderer

This class is the JCheckBox renderer.

D.3.10.1 Declaration

public class JCheckBoxRenderer

extends javax.swing.JCheckBox

implements javax.swing.table.TableCellRenderer

D.3.10.2 Serializable Fields

• private TableSorter sorter

– The table sorter.

128

D.3.10.3 Constructors

• JCheckBoxRenderer

public JCheckBoxRenderer()

– Usage

∗ Constructor.

• JCheckBoxRenderer

public JCheckBoxRenderer(javax.swing.JCheckBox cb)

– Usage

∗ Constructor.

– Parameters

∗ cb - This is copied to this class’ checkbox value.

• JCheckBoxRenderer

public JCheckBoxRenderer(thirdparty.TableSorter sorter)

– Usage

∗ Constructor.

– Parameters

∗ sorter - The local sorter is set to this value.

D.3.10.4 Methods

129

• getTableCellRendererComponent

public Component getTableCellRendererComponent(

javax.swing.JTable table, java.lang.Object value, boolean isSe-

lected, boolean hasFocus, int row, int column)

D.3.11 Class JComboBoxEditor

This class is the JCheckBox editor.

D.3.11.1 Declaration

public class JComboBoxEditor

extends javax.swing.DefaultCellEditor

D.3.11.2 Constructors

• JComboBoxEditor

public JComboBoxEditor(edu.unl.consystlab.gui.GTAComboBox

gcb)

– Usage

∗ Constructor.

– Parameters

∗ gcb - The GTAComboBox that the super class is instantiated with.

130

D.3.12 Class JComboBoxRenderer

This class is the table cell renderer for JComboBox.

D.3.12.1 Declaration

public class JComboBoxRenderer

extends edu.unl.consystlab.gui.GTAComboBox

implements javax.swing.table.TableCellRenderer

D.3.12.2 Constructors

• JComboBoxRenderer

public JComboBoxRenderer()

– Usage

∗ Constructor.

• JComboBoxRenderer

public JComboBoxRenderer(edu.unl.consystlab.gui.GTAComboBox

cb)

– Usage

∗ Constructor.

– Parameters

∗ cb - The GTAComboBox that the super class’ is initialized to.

131

D.3.12.3 Methods

• getTableCellRendererComponent

public Component getTableCellRendererComponent(

javax.swing.JTable table, java.lang.Object valueo, boolean isS-

elected, boolean hasFocus, int row, int column)

D.3.13 Class OpenDialog

This class generates the “Open” dialog box.

D.3.13.1 Declaration

public class OpenDialog

extends javax.swing.JDialog

implements java.awt.event.ActionListener

D.3.13.2 Serializable Fields

• private JPanel jContentPane

– The content pane.

• private JComboBox openAsName

– The JComboBox where we can select previous saved assignments.

• private JButton okButton

132

– The OK button.

• private JButton cancelButton

– The Cancel button.

• private JLabel openLabel

– The label for “Open”

• private Interactive parent

– The parent window.

• private JLabel openWarningLabel

– Warning label.

D.3.13.3 Constructors

• OpenDialog

public OpenDialog(edu.unl.consystlab.gui.Interactive parent

)

– Usage

∗ Constructor.

– Parameters

∗ parent - The parent window.

D.3.13.4 Methods

133

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

D.3.14 Class PortForwardingL

This class enables and sets up SSH port forwarding for the MySQL access.

D.3.14.1 Declaration

public class PortForwardingL

extends java.lang.Object

D.3.14.2 Constructors

• PortForwardingL

public PortForwardingL()

– Usage

∗ Constructor.

D.3.14.3 Methods

• close

public void close()

– Usage

134

∗ Close the port.

• open

public void open()

– Usage

∗ Open up the port.

– Exceptions

∗ com.jcraft.jsch.JSchException - This happens when the port is

currently unavailable either because it is being used or a user tries to

open a privileged port (less than 1024).

D.3.15 Class PortForwardingL.MyUserInfo

Retrieves the user login credentials.

D.3.15.1 Declaration

public static class PortForwardingL.MyUserInfo

extends java.lang.Object

implements com.jcraft.jsch.UserInfo

D.3.15.2 Constructors

• PortForwardingL.MyUserInfo

public PortForwardingL.MyUserInfo()

135

D.3.15.3 Methods

• getPassphrase

public String getPassphrase()

• getPassword

public String getPassword()

• promptPassphrase

public boolean promptPassphrase(java.lang.String message)

• promptPassword

public boolean promptPassword(java.lang.String message)

• promptYesNo

public boolean promptYesNo(java.lang.String message)

• setPassword

public void setPassword(java.lang.String password)

• showMessage

public void showMessage(java.lang.String message)

D.3.16 Class PrintPage

136

This class enables the printing of both the resource and task perspective as one. Since

we cannot print both perspectives together, we have to reconstruct a new table with both

perspectives on it.

D.3.16.1 Declaration

public class PrintPage

extends java.lang.Object

implements java.awt.event.ActionListener, java.awt.print.Printable

D.3.16.2 Constructors

• PrintPage

public PrintPage(edu.unl.consystlab.gui.Interactive parent

)

– Usage

∗ Constructor.

– Parameters

∗ parent - The parent window.

D.3.16.3 Methods

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

137

• getPreviewTable

public JTable getPreviewTable()

– Usage

∗ Returns the preview table (the reconstructed, merged table).

– Returns - The preview table.

• print

public int print(java.awt.Graphics g, java.awt.print.PageFormat

pf, int pi)

– Usage

∗ This print method will print the entire table out and scale it to fit the

paper.

– Parameters

∗ g - The graphics.

∗ pf - The page format.

∗ pi - The page index.

D.3.17 Class RAButton

This class is the resource assignment button.

D.3.17.1 Declaration

public class RAButton

extends javax.swing.JButton

138

D.3.17.2 Serializable Fields

• private ResourceAssignments rassignment

– The ResourceAssignments for this button.

D.3.17.3 Constructors

• RAButton

public RAButton()

– Usage

∗ Constructor.

• RAButton

public RAButton(edu.unl.consystlab.gui.ResourceAssignments

ra, java.lang.String label)

– Usage

∗ COnstructor.

– Parameters

∗ ra - The ResourceAssignments to set this to.

∗ label - The label for this button.

D.3.17.4 Methods

139

• getRassignment

public ResourceAssignments getRassignment()

– Usage

∗ Gets the ResourceAssignments for this class.

– Returns - The ResourceAssignments for this class.

• setRassignment

public void setRassignment(

edu.unl.consystlab.gui.ResourceAssignments rassignment)

– Usage

∗ Sets the ResourceAssignments for this class.

– Parameters

∗ rassignment - The ResourceAssignments for this class.

D.3.18 Class ResourceAssignmentCellEditor

The cell editor for the resource perspective. This is displayed on the main

Interactivewindow and when the user clicks on this cell, a dialog box will open up so

he/she can perform assignments.

D.3.18.1 Declaration

public class ResourceAssignmentCellEditor

extends javax.swing.AbstractCellEditor

implements javax.swing.table.TableCellEditor, java.awt.event.ActionListener

140

D.3.18.2 Serializable Fields

• private Interactive parent

– The parent window.

• private CSPProblem problem

– The problem.

D.3.18.3 Constructors

• ResourceAssignmentCellEditor

public ResourceAssignmentCellEditor(

edu.unl.consystlab.gui.Interactive parent)

– Usage

∗ Constructor.

– Parameters

∗ parent - The parent window.

• ResourceAssignmentCellEditor

public ResourceAssignmentCellEditor(

edu.unl.consystlab.gui.Interactive parent,

edu.unl.consystlab.gui.ResourceAssignments ra,

edu.unl.consystlab.CSPProblem problem)

– Usage

141

∗ Constructor.

– Parameters

∗ parent - The parent window.

∗ ra - The assignment data.

∗ problem - The problem.

• ResourceAssignmentCellEditor

public ResourceAssignmentCellEditor(

edu.unl.consystlab.gui.Interactive parent,

edu.unl.consystlab.gui.ResourceAssignments

ra, edu.unl.consystlab.CSPProblem problem,

edu.unl.consystlab.gtaap.GTA gta)

– Usage

∗ Constructor.

– Parameters

∗ parent - The parent window.

∗ ra - The assignment data.

∗ problem - The problem.

∗ gta - The GTA for these assignments.

D.3.18.4 Methods

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

142

• getCellEditorValue

public Object getCellEditorValue()

• getTableCellEditorComponent

public Component getTableCellEditorComponent(

javax.swing.JTable table, java.lang.Object value, boolean isSe-

lected, int row, int column)

D.3.19 Class ResourceAssignmentCheckBox

This class extends from JCheckBox by adding additional attributed that are kept track

of – namely the CSPVariable and ResourceAssignments variables.

D.3.19.1 Declaration

public class ResourceAssignmentCheckBox

extends javax.swing.JCheckBox

D.3.19.2 Serializable Fields

• private CSPVariable variable

– The variable.

• private ResourceAssignments rassignment

– The assignment data.

143

D.3.19.3 Constructors

• ResourceAssignmentCheckBox

public ResourceAssignmentCheckBox()

– Usage

∗ Constructor.

• ResourceAssignmentCheckBox

public ResourceAssignmentCheckBox(edu.unl.consystlab.CSPVariable

variable, edu.unl.consystlab.gui.ResourceAssignments rassign-

ment, boolean bool)

– Usage

∗ Constructor.

– Parameters

∗ variable - The variable.

∗ rassignment - The assignment data.

∗ bool - If the checkbox is checked, this is true; false otherwise.

• ResourceAssignmentCheckBox

public ResourceAssignmentCheckBox(java.lang.String

label, edu.unl.consystlab.CSPVariable variable,

edu.unl.consystlab.gui.ResourceAssignments rassignment, boolean

bool)

– Usage

144

∗ Constructor.

– Parameters

∗ label - The label associated with this checkbox.

∗ variable - The variable.

∗ rassignment - The assignment data.

∗ bool - If the checkbox is checked, this is true; false otherwise.

D.3.19.4 Methods

• getRassignment

public ResourceAssignments getRassignment()

– Usage

∗ Gets the assignment data.

– Returns - The assignment data.

• getVariable

public CSPVariable getVariable()

– Usage

∗ Gets the variable.

– Returns - The variable.

• setRassignment

public void setRassignment(

edu.unl.consystlab.gui.ResourceAssignments rassignment)

– Usage

145

∗ Sets the assignment data.

– Parameters

∗ rassignment - The assignment data.

• setVariable

public void setVariable(edu.unl.consystlab.CSPVariable variable

)

– Usage

∗ Sets the variable.

– Parameters

∗ variable - The variable.

D.3.20 Class ResourceAssignmentCourseCellEditor

This class is the checkbox editor for the resource assignment dialog

(ResourceAssignmentDialog) box.

D.3.20.1 Declaration

public class ResourceAssignmentCourseCellEditor

extends javax.swing.AbstractCellEditor

implements javax.swing.table.TableCellEditor, java.awt.event.ActionListener

D.3.20.2 Serializable Fields

146

• private JCheckBox checkbox

– The checkbox for editing.

D.3.20.3 Constructors

• ResourceAssignmentCourseCellEditor

public ResourceAssignmentCourseCellEditor(

javax.swing.JCheckBox cb, boolean assignBool)

– Usage

∗ Constructor.

– Parameters

∗ cb - The checkbox that we set as our internal checkbox attribute.

∗ assignBool - If this is true then the internal checkbox’ state is

checked; otherwise it is unchecked.

• ResourceAssignmentCourseCellEditor

public ResourceAssignmentCourseCellEditor(

edu.unl.consystlab.gui.ResourceAssignmentDialog

rad, javax.swing.JCheckBox cb, boolean as-

signBool, edu.unl.consystlab.CSPProblem prob,

edu.unl.consystlab.CSPVariable var)

– Parameters

∗ rad - The ResourceAssignmentDialog that holds this cell editor.

∗ cb - The checkbox that we set as our internal checkbox attribute.

147

∗ assignBool - If this is true then the internal checkbox’ state is

checked; otherwise it is unchecked.

∗ prob - The problem.

∗ var - The variable.

D.3.20.4 Methods

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

• getCellEditorValue

public Object getCellEditorValue()

• getTableCellEditorComponent

public Component getTableCellEditorComponent(

javax.swing.JTable table, java.lang.Object value, boolean isSe-

lected, int row, int column)

D.3.21 Class ResourceAssignmentDialog

This class generates the graphical interface for the resource perspective allocation.

D.3.21.1 Declaration

public class ResourceAssignmentDialog

extends javax.swing.JDialog

implements java.awt.event.ActionListener, javax.swing.event.TableModelListener

148

D.3.21.2 Serializable Fields

• private JScrollPane courseTableScroller

–

• private JTable courseTable

– The course table.

• private Interactive parent

– The parent window of this dialog box.

• private CSPValue value

– The value this dialog box is for.

• private GTA gta

– The GTA this dialog box is for.

• private ResourceAssignments rassignment

– The ResourceAssignments attribute for this class.

• private JPanel jContentPane

– The content pane.

• private CSPProblem problem

– The problem.

• private boolean takeNoAction

149

– If this is set to true, then no action will be taken by the

actionPerformed(...) method.

• private int width

– The window’s width.

• private int height

– The window’s height.

D.3.21.3 Constructors

• ResourceAssignmentDialog

public ResourceAssignmentDialog(edu.unl.consystlab.gui.Interactive

parent, edu.unl.consystlab.CSPProblem problem,

edu.unl.consystlab.gui.ResourceAssignments ra)

– Usage

∗ Constructor.

– Parameters

∗ parent - The parent window.

∗ problem - The problem.

∗ ra - The assignments made so far.

D.3.21.4 Methods

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

150

• getAllReversedDomain

public Vector getAllReversedDomain()

– Usage

∗ Returns the reversed domain for the GTA (i.e., the available courses

for the GTA in this class) based on the savedDomain Vector attribute.

– Returns - Vector of CSPVariables that are availble for this GTA.

• getCourse

public Course getCourse(edu.unl.consystlab.CSPVariable var)

– Usage

∗ Quick method to obtain the Course from a CSPVariablee.

– Parameters

∗ val - The CSPVariable which we want the Course of.

– Returns - Returns the Course value.

• getGTA

public GTA getGTA(edu.unl.consystlab.CSPValue val)

– Usage

∗ Quick method to obtain the GTA from a CSPValue.

– Parameters

∗ val - The CSPValue which we want the GTA of.

– Returns - Returns the GTA value.

151

• getReversedDomain

public Vector getReversedDomain()

– Usage

∗ Returns the reversed domain for the GTA (i.e., the available courses for

the GTA in this class) based on the currentDomain Vector attribute.

– Returns - Vector of CSPVariables that are availble for this GTA.

• refreshCourseTable

public void refreshCourseTable()

– Usage

∗ Refreshes the resource perspective for the GTA in this dialog box.

• tableChanged

public void tableChanged(javax.swing.event.TableModelEvent

e)

D.3.22 Class ResourceAssignments

This class is used for the resource perspective. Each CSPValue (GTA) may be assigned

to multiple courses. This class keeps track of the multiple assignments.

D.3.22.1 Declaration

public class ResourceAssignments

extends java.lang.Object

152

D.3.22.2 Constructors

• ResourceAssignments

public ResourceAssignments(edu.unl.consystlab.CSPValue value

)

– Usage

∗ Constructor.

– Parameters

∗ value - Sets the internal value to this.

D.3.22.3 Methods

• addAssignments

public void addAssignments(edu.unl.consystlab.CSPVariable

variable)

– Usage

∗ Adds a variable to the assignments vector.

– Parameters

∗ variable - Adds this variable to the assignments vector. If the vari-

able already exists, it will not re-add it.

• getAssignments

public Vector getAssignments()

153

– Usage

∗ Returns the assignments.

– Returns - The assignments.

• getValue

public CSPValue getValue()

– Usage

∗ Returns the value.

– Returns - The value.

• setAssignments

public void setAssignments(java.util.Vector assignments)

– Usage

∗ Sets the assignments from the Vector assignments.

– Parameters

∗ assignments - The assignments.

• setValue

public void setValue(edu.unl.consystlab.CSPValue value)

– Usage

∗ Sets the value from the CSPValue value.

– Parameters

∗ value - The value.

154

• toString

public String toString()

• toString

public String toString(boolean shortFormat)

– Usage

∗ This method returns the string representation of this object.

– Parameters

∗ shortFormat - If this is true, then we return the string representation

without the course prefix (e.g., CSCE, MATH). Otherwise, the string

representation includes it.

– Returns - The string representation of this object.

D.3.23 Class SaveDialog

This class generates the ”Save” dialog box.

D.3.23.1 Declaration

public class SaveDialog

extends javax.swing.JDialog

implements java.awt.event.ActionListener

155

D.3.23.2 Serializable Fields

• private JPanel jContentPane

– The content pane.

• private JComboBox saveAsName

– The JComboBox where we can select previous saved assignments or

edit/create new ones.

• private JButton saveButton

– The save button.

• private JButton cancelButton

– The cancel button.

• private JLabel saveAsLabel

– The ”Save as” label.

• private JButton deleteSavedButton

– The delete button.

• private String action

– The action.

D.3.23.3 Fields

• public static final String CANCEL

156

– The constant used for the method actionPerformed(...).

• public static final String DELETE

– The constant used for the method actionPerformed(...).

• public static final String SAVE

– The constant used for the method actionPerformed(...).

D.3.23.4 Constructors

• SaveDialog

public SaveDialog(edu.unl.consystlab.gui.Interactive parent

)

– Usage

∗ Constructor.

– Parameters

∗ parent - The parent window.

D.3.23.5 Methods

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

• getAction

public String getAction()

157

– Returns - Returns the action.

• getSavedName

public String getSavedName()

– Usage

∗ Returns the saved name from the dialog pulldown.

– Returns - The String value of the name we want to save as.

• setAction

public void setAction(java.lang.String action)

– Parameters

∗ action - The action to set.

D.3.24 Class SemesterYearSelector

This class is the dialog box that prompts the user to select a semester and year. The

semester and year options are already in the database (in the “classes” table).

D.3.24.1 Declaration

public class SemesterYearSelector

extends javax.swing.JDialog

implements java.awt.event.ActionListener

158

D.3.24.2 Serializable Fields

• private JPanel jContentPane

– The content pane.

• private JLabel textLabel

– The label ”Please choose semester”

• private JComboBox semesters

– The pull down menu with the years and semesters.

• private JPanel jPanel

– The panel.

• private JButton buttonOk

– The OK button.

• private JButton buttonQuit

– The quit button.

• private JButton buttonCancel

– The cancel button.

• private final String CLICK OK

– The constant used for the method actionPerformed(...).

• private final String CLICK QUIT

– The constant used for the method actionPerformed(...).

159

• private final String CLICK CANCEL

– The constant used for the method actionPerformed(...).

• private boolean hasQuit

– If this dialog box has the quit button, this is set to true. The cancel

button is not shown then. If this is false, then the opposite.

• private int height

– The dialog box height.

• private int width

– The dialog box width.

• private Interactive parent

– The parent window.

D.3.24.3 Constructors

• SemesterYearSelector

public SemesterYearSelector(edu.unl.consystlab.gui.Interactive

parent)

– Usage

∗ Constructor.

– Parameters

∗ parent - The parent.

160

• SemesterYearSelector

public SemesterYearSelector(edu.unl.consystlab.gui.Interactive

parent, boolean refetch)

– Usage

∗ Constructor.

– Parameters

∗ parent - The parent.

∗ refetch - If this is true, then the cancel button is shown instead of

the quit button. Otherwise, the quit button is shown and not the

cancel button.

D.3.24.4 Methods

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

• getYearSemester

public YearSemester getYearSemester()

– Usage

∗ Returns the year and semester.

– Returns - The YearSemester data structure.

– See Also

∗ edu.unl.consystlab.gtajava.YearSemester (in D.9.4, page 200)

161

D.3.25 Class StringRenderer

This class just is an extended cell renderer. This is used for colored cells.

D.3.25.1 Declaration

public class StringRenderer

extends javax.swing.table.DefaultTableCellRenderer

implements javax.swing.table.TableCellRenderer

D.3.25.2 Constructors

• StringRenderer

public StringRenderer(java.lang.String label)

– Usage

∗ Constructor.

– Parameters

∗ label - The label to display.

• StringRenderer

public StringRenderer(java.lang.String label, java.awt.Color

color)

– Usage

∗ Constructor.

162

– Parameters

∗ label - The label to display.

∗ color - The cell background color.

D.3.25.3 Methods

• getTableCellRendererComponent

public Component getTableCellRendererComponent(

javax.swing.JTable table, java.lang.Object value, boolean isSe-

lected, boolean hasFocus, int row, int column)

• toString

public String toString()

D.3.26 Class TunnelAuthenticationDialog

This class prompts the user for their CSE username and password. These will be used

to setup the SSH tunnel for MySQL access.

D.3.26.1 Declaration

public class TunnelAuthenticationDialog

extends java.lang.Object

implements java.awt.event.ActionListener

163

D.3.26.2 Constructors

• TunnelAuthenticationDialog

public TunnelAuthenticationDialog()

– Usage

∗ Constructor.

D.3.26.3 Methods

• actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

• getPassword

public String getPassword()

– Usage

∗ Returns the password from the password field.

– Returns - The password from the password field.

• getUsername

public String getUsername()

– Usage

∗ Returns the username from the username field.

– Returns - The username from the username field.

164

D.4 Package edu.unl.consystlab.gtaap.constraints
Package Contents Page

Classes

CapacityConstraint . 165
The CapacityConstraint ensures that a given GTA is not assigned

courses such that the sum of the course loads do not exceed the GTA’s

defined maxCapacity.
CertificationConstraint . 168

The CertificationConstraint ensures that a given GTA is not assigned

a course he/she is not certified to teach.

EqualityConstraint . 170
Equality constraints are binary constraints in place between any two

courses that require the GTA to be the same.
MutexConstraint. .173

Mutex constraints are binary constraints in place between any two

courses that require GTAs as instructors and meet during overlapping

times.
NilPrefConstraint . 176

The NilPrefConstraint ensures that a given GTA is not assigned courses

that the GTA specified a preference 0 for.
OverlapConstraint . 178

The OverlapConstraint ensures that a given GTA is not assigned an-

other teaching courses at the same time.
TakingCourseConstraint . 180

The TakingCourseConstraint ensures that a given GTA is not assigned

a teaching courses at the same time he/she is enrolled in a course.

165

D.5 Classes

D.5.1 Class CapacityConstraint

The CapacityConstraint ensures that a given GTA is not assigned courses such that the

sum of the course loads do not exceed the GTA’s defined maxCapacity.

D.5.1.1 Declaration

public class CapacityConstraint

extends edu.unl.consystlab.CSPConstraint

D.5.1.2 Fields

• public Vector courses

– A Vector of courses this constraint covers.

• public GTA gta

– The GTA this constraint is for.

• public Vector variables

– A Vector of CSPVariable that this constraint covers.

• public CSPValue value

– The CSPValue this constraint is for.

• public double maxCapacity

166

– The maximum load.

• public double currLoad

– The current load this GTA has.

• public Vector assignedVariables

– A Vector of currently assigned variables in the scope of this constraint.

D.5.1.3 Constructors

• CapacityConstraint

public CapacityConstraint()

– Usage

∗ Creates a new instance of Capacity

D.5.1.4 Methods

• check

public boolean check(java.util.Vector vvps)

– Usage

∗ Checks the vvp pair list to see if the list is consistent.

– Parameters

∗ vvps - The VVP pair.

– Returns - true if it is valid, false otherwise.

167

• check

public boolean check(java.util.Vector vvps, double sum)

– Usage

∗ Checks the vvp pair list to see if the list is consistent.

– Parameters

∗ vvps - A Vector of CSPVVP to run the check on.

∗ sum - the initial start sum

– Returns - true if it is valid, false otherwise.

• isConsistent

public boolean isConsistent()

– Usage

∗ If the constraint has not been violated, then this method returns true.

– Returns - true if this constraint remains consistent, false otherwise.

• print assignedVariables

public void print assignedVariables()

– Usage

∗ Prints the assigned variables

• set assignedVariables

public void set assignedVariables(edu.unl.consystlab.CSPVariable

[] v)

168

– Usage

∗ Sets the assigned variables.

– Parameters

∗ v - The array of variables that are assigned.

• toString

public String toString()

D.5.2 Class CertificationConstraint

The CertificationConstraint ensures that a given GTA is not assigned a course he/she

is not certified to teach. For example, teaching courses must have GTAs that are ITA

qualified.

D.5.2.1 Declaration

public class CertificationConstraint

extends edu.unl.consystlab.CSPConstraint

D.5.2.2 Fields

• public Course course

– The course that this constraint covers.

• public Vector definition

– The Vector of GTAs that are certified to teach.

169

D.5.2.3 Constructors

• CertificationConstraint

public CertificationConstraint()

– Usage

∗ Constructor.

D.5.2.4 Methods

• check

public boolean check(edu.unl.consystlab.CSPVVP vvp)

– Usage

∗ Checks the vvp pair list to see if the list is consistent.

– Parameters

∗ vvps - The VVP pair.

– Returns - true if it is valid, false otherwise.

• getCourse

public Course getCourse(edu.unl.consystlab.CSPVariable var)

– Usage

∗ A method to quickly obtain the Course from this constraint.

– Returns - The Course from this constraint.

170

• getGTA

public GTA getGTA(edu.unl.consystlab.CSPValue val)

– Usage

∗ A method to quickly obtain the GTA from this constraint.

– Returns - The GTA from this constraint.

• isValid

public boolean isValid(edu.unl.consystlab.CSPVariable var,

edu.unl.consystlab.CSPValue val)

– Usage

∗ Is var compatible with the value of val? All must answer “true”: - is

this course lecture, recitation, or lab? - is the GTA’s ITA qualification

status “citizen” (1) or “passed” (5)? - is this GTA contained in the

definition vector?

– Parameters

∗ var - The CSPVariable.

∗ val - The CSPValue.

– Returns - true if it is valid, else false.

• toString

public String toString()

D.5.3 Class EqualityConstraint

171

Equality constraints are binary constraints in place between any two courses that require

the GTA to be the same. This is a binary constraint.

D.5.3.1 Declaration

public class EqualityConstraint

extends edu.unl.consystlab.CSPConstraint

D.5.3.2 Fields

• public CSPProblem problem

– The CSPProblem this constraint is for.

D.5.3.3 Constructors

• EqualityConstraint

public EqualityConstraint()

– Usage

∗ Creates a new instance of Mutex

D.5.3.4 Methods

• check

public boolean check(edu.unl.consystlab.CSPVVP vvp1,

edu.unl.consystlab.CSPVVP vvp2)

172

– Usage

∗ Checks if vvp1 and vvp2 are compatible.

– Parameters

∗ vvp1 - CSPVVP to check againsts vvp2.

∗ vvp2 - CSPVVP to check againsts vvp1.

– Returns - true if compatible; false otherwise.

• getGta

public GTA getGta()

– Usage

∗ A method to quickly obtain the GTA from this constraint.

– Returns - The GTA from this constraint.

• getValue

public CSPValue getValue()

– Returns - Returns the value.

• getVariables

public Vector getVariables()

– Returns - Returns the variables.

• setValue

public void setValue(edu.unl.consystlab.CSPValue value)

– Parameters

173

∗ value - The value to set.

• setVariables

public void setVariables(java.util.Vector variables)

– Parameters

∗ variables - The variables to set.

• toString

public String toString()

D.5.4 Class MutexConstraint

Mutex constraints are binary constraints in place between any two courses that require

GTAs as instructors and meet during overlapping times. This enforces the condition that

a GTA must attend courses he/she is instructing. This is a binary constraint.

D.5.4.1 Declaration

public class MutexConstraint

extends edu.unl.consystlab.CSPConstraint

D.5.4.2 Fields

• public CSPProblem problem

– The CSPProblem this constraint is for.

174

D.5.4.3 Constructors

• MutexConstraint

public MutexConstraint()

– Usage

∗ Creates a new instance of Mutex

D.5.4.4 Methods

• check

public boolean check(edu.unl.consystlab.CSPVVP vvp1,

edu.unl.consystlab.CSPVVP vvp2)

– Usage

∗ Checks if vvp1 and vvp2 are compatible.

– Parameters

∗ vvp1 - CSPVVP to check againsts vvp2.

∗ vvp2 - CSPVVP to check againsts vvp1.

– Returns - true if compatible; false otherwise.

• getGta

public GTA getGta()

– Usage

∗ A method to quickly obtain the GTA from this constraint.

– Returns - The GTA from this constraint.

175

• getValue

public CSPValue getValue()

– Returns - Returns the value.

• getVariables

public Vector getVariables()

– Returns - Returns the variables.

• setValue

public void setValue(edu.unl.consystlab.CSPValue value)

– Parameters

∗ value - The value to set.

• setVariables

public void setVariables(java.util.Vector variables)

– Parameters

∗ variables - The variables to set.

• toString

public String toString()

176

D.5.5 Class NilPrefConstraint

The NilPrefConstraint ensures that a given GTA is not assigned courses that the GTA

specified a preference 0 for.

D.5.5.1 Declaration

public class NilPrefConstraint

extends edu.unl.consystlab.CSPConstraint

D.5.5.2 Fields

• public Course course

– The Sourse that this constraint covers.

• public Vector definition

– The Vector of GTAs that have preference 0 for this course.

D.5.5.3 Constructors

• NilPrefConstraint

public NilPrefConstraint()

– Usage

∗ Default constructor.

177

D.5.5.4 Methods

• getCourse

public Course getCourse(edu.unl.consystlab.CSPVariable var)

– Usage

∗ A method to quickly obtain the Course from this constraint.

– Returns - The Course from this constraint.

• getGTA

public GTA getGTA(edu.unl.consystlab.CSPValue val)

– Usage

∗ A method to quickly obtain the GTA from this constraint.

– Returns - The GTA from this constraint.

• isValid

public boolean isValid(edu.unl.consystlab.CSPVariable var,

edu.unl.consystlab.CSPValue val)

– Usage

∗ Is var compatible with the value of val? If this GTA contained in the

definition vector, then it is false.

– Parameters

∗ var - The CSPVariable.

∗ val - The CSPValue.

178

– Returns - true if it is valid, else false.

• toString

public String toString()

D.5.6 Class OverlapConstraint

The OverlapConstraint ensures that a given GTA is not assigned another teaching

courses at the same time.

D.5.6.1 Declaration

public class OverlapConstraint

extends edu.unl.consystlab.CSPConstraint

D.5.6.2 Fields

• public Course course

– The Course that this constraint covers.

• public Vector definition

– The Vector of GTAs that are not assigned another course at the same time..

D.5.6.3 Constructors

179

• OverlapConstraint

public OverlapConstraint()

– Usage

∗ Default constructor.

D.5.6.4 Methods

• getCourse

public Course getCourse(edu.unl.consystlab.CSPVariable var)

– Usage

∗ A method to quickly obtain the Course from this constraint.

– Returns - The Course from this constraint.

• getGTA

public GTA getGTA(edu.unl.consystlab.CSPValue val)

– Usage

∗ A method to quickly obtain the GTA from this constraint.

– Returns - The GTA from this constraint.

• isValid

public boolean isValid(edu.unl.consystlab.CSPVariable var,

edu.unl.consystlab.CSPValue val)

– Usage

180

∗ Is var compatible with the value of val? If this GTA contained in the

definition vector, then it is ”false”.

– Parameters

∗ var - The CSPVariable.

∗ val - The CSPValue.

– Returns - true if it is valid, else false.

• toString

public String toString()

D.5.7 Class TakingCourseConstraint

The TakingCourseConstraint ensures that a given GTA is not assigned a teaching

courses at the same time he/she is enrolled in a course.

D.5.7.1 Declaration

public class TakingCourseConstraint

extends edu.unl.consystlab.CSPConstraint

D.5.7.2 Fields

• public Course course

– The Sourse that this constraint covers.

• public Vector definition

181

– The Vector of GTAs that are taking another course at the same time..

D.5.7.3 Constructors

• TakingCourseConstraint

public TakingCourseConstraint()

D.5.7.4 Methods

• getCourse

public Course getCourse(edu.unl.consystlab.CSPVariable var)

– Usage

∗ A method to quickly obtain the Course from this constraint.

– Returns - The Course from this constraint.

• getGTA

public GTA getGTA(edu.unl.consystlab.CSPValue val)

– Usage

∗ A method to quickly obtain the GTA from this constraint.

– Returns - The GTA from this constraint.

• isValid

public boolean isValid(edu.unl.consystlab.CSPVariable var,

edu.unl.consystlab.CSPValue val)

182

– Usage

∗ Is var compatible with the value of val? If this GTA contained in the

definition vector, then it is ”false”.

– Parameters

∗ var - The CSPVariable.

∗ val - The CSPValue.

– Returns - true if it is valid, else false.

• toString

public String toString()

183

D.6 Package edu.unl.consystlab.gtaap
Package Contents Page

Classes

Course . 184

This class is the data structure for the courses offered in the department.

GTA .187

This class is the data structure for the candidate GTAs.

Preference . 190

This class is the data structure for the GTA preferences.

184

D.7 Classes

D.7.1 Class Course

This class is the data structure for the courses offered in the department.

D.7.1.1 Declaration

public class Course

extends java.lang.Object

implements java.lang.Comparable

D.7.1.2 Fields

• public int dbId

– The database identifier for this course.

• public String courseDept

– The department offering this course. For example, CSCE, MATH, ENGL,

ENGR, etc.

• public String courseNumber

– The 3/6 digit course number. For example, 101, 421-821, etc.

• public String section

– The section number for the course.

185

• public String title

– The title for the course.

• public GTA assignedTA

– The assigned GTA for this course.

• public String startTime

– The start time for this course in 24 hour format. For example, 3.15pm =

1515, 8.30am = 0830, etc.

• public String endTime

– The end time for this course in 24 hour format. For example, 3.15pm =

1515, 8.30am = 0830, etc.

• public boolean day m

– The class meets on Monday, then this is set to true, otherwise false.

• public boolean day t

– The class meets on Tuesday, then this is set to true, otherwise false.

• public boolean day w

– The class meets on Wednesday, then this is set to true, otherwise false.

• public boolean day r

– The class meets on Thursday, then this is set to true, otherwise false.

• public boolean day f

– The class meets on Friday, then this is set to true, otherwise false.

• public double load

186

– The required commitment from the GTA in double format. For example,

0.25, 0.33, 1.0, etc.

• public String type

– The type of course. Valid values are “lecture”, “grading”, “lab”, “recita-

tion”.

• public String parentCourseNumber

– The parent course number (for labs, recitations, grading).

• public String parentSection

– The parent course section (for labs, recitations, grading).

• public int parentDbId

– The parent course database identifier (for labs, recitations, grading).

• public boolean shortCourse

– This course is a short course.

• public String shortCourseStartDate

– The course start date.

• public String shortCourseEndDate

– The course end date.

D.7.1.3 Constructors

• Course

public Course()

187

– Usage

∗ Default constructor.

D.7.1.4 Methods

• compareTo

public int compareTo(java.lang.Object nCompare)

• equals

public boolean equals(java.lang.Object nCompare)

• hashCode

public int hashCode()

• showDetails

public String showDetails()

– Usage

∗ Returns the details for this course.

– Returns - The details for this course in string format.

• toString

public String toString()

D.7.2 Class GTA

This class is the data structure for the candidate GTAs.

188

D.7.2.1 Declaration

public class GTA

extends java.lang.Object

implements java.lang.Comparable

D.7.2.2 Fields

• public int dbId

– The identifier given to this GTA corresponding to the ID in the database.

• public String name

– The GTA’s name.

• public int advisorId

– The GTA’s advisor id wrt the database id

• public String advisorName

– The GTA’s advisor name.

• public int ITA

– The ITA status of the GTA. 1: Passed 2: Failed 3: Did not attend 4: Will

take next session 5: Not required (US Citizen)

• public int speak

– SPEAK score

189

• public Vector courseList

– A Vector of Preferences.

• public double capacity

– The maximum capacity (load) that this GTA can handle.

• public double currentCapacity

– The current capacity

D.7.2.3 Constructors

• GTA

public GTA()

– Usage

∗ The default constructor for the GTA class. This just initializes the

Vector fields.

D.7.2.4 Methods

• compareTo

public int compareTo(java.lang.Object nCompare)

• equals

public boolean equals(java.lang.Object nCompare)

190

• hashCode

public int hashCode()

• itaStatus

public boolean itaStatus()

– Usage

∗ Returns the ITA status, whether the GTA is ITA certified or not.

– Returns - true if the GTA is certified, false otherwise.

• toString

public String toString()

D.7.3 Class Preference

This class is the data structure for the GTA preferences.

D.7.3.1 Declaration

public class Preference

extends java.lang.Object

D.7.3.2 Fields

• public Course course

– The course.

191

• public String courseName

– The course name.

• public int preference

– The preference value for this course. 0 is the absolute lowest preference

while 5 is the highest.

• public boolean enrolled

– true if the GTA is enrolled in this course, false otherwise.

D.7.3.3 Constructors

• Preference

public Preference()

– Usage

∗ Default constructor.

192

D.8 Package edu.unl.consystlab.gtajava
Package Contents Page

Classes

GTAAPConfig . 193

Configuration file for the GTAAP problem.

Main . 197

Forward-check test.

RandomGTAAPGenerator .198

Randomly generates GTAs and Courses.

YearSemester .200
This class is a data structure to “transport” the year and semesters

from class to class.

193

D.9 Classes

D.9.1 Class GTAAPConfig

Configuration file for the GTAAP problem. In this file, we declare all the configurations

that are needed to run the program.

D.9.1.1 Declaration

public class GTAAPConfig

extends java.lang.Object

D.9.1.2 Fields

• public static int verbosity

– Defines the level of verbosity to be displayed. 0 = silent 1 = warnings 2 =

above + more messages 5 = regular debug messages 10 = everything

• public static String dbServerHost

– The database server host.

• public static String dbPort

– The port to connect to dbServerHost.

• public static String dbName

– The database name.

194

• public static String dbUser

– The database user to connect to dbName on dbServerHost.

• public static String dbPassword

– The database password for dbUser.

• public static PortForwardingL portForwarding

– Prepare for SSH tunneling

• public static TunnelAuthenticationDialog tunnelAuthenticationDialog

– Tunnel authentication dialog.

• public static String tunnelUsername

– The SSH tunnel username.

• public static String tunnelPassword

– The SSH tunnel user’s password.

• public static int currentYear

– The current year.

• public static int currentSemester

– The current semester.

• public static int randSeed

– Constant random seed

• public static int uuidMax

– Maximum value for a universally unique identifier.

195

• public static final int NONINTERACTIVE

– The modes available for this program. We either run it as non-interactive

or interactive.

• public static final int INTERACTIVE

– The modes available for this program. We either run it as non-interactive

or interactive.

• public static int mode

– Which mode are we running in now?

• public static int AC1 maxLoops

– ArcConsistency maximum number of loops

• public static Color gtaColorBusy

– GTA pulldown menu colors for a busy GTA.

• public static Color gtaColorBusySelected

– GTA pulldown menu colors for a selected busy GTA.

• public static Color gtaColorAvailable

– GTA pulldown menu colors for an available GTA.

• public static Color gtaColorAvailableSelected

– GTA pulldown menu colors for a selected available GTA.

• public static Color gtaColorAlreadyAssigned

– GTA pulldown menu colors for an already assigned GTA.

• public static Color gtaColorPreassigned

– GTA pulldown menu colors for a GTA who is preassigned.

196

D.9.1.3 Constructors

• GTAAPConfig

public GTAAPConfig()

D.9.1.4 Methods

• generateUuid

public static int generateUuid()

– Usage

∗ Generates a (hopefully) universally unique identifier for all instances

in this problem.

– Returns - The universally unique identifier.

• getLocalMySQLPort

public static int getLocalMySQLPort()

– Usage

∗ Returns the local MySQL port. If it is not yet initialized, it will be

initialized to a random port number.

• getTunnelAuthenticationDialog

public static TunnelAuthenticationDialog getTunnelAuthentica-

tionDialog()

– Usage

197

∗ This method will ensure that the TunnelAuthenticationDialog is only

called once. To recall this dialog, set tunnelAuthenticationDialog

= null and recall this method.

– Returns - The single (and only) instance of

TunnelAuthenticationDialog.

D.9.2 Class Main

Forward-check test.

D.9.2.1 Declaration

public class Main

extends java.lang.Object

D.9.2.2 Constructors

• Main

public Main()

D.9.2.3 Methods

• main

public static void main(java.lang.String [] args)

198

D.9.3 Class RandomGTAAPGenerator

Randomly generates GTAs and Courses. Access the Courses by the Vector vec course,

the GTAs by Vector vec gta, the variables by Vector vec variables, and the values by

Vector vec values.

D.9.3.1 Declaration

public class RandomGTAAPGenerator

extends java.lang.Object

D.9.3.2 Fields

• public Vector vec course

– Stores the course entries.

• public Vector vec gta

– Stores the GTA entries.

• public Vector vec variables

– Stores the variable entries.

• public Vector vec values

– Stores the value entries.

• public Hashtable hash constraints

– Stores the constraints in a hashtable

199

D.9.3.3 Constructors

• RandomGTAAPGenerator

public RandomGTAAPGenerator(long seed)

– Usage

∗ Constructor for RandomGTAAPGenerator. This initializes the load

table and the vectors involved for courses and the GTAs.

D.9.3.4 Methods

• generateRandomCourses

public void generateRandomCourses(int n)

– Usage

∗ Generates random Courses

– Parameters

∗ n - The number of courses to randomly generate.

• generateRandomGTAs

public void generateRandomGTAs(int n)

– Usage

∗ Generates random GTAs

– Parameters

∗ n - The number of GTAs to randomly generate.

200

• makeRandom

public void makeRandom(int nGta, int nCourse)

– Usage

∗ Generates random Courses and GTAs.

– Parameters

∗ nGta - The number of GTAs to randomly create.

∗ nCourse - The number of Courses to randomly create.

D.9.4 Class YearSemester

This class is a data structure to “transport” the year and semesters from class to class.

D.9.4.1 Declaration

public class YearSemester

extends java.lang.Object

D.9.4.2 Constructors

• YearSemester

public YearSemester(int year, int semester)

D.9.4.3 Methods

201

• getSemester

public int getSemester()

– Returns - Returns the semester.

• getSemesterName

public String getSemesterName()

– Usage

∗ This method returns the string name for the given semester. 1 = Fall;

2 = Spring; 11 = Summer (pre); etc.

– Returns - The string name for the semester.

• getYear

public int getYear()

– Returns - Returns the year.

• semesterNameToCode

public static int semesterNameToCode(java.lang.String name

)

– Usage

∗ This method returns the semester number given the String name. 1

= Fall; 2 = Spring; 11 = Summer (pre); etc.

– Returns - The semester number for the semester name.

• setSemester

public void setSemester(int semester)

202

– Parameters

∗ semester - The semester to set.

• setYear

public void setYear(int year)

– Parameters

∗ year - The year to set.

• toString

public String toString()

203

D.10 Package edu.unl.consystlab
Package Contents Page

Classes

CSPConstraint . 205

The skeleton/base class for constraints.

CSPProblem . 206
This is the data structure that holds the required data for running our

solvers.
CSPUtils .210

Some basic CSP utilities that are used.

CSPValue .211

This class defines the CSP Value object.

CSPVariable .214

This class defines the CSP Variable object.

CSPVVP . 218

The data structure for variable-value pairs.

EVector . 219
This extends the Vector data structure allows us to obtain the hashcode

of the items in the Vector.
FC Solver . 220

A forward-check solver.

jAssignment . 226
jAssignment is the data structure for transferring the saved assignments

from the database to the graphical interface (and vice-versa).

LabelParams . 231
LabelParams allows parameters to be passed by reference for fcLabel and

fcUnlabel methods.
Log . 233

204

This class is a placeholder to simplify the loging of events.

Setup .234
This class sets up the CSPProblem so we don’t have to manually do it

each time.
Utils .236

This class provides commonly used functions and methods that are glob-

ally available for other classes to use.

205

D.11 Classes

D.11.1 Class CSPConstraint

The skeleton/base class for constraints.

D.11.1.1 Declaration

public class CSPConstraint

extends java.lang.Object

D.11.1.2 Fields

• public String id

– The String identifier for this constraint.

• public CSPProblem problem

– The problem this constraint is associated with.

• public Vector variables

– The variables that this constraint is covers.

D.11.1.3 Constructors

• CSPConstraint

public CSPConstraint()

206

– Usage

∗ Default constructor.

D.11.2 Class CSPProblem

This is the data structure that holds the required data for running our solvers.

D.11.2.1 Declaration

public class CSPProblem

extends java.lang.Object

implements java.lang.Cloneable

D.11.2.2 Fields

• public Vector value

– The list of value (the domain). This list (Vector) holds objects of type

CSPValue.

• public Vector variable

– The list of variable. This list (Vector) holds objects of type CSPVariable.

• public Vector staticVariable

– The list of static/permanent/preassigned variables. This list (Vector)

holds objects of type CSPVariable.

207

• public Hashtable constraint

– This hashtable contains the Course as key and a Vector of constraints as

values

• public int constraintCount

– The constraint count.

• public Vector saved

– The saved assignments are retrieved and stored here. saved takes values

of type jAssignment

D.11.2.3 Constructors

• CSPProblem

public CSPProblem()

– Usage

∗ Constructor.

• CSPProblem

public CSPProblem(java.lang.String sid, java.util.Vector

svalue, java.util.Vector svariable, java.util.Vector sclosed-

Variable, java.util.Vector sstaticVariable, java.util.Hashtable

sconstraint)

– Usage

∗ Constructor.

– Parameters

208

∗ sid - The String ID for this problem

∗ svalue - The Vector of values

∗ svariable - The Vector of variables

∗ sclosedVariable - The Vector of closed variables (closed courses)

∗ sstaticVariable - The Vector of static variables

∗ sconstraint - The Hashtable of constraints.

D.11.2.4 Methods

• clone

public Object clone()

• get constraint

public Hashtable get constraint()

– Usage

∗ Gets the constraint.

– Returns - The constraint.

• get id

public String get id()

– Usage

∗ Returns the problem identifier.

– Returns - The problem identifier.

• getSemester

public int getSemester()

209

– Usage

∗ Returns the semester.

– Returns - The semester.

• getYear

public int getYear()

– Usage

∗ Returns the year.

– Returns - The year.

• set id

public void set id(java.lang.String sid)

– Usage

∗ Set the problem identifier.

– Parameters

∗ sid - The identifier.

• setSemester

public void setSemester(int semester)

– Usage

∗ Sets the semester.

– Parameters

∗ semester - The semester to set.

210

• setYear

public void setYear(int year)

– Usage

∗ Sets the year.

– Parameters

∗ year - The year to set.

D.11.3 Class CSPUtils

Some basic CSP utilities that are used.

D.11.3.1 Declaration

public class CSPUtils

extends java.lang.Object

D.11.3.2 Constructors

• CSPUtils

public CSPUtils()

– Usage

∗ Creates a new instance of CSPUtils

211

D.11.3.3 Methods

• buildTimePoints

public Vector buildTimePoints(java.util.Vector varList)

• courseCliques

public void courseCliques(edu.unl.consystlab.CSPProblem prob-

lem)

• coveringCliques

public void coveringCliques(edu.unl.consystlab.CSPProblem prob-

lem)

• getCliques

public Vector getCliques(java.util.Vector varList)

D.11.4 Class CSPValue

This class defines the CSP Value object.

D.11.4.1 Declaration

public class CSPValue

extends java.lang.Object

implements java.lang.Comparable

212

D.11.4.2 Fields

• public String id

– the string id of this value

• public Object value

– The value object for this CSPValue. For the GTAAP problem, the value

should be of type GTA

D.11.4.3 Constructors

• CSPValue

public CSPValue()

– Usage

∗ Default constructor that does nothing.

• CSPValue

public CSPValue(java.lang.String sid, java.lang.Object svalue

)

– Usage

∗ Constructor.

– Parameters

∗ sid - The String id for this value

∗ svalue - The Object that this value takes.

213

D.11.4.4 Methods

• compareTo

public int compareTo(java.lang.Object nCompare)

• getGTACapacity

public double getGTACapacity()

– Usage

∗ A quick way to obtain the GTA capacity for this CSPValue

– Returns - Returns a double value for the capacity for the GTA in this

CSPValue.

• getGTACurrentCapacity

public double getGTACurrentCapacity()

– Usage

∗ A quick way to obtain the GTA current capacity for this CSPValue

– Returns - Returns a double value for the current capacity for the GTA

in this CSPValue.

• hashCode

public int hashCode()

• setGTACurrentCapacity

public void setGTACurrentCapacity(double capacity)

– Usage

214

∗ Sets the GTA in this CSPValue’s current capacity

– Parameters

∗ capacity - A double value to be set as the GTA’s current capacity.

• toString

public String toString()

D.11.5 Class CSPVariable

This class defines the CSP Variable object.

D.11.5.1 Declaration

public class CSPVariable

extends java.lang.Object

implements java.lang.Comparable

D.11.5.2 Fields

• public String id

– the string id of this variable.

• public String type

– the type of this variable (lecture, recitation, etc.)

• public Object variable

215

– The variable object for this CSPVariable. For the GTAAP problem, the

variable should be of type Course.

• public Object problem

– The encapsulation of the problem

• public Vector constraint

– the constraint of type any arbitrary constraint type (not CSPConstraint)

• public Vector initialDomain

– the initial domain (vector of CSPValue)

• public Vector currentDomain

– the current domain

• public Vector savedDomain

– Initial arc-consistent domain.

• public Vector filteredOutDomain

– The savedDomain “currentDomain

• public CSPValue assignedValue

– The assigned value to this variable

• public boolean preassigned

– Is this variable preassigned? If yes, then true, otherwise false.

216

D.11.5.3 Constructors

• CSPVariable

public CSPVariable()

– Usage

∗ Default constructor.

• CSPVariable

public CSPVariable(java.lang.String sid, java.util.Hashtable

svariable, java.util.Hashtable sproblem, java.util.Vector

sconstraint, java.util.Vector sinitialDomain, java.util.Vector

sneighborCSPVariables)

– Usage

∗ Constructor

– Parameters

∗ sid - The string id of this variable.

∗ svariable - The variable

∗ sproblem - The problem

∗ sconstraint - The Vector of constraints

∗ sinitialDomain - The Vector of initial domain.

∗ sneighborCSPVariables - The Vector of neighbor variables.

D.11.5.4 Methods

• calculateFilteredOutDomain

public void calculateFilteredOutDomain()

217

– Usage

∗ Finds out which variables were filtered out. This method returns void

but stores the filtered-out variables in the class variable vector filtered-

OutDomain.

• compareTo

public int compareTo(java.lang.Object nCompare)

• equals

public boolean equals(java.lang.Object nCompare)

• get id

public String get id()

• getCourseLoad

public double getCourseLoad()

– Usage

∗ Sort cut to get the course load for this variable.

– Returns - double value for the load

• hashCode

public int hashCode()

• set id

public void set id(java.lang.String sid)

• toString

public String toString()

218

D.11.6 Class CSPVVP

The data structure for variable-value pairs.

D.11.6.1 Declaration

public class CSPVVP

extends java.lang.Object

D.11.6.2 Fields

• public String id

– The string id of this VVP

• public CSPVariable variable

– The variable

• public Object value

– The encapsulation of the value

• public CSPProblem problem

– The encapsulation of the problem

D.11.6.3 Constructors

219

• CSPVVP

public CSPVVP()

– Usage

∗ The default constructor.

• CSPVVP

public CSPVVP(edu.unl.consystlab.CSPVariable var,

edu.unl.consystlab.CSPValue val)

– Usage

∗ Initializes the CSPVVP with variable var and value val.

– Parameters

∗ var - The variable to be initialized with.

∗ val - The value to be initialized with.

D.11.6.4 Methods

• toString

public String toString()

D.11.7 Class EVector

This extends the Vector data structure allows us to obtain the hashcode of the items in

the Vector. The hashcode is calculated by summing up the hashcodes of the items in the

vector. A vector with elements (in order) x1, x2, x3 is equivalent to a vector with elements

(in order) x3, x2, x1.

220

D.11.7.1 Declaration

public class EVector

extends java.util.Vector

D.11.7.2 Constructors

• EVector

public EVector()

D.11.7.3 Methods

• equals

public boolean equals(java.lang.Object o)

• hashCode

public int hashCode()

D.11.8 Class FC Solver

A forward-check solver.

D.11.8.1 Declaration

public class FC Solver

extends java.lang.Object

221

D.11.8.2 Fields

• public CSPProblem problem

– The problem.

• public Date startTime

– The start time.

• public Date endTime

– The end time.

D.11.8.3 Constructors

• FC Solver

public FC Solver(edu.unl.consystlab.CSPProblem argProblem

)

– Usage

∗ Constructor.

– Parameters

∗ argProblem - The problem.

D.11.8.4 Methods

• bcssp

public void bcssp(int n, java.lang.String argStatus)

222

– Usage

∗ The search function.

– Parameters

∗ n - The level.

∗ argStatus - The status.

• check

public boolean check(int i, int j)

– Usage

∗ Check for support of assigned values of v[i] and v[j].

– Parameters

∗ i - Variable i

∗ j - Variable j

– Returns - true if there is support, false otherwise.

• checkForward

public boolean checkForward(edu.unl.consystlab.LabelParams

params, int i, int j)

– Usage

∗ checkForward takes the current variable at position i and checks it

againsts the future variable at position j (i <j <= n). It removes from

currentDomain[j] values that are inconsistent with variable at i.

– Parameters

∗ i - current variable position

∗ j - future variable position

223

– Returns - true if there is no domain anihiliation, false otherwise.

• doAssignment

public boolean doAssignment(int i, edu.unl.consystlab.CSPValue

value)

– Usage

∗ Performs an assignment of a value to a variable at a particular level,

i.

– Parameters

∗ i - The level i

∗ value - The value to be assigned.

– Returns - Always returns true

• fcLabel

public int fcLabel(edu.unl.consystlab.LabelParams params)

– Usage

∗ fcUnlabel is used to uninstantiate a variable and perform backtracking.

– Parameters

∗ params - The LabelParams is used to pass the parameters by reference.

– Returns - If fcLabel(...) runs and remains consistent, return

params.get i() + 1, otherwise, returns params.get i().

• fcUnlabel

public int fcUnlabel(edu.unl.consystlab.LabelParams params

)

224

– Usage

∗ fcUnlabel is used to uninstantiate a variable and perform backtracking,

that is, when we are not consistent.

– Parameters

∗ params - The LabelParams is used to pass the parameters by reference.

– Returns - The current level (from params.get i()).

• printSolution

public void printSolution()

– Usage

∗ Prints out the text representation of the solution.

• searchCSP

public void searchCSP()

– Usage

∗ This method starts the search.

• swap

public void swap(int i, int j)

– Usage

∗ Swap the position of the i-th variable with the j-th in the current

domain and path. This is needed to implement dynamic variable or-

dering.

– Parameters

225

∗ i - The i-th variable

∗ j - The j-th variable

• undoAssignment

public void undoAssignment(int i)

– Usage

∗ Undo the assignment for the i-th variable.

– Parameters

∗ i - The i-th variable.

• undoReductions

public void undoReductions(int i)

– Usage

∗ Undo reductions at level i.

– Parameters

∗ i - The level.

• updateCapacity

public void updateCapacity(edu.unl.consystlab.CSPVariable var,

edu.unl.consystlab.CSPValue val, java.lang.String op)

– Usage

∗ Updates the capacity for the given GTA in val. Increases if op is ”+”

or decreases if op is ”-” with load from CSPVariable var.

– Parameters

226

∗ var - CSPVariable variable

∗ val - CSPValue value

∗ op - Operator is either ”+” or ”-”

• updateCurrentDomain

public void updateCurrentDomain(int i)

– Usage

∗ Looks at all the reductions for v[i] and removes them from the domain

of v[i].

– Parameters

∗ i - The level i

• var load

public double var load(edu.unl.consystlab.CSPVariable var)

– Usage

∗ Obtains the variable’s course load.

– Parameters

∗ var - The CSPVariable.

– Returns - The course load from the provided CSPVariable.

D.11.9 Class jAssignment

jAssignment is the data structure for transferring the saved assignments from the

database to the graphical interface (and vice-versa).

227

D.11.9.1 Declaration

public class jAssignment

extends java.lang.Object

D.11.9.2 Constructors

• jAssignment

public jAssignment(java.lang.String s, int year, int

semester, int g, int c)

– Usage

∗ Stores the jAssignment value.

– Parameters

∗ s - The saveId to use.

∗ year - The year.

∗ semester - The semester.

∗ g - The GTA.

∗ c - The class.

D.11.9.3 Methods

• getClassId

public int getClassId()

– Usage

228

∗ Gets the course identifier.

– Returns - The course identifier.

• getGtaId

public int getGtaId()

– Usage

∗ Gets the GTA identifier.

– Returns - The course identifier.

• getSavedId

public int getSavedId()

– Usage

∗ Gets the saved identifier (from the database).

– Returns - Returns the savedId.

• getSavedName

public String getSavedName()

– Usage

∗ Gets the saved name (from the database).

– Returns - Returns the savedName.

• getSemester

public int getSemester()

– Usage

229

∗ Gets the semester.

– Returns - Returns the semester.

• getYear

public int getYear()

– Usage

∗ Gets the year.

– Returns - Returns the year.

• setClassId

public void setClassId(int classId)

– Usage

∗ Sets the course identifier.

– Parameters

∗ classId - The course identifier.

• setGtaId

public void setGtaId(int gtaId)

– Usage

∗ Sets the GTA identifier.

– Parameters

∗ gtaId - The GTA identifier.

• setSavedId

public void setSavedId(int savedId)

230

– Usage

∗ Sets the saved identifier.

– Parameters

∗ savedId - The savedId to set.

• setSavedName

public void setSavedName(java.lang.String savedName)

– Usage

∗ Sets the saved name.

– Parameters

∗ savedName - The savedName to set.

• setSemester

public void setSemester(int semester)

– Usage

∗ Sets the semester.

– Parameters

∗ semester - The semester to set.

• setYear

public void setYear(int year)

– Usage

∗ Sets the year.

– Parameters

231

∗ year - The year to set.

• toString

public String toString()

D.11.10 Class LabelParams

LabelParams allows parameters to be passed by reference for fcLabel and fcUnlabel

methods.

D.11.10.1 Declaration

public class LabelParams

extends java.lang.Object

D.11.10.2 Constructors

• LabelParams

public LabelParams(int i, boolean consistent)

– Usage

∗ The constructor.

– Parameters

∗ i - This is the value to set for i.

∗ consistent - This is the value to set for consistent.

232

D.11.10.3 Methods

• get consistent

public boolean get consistent()

– Usage

∗ Returns the consistent value.

– Returns - The consistent value.

• get i

public int get i()

– Usage

∗ Returns the i value.

– Returns - The i value.

• set consistent

public void set consistent(boolean b)

– Usage

∗ Sets consistent to a new value.

– Parameters

∗ b - The value to set consistent to.

• set i

public void set i(int i)

– Usage

233

∗ Sets i to a new value.

– Parameters

∗ i - The value to set i to.

D.11.11 Class Log

This class is a placeholder to simplify the loging of events.

D.11.11.1 Declaration

public class Log

extends java.lang.Object

D.11.11.2 Constructors

• Log

public Log()

D.11.11.3 Methods

• write

public static void write(int level, java.lang.Object message)

– Usage

∗ Writes the event list to the console.

234

– Parameters

∗ level - 0 = silent; 1 = warnings; 2 = above + more messages; 10 =

everything;

∗ message - The object/message that should be logged.

D.11.12 Class Setup

This class sets up the CSPProblem so we don’t have to manually do it each time.

D.11.12.1 Declaration

public class Setup

extends java.lang.Object

D.11.12.2 Constructors

• Setup

public Setup()

– Usage

∗ This is the default constructor. The problem returned is is random.

• Setup

public Setup(boolean fromDb)

– Usage

235

∗ A constructor that sets up a problem. If the problem is not random,

the defined year and semester in the configuration file GTAAPConfig is

retrieved from the database.

– Parameters

∗ fromDb -

– See Also

∗ edu.unl.consystlab.gtajava.GTAAPConfig (in D.9.1, page 193)

• Setup

public Setup(boolean fromDb, int argYear, int argSemester

)

– Usage

∗ A constructor that sets up a problem. If the problem is not random,

the year and semester given is retrieved from the database.

– Parameters

∗ fromDb - If it is true, then the problem is not a random problem.

∗ argYear - The year to use.

∗ argSemester - The semester to use.

D.11.12.3 Methods

• getProblem

public CSPProblem getProblem()

– Usage

∗ Returns the problem.

236

– Returns - The problem.

• setProblem

public void setProblem(edu.unl.consystlab.CSPProblem problem

)

– Usage

∗ Sets the problem.

– Parameters

∗ problem - The problem.

D.11.13 Class Utils

This class provides commonly used functions and methods that are globally available

for other classes to use. Such functions include database access methods, etc..

D.11.13.1 Declaration

public class Utils

extends java.lang.Object

D.11.13.2 Constructors

• Utils

public Utils()

237

D.11.13.3 Methods

• ArcConsistency 1

public static CSPProblem ArcConsistency 1(

edu.unl.consystlab.CSPProblem argProblem)

– Usage

∗ Performs AC1 on the CSPProblem.

– Parameters

∗ argProblem - The CSPProblem to run AC on.

– Returns - The arc consistent problem.

• Assign

public static void Assign(edu.unl.consystlab.CSPProblem

problem, edu.unl.consystlab.CSPVariable c,

edu.unl.consystlab.CSPValue g)

– Usage

∗ Do an assignment of a value to a variable.

– Parameters

∗ problem - The problem.

∗ c - The CSPVariable to be assigned the value.

∗ g - The CSPValue to be assigned to the variable.

• connectToDB

public static void connectToDB()

238

– Usage

∗ Connects to the specified MySQL database defined in GTAAPConfig.

This method checks if the current host is a CSE machine – if it is, we

connect directly to the MySQL server; otherwise, if we are running

the GUI, it attempts to establish a SSH after asking for CSE login

credentials.

• deleteJassignments

public static void deleteJassignments(java.lang.String saved-

Name)

– Usage

∗ Deletes jAssignments from the database given its String name.

– Parameters

∗ savedName - The name of the previously saved assignments to be

deleted from the database.

• doubleToFraction

public static String doubleToFraction(double value)

– Usage

∗ Converts a double load to a String fraction. We factor into a small

error, delta.

– Parameters

∗ value - The double value to convert.

– Returns - The String representation of this fraction.

239

• fetchAvailableYearSemesters

public static Vector fetchAvailableYearSemesters()

– Usage

∗ This method fetches all the available years and semesters from the

database.

– Returns - A vector of elements of type YearSemester in chronological

order. That is, earlier semesters before the current semester.

• fetchDataCourses

public static void fetchDataCourses(int year, int semester,

edu.unl.consystlab.CSPProblem problem, java.util.Vector vec,

java.lang.String type)

– Usage

∗ Fetches the course data from the MySQL database.

– Parameters

∗ year - The year that we want to fetch the data for.

∗ semester - The semester that we want to fetch the data for.

∗ problem - The CSPProblem.

∗ vec - The Vector to store the CSPVariables (courses).

∗ type - The type of course to load. It can either be grading, lecture,

lab, or recitation.

• fetchDataGTA

public static void fetchDataGTA(int year, int semester,

java.util.Vector variable, java.util.Vector vec)

240

– Usage

∗ Fetches the GTA data from the MySQL database. We must first call

the fetchDataCourses.

– Parameters

∗ year - The year that we want to fetch the data for.

∗ semester - The semester that we want to fetch the data for.

∗ variable - The Vector of variables.

∗ vec - The Vector to store the CSPValues (GTAs).

– See Also

∗ edu.unl.consystlab.Utils.fetchDataCourses(int year, int

semester, CSPProblem problem, Vector vec, String type)

• fetchDataPreassignments

public static void fetchDataPreassignments(int year,

int semester, edu.unl.consystlab.CSPProblem problem,

java.util.Vector vec, java.util.Vector staticVec)

– Usage

∗ Fetches the preassigned course data from the MySQL database.

– Parameters

∗ year - The year that we want to fetch the data for.

∗ semester - The semester that we want to fetch the data for.

∗ problem - The CSPProblem.

∗ vec - The Vector that contains the CSPVariables (courses). Af-

ter running this method, the preassigned variables are moved into

staticVec

∗ staticVec - The Vector to store the preassigned CSPVariables.

241

• fetchInitialDomain

public static void fetchInitialDomain(java.util.Vector variable,

java.util.Vector value)

– Usage

∗ Fetches the initial domain for the variables. This method sets the

initial domains of all variables to the set of all values.

– Parameters

∗ variable - The Vector of CSPVariables.

∗ value - The Vector of CSPValuess.

• fetchJassignmentNames

public static void fetchJassignmentNames(java.util.Vector

names)

– Usage

∗ Fetch the names of the saved assignments into the Vector names.

– Parameters

∗ names - This is the Vector of String values of the names of saved

assignments are returned in.

• fetchJassignments

public static Vector fetchJassignments(java.lang.String saved-

Name)

– Usage

242

∗ Fetches saved assignments from the database. This method puts the

saved assignments in the saved attribute in CSPProblem.

– Parameters

∗ savedName - The saved name of the assignments we would like to

retrieve.

– Returns - The Vector of jAssignments which contain the saved assign-

ments.

• FilterGTAs

public static void FilterGTAs(edu.unl.consystlab.CSPProblem

problem, edu.unl.consystlab.CSPVariable c,

edu.unl.consystlab.CSPValue g)

– Usage

∗ Propagates unassigned courses.

– Parameters

∗ c - The CSPVariable c.

∗ g - The CSPValue g.

• getCenterLocation

public static Dimension getCenterLocation(java.awt.Dimension

size)

– Usage

∗ Given the size Dimension of an object, we return the Dimension of

the position for the window so that it is centered.

– Parameters

243

∗ width - The width of the window to be centered.

∗ height - The height of the window to be centered.

– Returns - The Dimension of the position.

• getCenterLocation

public static Dimension getCenterLocation(int width, int

height)

– Usage

∗ Given the width and height of an object, we return the Dimension of

the position for the window so that it is centered.

– Parameters

∗ width - The width of the window to be centered.

∗ height - The height of the window to be centered.

– Returns - The Dimension of the position.

• getCourseFromVariable

public static Course getCourseFromVariable(java.lang.Object

var)

– Usage

∗ Gets the associated course from a given variable.

• getScreenSize

public static Dimension getScreenSize()

– Usage

∗ Gets the screen dimension.

244

– Returns - The Dimension for the screen size.

• loadDBDriver

public static void loadDBDriver()

– Usage

∗ Loads the JDBC-MySQL driver so that we can use it.

• NodeConsistent

public static CSPProblem NodeConsistent(

edu.unl.consystlab.CSPProblem problem)

– Usage

∗ Do node consistency on the problem.

– Parameters

∗ problem - The problem to run node consistency on.

– Returns - The node consistent problem.

• Revise

public static boolean Revise(edu.unl.consystlab.CSPProblem

problem, edu.unl.consystlab.CSPVariable ci,

edu.unl.consystlab.CSPVariable cj)

– Usage

∗ Performs revise on the problem given two CSPVariables.

– Parameters

∗ problem - The problem.

∗ ci - CSPVariable ci.

245

∗ cjCSPVariable - cj.

• saveJassignments

public static void saveJassignments(edu.unl.consystlab.CSPProblem

problem, java.lang.String savedName)

– Usage

∗ Saves the currently assigned variables given the CSPProblem parameter

to the database and a name.

– Parameters

∗ problem - The CSPProblem.

∗ savedName - The name to save as.

• setupConstraints capacity

public static void setupConstraints capacity(

edu.unl.consystlab.CSPProblem problem)

– Usage

∗ Sets the CSPProblem hashtable entry for ’constraint’ to the appropri-

ate value.

capacity: Constraint that specifies that a gta may not have a load

more than the specified maximum load. type: non-binary

– Parameters

∗ CSPProblem - problem

– Returns - void

246

• setupConstraints certification

public static void setupConstraints certification(

edu.unl.consystlab.CSPProblem problem)

– Usage

∗ Sets the CSPProblem hashtable entry for ’constraint’ to the appropri-

ate value.

certification: Constraint specifying that GTAs must be ITA certified

or English-speaking to teach recitations or labs. type: unary

– Parameters

∗ CSPProblem - problem

– Returns - void

• setupConstraints diffta

public void setupConstraints diffta(edu.unl.consystlab.CSPProblem

problem, int year, int semester)

– Usage

∗ Sets the CSPProblem hashtable entry for ’constraint’ to the appropri-

ate value.

diffta: Binary constraints specifying that no gta may be assigned to

two lab or recitation courses with overlapping times. type: non-binary

– Parameters

∗ CSPProblem - problem

∗ int - year

247

∗ int - semester

– Returns - void

• setupConstraints equality

public static void setupConstraints equality(

edu.unl.consystlab.CSPProblem problem, int year, int semester

)

– Usage

∗ Sets the CSPProblem hashtable entry for ’constraint’ to the appropri-

ate value.

equality: Constraint that specifies that a set of courses must have the

same GTA assigned to it type: non-binary

– Parameters

∗ CSPProblem - problem

∗ int - year

∗ int - semester

– Returns - void

• setupConstraints mutex

public static void setupConstraints mutex(

edu.unl.consystlab.CSPProblem problem)

– Usage

∗ Sets the CSPProblem hashtable entry for ’constraint’ to the appropri-

ate value.

248

mutex: Mutex constraints are binary constraints in place between any

two courses that require GTAs as instructors and meet during over-

lapping times. This enforces the condition that a GTA must attend

courses he/she is instructing. type: binary

– Parameters

∗ CSPProblem - problem

∗ int - year

∗ int - semester

– Returns - void

• setupConstraints nilPref

public static void setupConstraints nilPref(

edu.unl.consystlab.CSPProblem problem)

– Usage

∗ Sets the CSPProblem hashtable entry for ’constraint’ to the appropri-

ate value.

nilPref: Unary constraint that eliminates GTAs who have 0 preference

for the constrained course from the domain the variable. type: unary

– Parameters

∗ CSPProblem - problem

– Returns - void

• setupConstraints overlap

public static void setupConstraints overlap(

249

edu.unl.consystlab.CSPProblem problem)

– Usage

∗ Sets the CSPProblem hashtable entry for ’constraint’ to the appropri-

ate value.

overlap: Unary constraint that specifies that a gta may not teach a

lab or recitation that overlaps in time with a course currently being

enrolled in. type: unary

– Parameters

∗ CSPProblem - problem

– Returns - void

• setupConstraints takingCourse

public static void setupConstraints takingCourse(

edu.unl.consystlab.CSPProblem problem)

– Usage

∗ Sets the CSPProblem hashtable entry for ’constraint’ to the appropri-

ate value.

takingCourse: Constraint specifying that GTAs is not currently en-

rolled in a course type: unary

– Parameters

∗ CSPProblem - problem

– Returns - void

250

• setupConstraints

public static void setupConstraints(edu.unl.consystlab.CSPProblem

problem, int year, int semester)

– Usage

∗ Sets the CSPProblem hashtable entry for ’constraint’ to the appropri-

ate values by calling sub functions for all the constraint types.

– Parameters

∗ CSPProblem - problem The CSP problem.

∗ int - year The year.

∗ int - semester The semester.

• Unassign

public static void Unassign(edu.unl.consystlab.CSPProblem

problem, edu.unl.consystlab.CSPVariable c)

– Usage

∗ Do an unassign for a given CSPVariable

– Parameters

∗ problem - The problem.

∗ c - Unassign the CSPVariable c.

251

Bibliography

[Garcia-Molina et al., 2002] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer

Widom. Database Systems, The Complete Book. Prentice Hall, 2002.

[Glaubius, 2001] Robert Glaubius. A Constraint Processing Approach to Assigning

Graduate Teaching Assistants to Courses. Undergraduate Honors Thesis. Depart-

ment of Computer Science and Engineering, University of Nebraska-Lincoln, 2001.

[Guddeti and Choueiry, 2004] Venkata Praveen Guddeti and Berthe Y. Choueiry. An

Empirical Study of a New Restart Strategy for Randomized Backtrack Search. In

Workshop on Immediate Applications of CSPs (CP 04), pages 66–82, Toronto,

Canada, 2004.

[Guddeti and Choueiry, 2005] Praveen Guddeti and Berthe Y. Choueiry. Characteri-

zation of a New Restart Strategy for Randomized Backtrack Search. In Boi Faltings

et al., editor, Recent Advances in Constraints, volume 3419 of Lecture Notes in Ar-

tificial Intelligence, pages 56–70. Springer, 2005.

[Guddeti, 2004a] Venkata Praveen Guddeti. A Dynamic Restart Strategy for Ran-

domized BT Search. In Mark Wallace, editor, Proceedings of 10th International

Conference on Principle and Practice of Constraint Programming (CP 04), vol-

ume 3258 of Lecture Notes in Computer Science, page 796, Toronto, Canada, 2004.

Springer Verlag.

252

[Guddeti, 2004b] Venkata Praveen Reddy Guddeti. An Improved Restart Strategy for

Randomized Backtrack Search. Master’s thesis, Department of Computer Science

and Engineering, University of Nebraska-Lincoln, Lincoln, NE, December 2004.

December 2004.

[Lim et al., 2004a] Ryan Lim, Venkata Praveen Guddeti, and Berthe Y. Choueiry. A

Constraint-Based System for Hiring and Managing Graduate Teaching Assistants.

In Mark Wallace, editor, Proceedings of the 10th International Conference on Prin-

ciple and Practice of Constraint Programming (CP 04), volume 3258 of Lecture

Notes in Computer Science, page 817, Toronto, Canada, 2004. Springer Verlag.

http://www.springerlink.com/index/DHCD3DFK8EMR8Y2X.

[Lim et al., 2004b] Ryan Lim, Venkata Praveen Guddeti, and Berthe Y. Choueiry.

An Interactive System for Hiring and Managing Graduate Teaching Assistants. In

Conference on Prestigious Applications of Intelligent Systems (ECAI 04), pages

730–734, Valencia, Spain, 2004.

[Reichenbach, 2001] Steve Reichenbach. Department Chair, Personal Communica-

tion, 2001.

[Thota, 2004] Venkateshwar Rao Thota. Online Interactive Problem-Solving. Masters

Project. Department of Computer Science & Engineering, University of Nebraska-

Lincoln, 2004.

[Zou and Choueiry, 2003a] Hui Zou and Berthe Y. Choueiry. Characterizing the Be-

havior of a Multi-Agent Search by Using it to Solve a Tight, Real-World Resource

Allocation Problem. In Workshop on Applications of Constraint Programming,

pages 81–101, Kinsale, County Cork, Ireland, 2003.

253

[Zou and Choueiry, 2003b] Hui Zou and Berthe Y. Choueiry. Multi-agent Based

Search versus Local Search and Backtrack Search for Solving Tight CSPs: A Practi-

cal Case Study. In Working Notes of the Workshop on Stochastic Search Algorithms

(IJCAI 03), pages 17–24, Acapulco, Mexico, 2003.

[Zou, 2003] Hui Zou. Iterative Improvement Techniques for Solving Tight Constraint

Satisfaction Problems. Master’s thesis, Department of Computer Science and En-

gineering, University of Nebraska-Lincoln, Lincoln, NE, December 2003.

