
A COMPARATIVE STUDY OF GENERALIZED ARC-CONSISTENCY
ALGORITHMS

by

Olufikayo S. Adetunji

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

December, 2014

A COMPARATIVE STUDY OF GENERALIZED ARC-CONSISTENCY

ALGORITHMS

Olufikayo S. Adetunji, M. S.

University of Nebraska, 2014

Adviser: Berthe Y. Choueiry

In this thesis, we study several algorithms for enforcing Generalized Arc-Consistency

(GAC), which is the most popular consistency property for solving Constraint Satis-

faction Problems (CSPs) with backtrack search. The popularity of such algorithms

stems from their relative low cost and effectiveness in improving the performance of

search. Virtually all commercial and public-domain constraint solvers include some

implementation of a generic GAC algorithm. In recent years, several algorithms for

enforcing GAC have been proposed in the literature that rely on increasingly complex

data structures and mechanisms to improve performance. In this thesis, we study,

assess, and compare a basic algorithm for generic constraints (i.e, GAC2001), new

algorithms for table constraints (i.e., STR1, STR2, STR3, eSTR1, eSTR2, and STR-

Ni), and an algorithm for constraints expressed as multi-valued decision diagram (i.e.,

mddc). We explain the mechanisms of the above algorithms, and empirically evalu-

ate and compare their performances. We propose a new hybrid algorithm that uses

a selection criterion to combine the use of STR1 and STR-Ni.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Berthe Y. Choueiry, for her continued

support and encouragement. I was really inspired by working with her. My first

experience with the area of Constraint Processing was in her class. My good perfor-

mance in that course and deep understanding of the material owe to her help and

that of the graduate teaching assistant, Robert Woodward. I am grateful to the en-

tire faculty of the Department Computer Science and Engineering at UNL, through

whom I have learned a lot and have grown both intellectually and in confidence.

I am also thankful to the members of the committee, Dr. Ashok Samal and

Dr. Stephen D. Scott for their invaluable feedback that allowed me to improve the

content and presentation of my thesis. I am particularly thankful to the members

of the Constraint Systems Laboratory, Robert Woodward, Anthony Schneider, and

Daniel Geschwender for their constant support and immediate help when I encoun-

tered difficulties. I want to thank especially Robert Woodward for always being

available to help me understand mechanisms that were not clear. I am also grateful

to Shant Karakashian, Robert Woodward, and Anthony Schneider for creating an

extensive, flexible, and reliable solver framework that I exploited to build, test, and

evaluate the algorithms that I studied. The search and GAC2001 algorithms used in

my thesis come from their solver.

Finally, I am grateful to my loving family, who encouraged me to pursue my

passion for Computer Science. They have provided me with their unwavering support

both financially and spiritually. I am especially grateful to God because without Him,

I will not be the person I am today.

This research was partially supported by a National Science Foundation (NSF) Grant No.

RI-111795. Experiments were conducted on the equipment of the Holland Computing Center

at UNL.

iv

Contents

Contents iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Outline of Thesis . 3

2 Background 4

2.1 Constraint Satisfaction Problem . 4

2.2 Representing Constraint Relations . 7

2.2.1 Table constraints . 8

2.2.2 Multi-Valued Decision Diagrams (MDD) 8

2.3 Consistency . 10

2.3.1 Domain consistency properties 10

2.3.2 Relational consistency properties 11

2.4 Algorithms for Generalized Arc Consistency 12

v

2.5 Solving CSPs . 13

2.6 Phase Transition . 14

3 GAC Algorithms 16

3.1 GAC2001 . 17

3.2 Simple Tabular Reduction for Positive Table Constraints 19

3.2.1 STR1 . 20

3.2.2 STR2 . 23

3.2.3 STR3 . 25

3.2.4 eSTR . 30

3.3 Simple Tabular Reduction for Negative Table Constraints: STR-Ni . 35

3.4 A Comparative Analysis of STR Algorithms 36

3.5 A Comparative Analysis of STR Algorithms and GAC2001 38

3.6 GAC for MDD-Represented Constraints 38

3.7 Our Contribution: A Hybrid STR (STR-h) 40

4 Empirical Evaluations of GAC Algorithms 43

4.1 Experimental Setup . 44

4.2 Randomly Generated Non-Binary CSPs 44

4.2.1 Comparing STR* algorithms against GAC2001 46

4.2.2 Comparing eSTR1 and eSTR2 against STR1 and STR2 48

4.2.3 Comparing STR-h against STR1 and STR-Ni 50

4.2.4 Comparing mddc against STR2 and eSTR1 51

4.3 Benchmark Problems . 52

4.3.1 Method for statistical analysis 54

4.3.2 Comparison criteria used . 54

4.3.3 Ranking all benchmark classes 55

vi

4.3.3.1 GAC2001 . 55

4.3.3.2 STR-based algorithms 56

4.3.3.3 eSTR-based algorithms 59

4.3.3.4 mddc . 60

4.3.3.5 Implementation efficacy 60

4.3.4 Qualitative analysis of three representative benchmarks 60

4.3.4.1 Measured parameters 61

4.3.4.2 The dag-rand benchmark 63

4.3.4.3 The lexVg benchmark 63

4.3.4.4 The traveling-salesman-20 benchmark 64

4.3.4.5 All remaining benchmarks 65

5 Conclusions and Future Work 66

5.1 Conclusions and Summary of Contributions 66

5.2 Directions for Future Research . 68

5.3 Final Note . 69

A Algorithms 70

B Results of Experiments on Benchmark Problems 78

B.1 Comparison criteria . 78

B.2 Binary benchmark problems . 80

B.3 Non-binary benchmark problems . 93

C Code Documentation 101

C.1 File Documentation . 102

C.1.1 scsp/src/Fikayo GACalgs/mddc.c File Reference 102

C.1.2 scsp/src/Fikayo GACalgs/str.c File Reference 103

vii

C.1.3 scsp/src/Fikayo GACalgs/str2.c File Reference 104

C.1.4 scsp/src/Fikayo GACalgs/str3.c File Reference 105

C.1.5 scsp/src/Fikayo GACalgs/strn.c File Reference 105

Bibliography 106

viii

List of Figures

2.1 Board representation of the 4-queens problem and one of its two solutions . . 5

2.2 An example cryptarithmetic problem . 6

2.3 Graphical representation of the 4-queens problem 7

2.4 Graphical representation of the cryptarithmetic problem 7

2.5 A table constraint and two of its three sub-tables 9

2.6 MDD representation of a constraint . 9

2.7 Cost of problem solving . 14

3.1 An example using REVISE2001 . 18

3.2 STR1: Enforcing GAC on table(c12 . 21

3.3 STR1: Enforcing GAC on table(c23 . 22

3.4 An example using STR2 . 24

3.5 Equivalent table representation . 26

3.6 Dependency list of the table representation 26

3.7 An example of the sparse set representation 27

3.8 Relationship between separators and the dependency lists, [Lecoutre et al., 2012] 29

3.9 An example using STR3 . 31

3.10 An example of the data structures used by eSTR 32

3.11 An example using eSTR . 34

ix

3.12 An example showing a constraint c12, table(c12), and MDD(c12 39

4.1 Phase-transition chart with parameters (n = 60,d = 5,k = 3,p = 0.4,t) 46

4.2 Phase-transition chart with parameters (n = 60,d = 2,k = 13,e = 20,t) 48

4.3 Phase-transition chart with parameters (n = 60,d = 5,k = 3,e = 138,t) 49

4.4 Phase-transition chart with parameters (n = 60,d = 15,k = 3,e = 228,t). Note

that STR1 and STR2 time out for t = 0.5, 0.6, 0.7 50

4.5 Phase-transition chart with parameters (n = 60,d = 5,k = 3,e = 138,t) 51

4.6 Phase-transition chart with parameters (n = 60,d = 5,k = 3,e = 138,t) 52

x

List of Tables

3.1 Overview of the GAC algorithms studied 17

4.1 CPU time (in milliseconds) for solving randomly generated CSPs, averaged over

30 instances with (n = 60,d = 5,k = 3,p = 0.4,t) 45

4.2 CPU time (in milliseconds) for solving randomly generated CSPs, averaged over

30 instances with (n = 60,d = 2,k = 13,e = 20,t) 47

4.3 CPU time (in milliseconds) for solving randomly generated CSPs, averaged over

30 instances with (n = 60,d = 15,k = 3,e = 228,t) 50

4.4 Overview of the binary benchmarks tested (Part A) 56

4.5 Overview of the binary benchmarks tested (Part B) 57

4.6 Overview of the non-binary benchmarks tested 58

4.7 Number of instances completed or not completed (memory or time out) out of

1915 binary instances and 960 non-binary instances 61

4.8 Performance summary for the dag-rand benchmark 63

4.9 Performance summary for the lexVG benchmark: STR2 outperforms all other

algorithms in terms of CPU time . 64

4.10 Performance summary for the traveling-salesman-20 benchmark 64

B.1 Statistical analysis of the composed-25-1-80 benchmark 81

B.2 Statistical analysis of the composed-25-10-20 benchmark 81

xi

B.3 Statistical analysis of the composed-75-1-80 benchmark 81

B.4 Statistical analysis of the ehi-85 benchmark 82

B.5 Statistical analysis of the ehi-90 benchmark 82

B.6 Statistical analysis of the QCP-10 benchmark 82

B.7 Statistical analysis of the driver benchmark 83

B.8 Statistical analysis of the frb35-17 benchmark 83

B.9 Statistical analysis of the frb45-21 benchmark 83

B.10 Statistical analysis of the frb40-19 benchmark 84

B.11 Statistical analysis of the geom benchmark 84

B.12 Statistical analysis of the langford benchmark 85

B.13 Statistical analysis of the marc benchmark 85

B.14 Statistical analysis of the QCP-15 benchmark 85

B.15 Statistical analysis of the rand-2-23 benchmark 86

B.16 Statistical analysis of the rand-2-24 benchmark 86

B.17 Statistical analysis of the rand-2-25 benchmark 86

B.18 Statistical analysis of the rand-2-26 benchmark 87

B.19 Statistical analysis of the rand-2-27 benchmark 87

B.20 Statistical analysis of the rand-2-30-15-fcd benchmark 87

B.21 Statistical analysis of the rand-2-30-15 benchmark 88

B.22 Statistical analysis of the rand-2-40-19-fcd benchmark 88

B.23 Statistical analysis of the rand-2-40-19 benchmark 88

B.24 Statistical analysis of the tightness0.1 benchmark 89

B.25 Statistical analysis of the tightness0.2 benchmark 89

B.26 Statistical analysis of the tightness0.35 benchmark 89

B.27 Statistical analysis of the tightness0.5 benchmark 90

B.28 Statistical analysis of the tightness0.65 benchmark 90

xii

B.29 Statistical analysis of the tightness0.8 benchmark 91

B.30 Statistical analysis of the tightness0.9 benchmark 91

B.31 Statistical analysis of the coloring benchmark 91

B.32 Statistical analysis of the frb30-15 benchmark 92

B.33 Statistical analysis of the hanoi benchmark 92

B.34 Statistical analysis of the QWH-10 benchmark 92

B.35 Statistical analysis of the QWH-15 benchmark 93

B.36 Statistical analysis of the aim-50 benchmark 94

B.37 Statistical analysis of the aim-100 benchmark 94

B.38 Statistical analysis of the aim-200 benchmark 94

B.39 Statistical analysis of the dubois benchmark 95

B.40 Statistical analysis of the ssa benchmark . 95

B.41 Statistical analysis of the travellingSalesman-25 benchmark 95

B.42 Statistical analysis of the jnhSat benchmark 96

B.43 Statistical analysis of the jnhUnsat benchmark 96

B.44 Statistical analysis of the rand-3-20-20-fcd benchmark 96

B.45 Statistical analysis of the rand-3-20-20 benchmark 97

B.46 Statistical analysis of the rand-3-24-24-fcd benchmark 97

B.47 Statistical analysis of the ogdVg benchmark 97

B.48 Statistical analysis of the ukVg benchmark 98

B.49 Statistical analysis of the wordsVg benchmark 98

B.50 Statistical analysis of the pret benchmark 98

B.51 Statistical analysis of the rand-10-20-10 benchmark 99

B.52 Statistical analysis of the rand-8-20-5 benchmark 99

B.53 Statistical analysis of the varDimacs benchmark 99

B.54 Statistical analysis of the modifiedRenault benchmark 100

1

Chapter 1

Introduction

Constraint Satisfaction Problems (CSPs) are used to model many decision problems

of practical importance. Examples include scheduling and resource allocation (e.g.,

school time-table and airport gate scheduling), games (e.g., Sudoku, Minesweeper),

databases, product configuration and design, and natural language processing.

1.1 Motivation

Enforcing a given level of consistency and constraint propagation are central to the

area of Constraint Processing (CP).1 Algorithms for enforcing consistency and prop-

agating constraints allow us to effectively reduce the cost of solving CSPs with back-

track search, which is exponential in the size of the problem. Such algorithms are

typically efficient (i.e., polynomial) in both time and space. The most basic mecha-

nism, which enforces Generalized Arc Consistency (GAC), is indeed at the foundation

of CP [Waltz, 1975; Mackworth, 1977].

For many the restriction to binary CSPs (i.e., constraints apply to at most two

1Consistency propagation is the process of iterative reduction of the domain and/or relations of
a Constraint Satisfaction Problem, while not loosing solutions.

2

variables) has shifted the focus of the research to developing a wide variety of al-

gorithms for Arc Consistency (AC), we have seen an increase of the number of new

algorithms for GAC since 2007 with the advent of algorithms that filter the relations,

called Simple Tabular Reduction (STR) [Ullmann, 2007].

In this thesis, we conduct an in-depth study of the latest algorithms for enforcing

GAC and evaluate them empirically on both random and benchmark problems.

1.2 Contributions

In this thesis, we study various algorithms that are proposed in the literature to en-

force Generalized Arc Consistency. We study a number of algorithms based on Simple

Tabular Reduction (STR) [Ullmann, 2007] and one algorithm where constraints are

represented as Multivalued Decision Diagrams [Cheng and Yap, 2010]. We imple-

ment these algorithms and compare their performances on various benchmark and

randomly generated problems. Finally, we introduce a hybrid algorithm that com-

bines the use of two of those algorithms. Our main contributions are as follows:

1. We identify the conditions and problem characteristics for which one algorithm

outperforms all others. We believe that those conditions can help a human user

or an automated selection procedure decide which algorithm to apply in which

context.

2. We introduce a hybrid algorithm that combines the advantages of two simple

STR-based algorithms, one that is most effective on positive table constraints

and the other most effective on negative table constraints. As a result, we are

able to handle individually the constraints in the problem as it is most fit.

3

3. We provide a simple, crisp, and didactic description of the mechanism and

data structures of the implemented algorithms, which will make it easier for

other researchers/students to quickly grasp how those algorithms operate and

to understand their differences.

1.3 Outline of Thesis

This thesis is structured as follows. Chapter 2 reviews background information about

CSPs. Chapter 3 discusses the various studied GAC algorithms, explaining and illus-

trating their mechanisms and the data structures they rely on. Chapter 4 describes

an empirical evaluation of their performance on randomly generated CSPs as well

as benchmark problems. Chapter 5 concludes this thesis with future direction for

research. Finally, Appendix A provide the pseudocode of the various algorithms

studied, Appendix B describes the data sets discussed in Chapter 4, and Appendix C

summarizes the structure of the C code of our implementation.

4

Chapter 2

Background

In this chapter, we provide background information about Constraint Satisfaction

problems (CSPs), and discuss various constraint representations. We review into

domain and relational consistency properties, and focus on the concept of Generalized

Arc Consistency (GAC). Finally, we summarize how a CSP instance is solved with

backtrack search. And finally, we give related work.

2.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined a triplet (X,D,C), where:

• X = {x1, x2, . . . , xn} is the set of variables;

• D = {dom(x1), dom(x2), . . . , dom(xn)} is the set of variables domains, where

dom(xi) is the nonempty set of domain values for the variable xi; and

• C = {c1, c2, . . . , cm} is the set of constraints that apply to the variables, re-

stricting the allowed combinations of values for variables.

5

A solution to a CSP is an assignment of a value to each variable such that all the

constraints are satisfied. A CSP instance is said to be satisfiable or consistent if a

solution exists. Solving a CSP consists in determining the existence of a solution, and

is NP-complete.

We consider that the variable domains are finite sets of values. A constraint ci is

specified by:

• a scope scp(ci), which is the set of variables to which the constraint applies, and

• a relation rel(ci), which is a subset of the Cartesian product of the domains of

the variables in scp(ci). Each tuple τi ∈ rel(ci) specifies a combination of values

that is allowed (i.e., supports) or forbidden (i.e., conflicts or no-goods).

The arity of the constraint is the size of the scope. A constraint can be unary (arity 1),

binary (arity 2), or non-binary (arity >2).

Example 1 The n-queens problem is to place n queens on an n×n chessboard such

that no two queens attack each other. This problem can be modeled as a binary

CSP as follows. The variables are the columns of the chessboard {x1, . . . , xn}. The

values of a variable are the positions in the corresponding row of the chessboard.

Binary constraints exist between every pair of variables, and forbid the positions of

the queens that are on the same row or the same diagonal. Figure 2.1 shows a solution

for the 4-queens problem.

x1 x2 x3 x4

Figure 2.1: Board representation of the 4-queens problem and one of its two solutions

6

Example 2 Consider the cryptarithmetic puzzle TWO + TWO = FOUR, where

each letter in the puzzle refers to a digit, and no two letters refer to the same digit.

The question is to map each letter to a digit so that the arithmetic operation holds.

This puzzle can be modeled as non-binary CSP. Figure 2.2 shows the puzzle, where

we to introduce the letters x1, x2, and x3 to account for the carry over. Here, the set

x3 	 x2	 x1

+	
T	 W O	

T	 W O	

F	 O	 U	 R	

Figure 2.2: An example cryptarithmetic problem

of variables is X = {T,W,O,F,U,R,x1, x2, x3}; the domains of T, W, O, F, U and R

are {0,. . .,9}, and the domains of x1, x2, x3 are {0,1}. The constraints are defined

arithmetically as follows:

c1: R + 10 x1 = O + O

c2: U + 10 x2 = x1 + W + W

c3: O + 10 x3 = x2 + T + T

c4: F = x3

c5: T 6= W 6= O 6= F 6= U 6= R

A CSP is represented as a graph, called the constraint graph or constraint network.

This representation makes it possible to apply graph algorithms to the representation

of the CSP.

Figures 2.1 and Figure 2.4 show the graphical representations of the 4-queens and

the cryptarithmetic problems respectively. The constraint graph contains a node for

every variable and there are edges linking variables if they share constraints.

7

{1,2,3,4}

x1

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

x2

x4 x3

Figure 2.3: Graphical representation of the 4-queens problem

T	 R	 O	 U	 W	

x3	

F	

x2	 x1	

c2

c1 c4 c3

c5	

Figure 2.4: Graphical representation of the cryptarithmetic problem

2.2 Representing Constraint Relations

As stated above, a constraint is defined by its scope, which is the set of variables

to which it applies, and its relation, which determines the allowed combination of

values to the variables in the scope of the constraint. Given that the relation is a set,

it can be expressed either in extension or in intension. In this thesis, we focus on

constraints expressed in extension. The tuples in a relation represent either allowed

combinations of values (a.k.a., goods or supports), or forbidden combinations (a.k.a.,

nogoods or conflicts).

We distinguish three different encoding of a relation expressed in extension: linked

list, table, and multi-valued decision diagram. Below, we discuss the latter of those

representations.

8

2.2.1 Table constraints

A table constraint is defined by explicitly listing the tuples that are either allowed

or disallowed for the variables in its scope. If the tuples listed are allowed then the

table is said to be a positive table; otherwise it is a negative table. Table constraints

are sometimes referred to as ad-hoc constraints. Positive constraints typically arise

in practice in configuration problems and databases.

The set of tuples of a constraint c is denoted table(c). We encode this set as an

array of tuples indexed from 0 to |table(c)| − 1. The worst-case space complexity for

storing a table is O(tr), where t is the number of tuples in the table and r is the

constraint arity. The status column in this array indicates whether the tuple is alive

(0) or deleted (1).

Most algorithms studied in this thesis use the data structure subtable(c, (x, a)),

which gives quick access to all the tuples of a constraint c with a given variable-value

pair (x, a). Those structures are generated for each constraint and each variable-

value pair of each variable in the scope of the constraint. Typically, a sub-table is

implemented as an array with indices ranging from 0 to |table(c, x, a)| − 1. Formally,

we have subtable(c, (x, a)) = σx←a(c) = {t|(t ∈ c) ∧ (π{x}(t) = (a))}, where σ is

the relational selection operator. Figure 2.5 shows a table constraint and two of its

three sub-tables. Those sub-tables are accessed via hash-maps, where the key is a

constraint, a variable, and its value. The worst-case space complexity of the hash-

maps remains O(tr).

2.2.2 Multi-Valued Decision Diagrams (MDD)

The tuples in a constraint can also be represented by a multi-valued decision diagram

(MDD), which is an arc-labeled directed acyclic diagram. In the special case where

9

x y z status
0 1 1 1 0
1 1 1 1 0
2 1 2 3 0
3 2 1 2 0
4 2 3 1 0
5 3 1 1 0
6 3 1 2 0
7 3 2 3 0
8 3 3 1 0

0 0
2 1
4 2
5 3
8 4

1 0
2 1
7 2

subtable(cxyz, (z,1))

subtable(cxyz,(y,2))

table(cxyz)

Figure 2.5: A table constraint and two of its three sub-tables

all the domains have only two values, the MDD becomes a Binary Decision Diagram

(BDD). An MDD has at least one root node (source). It also has exactly two terminal

nodes (sinks) that can be either tt (allowed tuples) or ff (forbidden tuples). For

simplicity, when the MDD represents allowed tuples, ff node is usually omitted from

the diagram. Figure 2.6 depicts the MDD representation of the table constraint in

Figure 2.5.

x

y y y

z z z z z

tt

1

3

3 2

2 3 1

1

1 1

1

3 3

2

2

Figure 2.6: MDD representation of a constraint

The MDD of a constraint c on variables x, y, z is denoted mdd(cxyz). The main

advantage of MDDs is that they require less space than table constraints and provide a

10

quicker access to a tuple. In [2010], Cheng and Yap introduced the algorithm ‘mddify,’

which takes as input a table constraint (as supports or conflicts) and outputs a reduced

size MDD. We use that algorithm to create our MDD constraints. Its description is

beyond the scope of this thesis.

2.3 Consistency

CSPs are NP-complete and typically solved using backtrack search (BT) algorithms.

In order to reduce the size of the search space, we enforce local consistency property.

We distinguish two types of consistency properties: those formulated on the domains

of the variables and those formulated on the relations. The algorithms for enforcing

a given consistency property typically remove inconsistent values from the domains

of the variables or inconsistent tuples from the relations of the constraints.

2.3.1 Domain consistency properties

The most common domain consistency property is arc consistency.

Definition 1 A constraint c on the variables x, y with the domains dom(x) and

dom(y) (rel(c) ⊆ dom(x)× dom(y)) is arc consistent if

• ∀a ∈ dom(x)∃b ∈ dom(y) such that (a, b) ∈ rel(c)

• ∀b ∈ dom(y)∃a ∈ dom(x) such that (a, b) ∈ rel(c)

A CSP is arc consistent if all its binary constraints are arc consistent.

Many algorithms to enforce arc consistency exist and include AC-1, AC-3, AC-4,

AC-5, etc. The above definition of arc consistency refers only to binary constraints.

11

The corresponding property for non-binary constraints is known as Generalized Arc

Consistency (GAC).

Definition 2 (Generalized arc consistency) Given a CSP (X,D,C), a con-

straint c ∈ C, and a variable x ∈ X,

• A value a ∈ dom(x) is GAC for c ∈ C where x ∈ scp(c) iff there exists a valid

tuple τ satisfying c such that πx(τ) = (a). τ is called a support for (x, a) in c.

• A variable x ∈ scp(c) is GAC for c iff all the values in dom(x) are GAC with c.

• A constraint c is GAC iff all the variables in its scope are GAC for c.

• The CSP is GAC iff all the constraints in C are GAC.

Enforcing GAC on a CSP is accomplished by removing GAC-inconsistent values from

the domains of the variables. If no domain is empty in the result CSP, the CSP is

said to be GAC.

In this thesis, we study various algorithms for enforcing GAC and compare their

performance on CSP benchmarks and randomly generated instances.

Other domain consistency properties include node consistency, k-consistency (where

3-consistency is called path consistency), and singleton arc consistency (SAC).

2.3.2 Relational consistency properties

Relational consistency properties are properties formulated on the relations of the

constraints.

In [1997], Dechter and van Beek introduced relational consistency properties that

may require adding new constraints to the CSP. Such properties have not yet been

exploited in practice because they typically modify the constraint network, which is

highly undesirable.

12

In [Gyssens, 1986], Gyssens introduced m-wise consistency. A CSP is m-wise

consistent iff for every combination of m relations in the CSP, every tuple in ev-

ery relation can be extended in a consistent manner to the m − 1 relations in the

CSP. Karakashian et al. [2010] give the first practical algorithm for enforcing m-wise

consistency, denote R(∗,m)C.

In this thesis, we are interested in pairwise consistency, where m = 2.

Definition 3 [Gyssens, 1986] Pairwise Consistency (PWC). A tuple τi in the

table of a constraint ci is PWC iff ∀cj ∈ C, ∃τj ∈ table(cj) such that πscp(ci)∩scp(cj)(τi) =

πscp(ci)∩scp(cj)(τj). We say that τi and τj are PWC and a PW-support of one another.

A CSP is PWC iff every tuple of every constraint has a PW-support.

A CSP is PWC+GAC (full PWC) iff it is both PWC and GAC [Debruyne and

Bessière, 2001].

2.4 Algorithms for Generalized Arc Consistency

GAC is formulated as a consistency property of the domains of the variables. Until

recently, all algorithms for enforcing GAC filtered only the domains of the variables.

Such is the case of GAC3 [Mackworth, 1977] and GAC2001 [Bessière et al., 2005].

More recently, Ullmann [2007] introduced an algorithm for enforcing MAC that

not only removes inconsistent values from the domains of the variables but also up-

dates the relations accordingly removing a tuple whenever any of their value in the

tuple is removed from the domain of the corresponding variable. This algorithm is

known as Simple Tabular Reduction (STR) because it operates on table constraints.

STR blurs the boundary that separates domain consistency properties and relation

13

consistency properties because it ensures that the relations themselves have no tuples

that are inconsistent.

Several recent algorithms were proposed in the literature to improve the per-

formance of the STR algorithm. One such algorithm, extended STR (eSTR), goes

beyond enforcing GAC and enforces pairwise consistency. Thus, eSTR-like algorithms

enforce both domain and relation consistency properties.

In this thesis, we study these algorithms in detail.

2.5 Solving CSPs

CSPs can be solved either with backtrack search (BT) or local search. Backtrack

search exhaustively and systematically explores combinations of values for variables,

constructively building consistent solutions. The space requirement of BT is linear in

the number of variables because BT explores the search space in a depth-first manner.

It provides the only sound and complete procedure for finding a solution to a CSP.

There are many factors that can affect the performance of search. One of such

factors is the way the variables/values are ordered for instantiation. Many heuristics

for variable and for value ordering have been introduced. The common wisdom is

to instantiate the most constrained variable first. To improve the cost of search,

it is always beneficial to enforce a consistency property at the pre-processing stage

(i.e., before search starts) and maintaining it after the instantiation of each variable,

throughout search (i.e., look-ahead).

14

2.6 Phase Transition

Cheeseman et al. [1991] presented empirical evidence, for some random combinatorial

problems, of the existence of a phase transition phenomenon at a critical value (cross-

over point) of an order parameter. They showed a significant increase in the cost of

solving these problems around the critical value. Figure 2.7 illustrates this situation.

Critical value

Co
st

of
 so

lv
in

g
th

e
pr

ob
le

m

of order parameter
Order parameter

(Constraint tightness t)

instances
Mostly solvable

Mostly unsolvable
instances

Figure 2.7: Cost of problem solving

They also showed that the location of the phase transition and its steepness change

with the size of the problem. Because problems at the cross-over point are acknowl-

edged to be probabilistically the most difficult to solve, empirical studies to compare

the performance of algorithms are typically conducted in this area. In the case of

CSPs, constraint tightness (with fixed values for the number of variables, domain size,

and constraint density or ratio) and constraint ratio (with fixed values for number of

variables, domain size, and constraint tightness) are often used as order parameters.

15

Summary

In this chapter, we reviewed some background information on CSPs that is relevant

to this thesis. We described how the relations of the constraints can be represented.

We reviewed common local consistency properties, and discussed Generalized Arc

Consistency, which is the focus of this thesis.

16

Chapter 3

GAC Algorithms

The most commonly used algorithm for enforcing GAC is GAC2001 [Bessière et al.,

2005]. Recently, new algorithms have been proposed to enforce GAC, that exploit the

representation of the relations. They all enforce GAC and filter the domains. These

algorithms are mainly the following:

• Positive table constraints: The following algorithms filter the relations of the

constraints: STR1 [Ullmann, 2007], STR2 [Lecoutre, 2011], STR3 [Lecoutre et

al., 2012]. The following algorithm enforces pairwise consistency as well: eSTR*

(which includes eSTR1 and eSTR2) [Lecoutre et al., 2013].

• Negative table constraints: The following algorithm operates on relations for-

matted as tables of nogoods (i.e., forbidden tuples): STR-Ni [Li et al., 2013].

It removes from the table the nogoods that no longer need to be checked.

• Multi-valued decision diagrams (MDD) constraints: The following algorithm

keeps track of nodes from the MDD that lead to inconsistent tuples: mddc

[Cheng and Yap, 2010].

17

Table 3.1 summarizes the above-listed algorithms, their space and time complexity,

as well as the dedicated data structures on which they rely.

Table 3.1: Overview of the GAC algorithms studied

Algorithm Complexity Data Structures
Space Time

GAC2001 [Bessière et al., 2005] O(erd) O(er2dr) LastGAC
STR1 ≡ GACstr [Ullmann, 2007] O(n+ rt) O(r′d+ rt′) gacValues, table(c)

STR2 ≡ GACstr2 [Lecoutre, 2011] O(n+ rt) O(r′(d+ t′)) gacValues, table(c), Sval,
Ssup

STR3 [Lecoutre et al., 2012] O(rd+ t) O(rt+m) row(c, x), invalid(c), dep(c)
eSTR [Lecoutre et al., 2013] O(n+max(r, g)t) O(rd+max(r, g)t) ctr[c][ci], ctrIndices[c][ci],

ctrLink[c][ci]
STR-Ni [Li et al., 2013] O(n+ rt′) O(r′d+ rt′) table(c), count(x, a, c)

mddc [Cheng and Yap, 2010] O((hd+ k + 1)m) O(emdd(c) + λ) MDD(c), ΣNO, ΣY ES ,
gacV alues(x)

n the number of variables in the CSP d the maximum domain size of the variables
e is the number of constraints r the constraint arity
t the maximum size of a relation m the length of a path in the search tree
g the number of intersecting constraints emdd(c) the number of MDD edges
λ number of GAC-inconsistent values h number of MDDs
k number of MDD constraints

In this chapter, we study the mechanisms of the above algorithms and the data

structures that they exploit. We state their complexity in terms of e is the number of

constraints, r the constraint arity, t the maximum size of a relation, n the number of

variables in the CSP, d the maximum domain size of the variables, and m the length

of a path in the search tree. Further, we propose a hybrid algorithm, STR-h. Our

algorithm combines STR1 and STR-Ni because they are compatible with respect to

the data structures they use.

3.1 GAC2001

GAC2001 (a.k.a. GAC-3.1) adapts, to non-binary CSPs, the algorithm for binary

CSPs AC2001/3.1 [Bessière et al., 2005] is based on AC2001/3.1 (for binary con-

straints). Remember that enforcing the property GAC on a CSP requires that we

check that each value a in the domain of a variable x has a supporting tuple (that is

18

alive or active) in each of the constraint c that apply to the variable (i.e., x ∈ scp(c))).

GAC2001 uses the data structure LastGAC((x, a), c) that keeps a pointer to the tu-

ple τ ∈ rel(c) such that τ was the latest found support of (x, a) in rel(c). Because

the table of the constraint c is traversed linearly, from top to bottom, we say that τ

is the ‘smallest’ support of c.

In order to check the GAC consistency of a variable x given a constraint c,

GAC2001 calls the function REVISE2001 This function checks for each value a ∈

dom(x) whether LastGAC((x, a), c) still belongs to rel(c) (i.e., is still active). If it

does not, REVISE2001 continues to traverse the table rel(c) seeking another support-

ing tuple for (x, a). If it finds a supporting tuple τ ∈ rel(c), we set LastGAC((x, a), c)←

τ . Otherwise, we remove a from dom(x) (i.e., dom(x)← dom(x)\{a}). The function

succ(τ, rel(c)) returns the smallest tuple in rel(c) greater than τ . The pseudo-code

of the REVISE2001 is provided as Algorithm 1 in Appendix A.

We illustrate the operation of REVISE2001 on the simple example of Figure 3.1.

Suppose that value 1 was removed for some reason from the domain of the variable

{1,2,3,4} {1,2,3,4}
x1 x2

Positive table constraint
x1 x2

0 2 1
1 3 1
2 3 2
3 4 1
4 4 2
5 4 3

Figure 3.1: An example using REVISE2001

x2. REVISE2001 on (x1, 4) finds that LastGAC((x1, 4), c12) = 3 (where c12 is the

constraint between x1 and x2). The tuple at index 3 can no longer be a GAC support

for (x1, 4) because the value 1 /∈ dom(x2). So, REVISE2001 moves to the next tuple

in the table, the one at index 4, verifies that it is indeed a supporting tuple for (x1, 4),

19

and resets LastGAC((x1, 4), c12) = 4.

The worst-case time complexity of GAC2001 is O(er2dr) and its space complexity

is O(erd). (Reminder, e is the number of constraints, r is the constraint arity, and d

is the maximum domain size of the variables.)

3.2 Simple Tabular Reduction for Positive Table

Constraints

Ullmann [2007] proposed the first GAC algorithm that updates the relations to remove

inconsistent tuples. This algorithm is called “Simple Tabular Reduction” (STR). In

this thesis, we refer to this algorithm as STR1 and GACstr in order to differentiate

it from its later variations.

Whenever a value is removed from the domain of a variable, all tuples mentioning

the deleted domain values are removed from all the constraint tables in which the

variable appears. In turn, whenever a domain value for a given variable is missing

from the active tuples of any constraint that applies to the variable is removed from

the domain of the variable.

Below, we discuss STR1 and the subsequent algorithms that improve it: STR2,

STR3, eSTR*, STR-Ni. An important feature/advantage of STR-like algorithms is

the cheap restoration of the data structures used when backtracking occurs.

We denote by future(c) all the variables in the scope of c that have not yet been

instantiated.

20

3.2.1 STR1

The formulation of STR depends on the representation of each constraint as an object.

The constraint object has to maintain the following accessors/fields:

• table(c) contains the initial set of tuples allowed by the constraint c.

• table(c)[i] is a tuple in the ith position of table(c), where 0 ≤ i ≤ t− 1 and t is

the number of tuples in the table.

• first(c) is the position of the first non-deleted tuple in table(c). When the table

of c is empty, first(c) = −1.

• removedHead is an array of size n such that removedHead(c)[d] is the position

of the first deleted tuple of table(c) that was removed from the search at depth

d. It is -1 if nothing was removed at depth d.

• removedTail is an array of size n such that removedTail(c)[d] is the position of

the last deleted tuple of table(c) that was removed from the search at depth d.

It is initialized only if removedHead(c) 6= −1.

• next is a pointer from a given active tuple in table(c) to the next active tuple in

the table. next is implemented as an array of size t. For the tuple in position

i in table(c), next(c)[i] gives the position in table(c) of the next active tuple in

the table. When no such active tuple exists, then next(c)[i]← −1.

As stated in Section 2.2.1, our implementation of table(c) has a column called

status where table(c)[i][status] = 0 when the tuple at position i is still active and

table(c)[i][status] = 1 otherwise. As a result, we do not need to implement removed-

Head and removedTail

21

When processing a given constraint c, we store for each the variable x in the scope

of c the domain values that are GAC for x given c in the data structure gacV alues(x).

We implemented the function GACstr (Algorithm 2 in Appendix A), which is

an improvement by Lecoutre [2011], of the original algorithm of Ullmann [2007] .

The loops at lines 1, 7 and 15 only operate on future variables because we can only

remove values from the domains of uninstantiated variables. The sets gacV alues(x),

x ∈ scp(c) are emptied at lines 1 and 2 because no value for x is initially guaranteed

to be GAC. Then, in lines 4–14, we loop through all tuples of table(c) to test them

for validity (i.e., we check if the tuples are allowed or forbidden). When a tuple τ

is found to be invalid, it is marked as deleted with respect to the current depth of

search. Otherwise, the domain values appearing in τ are added to the gacV alues of

their corresponding variables. After going through all tuples in table(c), we remove

unsupported values (dom(x) \ gacV alues(x)) at lines 15–20. Whenever a domain

becomes empty, inconsistency is returned at line 18.

When backtracking occurs during search, all values and tuples that were removed

at that depth, or deeper, in search are restored by simply setting table(c)[i][status]

back to 0.

We illustrate the operation of STR1 on a simple example. Suppose we first run

STR1 on the constraint c12 over x1 and x2 shown in Figure 3.2. While we looping

{1,2,3,4} {1,2,3,4}
x1 x2

table(c12)
x1 x2 status

0 2 1 0
1 3 1 0
2 3 2 0
3 4 1 0
4 4 2 0
5 4 3 0

Figure 3.2: STR1: Enforcing GAC on table(c12

22

through all the tuples in table(c12), we update gacValues as follows:

• gacV alues(x1)← {2,3,4}

• gacV alues(x2)← {1,2,3}

Next, we update dom(x1), dom(x2) to reflect the filtering by STR1. After that, we

run STR1 on the constraint c23 defined over x2 and x3 as shown in Figure 3.3.

table(c23)

{1,2,3,4} {1,2,3}
x2 x3

x2 x3 status
0 2 1 0
1 3 1 0
2 3 2 0
3 4 1 1
4 4 2 1
5 4 3 1

Figure 3.3: STR1: Enforcing GAC on table(c23

While looping through the tuples of table(c23), we delete the tuples at indices 3,

4, and 5 because the value 4 no longer appears in dom(x2). Further, we update

gacValues as follows:

• gacV alues(x2)← {2,3}

• gacV alues(x3)← {1,2}

At this point, the domains of x2, x3 are updated accordingly.

The worst-case time complexity of STR1 (Algorithm 2 in Appendix A) is O(r′d+

rt′) where, for a given constraint c, r′ = |future(c)| denotes the number of uninstan-

tiated variables in c and t′ is the size of the current table of c. The worst-case space

complexity of STR1 is O(n+ rt) per constraint.

23

3.2.2 STR2

Lecoutre [2011] introduced an improved version of GACstr known as GACstr2 or

simply STR2. STR2 offers two improvements.

According to the first improvement, while looping through the active tuples of a

constraint and as soon all the values in the domain of a variable have been proven to

be GAC, we do not need to continue to seek supports for the values of this particular

variable. To implement this idea, a new data structure Ssup is introduced. Ssup con-

tains variables in future(c) (uninstantiated variables) whose domain contains at least

one value for which no support has been found. In the STR2 algorithm (Algorithm 3

in Appendix A), lines 1, 6 and 8 initialize Ssup to be the same as future(c), while

line 20 removes any variable x for which |gacV alues(x)| ← |dom(x)| (i.e., all values

of dom(x) are supported) from Ssup. As a result, we only iterate over variables in

Ssup at lines 16 and 26.

The second improvement aims to avoid unnecessary validity checks. At the end of

an invocation of STR2 on a constraint c, we know that for every variable x ∈ scp(c),

every tuple τ where πτ (x) /∈ dom(x), τ has been removed from table(c). If there

is no backtrack and dom(x) has not changed between this invocation and the next

invocation, then, at the time of the next invocation, it is certain that πτ (x) ∈ dom(x)

for every alive tuple τ in table(c). Therefore, there is no need to check whether

πτ (x) ∈ dom(x). To implement this improvement, we introduce Sval, which is the

set of all the uninstantiated variables of c whose domains have been reduced since

the previous invocation of STR2. When STR2 is called on a constraint c, the last

assigned variable, denoted lastAssignedV ariable, is added to Sval if it is in the scope

of c. After any variable x has been instantiated (e.g., x← a), some tuples may become

invalid due to the removal of the other values from dom(x). The last assigned variable

24

is the only instantiated variables for which validity operations must be performed.

In STR2 (Algorithm 3 in Appendix A), Sval is first initialized at lines 2 through 5.

At line 9, getLastRemovedValue(dom(x)) is the last value that was removed from the

domain of x, and LastRemoved(c, x) is the last value that was removed from the

domain of x while processing constraint c. If these two values are different, then it

means that the domain of x has changed since the previous invocation of STR2 on

the constraint c, and then x is added to Sval at line 10.

We illustrate the operation of STR2 on the simple example of Figure 3.4. Suppose

Ssup = {x2,x3}

Sval = {x2,x3} {1,2,3,4} {1,2,3}

x2 x3

table(c23)
x2 x3 status

0 2 1 0
1 3 1 0
2 3 2 0
3 4 1 1
4 4 2 1
5 4 3 1

Figure 3.4: An example using STR2

we have removed value 4 from dom(x2) for some reason, and then call STR2 on the

constraint c23 over x2 and x3. Assume that no variable has been yet instantiated (e.g.,

we are still at the preprocessing stage), the sets Ssup and Sval are shown in Figure 3.4,

and the gacValues, lastRemoved, and lastRemovedvalue are as follows:

• lastRemoved(c23, x2)← NIL

• lastRemovedvalue(x2)← 4

• gacV alues(x2)← {2,3}

• lastRemoved(c23, x3)← NIL

25

• lastRemovedvalue(x3)← NIL

• gacV alues(x3)← {1,2}

Because lastRemoved(c23, x2) 6= lastRemovedvalue(x2), and lastRemoved(c23, x3) 6=

lastRemovedvalue(x3), both variables x2 and x3 are added to Sval. After validity

operations have been performed on the variables in Sval, the domains of x2 and x3

are updated to {2,3} and {1.2}, respectively.

The worst-case time complexity of STR2 (Algorithm 3) is O(r′(d + t′)), where

r′ ≤ r. Similar to STR1, the worst-case space complexity of STR2 is O(n + rt) per

constraint, and lastRemoved takes O(r) space. Ssup and Sval also take O(r) space,

but may be shared by all constraints. (Reminder, r is the constraint arity, and d is

the maximum domain size of the variables, t the maximum size of a relation, and n

the number of variables in the CSP).

3.2.3 STR3

Lecoutre et al. [2012] introduced STR3, which has a complex representation of the

table constraints. In STR3, the representation focuses on domain values, associating

a set of tuple identifiers with each value in a variable, indicating the tuples where the

value appears. Figure 3.5 illustrates an example of the standard table representation,

table(c12), and the equivalent representation used by STR3 for the variables x1 and

x2 in row(c12, x1) and row(c12, x2), respectively. The required data structures are as

follows:

• row(c, x) is a table with three columns of length |dom(x)|. It stores, for each

value in the domain of x (column val), the list of tuple indices of c where

the value appears (column tind), and an integer (column sep) initialized to the

26

Figure 3.5: Equivalent table representation

size of the corresponding tind − 1. This integer is called the separator of the

corresponding tind, and indicates the position of the tuple in tind that is the

last known support the corresponding value of x in c. As STR3 progresses, and

tuples are deleted, the value of sep is decremented. An index that appears after

sep corresponds to a deleted tuple.The tuples whose index appears

• dep(c) is called the dependency list of constraint c. This structure is used to

determine whether a tuple of c is an active support for some variable-value pair.

It is implemented as an array of size t of sets. dep(c)[i] is the set of variable-

val tind sep
1 {} -1
2 {0} 0
3 {1,2} 1
4 {3,4,5} 2

0 {(x1,2) (x2,1)}
1 {(x1,3)}
2 {(x2,2)}
3 {(x1,4)}
4 {}
5 {(x2,3)}

row(c12,x1) dep(c12)
val tind sep
1 {0,1,3} 2
2 {2,4} 1
3 {5} 0
4 {} -1

row(c12,x2) table(c12)
x1 x2

0 2 1
1 3 1
2 3 2
3 4 1
4 4 2
5 4 3

Figure 3.6: Dependency list of the table representation

value pairs (x, a), such that the ith tuple in c is an active support of (x, a) on

27

c. dep(c)[i] is initialized by adding the variable-value pair (x, a) to dep(c)[i],

When the tuple at index i is deleted, all the variable-value pairs in dep(c)[i]

must find a new active support. dep is updated during propagation and search

as tuples are deleted. However, it needs not be updated upon backtracking,

because backtracking during search does not invalidate supports. Figure 3.6

illustrates this data structure for the constraint c12.

• invalid(c) is a sparse set containing all the invalid tuples for constraint c. Sparse

sets were introduced by Briggs and Torczon [1993] to represent a set in a com-

pact manner. invalid(c) contains at most t elements. It is represented by two

arrays (dense and sparse) and a counter (members). dense contains all the ele-

ments in the set and sparse contains pointers to the position of the elements in

dense. members store the number of elements in the set. Initially, members←

0 and the two arrays are initialized to be empty. Figure 3.7 illustrates an ex-

ample of a sparse set that contains {0, 2, 4, 7}. To add an element 0 ≤ k < n

to a sparse set that does not already contain k, we set dense[members] ← k,

sparse[k]← members, and increment members by 1. An element k is in the set

iff sparse[k] < members and dense[sparse[k]] = k. To remove an element, we

replace it with the last element in dense and decrement members. We denote

2 4 7 0

3 0 1 2
0 1 2 3 4 5 6 7

dense

sparse

members

Figure 3.7: An example of the sparse set representation

28

dense(invalid(c)), sparse(invalid(c)) and members(invalid(c)) the accessors

to the internal data-structure of the sparse set.

Unlike other STR algorithms, tuples are not explicitly discarded from the tables of

STR3, rather the value sep partitions the tuples into forbidden and allowed/unvisited

tuples.

Central to the implementation of STR3 (Algorithm 5 in Appendix A) is the rela-

tionship between the separator (sep) and the dependency list (dep). A variable-value

pair (x, a) is GAC on c, either because

• The position of sep in the row where val = a points to a tuple that is not stored

in invalid(c), thus, is an active support, or

• (x, a) appears at some index of dep(c) that corresponds to a tuple that is not

in invalid(c).

Only one of the above two conditions is required for (x, a) to be GAC on c. When

both conditions hold, the tuple of c they point to may be the same. When this

situation occurs, we say that the separator and the dependency list are synchronized

for (x, a).

STR3 operates differently at preprocessing and search, as we explain below and

illustrate in Figure 3.8.

Preprocessing: Before search starts (at preprocessing), GACinit (Algorithm 4 in

Appendix A) is called to remove all invalid tuples and initializes sep and dep so

that they point to opposite ends of row(c, x) for each value a in the domain of

x. Both values of sep and dep are active supports of (x, a) because all invalid

tuples have already been removed during preprocessing. When dep and sep are

29

Two identical valid supports Two distinct valid supports

One valid support
One invalid support

Synchronized Unsynchronized
Start

sep fails

dep fails

dep fails

sep restored sep restored dep fails (= sep fails)

Figure 3.8: Relationship between separators and the dependency lists, [Lecoutre et al.,
2012]

synchronized at a particular value, we are provided with a single active support,

and the dependency list simply mirrors what happens to the separator.

Search: During search, when a value v is assigned to a variable x, the values dom(x)\

{v} are removed from dom(x). Thus, STR3 is called to re-validate the lost

support for all the constraints where x ∈ scp(c). For each removed value a

from x, every tuple in row(c, x) where (x, a) appears (in column tind) becomes

inactive, and STR3 appends that tuple to invalid(c), if it is not already present.

Whenever the tuple at index k becomes inactive (and the tuple is added to

invalid(c)), all the variable-value pairs in dep(c)[k] lose their active support.

For each variable-value pair (y, b) ∈ dep(c)[k] that has lost its active support,

we look through the corresponding tind of the value b in row(c, y) to check

whether or not all its supporting tuples are in invalid(c). If an active support

is found, then the position sep is set to the position of the supporting tuple

found in the corresponding tind and its previous value is stored for potential

backtracking. If no active support is found, the value b is removed from the

domain the variable y, and (y, b) is then added to the propagation queue. If a

30

domain wipe out occurs, STR3 returns inconsistency.

When STR3 succeeds during search, the separators and the dependency list

remain synchronized. However, when search backtracks, only the sep associated

with a value a in row(c, x) is reverted, and dep(c)[k] remains unchanged. Thus,

the dependency list and separators may no longer be synchronized at (x, a).

Whenever such unsynchronization occurs, the tuple at the position of sep for

the value a in row(c, x) and the tuple at index k are two distinct active supports

of (x, a) in c. When there is loss of synchronization, and as long at least one

of the two tuples (the one in position sep for the value a in row(c, x), or the

tuple at index k) remains active, we do not need to seek a new active support.

In such a situation, we restore synchronization using the active support.

Figure 3.9 illustrates an example of the updates of the data structures when STR3

is called on (c12, x1) (for deleted values a = 2, a = 3, and a = 4) during search, where:

(a) Results after GACinit and the invocation of STR3 on the first removed value 2.

(b) Results after the invocation of STR3 on the second removed value 3.

(c) Results after the invocation of STR3 on the third removed value 4.

The worst-case accumulated cost of STR3 along a path in the search tree of length

m is O(rt+m). The worst-case space complexity of STR3 is O(rd+ t).

3.2.4 eSTR

Lecoutre et al. [2013] introduced the full pairwise consistency and STR algorithm

(FPWC-STR or eSTR∗ algorithm). That algorithm not only implements simple

tabular reduction to enforce GAC, but also enforces pairwise consistency. The ∗

31

dom(x1) = {1}
dom(x2) = {1,2,3,4}
For (x1,2): inv(c12) = {0}

members(inv(c12)) = 1

dom(x1) = {1}
dom(x2) = {1,2,3,4}
For (x1,3): inv(c12) = {0,1,2}

members(inv(c12)) = 3

dom(x1) = {1}
dom(x2) = {2,3,4}
For (x1,4): inv(c12) = {0,1,2,3,4,5}

members(inv(c12)) = 6

(a) (b) (c)

dep(c12)
0 {(x1,2) (x2,1)}
1 {(x1,3)}
2 {(x2,2)}
3 {(x1,4)}
4 {}
5 {(x2,3)}

dep(c12)
0 {(x1,2)}
1 {(x1,3) (x2,1)}
2 {(x2,2)}
3 {(x1,4)}
4 {}
5 {(x2,3)}

dep(c12)
0 {(x1,2)}
1 {(x1,3)}
2 {(x2,2)}
3 {(x1,4) (x2,1)}
4 {}
5 {(x2,3)}

Figure 3.9: An example using STR3

indicates that the algorithm can be used in combination of any of the other STR

algorithms (i.e., STR1 and STR2).

We denote I the set of variables at the intersection of the two constraints. We call a

sub-tuple the projection on I of a tuple of any of the two constraints. The main idea of

eSTR∗ is to store the number of times that each sub-tuple appears in the intersection

of any two constraints. To this end, eSTR∗ uses additional data structures that we

explain with the example shown in Figure 3.10 for the two constraints c12 and c23,

and I = {x2}:

• ctrindices[ci][cj][i] is an array of size |table(ci)| that stores, for a tuple in

table(ci)[i], the index in table(ci) of the first appearance of the value of the

sub-tuple πI(table(ci)[i]). For example, for ctrindices[c12][c23] and I = {x2},

the values of the sub-tuple (x2) are (1), (2), and (3). The first value, (1), ap-

pears for the first time in table(c12) at index 0. Because this first value, (1),

appears also in table(c12)[1] and table(c12)[3], we have ctrindices[c12][c23][0] =

ctrindices[c12][c23][1] = ctrindices[c12][c23][3] = 0. Similarly, the second value,

32

x1 x2
0 2 1
1 3 1
2 3 2
3 4 1
4 4 2
5 4 3

table(c12)

x2 x3
0 2 1
1 3 1
2 3 2
3 4 1
4 4 2
5 4 3

table(c23)

0 0
1 0
2 1
3 0
4 1
5 2

0 0
1 1
2 1
3 2
4 2
5 2

0 3
1 2
2 1

0 1
1 2
2 3

0 NULL

1 0
2 1

0 1
1 2
2 NULL

ctrindices[c12][c23]

ctr[c23][c12]

ctrindices[c23][c12]

ctr[c12][c23]

ctrLink[c12][c23] ctrLink[c23][c12]

Figure 3.10: An example of the data structures used by eSTR

(2), appears for the first time in table(c12) at index 2. Because this second value

of the sub-tuple, (2), appears also in table(c12)[4], we have ctrindices[c12][c23][2] =

ctrindices[c12][c23][4] = 1.

• ctr[ci][cj] is an array that stores, for each of the sub-tuples in I, the number of

active tuples in which it appears in ci. For example, assuming all the tuples of

table(c12) are active, in ctr[c12][c23], the first value of the sub-tuple (x2) is (1)

and occurs three times in table(c12), the second value is (2) and occurs twice,

and the third value is (3) and occurs once.

• ctrLink[ci][cj] is an array of size |ctr[ci][cj]| that links ctr[ci][cj] to ctr[cj][ci].

For each counter ctr[ci][cj][k] corresponding to a value of the sub-tuple for the

variables I, ctrLink[ci][cj][k] holds the corresponding index value in the counter

in ctr[cj][ci] that is associated with that value of the sub-tuple. If the value of

33

the sub-tuple is not included in any sub-tuple, then ctrLink[ci][cj][k] is set

to NULL. For example, ctrLink[c12][c23][0] = NULL because the value of

the sub-tuple in πx2(table(c12)) indexed at 0, which is (1), is not a member

of πx2(table(c23)). Similarly, ctrLink[c12][c23][1] = 0 and ctrLink[c12][c23][2] =

1 because the values of the sub-tuples in πx2(table(c12)) indexed at 1 and 2,

which are (2) and (3) respectively, appear πx2(table(c23)) at the indices 0 and 1,

respectively.

eSTR∗ makes use of two functions in addition to the functions used by the original

the algorithms that they improve (i.e., STR1 and STR2):

• isPWconsistent is a function called whenever a tuple τ ∈ table(ci) is found

to be valid. It iterates over each constraint cj that intersects with ci, and

verifies whether τ has a PW-support in table(cj). It achieves this operation by

using the structures ctrindices[ci][cj] and ctrLink[ci][cj] to locate the counter

ctr[ci][cj]. Unless the function returns NULL (indicating that there is no link)

or 0 (indicating that there are no supports left), then τ has a PW-support in

table(cj).

• updateCtr is called to update the counters associated with a constraint ci

whenever a tuple is removed from table(ci). For each constraint cj that in-

tersects with constraint ci, we locate the index of the value of the sub-tuple k in

ctrindices[ci][cj]. Then, we decrement the corresponding counter in ctr[ci][cj][k]

by 1. If this value becomes 0, then we know that some of the tuples in cj have

lost their PW-support, and that the two constraints need to be added to the

propagation queue.

The data structures for the constraints c12 and c23 are illustrated in Figure 3.10.

34

eSTR1 algorithm is shown in Algorithm 9 in Appendix A. It calls isPWconsistent

at line 7. After each call to removeTuples, it calls the function updateCtr at line 14.

Figure 3.11 illustrates an example of applying eSTR1. Suppose for some reason,

{1,2,3,4}

table(c34)

{1,2}
x3 x4

x3 x4 status
0 2 1 0
1 3 1 1
2 3 2 1
3 4 1 1
4 4 2 1
5 4 3 1

Figure 3.11: An example using eSTR

we have reduced the domain of x3 as shown. Next we run eSTR on the constraint

c34 over variables x3 and x4. While iterating over the tuples, we find that the tuple

at index 0 is valid and pw-consistent, but tuple 1 is not valid because the value 3 is

no longer in the domain of x3. Also, tuple at index 1 is not pw-consistent because

ctrLink(x3)(x4)[ctrindices(x3)(x4)(1)] = NULL. As a result, we set the status at

index 1 to 1 (i.e., tuple is deleted). We do the same for tuples at indices 2, 3, 4, and 5.

Then, we update the domains of variables x3 and x4 accordingly.

Similarly to the previous STR algorithms, whenever backtracking occurs, appro-

priate values and tuples are restored. In addition, eSTR∗ restores all decremented

counters when restoring the tuples.

The worst-case time complexity of eSTR1, is O(rd + max(r, g)t) where g is the

number of intersecting constraints. The worst-case time complexity for restoring

counters is O(gt). The worst-case space complexity of eSTR1 is O(n + max(r, g)t)

per constraint.

35

3.3 Simple Tabular Reduction for Negative Table

Constraints: STR-Ni

Li et al. [2013] introduces STR-N and STR-Ni, which implement simple tabular reduc-

tion on negative table constraints. Below, we discuss only STR-Ni, which improves

STR-N. The main advantage of the STR-Ni algorithm over the above-discussed STR

algorithms is that it operates directly on negative table constraints. Thus, we do not

need to convert conflicts into supports, which results in better performance on loose

constraints because the sizes of the tables of conflicts are smaller than that of the

tables of supports.

Similarly to the STR1 and STR2 algorithms, STR-Ni dynamically maintains the

constraint tables, and iterates over their tuples. The main difference between this

method and the STR for positive tables is in the way validity checks are made (i.e.,

how a given variable-value pair is supported in a constraint). In STR-Ni, a tuple τ

is a conflict1 if and only if all the values in this tuple are present in the domains of

their corresponding variables. That is, for a negative table constraint c and variable

x ∈ scp(c), if there exists a valid tuple τ involving a value (x, a) and τ /∈ table(c),

then there is at least one support for the value (x, a) on c.

STR-Ni (Algorithm 10 in Appendix A), uses the same data structures used for

STR1 (a.k.a. GACstr, Algorithm 2 in Appendix A), except for the list of supported

domain values gacValues. An additional data structure count((x, a), c), which is the

number of supports of (x, a) in rel(c), is maintained for all variable-value pairs.

count((x, a), c) is initialized to the product of the current domain sizes of all the

variables in scp(c) except for x.

1The paper inaccurately refers to τ as a valid tuple, but we refer to it as a conflict because it is
the exact nature.

36

When a tuple is found to be a conflict while iterating over the tuples of a table(c),

count((x, a), c) of for each (x, a) listed in the tuple is decremented by 1. If count((x, a), c)

is greater than 0, then the value (x, a) has at least one support in the constraint c. In

the paper, although the authors dynamically maintain the negative tables by remov-

ing tuples whose values have all been filtered out from the variables domains, they

do not learn new conflicts and add them to the constraints.2

When the smallest value of count((x, a), c) for all variable-value pairs (x, a) in a

given constraint c is greater than the number of no-goods alive in the constraint, then

we are guaranteed that all the (x, a) have at least one support, and we do not need

to check the constraint at all.

The worst-case space and time complexities of GACstr also apply to STR-Ni,

except that t is the size of the negative table. Because count((x, a), c) is simply an

integer, its space requirement is O(nd).

3.4 A Comparative Analysis of STR Algorithms

STR1 iterates over the tuples of a constraint represented as a positive table. Whenever

a tuple is found to have a value that is no longer in the domain of its corresponding

variable, the tuple is removed. Conversely, values that still appear in the variables

may lose their support following some tuple deletions. Those values are then removed

from the corresponding domains. The process iterates until a fixed point is reached.

STR2 improves on STR1 in two ways:

1. Firstly, while going through the tuples of a constraint, as soon as all the values

in the domain of a variables are ‘covered’ by the active tuples, we stop checking

2Conflict learning can learn new nogoods, which can be exploited to prune away sub-trees where
those conflicts show up again in the search tree.

37

the remaining tuples.

2. Secondly, if the domain of a variable has not changed between two subsequent

consistency calls on a constraint on that variable, then the values in the vari-

able’s domain are guaranteed to be GAC by the first call and need not be

checked at the second call.

STR3 makes use of a complex representation of the table constraint. The rep-

resentation associates the domain values of variables to the tuples they appear in.

Invalid tuples are partitioned into ‘deleted’ and ‘unchecked or active,’ rather than

being removed from the table. This method of partitioning tuples helps us to avoid

repeated consistency checks for the same values.

eSTR∗ uses the same techniques as STR1 and STR2 to achieve GAC. In addition,

it also achieves pair-wise consistency. eSTR∗ stores the number of times that each

sub-tuple appears in the intersection of any two constraints, by creating a counter

structure that stores the number of active tuples in a constraint.3

STR-Ni uses the same technique as STR1, but operates on negative tables (con-

flicts). Unlike STR1, where an active tuple confirms that the value of a variable has

a support, in STR-Ni it confirms that the value has one less support. STR-Ni is

particularly advantageous for problems where the relation of a constraint has more

conflicts than supports.

3This counter operation is reminiscent of AC-4 [Mohr and Henderson, 1986], which is theoreti-
cally optimal but overly costly in practice [Wallace, 1993].

38

3.5 A Comparative Analysis of STR Algorithms

and GAC2001

Based on the attributes of the already listed algorithms, we are able to point out

some obvious differences:

• While both GAC2001 and STR algorithms work with tuples, GAC2001 does

not maintain tuples in tables like the STR algorithms do.

• While ‘action’ in GAC2001 is triggered by deletion of domains values, constraint

propagation in STR-based algorithms is triggered by both domains values and

relations tuples deletions.

3.6 GAC for MDD-Represented Constraints

STR-like algorithms operate on table constraints. However, the size of a table con-

straint is exponential in the arity of the constraint. Both Gent et al. [2007] and

Katsileros and Walsh [2007] propose to use tries as a more compact representation

than tables. Cheng and Yap [2010] notes that updating both table and trie rep-

resentations (to remove deleted tuples) can be costly, and proposed to use instead

multi-valued decision diagram (MDD) to represent constraints. They introduce the

coarse-grained mddc algorithm (Algorithm 11 in AppendixA) to enforce GAC on this

representation. They argue that mddc may remove exponential number of invalid

tuples in polynomial or possibly constant time, thus achieving full incrementality of

constraint representation in constant time.

The MDD representation of a constraint c is denoted MDD(c). Each time it

is applied on a constraint c, the function mddcSeekSupports() (lines 1 and 6 in

39

Algorithm 11 in Appendix A) creates, for each variable x in the scope of c, a set S of

domain values of x that have no support in constraint c. (The set S of variable x is

similar to the structure gacValues in STR1 and STR2.) S is initialized with all the

values in the current domain of x. mddcSeekSupports traverses the MDD constraint

MDD(c) recursively, updating S as it progresses. After the traversal of MDD(c), we

update dom(x) ← dom(x) \ S. In mddcSeekSupports, the function explores the sub-

MDD rooted at a given node. If this node corresponds to a leaf-node or has already

been explored, the node can be detected as supported or not. Otherwise, the children

of the nodes are explored (mddcSeekSupports are called on them) as long as the value

labeling the outgoing edge is still in the current domain of the corresponding variable.

When a supported child node is found, both the parent node and the value labeling

the arc are supported.

For example, suppose we have already reduced the domain of variable x2 as shown

in Figure 3.12, and we then invoke mddc on MDD(c23). The resulting sets S are as

follows:

table(c23)

{1,2,3}

{1,2,3,4}

x2

x3

x2 x3
0 2 1
1 3 1
2 3 2
3 4 1
4 4 2
5 4 3

n3

n1

n4

n5

MDD(c23)

x2

x3 x3 x3

tt

2

2

1 1
1

4 3
n2

3
2

Figure 3.12: An example showing a constraint c12, table(c12), and MDD(c12

• S(x2)← {1}

• S(x3)← {3, 4}

40

The data structures used for caching visited MDD nodes and that support the incre-

mentality of mddc during search are as follows:

• ΣY ES contains nodes of MDD(c) such that sub-MDD rooted at each node is

satisfiable. From the example in Figure 3.12, we have ΣY ES ← {n1, n2, n3}

because the sub-tuples rooted n2 and n3 are supported. Note that even though

the edge labeled with the value 4 and point out of n1 correspond to a value that

is no longer in the domain of x2, it remains supported because it has at least

one child node that is supported.

• ΣNO contains nodes of MDD(c) such that the sub-MDD rooted at each node

is unsatisfiable. From the example in Figure 3.12, we have ΣNO ← {n4}. n4 is

not supported because the value labeling the edge incident to n4 is no longer in

the domain of its variable x2.

Because unsatisfiable values remain unsatisfiable as more variables are assigned,

mddc achieves incrementality by maintaining a sequence of sets ΣNO
1 , . . . ,ΣNO

d

during search, where 1, . . . , d denotes the search depth.

The worst-case time complexity of enforcing mddc on a constraint c is O(emdd(c) +

λ) where emdd(c) is the number of edges in MDD(c) and λ the number of values

detected GAC-inconsistent.

3.7 Our Contribution: A Hybrid STR (STR-h)

All of the studied STR algorithms either work on positive tables (e.g., STR1, STR2,

STR3, and eSTR∗) or negative tables (e.g., STR-N and STR-Ni), without taking into

consideration what is the best representation of each individual relation.

41

We propose to mix the constraints representations as supports or conflicts de-

pending on the initial tightness of each individual constraint relation. To this end,

we check the size of each relation as provided in the problem description, and choose

the representation with the smallest number of tuples given the maximum number

of tuples in the relation, which is equal to the size of the Cartesian product of the

domain sizes. Note that, during propagation, the tables of both positive and negative

tables decrease monotonically. Thus, once an initial representation is chosen, this

choice does not need to be revised during problem solving.

For example, suppose we have a constraint c, and the total number of all possible

tuples in c is 200. Now, suppose the constraint depicts a positive table table(c) of

size 150, it is immediately visible that the negative table of the constraint c will

have a table size of 50. Obviously, in this case, it is more efficient to use a negative-

table representation and use an algorithm that operates on negative tables, such as

is STR-Ni.

We build our hybrid algorithm (STR-h) as a combination of an STR algorithm that

operates on positive tables and one that operates on negative tables. We choose to

use STR1 and STR-Ni because the data structures on which they rely are compatible,

which facilitates interoperability.

The worst-case time complexity of the selection for the representation of the table

constraint is O(e). The time and space complexity of STR-h remains the same as

that for STR1.

Summary

In this chapter, we introduced and examined the data structures and mechanisms

of algorithms for achieving Generalized Arc Consistency (GAC2001, STR1, STR2,

42

STR3, eSTR, STR-N, and mddc). We also introduced a hybrid algorithm that ad-

vantageously combines STR1 and STR-Ni based on the size of the most appropriate

representation.

43

Chapter 4

Empirical Evaluations of GAC

Algorithms

In this chapter, we empirically evaluate the performance of the algorithms discussed

in Chapter 2. Below, we describe our experimental set-up, conduct a comparative

empirical analysis on randomly generated CSPs including the phase-transition, then

discuss in detail the results on individual benchmark problems. Lastly, we summarize

our results.

We state a warning from the outset regarding our implementation of the STR3

and mddc algorithms. Indeed, when comparing our results for those algorithms to

those reported in the literature [Cheng and Yap, 2010; Lecoutre, 2011; Lecoutre et al.,

2012], we realized that our implementation of STR3 and mddc is far from reaching the

efficacy reported in those papers. Our implementation is guaranteed correct because

it does the same amount of filtering as the other GAC algorithms tested and visits the

same number of nodes in the tree. However, the CPU time of our implementation is

significantly larger than the CPU time reported in the literature for the same problem

instance. we believe that our implementation must be re-examined to improve its

44

efficiency before we can confidently state any conclusions about the performance of

STR3 or mddc. Examining the reasons of this poor performance requires more effort

than allowed in the time span of this thesis, and is left out for future investigation.

4.1 Experimental Setup

We evaluate and compare the performance of the following algorithms to enforce real

full look-ahead in a backtrack search that finds the first solution of a CSP:

• GAC2001

• GACstr and its variations: STR1, STR2, STR3, STR-Ni, eSTR1 and eSTR2.

• mddc

We report and compare performance in terms of CPU time.

4.2 Randomly Generated Non-Binary CSPs

We compare the performance of the above-listed algorithms on randomly generated

non-binary CSPs. Generators of random CSPs generate uniform instances while

maintaining some parameters of the CSP constant (e.g., number of variables and

domain size) and varying other parameters (e.g., constraint tightness and constraint

density). In particular, they allow us to generate instances that ‘traverse’ the phase-

transition region known to characterize the difficulty of solving CSPs (see Section 2.6

and Figure 2.7). We use the random generator RBGenerator 2.0 [Xu et al., 2007],

which is based on the modelRB.1 In this generator, a random instance of a non-binary

CSP is characterized by the following input parameters:
1The RBGenerator is available from http://www.cril.univ-artois.fr/~lecoutre/

software.html\#

45

• n: number of variables

• d: uniform domain size

• k: uniform arity of the constraints

• p: constraint density, i.e., the ratio between the number of constraints in the

problem and the number of all possible constraints involving k variables.

e: the number of constraints in the problem. (e and p are redundant.)

• q: uniform constraint looseness, i.e., the ratio of allowed tuples to dk, which is

the maximum number of tuples of a constraint.

t: the constraint tightness and is uniform for all constraints. Note that q = 1−t.

Randomly generated instances are denoted with the tuple (n, d, k, p(e), t). We main-

tain all parameters constant and vary the constraint tightness t ∈ [0.1, 0.2, . . . , 0.9],

generate 30 instances per parameter configuration, and average our results over the 30

instances.

In Table 4.1, we report the CPU performance of all nine algorithms on random

CSPs generated with (n = 60,d = 5,k = 3,p = 0.4,t), averages over 30 instances.

Table 4.1: CPU time (in milliseconds) for solving randomly generated CSPs, averaged over
30 instances with (n = 60,d = 5,k = 3,p = 0.4,t)

Tightness
Algorithms

GAC2001 STR1 STR2 STR3 eSTR1 eSTR2 STR-Ni STR-h mddc

t = 0.1 0.00 0.71 0.00 20.36 81.79 81.43 0.00 1.43 13.57

t = 0.2 1.00 4.33 4.00 16.33 78.00 86.33 0.00 2.67 19.33

t = 0.3 3.33 6.33 6.00 18.33 87.67 94.00 0.67 6.33 21.00

t = 0.4 18.33 19.33 22.00 39.33 59.67 89.00 17.00 19.33 38.00

t = 0.5 5887.50 5809.29 6381.43 8788.93 49.64 50.36 6687.14 5908.93 7877.86

t = 0.6 52.00 56.33 59.33 95.67 40.67 41.00 84.00 58.33 110.00

t = 0.7 5.00 5.33 6.00 11.00 37.00 36.67 11.67 5.33 15.00

t = 0.8 0.00 0.00 0.00 9.00 25.33 30.33 6.33 0.00 9.67

t = 0.9 0.00 0.00 0.00 0.00 19.67 18.67 0.33 0.00 2.67

46

We discuss the above results from the following perspectives:

• Comparing STR* algorithms against GAC2001

• Comparing eSTR1 and eSTR2 against STR1 and STR2

• Comparing STR-h against STR1 and STR-Ni

• Comparing mddc against STR2 and eSTR1

4.2.1 Comparing STR* algorithms against GAC2001

In Figure 4.1, we compare the performances of GAC2001, STR1, STR2, and STR3.

Figure 4.1: Phase-transition chart with parameters (n = 60,d = 5,k = 3,p = 0.4,t)

• STR3 shows an excessive cost around the phase transition but comparable cost

to STR1 and STR2 outside the phase transition. We attribute the poor per-

47

formance of STR3 at the phase transition to our own implementation, which

requires revision as stated at the beginning of this chapter.

• STR2 does not perform as well as STR1 or GAC2001. Although STR2 was

presented as an improvement over STR1, when neither of the two conditions

for improvements hold (see Section 3.2.2), STR2 does more work than STR1

because of the additional data structures that STR2 maintains.

• GAC2001 and STR1 exhibit similar performances in Figure 4.1. While they

both slightly outperform STR2 around the phase transition area, none of the

algorithms statistically outperforms the other.2

In an effort to reproduce the results provided by Lecoutre [2011], we compare

GAC2001, STR1, and STR2 on random problems generated with the same CSP pa-

rameters (i.e., n = 60,d = 2,k = 13,e = 20,t). Those instances have larger constraints

arity than the instances shown in Figure 4.1. The detailed numerical results are given

in Table 4.2 and the chart is shown in Figure 4.2.

Table 4.2: CPU time (in milliseconds) for solving randomly generated CSPs, averaged over
30 instances with (n = 60,d = 2,k = 13,e = 20,t)

Tightness
Algorithms

GAC2001 STR1 STR2

t = 0.80 757.33 413 407.33

t = 0.82 2,376.33 914.67 900.00

t = 0.84 8,395 3,446.67 3,383.67

t = 0.86 28,725.17 10,946.55 9,407.50

t = 0.88 47,577.08 20,828.33 18,833.04

t = 0.90 36,823.21 18,510.00 12,638.00

t = 0.92 15,812 7,042.67 6,534.33

t = 0.94 4,444.33 2039.00 2064.00

t = 0.96 980.33 546.00 494.00

2According to a paired t-test with 95% confidence.

48

Figure 4.2: Phase-transition chart with parameters (n = 60,d = 2,k = 13,e = 20,t)

STR2 clearly outperforms both GAC2001 and STR1. Further, STR1 largely out-

performs GAC2001. Those results are consistent with the ones reported by Lecoutre [2011].

In conclusion, our observations suggest that the advantages of STR1 over GAC2001

and those of STR2 over STR1 become more significant as the size of the problem or

the arity of the constraints increases.

4.2.2 Comparing eSTR1 and eSTR2 against STR1 and

STR2

In Figure 4.3, we compare the performances of the extended STR algorithms (eSTR1

and eSTR2) to STR1, which is cheaper than STR2 on these instances: Although not

visible in Figure 4.3, but can clearly seen in Table 4.1, STR1 is cheaper than eSTR1

and eSTR2 outside the phase transition because of the additional data structures

49

Figure 4.3: Phase-transition chart with parameters (n = 60,d = 5,k = 3,e = 138,t)

that eSTR1 and eSTR2 need to initialize and maintain. The advantages of eSTR*

become visible as the problem becomes harder around the area of the phase transition.

Indeed, eSTR* outperforms STR1 by a huge margin (>5000 milliseconds).

In order to show the advantages of eSTR1 and eSTR2 over STR1 and STR2 on

difficult problems, we test those four algorithms on the following randomly generated

problems, increasing the domain and constraint table size: n = 60,d = 15,k = 3,e =

228,t ∈ {0.1, 0.2, . . . , 0.9}. Table 4.3 reports report the CPU performance averaged

over 30 instances, and Figure 4.4 shows the corresponding charts.

From Table 4.3 and Figure 4.4, we clearly see that eSTR1 eSTR2 easily solve

the instances at the phase transition, where STR1 and STR2 cannot even complete

with the two-hours time window per instance. Further, eSTR1 outperforms eSTR2

between tightness t = 0.2 to t = 0.7 for the same reason that STR1 outperforms STR2

(i.e., neither of the two conditions for improvement hold as discussed in Section 3.2.2).

50

Table 4.3: CPU time (in milliseconds) for solving randomly generated CSPs, averaged over
30 instances with (n = 60,d = 15,k = 3,e = 228,t)

Tightness
Algorithms

STR1 STR2 eSTR1 eSTR2

t = 0.1 79.33 61.33 6,508.67 6,320.33

t = 0.2 100.67 67.33 5,813.45 5,650.00

t = 0.3 56.67 68.67 4,921.43 9,790.33

t = 0.4 16,712.00 16,436.00 7,272.50 18,010.00

t = 0.5 timed out timed out 3,264.12 12,530.00

t = 0.6 timed out timed out 2,780.00 7,442.50

t = 0.7 timed out timed out 2,138.33 2,136.33

t = 0.8 16,760.00 32,071.33 1,324.00 1,325.33

t = 0.9 50.67 66.00 697.00 698.67

Figure 4.4: Phase-transition chart with parameters (n = 60,d = 15,k = 3,e = 228,t). Note
that STR1 and STR2 time out for t = 0.5, 0.6, 0.7

4.2.3 Comparing STR-h against STR1 and STR-Ni

In Figure 4.5, we compare our hybrid algorithm STR-h to the algorithms that it com-

bines (i.e., STR1 and STR-Ni). STR-h and STR1 exhibit comparable performances

in Figure 4.5. Around the phase-transition (around t = 0.5), STR-h outperforms

51

Figure 4.5: Phase-transition chart with parameters (n = 60,d = 5,k = 3,e = 138,t)

STR-Ni. This experiment and the other experiments conducted in this thesis show

that STR-h typically performs better than the worse of STR1 and STR-Ni when the

performances of STR1 and STR-Ni differ. In all other cases, the three algorithms

have comparable performances.

4.2.4 Comparing mddc against STR2 and eSTR1

In Figure 4.6, we compare the mddc algorithm to a basic STR algorithm (STR2)

and an extended algorithm (eSTR1). We choose STR2 and eSTR1 because their

performances on those instances are worse than STR1 and eSTR2, respectively. We

conclude that, while mddc outperforms eSTR1 outside the phase transition area (see

Table 4.1), it performs worse than both STR2 and eSTR1 around the phase-transition

area. We attribute this poor performance at the phase transition to our own imple-

52

Figure 4.6: Phase-transition chart with parameters (n = 60,d = 5,k = 3,e = 138,t)

mentation, as stated at the beginning of this chapter.

4.3 Benchmark Problems

We run our experiments on 2875 benchmark instances of extensionally-defined con-

straints taken from the CSP Solver Competition.3 In [2010], Lecoutre gives a descrip-

tion of the benchmark problems. We limit the CPU time to two hours per instance

and the memory to 8GB. The 2875 instances comprise 1915 binary instances and 960

non-binary instances. They are organized as follows:

• The instances are grouped in 86 benchmarks.

• Each benchmark class has a number of instances (between 4 to 100).

3http://www.cril.univ-artois.fr/CPAI08/

53

• Each benchmark is further classified into one of the following ‘qualitative’ cat-

egories proposed by Lecoutre.4 Those categories are: academic, assignment,

Boolean, crossword, Latin square, quasi-random (random benchmarks that have

some structure), random, and TSP.

We do not report results of experiments on benchmarks that did not complete because

of:

1. Insufficient memory. When the size of the relations/tuples is too large to store

given the available memory. This situation arises for the case of the following

benchmarks: bddSmall, lard.

2. Insufficient time. The tested algorithms could not solve in the allocated time

enough instances (only 1 or 2 instances for rand-2-27, rand-3-28-28, and rand-

3-28-28-fcd), or any instances at all (BH-4-13, BH-4-4, BH-4-7, bqwh-15-106,

bqwh-18-141, frb53-24, frb56-25, frb59-26, QCP-20, QCP-25, QWH-20, QWH-

25, rand-3-24-24, renault). Typically, those are difficult problems that re-

quire the use of higher-level consistency algorithms [Karakashian et al., 2010;

Woodward et al., 2011; Karakashian, 2013; Karakashian et al., 2013; Schneider

et al., 2014].

Below, we first report a summary ranking of the performance of the algorithms on

each tested benchmark class, then discuss ranking of three individual representative

benchmark classes.

The tables with the detailed ranking of all algorithms on each benchmark can be

found in Tables B.1 to Tables B.54 in Appendix B.

4The benchmark categories are provided in http://www.cril.univ-artois.fr/~lecoutre/

benchmarks.htm

54

4.3.1 Method for statistical analysis

To compute the mean CPU time, we use the product-limit method, also called the

Kaplan-Meier method. This method computes the survival time of each algorithm.

(For us, survival means that the algorithm is still running.) It is a non-parametric

test, i.e., it makes no assumption about the distribution of the data.

To compute the significance classes between the algorithms, we generate a general-

ized linear mixed-model for each algorithm on a given benchmark. While generalized

linear mixed models do not require that the data be normally distributed, they do not

take into account censored data. The models assume that random effects are normally

distributed. We use those models to construct an approximate t-test (Wilcoxon) be-

tween each pairs of algorithms. Even if the random effects assumption may not hold

for our data, our analysis yielded consistent results on the various benchmarks, thus

supporting the correctness of our conclusions. For computing the significance of the

CPU measurements, the CPU time of each algorithm on a given instance is given as

input to the model. We assume all censored data points finished at the maximum

cutoff time.

4.3.2 Comparison criteria used

Below, we list the criteria used to compare the various algorithms in Tables 4.4, 4.5,

and 4.6:

Category denotes the category of the benchmark as listed in the provider’s site.

Table gives the reference of the table where the detailed results of the benchmark

are reported in Appendix B.

#I gives the (original) number of instances in the benchmark.

55

Best CPU lists the algorithms that statistically outperform all others in terms of

CPU time (i.e., the algorithms are ranked to be in the same statistical class).

Fastest denotes the algorithms that solved the largest number of instances the

fastest.

#Comp stands for ‘completed,’ denotes the algorithms that solved the largest num-

ber of instances.

#BTF denotes the algorithm that solved the largest number of instances in a backtrack-

free manner.

All in any column indicates that all of the algorithms are equivalent with respect to

that metric.

4.3.3 Ranking all benchmark classes

Using the criteria listed in Section 4.3.2, we rank the algorithms in Tables 4.4 and 4.5

for binary CSPs and Table 4.6 for non-binary CSPs. We make the following observa-

tions based on those results:

4.3.3.1 GAC2001

GAC2001 performs best on a variety of binary random-instances in terms of number

of instances completed (#Comp), CPU time (Best CPU), and number of instances

solved fastest (Fastest), see Tables 4.4 and 4.5. Although GAC2001 typically has

a good performance on many non-binary instances, for example, it completes more

instances (#Comp) than most of the basic STR algorithms (e.g., STR1, STR2, STR3,

STR-Ni), it is mostly not the best in terms CPU (i.e., Best CPU and Fastest).

56

Table 4.4: Overview of the binary benchmarks tested (Part A)

Category Benchmark Table #I Best CPU Fastest #Comp #BTF

A
ca

d
em

ic coloring B.31 22
eSTR1
eSTR2
STR-Ni

STR-Ni

GAC2001,
STR1,
STR3,
eSTR1,
eSTR2,
STR-Ni,
mddc

All

hanoi B.33 5 All STR2

GAC2001,
STR1,
STR2,
eSTR1,
eSTR2,
STR-h

All

langford B.12 4 All STR-Ni

GAC2001,
STR1,
STR3,
STR-h,
STR-Ni

All

Assignment driver B.7 7 STR-Ni STR-Ni
GAC2001,
STR-Ni

All

L
a
ti

n
sq

u
a
re

QCP-10 B.6 15

GAC2001,
STR1,
STR2,
STR-Ni,
STR-h,
mddc

STR-Ni
GAC2001,
STR-Ni

All

QCP-15 B.14 15
All except
STR3

GAC2001 GAC2001 None

QWH-10 B.34 10

GAC2001,
STR1,
STR2,
STR-Ni,
STR-h,
mddc

GAC2001 All All

QWH-15 B.35 10
GAC2001,
STR-Ni

STR-Ni
GAC2001,
STR-Ni

None

Q
u
a
si

-r
a
n
d
o
m

composed-25-1-80 B.1 10 All GAC2001 GAC2001

composed-25-10-20 B.2 10 All STR-Ni
GAC2001,
STR-Ni

None

composed-75-1-80 B.3 10 All
STR-Ni,
GAC2001

All None

ehi-85 B.4 100 GAC2001 GAC2001 GAC2001 None
ehi-90 B.5 100 GAC2001 GAC2001 GAC2001 None

geom B.11 100
GAC2001,
STR-Ni

GAC2001 GAC2001 All

4.3.3.2 STR-based algorithms

The basic STR algorithms (STR1, STR2, STR3, STR-Ni) perform well in terms

of all criteria on the following binary benchmarks: Academic, Assignment, Latin

57

Table 4.5: Overview of the binary benchmarks tested (Part B)

Category Benchmark Table #I Best CPU Fastest #Comp #BTF

R
a
n
d
o
m

frb30-15 B.32 10
All except
eSTR2

GAC2001 All None

frb35-17 B.8 10
GAC2001,
STR-Ni

GAC2001,
STR-Ni

GAC2001,
STR-Ni

None

frb40-19 B.10 10
GAC2001,
STR-Ni

GAC2001,
STR-Ni

GAC2001 None

frb45-21 B.9 10 GAC2001 GAC2001 GAC2001 None

marc B.13 10

GAC2001,
STR1,
STR2,
STR-Ni,
STR-h

GAC2001,
STR2

GAC2001,
STR1,
STR2,
STR-Ni,
STR-h

All

rand-2-23 B.15 10 GAC2001 GAC2001 GAC2001 None

rand-2-24 B.16 10
GAC2001,
STR-Ni

GAC2001 GAC2001 None

rand-2-25 B.17 10 GAC2001 GAC2001 GAC2001 None
rand-2-26 B.18 10 GAC2001 GAC2001 GAC2001 None

rand-2-30-15-fcd B.20 50
GAC2001,
STR-Ni

GAC2001 All None

rand-2-30-15 B.21 50
GAC2001,
STR-Ni

GAC2001

GAC2001,
STR1,
STR2,
STR3,
eSTR2,
STR-h,
STR-Ni

None

rand-2-40-19-fcd B.22 50 GAC2001 GAC2001 GAC2001 None
rand-2-40-19 B.23 50 GAC2001 GAC2001 GAC2001 None

tightness0.1 B.24 100
GAC2001,
STR-Ni

STR-Ni
GAC2001,
STR-Ni

None

tightness0.2 B.25 100
GAC2001,
STR-Ni

STR-Ni
GAC2001,
STR-Ni

None

tightness0.35 B.26 100
GAC2001,
STR-Ni

STR-Ni GAC2001 None

tightness0.5 B.27 100 GAC2001 GAC2001 GAC2001 None
tightness0.65 B.28 100 GAC2001 GAC2001 GAC2001 None
tightness0.8 B.29 100 GAC2001 GAC2001 GAC2001 None
tightness0.9 B.30 100 GAC2001 GAC2001 GAC2001 None

square, and Quasi-random instances (Table 4.4). Among those algorithms, STR-Ni

and STR2 occasionally stand out, outperforming the other STR-based algorithms:

For example, STR-Ni and STR2 solve the largest number of instances the fastest (see

column ’Fastest’ in Table 4.4). STR2 outperforms STR-Ni when the positive table

is smaller than the negative table (i.e., tight constraint), for example the benchmark

hanoi. Conversely, STR-Ni outperforms STR2 when the negative table is smaller than

the positive table (i.e., loose constraint), for example on the benchmarks coloring,

58

Table 4.6: Overview of the non-binary benchmarks tested

Category Benchmark Table #I Best CPU Fastest #Comp #BTF

Assignment modifiedRenault B.54 50
All except
STR3, STR-Ni,
mddc

GAC2001
eSTR1,
eSTR2

eSTR1,
eSTR2

B
o
o
le

a
n

aim-100 B.37 24 eSTR1, eSTR2 eSTR1
eSTR1,
eSTR2

eSTR1,
eSTR2

aim-200 B.38 24 eSTR1, eSTR2 eSTR1 eSTR2
eSTR1,
eSTR2

aim-50 B.36 24
STR-Ni,
eSTR1, eSTR2

eSTR1 All
eSTR1,
eSTR2

dubois B.39 13
GAC2001,
STR-Ni

GAC2001 GAC2001 None

jnhSat B.42 16
GAC2001,
STR2, STR-Ni,
STR-h

STR-Ni

All except
STR1,
STR-h,
mddc

eSTR1,
eSTR2

jnhUnsat B.43 34 STR-Ni STR-Ni

All except
STR1,
STR-h,
mddc

eSTR1,
eSTR2

pret B.50 8
GAC2001,
STR3, STR-Ni,
STR-h

GAC2001

GAC2001,
STR3,
STR-Ni,
STR-h

None

ssa B.40 8 All mddc
eSTR1,
eSTR2

eSTR1,
eSTR2

varDimacs B.53 9 All STR-Ni GAC2001 All

C
ro

ss
w

o
rd

lexVg 4.9 63
GAC2001,
STR1, STR2,
eSTR1, eSTR2

STR2 GAC2001 All

ogdVg B.47 65
GAC2001,
STR1, STR2,
eSTR1, eSTR2

STR2 GAC2001 All

ukVg B.48 65
STR1, eSTR1,
STR-Ni, STR-
h, mddc

STR-Ni
GAC2001,
STR-Ni

None

wordsVg B.49 65
GAC2001,
STR2, eSTR1,
eSTR2

STR2 GAC2001 All

Quasi-random dag-rand 4.8 25 eSTR1, eSTR2 None

GAC2001,
STR1,
STR2,
eSTR1,
eSTR2

eSTR1,
eSTR2

R
a
n
d
o
m

rand-10-20-10 B.51 20
STR1, STR2,
eSTR1, eSTR2

STR2

GAC2001,
STR1,
STR2,
STR3,
mddc

eSTR1,
eSTR2

rand-3-20-20-fcd B.44 50
GAC2001,
eSTR1, eSTR2

eSTR1 GAC2001 eSTR1

rand-3-20-20 B.45 50
GAC2001,
eSTR1, eSTR2

eSTR1 GAC2001 eSTR1

rand-3-24-24-fcd B.46 50 eSTR1, eSTR2 eSTR1 eSTR1 eSTR1
rand-8-20-5 B.52 20 eSTR1 eSTR1 GAC2001 eSTR1

T
S
P travellingSalesman-20 4.10 15

All except
STR3, STR-Ni,
mddc

GAC2001 GAC2001 All

travellingSalesman-25 B.41 15 GAC2001 GAC2001 GAC2001 None

59

langford, QCP-10, QWH-15, composed-25-10-20, and composed-75-1-80. STR-Ni

performs best in terms of CPU time on some instances (e.g., composed-25-10-20 of

Table B.2), which can be attributed to the constant-time operation of using count as

opposed to the linear-time traversal of gacV alues. Out of all the basic STR algorithms

(STR1, STR2, STR3,

Out of all the basic STR algorithms (STR1, STR2, STR3, STR-Ni), only STR2

and STR-Ni stand out on the non-binary benchmarks of Table 4.6. In particular,

STR2 performs well on the non-binary crossword category and the rand-10-20-10

benchmark (‘Fastest’ column of Table 4.6). STR-Ni solves the following non-binary

benchmarks fastest: jnhSat, jnhUnsat, varDimacs, and ukVg (‘Fastest’ column of

Table 4.6).

STR3 performs the worst of all the algorithms tested, in particular STR1 and

STR2, which are similar in nature. Indeed, STR3 does not stand out in Tables 4.4,

4.5, or 4.6. STR3 becomes effective when the reduction rate of the constraint ta-

ble during propagation remains high (i.e., when the tables are not reduced in size).

Lecoutre et al. [2012] argues that STR3 performs well when the tables of the con-

straint remain really large (e.g., tables with more that 1,000 tuples) during search. In

our experiments, we did not come across large problems that did not time out within

2 hours.

4.3.3.3 eSTR-based algorithms

The eSTR algorithms (eSTR1 and eSTR2) perform relatively well in terms of com-

pleted instances (#Comp) on the binary problems (Table 4.4 and 4.5). However, they

do not outperform any of the other algorithms in terms of CPU time (i.e., Best CPU

and Fastest) on those binary problems. The eSTR algorithms outperform all other

algorithms on non-binary benchmarks (e.g., Assignment, Boolean, Quasi-random and

60

Random in Table 4.6) by solving more instances backtrack free (#BTF), which is di-

rectly traceable to the fact that they enforce a higher-level consistency (i.e., pair-wise

consistency).

4.3.3.4 mddc

The only benchmark where mddc solves the largest number of instances fastest (col-

umn ’Fastest’) is the ‘ssa’ benchmark of Table B.40 in Appendix B. Because the ssa

benchmark is made up of Pseudo-Boolean instances, the MDD representation of such

constraints is compact and advantageous.

4.3.3.5 Implementation efficacy

Table 4.7 shows the number of completed instances and those not completed because

they run out of time or memory. The best performances are shown in boldface and

the worse two performances are grey out. This table shows that GAC2001 is the best

algorithm for binary CSPs and eSTR1 is the best algorithm for non-binary CSPs.

The goal of this table is to demonstrate that our implementation of STR3 and mddc

is indeed problematic as those two algorithms perform the worse. We insist that the

value of the STR3 and mddc cannot and should not be judged based on our study but

we need to re-examine our implementation in terms of our results. Such an effort is

beyond the time constraint of this thesis.

4.3.4 Qualitative analysis of three representative

benchmarks

In this section, we look at the individual results of three representative benchmarks

of non-binary CSPs. We do not analyze the results on binary CSPs because all the

61

Table 4.7: Number of instances completed or not completed (memory or time out) out of
1915 binary instances and 960 non-binary instances

Binary Nonbinary

Algorithms

m
em

ou
t

ti
m

e
o
u

t

m
em

/
ti

m
e

ou
t

C
o
m

p
le

te
d

m
em

ou
t

ti
m

e
o
u

t

m
em

/
ti

m
e

o
u

t

C
o
m

p
le

te
d

GAC2001 349 176 525 1,390 149 219 368 592
STR1 1,065 140 1,205 710 383 129 512 448
STR2 1,074 148 1,222 693 355 147 502 458
STR3 1,202 47 1,249 666 602 47 649 311
eSTR1 1,153 109 1,262 653 197 85 282 678
eSTR2 1,149 107 1,256 659 329 46 375 585
STR-Ni 828 15 843 1,072 431 69 500 460
mddc 1,326 0 1,326 589 635 73 708 252
STR-h 1,058 13 1,071 844 454 38 492 468

algorithms perform the same amount of backtracks and node visited (i.e., for binary

CSPs, GAC is equivalent to PWC [Bessière et al., 2008]). On the other hand, there

is a difference in the performance of the algorithms on the non-binary instances in

terms of backtracks, nodes visited, and CPU time.

4.3.4.1 Measured parameters

To compare performance in terms of CPU time, we measure the following parameters:

• For each benchmark category, we report the number of instances existing in the

category, with the number completed by all algorithms in parenthesis, and the

range of the number of constraints e.

• Time: The CPU time in milliseconds. It is seen that some data points are

missing because some of the algorithms timed-out (i.e., did not terminate within

the time window of 120 minutes). Due to the fact that some instances could not

be completed, we conducted a survival data-analysis [Lee, 1992]. The survival

62

data analysis does not make any assumption about the distribution of the data

and yields a calculated mean CPU time for each algorithm. For the algorithms

that did not terminate on enough instances within the group, we report a ‘-’

sign instead of the mean value.

• S: The equivalence classes of CPU performance. To compute the statistically

significant categories, we perform a simple effects comparison between every two

algorithms for a significance level of 0.05. This comparison requires a normal

distribution of the non-censored data. For this analysis, we assume that all

censored data points finished at the maximum cutoff time.

• #C: The number of instances completed by a given algorithm.

• #F: The number of instances on which the given algorithm is the fastest among

all tested ones, where ties are awarded to all parties.

• #BF: The number of instances solved by a given algorithm in a backtrack-free

manner.

• #NV: The average number of nodes visited by the corresponding search. The

averages are computed over only the instances completed by all tested algo-

rithms, which is the number in parenthesis in the problem description. Thus,

the values reported in #NV should be considered in light of the number of

completed instances.

In Section 4.3.4.2, we discuss our results on the highly dense dag-rand benchmark

where the eSTR* algorithms outperform all other algorithms. In Section 4.3.4.3, we

discuss our results on the lexVg crossword-benchmark, where STR2 performs the best.

In Section 4.3.4.4, we discuss our results on the Traveling-Salesman benchmark, where

63

GAC2001 outperforms all other algorithms. Finally in Section 4.3.4.5, we discuss how

the remaining benchmarks map into the three benchmarks that we singled out.

4.3.4.2 The dag-rand benchmark

Table 4.8 shows a benchmark where the eSTR* algorithms perform the best. We

Table 4.8: Performance summary for the dag-rand benchmark

Algorithm Time (ms) #F S #C #BF #NV
dag-rand: 25(0) instances, e ∈[16,16]

GAC2001 2,934,000.00 0 B 25 0
STR1 1,348,394.00 0 B 25 0
STR2 1,331,438.00 0 B 25 0
STR3 - - - 0 -
eSTR1 108,003.20 0 A 25 25
eSTR2 101,985.20 0 A 25 25
STR-Ni - - - 0 -
STR-h - - - 0 -
mddc - - - 0 -

immediately see the effectiveness of enforcing a higher level of consistency (pair-wise

consistency) when the problem is highly dense in that the eSTR* algorithms solve

all instances in a backtrack-free manner (#BF) and have competitive CPU time in

comparison with (GAC2001, STR1 and STR2).

4.3.4.3 The lexVg benchmark

While Table 4.8, eSTR* largely outperforms all other algorithms in most criteria

(Time, #F, S, and #BF), in Table 4.9, STR algorithms outperform the eSTR* algo-

rithms in terms of CPU time (although eSTR* might solve more instances backtrack

free or remain in the same significance class as shown in the tables). STR2 solves the

most instances fastest.

64

Table 4.9: Performance summary for the lexVG benchmark: STR2 outperforms all other
algorithms in terms of CPU time

Algorithm Time (ms) #F S #C #BF #NV
lexVg: 63(40) instances, e ∈[8,36]

GAC2001 38,838.41 32 A 63 26 18.00
STR1 10,414.50 23 A 60 26 18.00
STR2 8,313.83 57 A 60 26 18.00
STR3 120,270.34 0 B 58 26 18.00
eSTR1 5,074.00 3 A 55 26 18.00
eSTR2 10,202.50 22 A 60 26 18.00
STR-Ni 25,370.00 0 B 2 2 18.00
STR-h 136,883.33 0 B 6 2 18.00
mddc 214,408.41 0 B 44 26 18.00

4.3.4.4 The traveling-salesman-20 benchmark

In the traveling salesman benchmark like the one in Table 4.10, GAC2001 outperforms

every other algorithm in CPU time (Time), and in the number of completed instances

(#C).

Table 4.10: Performance summary for the traveling-salesman-20 benchmark

Algorithm Time (ms) #F S #C #BF #NV
travellingSalesman-20: 15(0) instances, e ∈[230,230]

GAC2001 67,176.67 10 A 15 1
STR1 13,179.17 1 A 12 1
STR2 13,635.83 3 A 12 1
STR3 7,440.00 0 B 1 1
eSTR1 19,076.67 0 A 12 1
eSTR2 13,820.83 0 A 12 1
STR-Ni - - - 0 -
STR-h 15,281.67 0 A 12 1
mddc 989,813.33 0 B 3 1

65

4.3.4.5 All remaining benchmarks

The 103 instances reported in Tables 4.8, 4.9, and 4.10 above are representative of

the results obtained in our experiments on non-binary benchmark problems (which

comprise 960 non-binary instances). Below, we classify the remaining tested instances

into the three qualitative categories identified above. The fourth category below lists

benchmarks that yielded inconclusive results in that no single algorithm outperforms

all others. All tables for individual results can be found in Tables B.1 to Tables B.54

in Appendix B.

1. Similar to Table 4.8: aim-50 (Table B.36), aim-100 (Table B.37), aim-200 (Ta-

ble B.38), modifiedRenault (Table B.54), rand-10-20-10 (Table ??)

2. Similar to Table 4.9: wordsVg (Table B.49), ogdVg (Table B.47), ukVg (Ta-

ble B.48), jnhSat (Table B.42), jnhUnsat (Table B.43)

3. Similar to Table 4.10: travelingSalesman-25 (Table B.41), dubois (Table B.39)

4. Inconclusive benchmarks: pret (Table B.50), rand-10-20-10 (Table B.51), rand-

8-20-5 (Table B.52), varDimacs (Table B.53).

Summary

In this chapter, we empirically evaluated the performance of the studied algorithms on

randomly generated problems and on benchmark problems. We listed the conclusions

we drew from our experiments.

66

Chapter 5

Conclusions and Future Work

This chapter concludes the thesis and summarizes our contributions and directions

for future research.

5.1 Conclusions and Summary of Contributions

Generalized arc-consistency (GAC) is an important consistency property. The GAC2001

algorithm is available in almost all constraint solvers and widely used in practice

Bessière et al. [2005]. Ullmann [2007] introduced another technique of achieving

GAC known as Simple Tabular Reduction (STR). More recently, other algorithms

(i.e., STR2, STR3, and STR-Ni) have been proposed to improve the performance of

the first STR-based algorithm (STR1). We propose a hybrid, STR-h, that combines

two forms of STR (i.e., STR1 and STR-Ni) in order to adapt to the most compact

table representation of each constraint. We show that the performance of STR-h is

always better than the worse of those two algorithms.

From our experiments, we draw the following conclusions about our algorithms:

1. GAC2001 is particularly effective on binary CSPs but also occasionally on non-

67

binary CSPs (e.g., the traveling-salesman problem). GAC2001 is the easiest

algorithm to implement and its performance in general is quite good and robust.

It does not require the use of additional data structures for bookkeeping (other

than a pointer for the support of each variable-value pair). Thus, it has no

overhead. On large tables, it is outperformed by the STR-based algorithms.

2. STR1 and STR2 : are effective on many binary and non-binary CSPs, espe-

cially when the positive tables are smaller than the negative tables (i.e., tight

constraints). STR1 and STR2 outperform GAC2001 on most non-binary CSPs.

Further, when variable-value pairs have many supports in a given table, STR2 is

more effective than STR1 because it stops after finding the first support. Other-

wise, their performances are comparable. The implementation of the STR1 and

STR2 is slightly more involved because they require a more complex ‘handling’

of the table constraints. However, the investment is well worth the effort on

non-binary CSPs.

3. STR3 requires more memory than all other STR-based algorithms that we

tested. Further, our implementation of it fails to show the improvements

promised in the original publications. While our implementation is correct

in that it does exactly the required filtering, its performance is a significant

concern and requires a more careful analysis, an effort for which we lack the

time in this thesis.

4. STR-Ni is effective on problems where the negative tables are smaller than the

positive tables (i.e., loose constraints).

5. STR-h combines both STR1 and STR-NI, and does not perform worse than the

worst of the two of them. It is effective when a CSP has a mixture of tight and

68

loose constraints. It selectively decides, for each constraint, the most effective

constraint representation and filtering algorithm.

6. eSTR* enforces not only GAC, but also pair-wise consistency. Thus, it is ef-

fective on non-binary CSPs, especially when the problem is difficult or dense.

When the constraints are loose and the problem is easy to solve, preparing the

data structures for the eSTR* algorithms may be an overkill.

7. mddc is advantageous for CSPs that the constraints can be represented com-

pactly as an MDD (e.g., pseudo-boolean CSPs). Although we follow the im-

plementation described in the original paper, we fail to replicate the results

reported in the literature. Like for STR3, our implementation is correct but

its performance is a major concern and prevents us from drawing the correct

conclusions.

5.2 Directions for Future Research

Below we identify directions for further research:

1. The performance of our implementation of STR3 and mddc is a major concern.

It requires a more careful examination than allowed in the time frame of this

thesis, which may yield the derivation of the appropriate advice for future users

who may want to include those algorithms in their solvers.

2. Since we started our study, new developments have been reported in the lit-

erature, which need to be studied in light of our effort. Those developments

target STR algorithms [Xia and Yap, 2013; Gharbi et al., 2014; Jefferson and

Nightingale, 2013] as well as MDD-represented constraints [Perez and Régin,

2014].

69

3. Most importantly, we believe that it is important to extend our idea of a hybrid

algorithm that selectively chooses the most appropriate representation for each

individual constraint and, given the constraint’s representation and size, the

most appropriate GAC algorithm. We also believe that the major challenge in

the design and implementation of such a hybrid algorithm is the conception of

data structures that allow the transparent and efficient interoperability of the

various algorithms.

5.3 Final Note

Generalized Arc Consistency is an important property of Constraint Satisfaction

Problems. Understanding the different algorithms that are used to enforce GAC

and knowing how the algorithms perform for different problems allow us to improve

the performance of problem solving.

70

Appendix A

Algorithms

Algorithm 1: REVISE2001: Enforcing GAC2001

Input: A constraint c from a queue of all constraints, a variable x ∈ scp(c)
and an integer d that represents the current depth of search

Output: true if the problem is GAC, false otherwise
DELETE ← false1

foreach value a ∈ dom(x) do2

τ ← LastGAC((x, a), c)3

if ∃k \ τ [x′] /∈ dom(x′) then4

τ ← succ(τ, rel(c))5

while (τ 6= NIL) and (qc′(τ)) do6

τ ← succ(τ, rel(c))7

if tau 6= NIL then8

LastGAC((x, a), c)← τ9

else10

delete a from dom(x)11

DELETE ← true12

return DELETE13

71

Algorithm 2: Enforcing GACstr

Input: A constraint c from a queue of all constraints and an integer d which
represents the current depth of search

Output: true if the problem is GACstr, false otherwise
foreach variable X ∈ future(c) do1

gacV alues(x)← ∅2

prev ← −13

curr ← first(c); while curr 6= −1 do4

τ ← table(c)[curr]5

if isV alid(c, τ) then6

foreach variable x ∈ future(c) do7

if τ(x) /∈ gacV alues(x) then8

add τ(x) to gacV alues(x)9

prev ← curr10

curr ← next(c)[curr]11

else12

next← next(c)[curr]13

removeTuple(c, prev, curr, depth)14

curr ← next15

foreach variable x ∈ future(x) do16

if |gacV alues(x)| 6= |dom(x)| then17

if gacV alues(x)← ∅ then18

return false19

dom(x)← gacV alues(x)20

add x to propagationQueue21

return true22

72

Algorithm 3: Enforcing GACstr2

Input: A constraint c from a queue of all constraints and an integer d which
represents the current depth of search

Output: true if the problem is GACstr2, false otherwise
Ssup ← ∅1

if lastAssignedV ariable /∈ scp(c) then2

Sval ← ∅3

else4

Sval ← {lastAssignedV ariable}5

foreach variable x ∈ future(c) do6

gacV alues(x)← ∅7

Ssup ← Ssup ∪ {x}8

if getLastRemovedV alue(dom(x)) 6= lastRemoved(c)(x) then9

Sval ← Sval ∪ {X}10

lastRemoved(c)(x)← getLastRemovedV alue(dom(x))11

prev ← −112

curr ← first(c); while curr 6= −1 do13

τ ← table(c)[curr]14

if isV alid(c, τ) then15

foreach variable x ∈ Ssup do16

if τ(x) /∈ gacV alues(x) then17

add τ(x) to gacV alues(x)18

if |gacV alues(x)| = |dom(x)| then19

Ssup ← Ssup \ {x}20

prev ← curr ; curr ← next(c)[curr]21

else22

next← next(c)[curr]23

removeTuple(c, prev, curr, depth)24

curr ← next25

foreach variable x ∈ Ssup do26

if gacV alues(x)← ∅ then27

return false28

dom(x)← gacV alues(x)29

lastRemoved(c)(x)← getLastRemovedV alue(dom(x))30

add x to propagationQueue31

return true32

73

Algorithm 4: Preprocessing with GACinit

Input: A constraint c
remove invalid tuples from rel(c)1

invalid(c)← ∅2

foreach x ∈ scp(c) and a ∈ dom(x) do3

row(c, x)(a)[↑]← |row(c, x)(a)| − 14

dep(c)[row(c, x)(a)[0]]← {(x, a)}5

Algorithm 5: Enforcing STR3

Input: A constraint c, a variable x, a value a and an integer d which
represents the current depth of search

Output: true if the problem is STR3-GAC, false otherwise
prevMembers← members(invalid(c))1

for k ← 0 to row(c, x)(a)[↑] do2

if row(c, x)(a)[k] /∈ invalid(c) then3

add row(c, x)(a)[k] to invalid(c)4

if prevMembers = members(inv(c)) then5

return true6

save(c, prevMembers, stateI)7

foreach i ∈ [prevMembers+ 1, . . .members(invalid(c))] do8

k ← dense(inv(c))[i]9

foreach (y, b) ∈ c.dep[k] such that b ∈ dom(y) do10

p← row(c, y)(b)[↑]11

while p ≥ 0 and row(c, y)(b)[p] ∈ invalid(c) do12

p← p− 113

if p < 0 then14

removeV alue(y, b)15

if dom(y) = ∅ then16

return false17

else18

if p 6= row(c, y)(b)[↑] then19

save((c, y, b), row(c, y)(b)[↑], stateR)20

row(c, y)(b)[↑]← p21

move (y, b) from dep(c)[k] to dep(c)[row(c, y)(b)[p]]22

return true23

74

Function save

Input: key,newData,store
if (key, oldData) /∈ top(store) for any oldData then1

insert (key, newData) to top(store)2

Function RestoreR

list← pop(stateR)1

foreach ((c, (x, a)), k) ∈ list do2

row(c, x)(a)[↑]← k3

Function RestoreI

list← pop(stateR)1

foreach (c, k) ∈ list do2

members(inv(c))← k3

75

Algorithm 9: Enforcing eSTR

Input: A constraint c from a queue of all constraints and an integer d which
represents the current depth of search

Output: true if the problem is eSTR, false otherwise
foreach variable x ∈ future(c) do1

gacV alues(x)← ∅2

prev ← −13

curr ← first(c)4

while curr 6= −1 do5

τ ← table(c)[curr]6

if isV alid(c, τ) and isPWconsistent(c, τ) then7

foreach variable x ∈ future(c) do8

if τ(x) /∈ gacV alues(x) then9

add τ(x) to gacV alues(x)10

prev ← curr11

curr ← next(c)[curr]12

else13

next← next(c)[curr]14

removeTuple(c, prev, curr, depth)15

updateCtr(c, curr)16

curr ← next17

foreach variable x ∈ future(c) do18

if |gacV alues(x)| 6= |dom(x)| then19

if gacV alues(x) = ∅ then20

return false21

dom(x)← gacV alues(x)22

add X to propagationQueue23

return true24

76

Algorithm 10: Enforcing STR-N

Input: A constraint c from a queue of all constraints and an integer d which
represents the current depth of search

Output: true if the problem is STR-N, false otherwise
if lastIndex(c) = 0 then1

return false2

foreach variable x ∈ future(c) do3

compute count(x, a, c) for x4

prev ← −15

curr ← first(c)6

while curr 6= −1 do7

τ ← table(c)[curr]8

if isV alid(c, τ) then9

foreach variable x ∈ future(c) do10

count(x, a, c)getscount(x, a, c)− 111

prev ← curr12

curr ← next(c)[curr]13

else14

next← next(c)[curr]15

removeTuple(c, prev, curr, depth)16

curr ← next17

foreach variable x ∈ future(c) do18

if count(x, a, c) = 0 then19

remove (x, a) from dom(x)20

if |dom(x)| = 0 then21

return false22

add x to propagationQueue23

return true24

77

Algorithm 11: Enforcing mddc

Input: An MDD constraint G from a queue of all constraints and an integer d
which represents the current depth of search

Output: true if the constraint is mdds-gac , false otherwise
ΣY ES ← ∅1

restore(ΣNO, d)2

for i← 1 to r do3

Si ← dom(xi)4

δ ← r + 15

mddsSeekSuppports(G, 1)6

for i← 1 to δ − 1 do7

dom(xi)← dom(xi) \ Si8

save the state of σNO9

if ∃Si ∈ S such that Si 6= ∅ then10

return true11

else12

return false13

mddcSeekSupports(G, i)14

if G = tt then15

if i < δ then16

δ ← i17

return true18

if G = ff then19

return false20

if G ∈ ΣY ES then21

return true22

if G ∈ ΣNO then23

return false24

res← false25

for k ← 1 to n //n is domain size do26

if ak ∈ dom(xi) then27

res← true28

Si ← Si \ ak29

if i+ 1 = δ and Si = ∅ then30

δ ← i31

Break32

Σres ← Σres ∪ [G]33

return true34

78

Appendix B

Results of Experiments on

Benchmark Problems

Below are the tables with the detailed experimental results on benchmark problems

omitted from Chapter 4 in order to improve readobility. We report the results first

for binary then for non-binary benchmark problems.

The summary analysis can be found in Section 4.3.3 and three representative

benchmarks are discussed in Section 4.3.4.

B.1 Comparison criteria

Below we list the comparison criteria used in all the tables in this appendix.

• A ‘-’ signifies that all algorithms did not complete on the instances of the cate-

gory.

• For each benchmark category, we report the number of instances existing in the

category, with the number completed by all algorithms in parenthesis, and the

range of the number of constraints e.

79

• Time: The CPU time in milliseconds. It is seen that some data points are miss-

ing because some of the algorithms timed-out (could not finish within the given

time-window of 120 minutes). Due to the fact that some instances could not

be completed, we conducted a survival data-analysis [Lee, 1992]. The survival

data analysis does not make any assumption about the distribution of the data

and yields a calculated mean CPU time for each algorithm. There is no mean

(but rather a ‘-’) calculated for algorithms that did not terminate on enough

instances within the group.

• S: The equivalence classes of CPU performance. To compute the statistically

significant categories, we perform a simple effects comparison between every two

algorithms for a significance level of 0.05. This comparison requires a normal

distribution of the non-censored data. For this analysis, we assume that all

censored data points finished at the maximum cutoff time.

• #C: The number of instances completed by a given algorithm.

• #F: The number of instances on which the given algorithm is the fastest among

all tested ones, where ties are awarded to all parties.

• #BF: The number of instances solved by a given algorithm in a backtrack-free

manner.

• #NV: The average number of nodes visited by the corresponding search. The

averages are computed over only the instances completed by all tested algo-

rithms, which is the number in parenthesis in the problem description. Thus,

the values reported in #NV should be considered in light of the number of

completed instances.

80

B.2 Binary benchmark problems

Below we summarize the content of the tables in this section:

• GAC performs well: composed-25-1-80 (Table B.1), frb35-17 (Table B.8), frb40-

19 (Table B.10), frb45-21 (Table B.9), geom (Table B.11), marc (Table B.13),

QCP-15 (Table B.14), rand-2-23 (Table B.15), rand-2-24 (Table B.16), rand-2-

25 (Table B.17), rand-2-26 (Table B.18), rand-2-30-15-fcd (Table B.20), rand-2-

30-15 (Table B.21), rand-2-40-19-fcd (Table B.22), rand-2-40-19 (Table B.23),

tightness0.5 (Table B.27), tightness0.65 (Table B.28), tightness0.8 (Table B.29),

tightness0.9 (Table B.30).

• STR-N (where the negative tables are largely smaller) performs best: driver (Ta-

ble B.7), frb35-17 (Table B.8), langford (Table B.12), tightness0.1 (Table B.24),

tightness0.2 (Table B.25), tightness0.35 (Table B.26), composed-25-10-20 (Ta-

ble B.2), QWH-15 (Table B.35)

• STR2 performs well: marc (Table B.13), hanoi (Table B.33).

• Results are inconclusive on: coloring (Table B.31), frb30-15 (Table B.32), QWH-

10 (Table B.34), composed-75-1-80 (Table B.3).

81

Table B.1: Statistical analysis of the composed-25-1-80 benchmark

Algorithm Time (ms) #F S #C #BF #NV

composed-25-1-80: 10(1) instances, e ∈[302,302]

GAC2001 438,692.50 4 A 4 0 1.00

STR1 10.00 2 A 2 0 1.00

STR2 15.00 1 A 2 0 1.00

STR3 40.00 0 A 2 0 1.00

eSTR1 325.00 0 A 2 0 1.00

eSTR2 340.00 0 A 1 0 1.00

STR-Ni 10.00 2 A 2 0 1.00

STR-h 15.00 1 A 2 0 1.00

mddc 40.00 0 A 2 0 1.00

Table B.2: Statistical analysis of the composed-25-10-20 benchmark

Algorithm Time (ms) #F S #C #BF #NV

composed-25-10-20: 10(3) instances, e ∈[620,620]

GAC2001 26,323.33 1 A 6 0 123.60

STR1 40.00 0 A 5 0 123.60

STR2 28.00 3 A 5 0 123.60

STR3 168.00 0 A 5 0 123.60

eSTR1 524.00 0 A 5 0 123.60

eSTR2 560.00 0 A 5 0 123.60

STR-Ni 20,265.00 5 A 6 0 123.60

STR-h 30.00 1 A 5 0 123.60

mddc 90.00 0 A 5 0 123.60

Table B.3: Statistical analysis of the composed-75-1-80 benchmark

Algorithm Time (ms) #F S #C #BF #NV

composed-75-1-80: 10(3) instances, e ∈[702,702]

GAC2001 13.33 3 A 3 0 1.00

STR1 26.67 0 A 3 0 1.00

STR2 16.67 2 A 3 0 1.00

STR3 103.33 0 A 3 0 1.00

eSTR1 666.67 0 A 3 0 1.00

eSTR2 643.33 0 A 3 0 1.00

STR-Ni 13.33 3 A 3 0 1.00

STR-h 26.67 1 A 3 0 1.00

mddc 83.33 0 A 3 0 1.00

82

Table B.4: Statistical analysis of the ehi-85 benchmark

Algorithm Time (ms) #F S #C #BF #NV

ehi-85: 100(36) instances, e ∈[4081,4137]

GAC2001 995,500.82 51 A 97 0 845.42

STR1 1,752.50 0 B 36 0 845.42

STR2 1,852.50 0 B 36 0 845.42

STR3 7,743.33 0 C 36 0 845.42

eSTR1 4,444.72 0 C 36 0 845.42

eSTR2 6,166.67 0 C 36 0 845.42

STR-Ni 29,024.13 15 B 46 0 845.42

STR-h 1,180.83 34 B 36 0 845.42

mddc 1,611.94 0 B 36 0 845.42

Table B.5: Statistical analysis of the ehi-90 benchmark

Algorithm Time (ms) #F S #C #BF #NV

ehi-90: 100(26) instances, e ∈[4343,4400]

GAC2001 1,579,893.02 55 A 96 0 1,342.96

STR1 1,049.52 2 B 42 0 1,342.96

STR2 1,323.81 0 B 42 0 1,342.96

STR3 12,189.23 0 C 26 0 1,342.96

eSTR1 4,620.71 0 C 42 0 1,342.96

eSTR2 4,699.05 0 C 42 0 1,342.96

STR-Ni 6,399.77 6 B 43 0 1,342.96

STR-h 917.14 41 B 42 0 1,342.96

mddc 982.38 0 B 42 0 1,342.96

Table B.6: Statistical analysis of the QCP-10 benchmark

Algorithm Time (ms) #F S #C #BF #NV

QCP-10: 15(13) instances, e ∈[822,822]

GAC2001 11,784.67 3 A 15 4 673.15

STR1 138.46 3 A 13 4 673.15

STR2 145.38 3 A 13 4 673.15

STR3 29,960.00 0 B 14 4 673.15

eSTR1 636.92 0 B 13 4 673.15

eSTR2 615.38 0 B 13 4 673.15

STR-Ni 5,349.33 14 A 15 4 673.15

STR-h 150.77 2 A 13 4 673.15

mddc 170.00 0 A 13 4 673.15

83

Table B.7: Statistical analysis of the driver benchmark

Algorithm Time (ms) #F S #C #BF #NV

driver: 7(4) instances, e ∈[217,17447]

GAC2001 80,294.29 1 B 7 1 11,667.50

STR1 3,555.00 2 B 4 1 11,667.50

STR2 7,447.50 1 B 4 1 11,667.50

STR3 94,082.50 1 B 4 1 11,667.50

eSTR1 12,852.50 0 B 4 1 11,667.50

eSTR2 13,607.50 0 B 4 1 11,667.50

STR-Ni 50,475.71 6 A 7 1 11,667.50

STR-h 4,275.00 1 B 4 1 11,667.50

mddc 4,852.50 1 B 4 1 11,667.50

Table B.8: Statistical analysis of the frb35-17 benchmark

Algorithm Time (ms) #F S #C #BF #NV

frb35-17: 10(4) instances, e ∈[260,273]

GAC2001 27,548.00 5 A 10 0 12,556.00

STR1 25,673.33 0 B 6 0 12,556.00

STR2 28,618.33 0 B 6 0 12,556.00

STR3 51,078.75 0 B 8 0 12,556.00

eSTR1 27,045.00 0 B 4 0 12,556.00

eSTR2 42,408.33 0 B 6 0 12,556.00

STR-Ni * 26,227.00 5 A 10 0 17,405.75

STR-h * 24,106.67 0 B 6 0 17,405.75

mddc 17,050.00 0 B 4 0 12,556.00

* STR-Ni and STR-h visit a different number of nodes because of the way
the constraints are provided in the xml file (i.e., merged versus un-merged)

Table B.9: Statistical analysis of the frb45-21 benchmark

Algorithm Time (ms) #F S #C #BF #NV

frb45-21: 10(0) instances, e ∈[369,394]

GAC2001 3,438,888.89 9 A 9 0

STR1 - - 0 -

STR2 - - 0 -

STR3 - - 0 -

eSTR1 - - 0 -

eSTR2 - - 0 -

STR-Ni - - 0 -

STR-h - - 0 -

mddc - - 0 -

84

Table B.10: Statistical analysis of the frb40-19 benchmark

Algorithm Time (ms) #F S #C #BF #NV

frb40-19: 10(0) instances, e ∈[308,326]

GAC2001 155,414.00 5 A 10 0

STR1 - - 0 -

STR2 - - 0 -

STR3 - - 0 -

eSTR1 - - 0 -

eSTR2 - - 0 -

STR-Ni 72,068.00 5 A 5 0

STR-h - - 0 -

mddc - - 0 -

Table B.11: Statistical analysis of the geom benchmark

Algorithm Time (ms) #F S #C #BF #NV

geom: 100(85) instances, e ∈[339,555]

GAC2001 50,173.10 75 A 100 19 1,024.31

STR1 3,941.72 1 B 87 19 1,024.31

STR2 5,107.01 1 B 87 19 1,024.31

STR3 7,774.25 0 C 87 19 1,024.31

eSTR1 7,342.02 0 C 84 19 1,024.31

eSTR2 8,468.16 0 C 87 19 1,024.31

STR-Ni 6,260.77 52 A 91 19 1,024.31

STR-h 4,919.89 0 B 87 19 1,024.31

mddc 3,126.35 0 B 85 19 1,024.31

85

Table B.12: Statistical analysis of the langford benchmark

Algorithm Time (ms) #F S #C #BF #NV

langford: 4(2) instances, e ∈[28,528]

GAC2001 13,377.50 1 A 4 1 223.00

STR1 57,052.50 1 A 4 1 223.00

STR2 530.00 1 A 2 1 223.00

STR3 52,027.50 1 A 4 1 223.00

eSTR1 2,340.00 1 A 2 1 223.00

eSTR2 2,505.00 0 A 2 1 223.00

STR-Ni 8,507.50 4 A 4 1 223.00

STR-h 48,227.50 1 A 4 1 223.00

mddc 445.00 1 A 2 1 223.00

Table B.13: Statistical analysis of the marc benchmark

Algorithm Time (ms) #F S #C #BF #NV

marc: 10(0) instances, e ∈[3160,4560]

GAC2001 3,696.00 5 A 10 5

STR1 3,747.00 0 A 10 5

STR2 2,948.00 5 A 10 5

STR3 - 0 - 0 -

eSTR1 - 0 - 0 -

eSTR2 960,505.00 0 B 2 1

STR-Ni 5,401.00 0 A 10 5

STR-h 3,615.00 0 A 10 5

mddc 11,757.50 0 B 4 4

Table B.14: Statistical analysis of the QCP-15 benchmark

Algorithm Time (ms) #F S #C #BF #NV

QCP-15: 15(3) instances, e ∈[2519,2520]

GAC2001 1,387,868.89 5 A 9 0 9,978.00

STR1 6,406.67 0 A 3 0 9,978.00

STR2 10,770.00 0 A 3 0 9,978.00

STR3 329,485.00 0 B 4 0 9,978.00

eSTR1 12,606.67 0 A 3 0 9,978.00

eSTR2 16,433.33 0 A 3 0 9,978.00

STR-Ni 10,152.50 4 A 4 0 9,978.00

STR-h 6,113.33 0 A 3 0 9,978.00

mddc 5,680.00 0 A 3 0 9,978.00

86

Table B.15: Statistical analysis of the rand-2-23 benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-2-23: 10(0) instances, e ∈[253,253]

GAC2001 238,473.00 6 A 10 0

STR1 38,120.00 0 B 1 0

STR2 56,570.00 0 B 1 0

STR3 73,300.00 0 B 1 0

eSTR1 0 - 0 -

eSTR2 129,470.00 0 B 1 0

STR-Ni 110,460.00 4 B 4 0

STR-h 50,050.00 0 B 1 0

mddc 33,910.00 0 B 1 0

Table B.16: Statistical analysis of the rand-2-24 benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-2-24: 10(0) instances, e ∈[276,276]

GAC2001 646,879.00 7 A 10 0

STR1 - - 0 -

STR2 - - 0 -

STR3 - - 0 -

eSTR1 - - 0 -

eSTR2 - - 0 -

STR-Ni 96,820.00 3 A 3 0

STR-h - - 0 -

mddc - - 0 -

Table B.17: Statistical analysis of the rand-2-25 benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-2-25: 10(0) instances, e ∈[]

GAC2001 2,058,016.00 9 A 10 0

STR1 - - 0 -

STR2 - - 0 -

STR3 - - 0 -

eSTR1 - - 0 -

eSTR2 - - 0 -

STR-Ni 110,300.00 1 B 1 0

STR-h - - 0 -

mddc - - 0 -

87

Table B.18: Statistical analysis of the rand-2-26 benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-2-26: 10(0) instances, e ∈[]

GAC2001 4,063,000.00 10 A 10 0

STR1 - - 0 -

STR2 - - 0 -

STR3 - - 0 -

eSTR1 - - 0 -

eSTR2 - - 0 -

STR-Ni - - - 0 -

STR-h - - 0 -

mddc - - 0 -

Table B.19: Statistical analysis of the rand-2-27 benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-2-27: 10(0) instances, e ∈[]

GAC2001 4,780,000.00 2 A 2 0

STR1 - - 0 -

STR2 - - 0 -

STR3 - - 0 -

eSTR1 - - 0 -

eSTR2 - - 0 -

STR-Ni - - - 0 -

STR-h - - 0 -

mddc - - 0 -

Table B.20: Statistical analysis of the rand-2-30-15-fcd benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-2-30-15-fcd: 50(50) instances, e ∈[208,230]

GAC2001 2,391.80 49 A 50 0 3,974.20

STR1 4,186.20 0 B 50 0 3,974.20

STR2 4,283.80 0 B 50 0 3,974.20

STR3 6,286.40 0 C 50 0 3,974.20

eSTR1 7,053.60 0 C 50 0 3,974.20

eSTR2 6,441.40 0 C 50 0 3,974.20

STR-Ni 2,591.20 4 A 50 0 3,974.20

STR-h 4,234.40 0 B 50 0 3,974.20

mddc 5,265.60 0 B 50 0 3,974.20

88

Table B.21: Statistical analysis of the rand-2-30-15 benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-2-30-15: 50(49) instances, e ∈[208,230]

GAC2001 4,386.20 40 A 50 0 6,936.88

STR1 8,243.20 0 B 50 0 6,936.88

STR2 10,079.20 0 B 50 0 6,936.88

STR3 11,742.80 0 C 50 0 6,936.88

eSTR1 11,897.96 0 C 49 0 6,936.88

eSTR2 13,455.80 0 C 50 0 6,936.88

STR-Ni 4,385.60 12 A 50 0 6,936.88

STR-h 7,378.80 0 B 50 0 6,936.88

mddc 7,126.94 0 B 49 0 6,936.88

Table B.22: Statistical analysis of the rand-2-40-19-fcd benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-2-40-19-fcd: 50(3) instances, e ∈[325,351]

GAC2001 471,552.00 45 A 50 0 5,489.00

STR1 28,492.50 0 B 4 0 5,489.00

STR2 18,147.50 0 B 4 0 5,489.00

STR3 68,065.00 0 B 6 0 5,489.00

eSTR1 37,426.67 0 B 3 0 5,489.00

eSTR2 61,137.50 0 B 4 0 5,489.00

STR-Ni 137,128.00 5 B 5 0 5,489.00

STR-h 18,205.00 0 B 4 0 5,489.00

mddc 34,747.50 0 B 4 0 5,489.00

Table B.23: Statistical analysis of the rand-2-40-19 benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-2-40-19: 50(1) instances, e ∈[325,351]

GAC2001 1,039,856.80 50 A 50 0

STR1 33,650.00 0 B 1 0

STR2 25,950.00 0 B 1 0

STR3 43,890.00 0 B 1 0

eSTR1 66,070.00 0 B 1 0

eSTR2 42,590.00 0 B 1 0

STR-Ni 133,465.00 0 B 2 0

STR-h 44,250.00 0 B 1 0

mddc 43,500.00 0 B 1 0

89

Table B.24: Statistical analysis of the tightness0.1 benchmark

Algorithm Time (ms) #F S #C #BF #NV

tightness0.1: 100(19) instances, e ∈[746,753]

GAC2001 65,837.60 0 A 100 0 12,021.95

STR1 25,465.17 0 B 29 0 12,021.95

STR2 29,772.22 0 B 27 0 12,021.95

STR3 51,316.75 0 B 40 0 12,021.95

eSTR1 39,576.32 0 B 19 0 12,021.95

eSTR2 41,358.57 0 B 28 0 12,021.95

STR-Ni 31,794.70 100 A 100 0 12,021.95

STR-h 30,530.00 0 B 28 0 12,021.95

mddc 19,495.91 0 B 22 0 12,021.95

Table B.25: Statistical analysis of the tightness0.2 benchmark

Algorithm Time (ms) #F S #C #BF #NV

tightness0.2: 100(21) instances, e ∈[414,414]

GAC2001 62,246.20 0 A 100 0 15,680.38

STR1 30,685.00 0 B 30 0 15,680.38

STR2 27,097.78 0 B 27 0 15,680.38

STR3 51,269.77 0 B 44 0 15,680.38

eSTR1 36,856.67 0 B 21 0 15,680.38

eSTR2 40,408.28 0 B 29 0 15,680.38

STR-Ni 36,772.30 100 A 100 0 15,680.38

STR-h 27,514.48 0 B 29 0 15,680.38

mddc 23,865.00 0 B 22 0 15,680.38

Table B.26: Statistical analysis of the tightness0.35 benchmark

Algorithm Time (ms) #F S #C #BF #NV

tightness0.35: 100(26) instances, e ∈[250,250]

GAC2001 65,352.20 1 A 100 0 12,173.08

STR1 29,401.91 0 B 47 0 12,173.08

STR2 20,890.77 0 B 39 0 12,173.08

STR3 49,357.12 0 B 52 0 12,173.08

eSTR1 24,382.31 0 B 26 0 12,173.08

eSTR2 30,829.23 0 B 39 0 12,173.08

STR-Ni 43,469.29 99 A 99 0 12,173.08

STR-h 24,720.26 0 B 39 0 12,173.08

mddc 21,298.62 0 B 29 0 12,173.08

90

Table B.27: Statistical analysis of the tightness0.5 benchmark

Algorithm Time (ms) #F S #C #BF #NV

tightness0.5: 100(17) instances, e ∈[180,180]

GAC2001 100,192.90 100 A 100 0 9,551.50

STR1 38,664.17 0 C 36 0 9,551.50

STR2 27,422.73 0 C 33 0 9,551.50

STR3 52,675.24 0 C 42 0 9,551.50

eSTR1 25,547.65 0 C 17 0 9,551.50

eSTR2 37,678.48 0 C 33 0 9,551.50

STR-Ni 101,740.10 0 B 96 0 9,551.50

STR-h 27,910.59 0 B 34 0 9,551.50

mddc 24,290.00 0 C 23 0 9,551.50

Table B.28: Statistical analysis of the tightness0.65 benchmark

Algorithm Time (ms) #F S #C #BF #NV

tightness0.65: 100(23) instances, e ∈[40,40]

GAC2001 74,495.60 100 A 100 0 7,268.96

STR1 30,112.92 0 B 48 0 7,268.96

STR2 27,163.83 0 B 47 0 7,268.96

STR3 58,473.96 0 C 48 0 7,268.96

eSTR1 23,017.83 0 C 23 0 7,268.96

eSTR2 43,147.71 0 C 48 0 7,268.96

STR-Ni 207,437.50 0 D 96 0 7,268.96

STR-h 35,699.79 0 B 48 0 7,268.96

mddc 25,177.65 0 C 34 0 7,268.96

91

Table B.29: Statistical analysis of the tightness0.8 benchmark

Algorithm Time (ms) #F S #C #BF #NV

tightness0.8: 100(36) instances, e ∈[103,103]

GAC2001 174,146.30 100 A 100 0 2,992.56

STR1 33,153.70 0 B 54 0 2,992.56

STR2 29,848.00 0 B 55 0 2,992.56

STR3 54,783.00 0 B 50 0 2,992.56

eSTR1 21,356.94 0 B 36 0 2,992.56

eSTR2 35,602.73 0 B 55 0 2,992.56

STR-Ni 646,332.58 0 D 89 0 2,992.56

STR-h 59,335.79 0 B 57 0 2,992.56

mddc 33,252.65 0 C 49 0 2,992.56

Table B.30: Statistical analysis of the tightness0.9 benchmark

Algorithm Time (ms) #F S #C #BF #NV

tightness0.9: 100(36) instances, e ∈[84,84]

GAC2001 307,169.49 68 A 99 0 751.71

STR1 61,666.00 1 C 65 0 751.71

STR2 49,936.42 30 B 67 0 751.71

STR3 26,658.00 0 D 40 0 751.71

eSTR1 19,120.28 0 D 36 0 751.71

eSTR2 70,502.99 0 C 67 0 751.71

STR-Ni 1,655,783.53 0 D 85 0 751.71

STR-h 177,208.59 0 D 64 0 751.71

mddc 58,870.18 0 D 56 0 751.71

Table B.31: Statistical analysis of the coloring benchmark

Algorithm Time (ms) #F S #C #BF #NV

coloring: 22(18) instances, e ∈[78,5714]

GAC2001 17,869.09 14 A 22 4 281.67

STR1 107.00 12 A 20 4 281.67

STR2 105.56 11 A 18 3 281.67

STR3 184.44 9 A 18 4 271.72

eSTR1 336.50 8 B 20 4 281.67

eSTR2 415.50 0 B 20 4 281.67

STR-Ni 8,920.91 19 A 22 4 281.67

STR-h 84.21 14 A 19 3 281.67

mddc 115.50 13 A 20 4 281.67

92

Table B.32: Statistical analysis of the frb30-15 benchmark

Algorithm Time (ms) #F S #C #BF #NV

frb30-15: 10(10) instances, e ∈[208,217]

GAC2001 1,577.00 10 A 10 0 2,717.80

STR1 3,050.00 0 A 10 0 2,717.80

STR2 2,839.00 0 A 10 0 2,717.80

STR3 4,675.00 0 A 10 0 2,717.80

eSTR1 5,020.00 0 A 10 0 2,717.80

eSTR2 6,218.00 0 B 10 0 2,717.80

STR-Ni 2,566.00 0 A 10 0 4,348.20

STR-h 5,002.00 0 A 10 0 4,348.20

mddc 3,182.00 0 A 10 0 2,717.80

Table B.33: Statistical analysis of the hanoi benchmark

Algorithm Time (ms) #F S #C #BF #NV

hanoi: 5(3) instances, e ∈[5,125]

GAC2001 792.00 2 A 5 5 16.67

STR1 582.00 4 A 5 5 16.67

STR2 544.00 5 A 5 5 16.67

STR3 176.67 1 A 3 3 16.67

eSTR1 828.00 2 A 5 5 16.67

eSTR2 774.00 0 A 5 5 16.67

STR-Ni 12,890.00 1 A 4 4 16.67

STR-h 1,022.00 2 A 5 5 16.67

mddc 356.67 1 A 3 3 16.67

Table B.34: Statistical analysis of the QWH-10 benchmark

Algorithm Time (ms) #F S #C #BF #NV

QWH-10: 10(10) instances, e ∈[756,756]

GAC2001 19.00 7 A 10 3 146.30

STR1 27.00 2 A 10 3 146.30

STR2 27.00 4 A 10 3 146.30

STR3 156.00 0 B 10 3 146.30

eSTR1 358.00 0 B 10 3 146.30

eSTR2 378.00 0 B 10 3 146.30

STR-Ni 17.00 9 A 10 3 146.30

STR-h 32.00 2 A 10 3 146.30

mddc 51.00 0 A 10 3 146.30

93

Table B.35: Statistical analysis of the QWH-15 benchmark

Algorithm Time (ms) #F S #C #BF #NV

QWH-15: 10(7) instances, e ∈[2324,2324]

GAC2001 54,952.00 0 A 10 0 25,435.57

STR1 18,908.75 0 B 8 0 25,435.57

STR2 22,384.29 0 B 7 0 25,435.57

STR3 256,483.75 0 B 8 0 25,435.57

eSTR1 30,757.14 0 B 7 0 25,435.57

eSTR2 34,522.86 0 B 7 0 25,435.57

STR-Ni 26,533.00 10 A 10 0 25,435.57

STR-h 17,291.43 0 B 7 0 25,435.57

mddc 12,191.43 0 B 7 0 25,435.57

B.3 Non-binary benchmark problems

Below are the tables for the tested non-binary CSPs that were omitted from Sec-

tion 4.3.4:

• eSTR* where a higher level of consistency is enforced performs best: aim-50

(Table B.36), aim-100 (Table B.37), aim-200 (Table B.38), jnhSat (Table B.42),

jnhUnsat (Table B.43), ssa (Table B.40), rand-3-20-20-fcd (Table B.44), rand-3-

20-20 (Table B.45), rand-3-24-24-fcd (Table B.46), rand-8-20-5 (Table B.52)rand-

10-20-10 (Table B.51), modifiedRenault (Table B.54).

• GAC performs well: dubios (Table B.39), pret (Table B.50), travellingSalesman-

20 (Table 4.10), travellingSalesman-25 (Table B.41).

• STR2 performs well: ogdVg (Table B.47), wordsVg (Table B.49).

• STR-N performs well: ukVg (Table B.48).

• Results are inconclusive on: varDimacs (Table B.53).

94

Table B.36: Statistical analysis of the aim-50 benchmark

Algorithm Time (ms) #F S #C #BF #NV

aim-50: 24(24) instances, e ∈[69,289]

GAC2001 512.92 3 B 24 1 42,937.92

STR1 705.00 4 B 24 1 42,937.92

STR2 786.25 5 B 24 1 42,937.92

STR3 795.83 3 B 24 1 42,937.92

eSTR1 10.00 17 A 24 19 25.00

eSTR2 10.42 0 A 24 19 25.00

STR-Ni 379.17 8 A 24 2 42,937.92

STR-h 709.17 3 B 24 2 42,937.92

mddc 727.08 3 B 24 1 42,937.92

Table B.37: Statistical analysis of the aim-100 benchmark

Algorithm Time (ms) #F S #C #BF #NV

aim-100: 24(8) instances, e ∈[150,570]

GAC2001 229,864.67 0 B 15 1 2,268.13

STR1 197.50 0 B 8 1 2,268.13

STR2 195.00 1 B 8 1 2,268.13

STR3 12,468.89 0 B 9 1 2,268.13

eSTR1 28.33 11 A 24 16 50.00

eSTR2 28.75 0 A 24 14 50.00

STR-Ni 7,853.00 4 B 10 1 2,268.13

STR-h 177.50 3 B 8 1 2,268.13

mddc 190.00 0 B 8 1 2,268.13

Table B.38: Statistical analysis of the aim-200 benchmark

Algorithm Time (ms) #F S #C #BF #NV

aim-200: 24(0) instances, e ∈[302,1169]

GAC2001 433,005.00 0 B 8 0

STR1 17,220.00 0 B 4 0

STR2 17,320.00 0 B 4 0

STR3 - - - 0 -

eSTR1 68.26 8 A 23 23

eSTR2 68.33 0 A 24 19

STR-Ni 14,150.00 0 B 5 0

STR-h 13,760.00 0 B 4 0

mddc 16,602.50 0 B 4 0

95

Table B.39: Statistical analysis of the dubois benchmark

Algorithm Time (ms) #F S #C #BF #NV

dubois: 13(0) instances, e ∈[40,200]

GAC2001 107,920.00 2 A 2 0

STR1 - - - 0 -

STR2 - - - 0 -

STR3 - - - 0 -

eSTR1 - - - 0 -

eSTR2 - - - 0 -

STR-Ni 90,530.00 0 A 1 0

STR-h - - - 0 -

mddc - - - 0 -

Table B.40: Statistical analysis of the ssa benchmark

Algorithm Time (ms) #F S #C #BF #NV

ssa: 8(4) instances, e ∈[177,22141]

GAC2001 745.00 2 A 6 4 62,507.50

STR1 1,023.33 1 A 6 4 62,507.50

STR2 1,897.50 2 A 4 2 62,507.50

STR3 39,115.00 0 A 4 2 62,507.50

eSTR1 430.00 2 A 8 6 1,246.00

eSTR2 278.75 0 A 8 6 1,246.00

STR-Ni 616.67 2 A 6 2 62,507.50

STR-h 1,257.50 0 A 4 0 62,507.50

mddc 873.33 4 A 6 4 62,507.50

Table B.41: Statistical analysis of the travellingSalesman-25 benchmark

Algorithm Time (ms) #F S #C #BF #NV

travellingSalesman-25: 15(0) instances, e ∈[350,350]

GAC2001 955,896.00 15 A 15 0

STR1 24,311.67 0 B 6 0

STR2 18,625.00 0 B 6 0

STR3 - - - 0 -

eSTR1 38,461.67 0 B 6 0

eSTR2 33,378.33 0 B 6 0

STR-Ni - - - 0 -

STR-h 27,296.67 0 B 6 0

mddc - - - 0 -

96

Table B.42: Statistical analysis of the jnhSat benchmark

Algorithm Time (ms) #F S #C #BF #NV

jnhSat: 16(4) instances, e ∈[726,819]

GAC2001 5,765.63 1 A 16 1 1,524.21

STR1 4,430.67 0 B 15 1 1,524.21

STR2 6,629.38 1 A 16 1 1,524.21

STR3 86,557.50 0 B 16 1 1,524.21

eSTR1 17,257.50 1 B 16 16 100.00

eSTR2 17,729.38 0 B 16 16 100.00

STR-Ni 1,713.75 14 A 16 0 1,524.21

STR-h 1,938.00 0 A 15 0 1,524.21

mddc 4,776.43 0 B 14 1 1,524.21

Table B.43: Statistical analysis of the jnhUnsat benchmark

Algorithm Time (ms) #F S #C #BF #NV

jnhUnsat: 34(14) instances, e ∈[714,834]

GAC2001 5,765.63 1 B 16 1 1946.26

STR1 4,430.67 0 B 15 1 1,946.26

STR2 6,629.38 1 B 16 1 1,946.26

STR3 86,557.50 0 C 16 1 1,946.26

eSTR1 17,257.50 1 C 16 16 0.00

eSTR2 17,729.38 0 C 16 16 0.00

STR-Ni 1,713.75 14 A 16 0 1,946.26

STR-h 1,938.00 0 B 15 0 1946.26

mddc 4,776.43 0 C 14 1 1,946.26

Table B.44: Statistical analysis of the rand-3-20-20-fcd benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-3-20-20-fcd: 50(12) instances, e ∈[55,60]

GAC2001 235,679.80 1 A 50 0 10,462.73

STR1 78,321.38 0 B 29 0 10,462.73

STR2 79,446.90 0 B 29 0 10,462.73

STR3 336,209.55 0 C 22 0 10,462.73

eSTR1 1,187.76 28 A 49 48 7,144.27

eSTR2 39,284.39 0 A 41 17 7,144.27

STR-Ni 444,185.63 0 C 48 0 10,462.73

STR-h 157,619.31 0 C 29 0 10,462.73

mddc 65,903.33 0 C 12 0 10,462.73

97

Table B.45: Statistical analysis of the rand-3-20-20 benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-3-20-20: 50(5) instances, e ∈[55,60]

GAC2001 405,241.00 3 A 50 0 16,641.50

STR1 113,266.19 0 B 21 0 16,641.50

STR2 100,038.50 0 B 20 0 16,641.50

STR3 485,491.67 0 B 12 0 16,641.50

eSTR1 1,157.66 32 A 47 47 6,547.75

eSTR2 23,687.07 0 A 41 17 6,547.75

STR-Ni 741,572.92 0 B 48 0 16,641.50

STR-h 219,327.14 0 B 21 0 16,641.50

mddc 63,034.00 0 B 5 0 16,641.50

Table B.46: Statistical analysis of the rand-3-24-24-fcd benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-3-24-24-fcd: 50(0) instances, e ∈[72,76]

GAC2001 2,196,606.92 4 B 26 0

STR1 115,700.00 0 C 2 0

STR2 - - - 0 -

STR3 676,630.00 0 C 2 0

eSTR1 2,745.85 16 A 41 41

eSTR2 5,378.00 0 A 15 9

STR-Ni 3,255,730.00 0 C 3 0

STR-h 127,585.00 0 C 2 0

mddc 156,840.00 0 C 1 0

Table B.47: Statistical analysis of the ogdVg benchmark

Algorithm Time (ms) #F S #C #BF #NV

ogdVg: 65(2) instances, e ∈[8,36]

GAC2001 592,518.60 14 A 43 11 18.00

STR1 206,458.25 0 A 40 11 18.00

STR2 129,209.50 32 A 40 11 18.00

STR3 266,023.60 0 B 25 11 18.00

eSTR1 15,112.81 0 A 32 11 18.00

eSTR2 135,021.75 0 A 40 11 18.00

STR-Ni 14,765.00 0 B 2 2 18.00

STR-h 30,513.00 0 B 10 7 18.00

mddc 1,653,245.00 0 B 12 9 18.00

98

Table B.48: Statistical analysis of the ukVg benchmark

Algorithm Time (ms) #F S #C #BF #NV

ukVg: 65(7) instances, e ∈[8,36]

GAC2001 54,952.00 0 B 10 0 25,435.57

STR1 18,908.75 0 A 8 0 25,435.57

STR2 22,384.29 0 B 7 0 25,435.57

STR3 256,483.75 0 C 8 0 25,435.57

eSTR1 30,757.14 0 A 7 0 25,435.57

eSTR2 34,522.86 0 B 7 0 25,435.57

STR-Ni 26,533.00 10 A 10 0 25,435.57

STR-h 17,291.43 0 A 7 0 25,435.57

mddc 12,191.43 0 A 7 0 25,435.57

Table B.49: Statistical analysis of the wordsVg benchmark

Algorithm Time (ms) #F S #C #BF #NV

wordsVg: 65(0) instances, e ∈[8,36]

GAC2001 665,027.86 9 A 42 3

STR1 305,310.00 0 C 1 0

STR2 44,399.43 34 A 35 3

STR3 - - - 0 -

eSTR1 18,098.15 0 A 27 3

eSTR2 63,174.29 0 A 35 3

STR-Ni 17,415.00 0 B 2 2

STR-h 49,941.25 0 B 8 3

mddc - - - 0 -

Table B.50: Statistical analysis of the pret benchmark

Algorithm Time (ms) #F S #C #BF #NV

pret: 8(0) instances, e ∈[40,100]

GAC2001 39,442.50 4 A 4 0

STR1 - - - 0 -

STR2 - - - 0 -

STR3 71,945.00 0 A 4 0

eSTR1 - - - 0 -

eSTR2 - - - 0 -

STR-Ni 41,557.50 0 A 4 0

STR-h 50,350.00 0 A 4 0

mddc - - - 0 -

99

Table B.51: Statistical analysis of the rand-10-20-10 benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-10-20-10: 20(0) instances, e ∈[5,5]

GAC2001 3,595.00 0 B 20 0

STR1 318.00 6 A 20 0

STR2 308.50 14 A 20 0

STR3 218,435.00 0 B 20 0

eSTR1 578.95 0 A 19 19

eSTR2 500.53 0 A 19 19

STR-Ni - - - 0 -

STR-h - - - 0 -

mddc 3,208,000.00 0 B 20 0

Table B.52: Statistical analysis of the rand-8-20-5 benchmark

Algorithm Time (ms) #F S #C #BF #NV

rand-8-20-5: 20(0) instances, e ∈[18,18]

GAC2001 1,469,519.00 1 B 20 0

STR1 745,625.56 1 B 18 0

STR2 810,090.00 0 B 18 0

STR3 - - - 0 -

eSTR1 20,350.00 17 A 18 18

eSTR2 767,518.46 0 B 13 0

STR-Ni 2,599,279.38 0 B 16 0

STR-h 1,792,535.79 0 B 19 0

mddc - - - 0 -

Table B.53: Statistical analysis of the varDimacs benchmark

Algorithm Time (ms) #F S #C #BF #NV

varDimacs: 9(3) instances, e ∈[133,1737]

GAC2001 127,220.00 1 A 5 1 44,366.00

STR1 10,592.50 0 A 4 1 44,366.00

STR2 1,293.33 1 A 3 1 44,366.00

STR3 35,152.50 0 A 4 1 44,366.00

eSTR1 12,830.00 0 A 4 1 44,042.67

eSTR2 1,546.67 0 A 3 1 44,042.67

STR-Ni 6,192.50 4 A 4 1 44,366.00

STR-h 10,325.00 0 A 4 1 44,366.00

mddc 1,013.33 0 A 3 1 44,366.00

100

Table B.54: Statistical analysis of the modifiedRenault benchmark

Algorithm Time (ms) #F S #C #BF #NV

modifiedRenault: 50(0) instances, e ∈[125,137]

GAC2001 371,500.00 12 A 27 5

STR1 3,989.05 0 A 21 5

STR2 3,228.57 10 A 21 5

STR3 141,972.00 0 B 20 5

eSTR1 18,592.00 7 A 50 50

eSTR2 19,334.40 0 A 50 50

STR-Ni - - - 0 -

STR-h 786.67 2 A 18 4

mddc 376,944.50 0 B 20 5

101

Appendix C

Code Documentation

This documentation gives an overview of the algorithms and their corresponding

helper functions.

Below is the file structure and hierarchy of the code files:

scsp

|-- include

| |-- FikayoGAC_algs

| | |-- mddc.h

| | |-- str1.h

| | |-- str2.h

| | |-- str3.h

| | |-- strn.h

| ’-- fikayoinclude.h

| ’-- strinit.h

|-- src

| |-- FikayoGAC_algs

| | |-- mddc.c

102

| | |-- str1.c

| | |-- str2.c

| | |-- str3.c

| | |-- strn.c

| ’-- fikayoinclude.c

| ’-- strinit.c

Below, we document the source files used to implement our algorithms, which were

added to the scsp-code package created by Shant Karakashian. The code repository

is located on the Department of Computer Science and Engineering of the University

of Nebraska-Lincoln SVN server located at https://cse.unl.edu/svn/scsp.1

C.1 File Documentation

Below is the documentation for the C files added to the scsp-code package.

C.1.1 scsp/src/Fikayo GACalgs/mddc.c File Reference

Functions

• mdd node ∗ make node (mdd node ∗node, variable ∗var, llist ∗list)

• mdd link ∗ new mdd link (void)

• timestamp ∗ new timestamp (void)

• llist ∗ link list (variable ∗pred)

• mdd node ∗ mddify (constraint ∗cons, int type, main structure ∗m s)

• mdd node ∗ mddReduce (mdd node ∗T)

• int all same terminal (mdd node ∗node, int k)

1The documentation is generated using Doxygen, http://www.doxygen.org/.

103

• mdd node ∗ G prime found (mdd node ∗node, llist ∗list)

• llist node ∗ get node of value (llist ∗list, int k)

• void print mdd (constraint ∗cons, mdd node ∗node)

• llist ∗ mddc (constraint ∗cons, int time, variable ∗cur var, main structure ∗m s)

• int mddcSeekSupports (mdd node ∗cons, int time, int i, main structure ∗m s,

llist ∗G No, llist ∗G Yes)

• llist ∗ restore G no (llist ∗list, int time)

• void remove G no (llist ∗list, int time)

• int mddc gac filter (set ∗undo set, variable ∗cur var, main structure ∗m s, int

time)

• llist ∗ llist dif (llist ∗llist1, llist ∗llist2)

Variables

• int accept

• int reject

• int delta

• llist ∗ G list

C.1.2 scsp/src/Fikayo GACalgs/str.c File Reference

Functions

• int str filter (set ∗undo set, variable ∗cur var, int time, main structure ∗m s)

• int str1 filter (set ∗undo set, variable ∗cur var, int time, main structure ∗m s)

• int removeValues from domain (llist ∗list1, variable ∗vars, variable ∗var, main-

structure ∗m s)

104

• int removeValues (llist node ∗val node, variable ∗vars, variable ∗var, main -

structure ∗m s)

• llist ∗ llist3 (llist ∗llist1, llist ∗llist2)

• void removeTuples (set ∗undo set, constraint ∗cons, int tups, variable ∗var, int

time)

• int isValid (constraint ∗cons, int tau, main structure ∗m s)

• int isContainedIn (int valsing, llist ∗valarray)

• int isContainedIn2 (int valsing, llist ∗valarray)

• int isContainedIn3 (int valsing, llist ∗valarray)

• int isEqual domain (llist ∗gacvals, llist ∗doms)

• int isEqual domain2 (llist ∗gacvals, llist ∗doms)

• int isFuture (variable ∗var)

• int estr1 filter (set ∗undo set, variable ∗cur var, int time, main structure ∗m s)

C.1.3 scsp/src/Fikayo GACalgs/str2.c File Reference

Functions

• int str2 filter (set ∗undo set, variable ∗cur var, int time, main structure ∗m s)

• int isScopeMember (variable ∗cur var, int ∗variables, main structure ∗m s)

• int isValid2 (constraint ∗cons, int tau, main structure ∗m s)

• int isS sup (variable ∗var, llist ∗list)

• int isPWConsistent (constraint ∗constr, int tau)

• llist ∗ UpdateCtr (constraint ∗constr, int tau)

• int estr2 filter (set ∗undo set, variable ∗cur var, int time, main structure ∗m s)

105

C.1.4 scsp/src/Fikayo GACalgs/str3.c File Reference

Functions

• int str3 filter (set ∗undo set, variable ∗cur var, main structure ∗m s, int time)

• void move (constraint ∗cons, var val ∗vvp, int k, int l)

• void save (constraint ∗key, llist ∗store, variable ∗var)

• void save2 (con var val ∗cvv, int new val, llist ∗store, int var p, int val p, vari-

able ∗var)

• st I ∗ new st I (void)

• st R ∗ new st R (void)

• state save ∗ new state save (void)

• void restoreI (main structure ∗m s, variable ∗var)

• void restoreR (main structure ∗m s, variable ∗var)

• int str3 GAC (main structure ∗m s, variable ∗c var, set ∗undo set, int time)

• int get var position (variable ∗var, constraint ∗con, main structure ∗m s)

• int get val position (int val, llist ∗list)

• void print row (constraint ∗cons, main structure ∗m s)

C.1.5 scsp/src/Fikayo GACalgs/strn.c File Reference

Functions

• int strn filter (set ∗undo set, variable ∗cur var, int time, main structure ∗m s)

• int isValid neg (constraint ∗cons, int tau, main structure ∗m s)

• void ComputeCount (variable ∗var, constraint ∗con, main structure ∗m s)

• void UpdateCount (constraint ∗con, int tup, variable ∗cur var, main structure

∗m s)

106

Bibliography

[Bessière et al., 2005] Christian Bessière, Jean-Charles Régin, Roland H.C. Yap, and

Yuanlin Zhang. An Optimal Coarse-Grained Arc Consistency Algorithm. Artificial

Intelligence, 165(2):165–185, 2005.

[Bessière et al., 2008] Christian Bessière, Kostas Stergiou, and Toby Walsh. Domain

Filtering Consistencies for Non-Binary Constraints. Artificial Intelligence, 172:800–

822, 2008.

[Briggs and Torczon, 1993] Preston Briggs and Linda Torczon. An Efficient Repre-

sentation for Sparse Sets. ACM Lett. Program. Lang. Syst., 2(1-4):59–69, March

1993.

[Cheeseman et al., 1991] Peter Cheeseman, Bob Kanefsky, and William M. Taylor.

Where the Really Hard Problems Are. In Proceedings of the 12 th International

Joint Conference on Artificial Intelligence, pages 331–337, Sidney, Australia, 1991.

[Cheng and Yap, 2010] Kenil C.K. Cheng and Roland H.C. Yap. An MDD-Based

Generalized Arc Consistency Algorithm for Positive and Negative Table Con-

straints and Some Global Constraints. Constraints, 15 (2):265–304, 2010.

107

[Debruyne and Bessière, 2001] Romuald Debruyne and Christian Bessière. Domain

Filtering Consistencies. Journal of Artificial Intelligence Research, 14:205–230,

2001.

[Dechter and van Beek, 1997] Rina Dechter and Peter van Beek. Local and Global

Relational Consistency. Theoretical Computer Science, 173(1):283–308, 1997.

[Gent et al., 2007] Ian P. Gent, Chris Jefferson, Ian Miguel, and Peter Nightingale1.

Data Structures for Generalised Arc Consistency for Extensional Constraints. In

22nd AAAI Conference on Artificial Intelligence (AAAI 07), pages 379–393, 2007.

[Gharbi et al., 2014] Nebras Gharbi, Fred Hemery, Christophe Lecoutre, and Olivier

Roussel. Sliced Table Constraints: Combining Compression and Tabular Reduc-

tion. In International Conference on the Integration of AI and OR Techniques

in Constraint Programming (CPAIOR 2014), volume LNCS 8451, pages 120–135.

Springer, 2014.

[Gyssens, 1986] Marc Gyssens. On the Complexity of Join Dependencies. ACM

Trans. Database Systems, 11(1):81–108, 1986.

[Jefferson and Nightingale, 2013] Christopher Jefferson and Peter Nightingale. Ex-

tending Simple Tabular Reduction with Short Supports. In Proceedings of the

23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), vol-

ume LNCS 8451, pages 573–579. Springer, 2013.

[Karakashian et al., 2010] Shant Karakashian, Robert Woodward, Christopher Ree-

son, Berthe Y. Choueiry, and Christian Bessiere. A First Practical Algorithm

for High Levels of Relational Consistency. In 24th AAAI Conference on Artificial

Intelligence (AAAI 10), pages 101–107, 2010.

108

[Karakashian et al., 2013] Shant Karakashian, Robert Woodward, and Berthe Y.

Choueiry. Improving the Performance of Consistency Algorithms by Localizing

and Bolstering Propagation in a Tree Decomposition. In Proceedings of the 27th

Conference on Artificial Intelligence (AAAI 2013), pages 466–473, 2013.

[Karakashian, 2013] Shant Karakashian. Practical Tractability of CSPs by Higher

Level Consistency and Tree Decomposition. PhD thesis, University of Nebraska-

Lincoln, 2013.

[Katsileros and Walsh, 2007] George Katsileros and Toby Walsh. A Compression Al-

gorithm for Large Arity Extensional Constraints. In International Conference on

Principles and Practice of Constraint Programming (CP 2007), volume 4741 of

Lecture Notes in Computer Science, pages 379–393. Springer, 2007.

[Lecoutre et al., 2012] Christophe Lecoutre, Chavalit Likitvivatanavong, and Ronald

Yap. A Path-Optimal GAC Algorithm for Table Constraints. In 20th European

Conference on Artificial Intelligence (ECAI 2012), pages 510–515, 2012.

[Lecoutre et al., 2013] Christophe Lecoutre, Anastasia Paparrizou, and Kostas Ster-

giou. Extending STR to a Higher-Order Consistency. In Proceedings of the twenty-

seventh AAAI Conference on Artificial Intelligence (AAAI 2013), pages 576–582,

2013.

[Lecoutre, 2010] Christophe Lecoutre. Constraint Networks: Techniques and Algo-

rithms. Wiley, 2010.

[Lecoutre, 2011] Christophe Lecoutre. STR2: Optimized Simple Tabular Reduction

for Table Constraints. Constraints, 16 (4):341–371, 2011.

109

[Lee, 1992] Elisa T. Lee. Statistical Methods for Survival Data Analysis. John Wiley

& Sons, New York, NY, second edition, 1992.

[Li et al., 2013] Hongbo Li, Yanchun Liang, Jinsong Guo, and Zhanshan Li. Making

Simple Tabular Reduction Works on Negative Table Constraints. In Proceedings of

the twenty-seventh AAAI conference on Artificial Intelligence (AAAI 2013), pages

1629–1630, 2013.

[Mackworth, 1977] Alan K. Mackworth. On Reading Sketch Maps. In Proceedings of

the Fifth International Joint Conference on Artificial Intelligence, pages 598–606,

1977.

[Mohr and Henderson, 1986] Roger Mohr and Thomas C. Henderson. Arc and Path

Consistency Revisited. Artificial Intelligence, 28:225–233, 1986.

[Perez and Régin, 2014] Guillaume Perez and Jean-Charles Régin. Improving GAC-4

for Table and MDD Constraints. In International Conference on Principles and

Practice of Constraint Programming (CP 2014), volume LNCS 8656, pages 606–

621. Springer, 2014.

[Schneider et al., 2014] Anthony Schneider, Robert J. Woodward, Berthe Y.

Choueiry, and Christian Bessiere. Improving Relational Consistency Algorithms

Using Dynamic Relation Partitioning. In International Conference on Principles

and Practice of Constraint Programming (CP 2014), volume LNCS 8656, pages

688–704. Springer, 2014.

[Ullmann, 2007] Julian R. Ullmann. Partition Search for Non-binary Constraint Sat-

isfaction. Information Sciences: an International Journal, 177 (18):3639–3678,

2007.

110

[Wallace, 1993] Richard J. Wallace. Why AC-3 is Almost Always Better than AC-4

for Establishing Arc Consistency in CSPs. In Proceedings of the 13 th International

Joint Conference on Artificial Intelligence, pages 239–245, Chambéry, France, 1993.

[Waltz, 1975] David Waltz. Understanding Line Drawings of Scenes with Shadows. In

P.H. Winston, editor, The Psychology of Computer Vision, pages 19–91. McGraw-

Hill, Inc., 1975.

[Woodward et al., 2011] Robert Woodward, Shant Karakashian, Berthe Y. Choueiry,

and Christian Bessiere. Solving Difficult CSPs with Relational Neighborhood In-

verse Consistency. In 25th AAAI Conference on Artificial Intelligence (AAAI 11),

pages 1–8, 2011.

[Xia and Yap, 2013] Wei Xia and Roland H. C. Yap. Optimizing STR Algorithms

with Tuple Compression. In International Conference on the Principles and Prac-

tice of Constraint Programming (CP 2013), volume LNCS 8124, pages 724–732.

Springer, 2013.

[Xu et al., 2007] Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe

Lecoutre. Random Constraint Satisfaction: Easy Generation of Hard (Satisfiable)

Instances. Artificial Intelligence, 171(8-9):514–534, 2007.

