
Reducing No-Goods
in Binary Constraint Satisfaction Problems

by

Mary D. Burke
mburke@cse.unl.edu

An Undergraduate Honors Thesis
Constraint Systems Laboratory

University of Nebraska-Lincoln, USA

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

May, 2013



This thesis is dedicated to my parents
in recognition of their continuous guidance and support.



Abstract

Conflict-Directed Backjumping (CBJ) is an important mechanism for
improving the performance of backtrack search used to solve Constraint
Satisfaction Problems (CSPs). Using specialized data structures, CBJ tracks
the reasons for failure and learns inconsistent combinations (i.e., no-goods)
during search. However, those no-goods are forgotten as soon as search
backtracks along a given path to shallower levels in the search tree, thus
wasting the opportunity of exploiting such no-goods elsewhere in the search
space. Storing such no-goods is prohibitive in practice because of space lim-
itations. In this thesis, we propose a new strategy to preserve all no-goods as
they are discovered and to reduce them into no-goods of smaller sizes with-
out diminishing their pruning power. We show how our strategy improves
the performance of search by exploiting the no-goods discovered by CBJ,
and saves on storage space by generalizing them.

1



Contents
1 Introduction 3

2 Background 4
2.1 Constraint Satisfaction Problems . . . . . . . . . . . . . . . . . . 4

2.1.1 Backtrack Search . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Conflict-Directed Backjumping (CBJ) . . . . . . . . . . . 6
2.1.3 Forward Checking (FC) . . . . . . . . . . . . . . . . . . 7
2.1.4 Hybrid FC-CBJ . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Previous Approaches to No-Good Learning 9
3.1 No-Good Learning in CSP . . . . . . . . . . . . . . . . . . . . . 9
3.2 Clause Learning in SAT . . . . . . . . . . . . . . . . . . . . . . . 11

4 No-good Learning and Propagation in FC-CBJ 12

5 Blame Variables 15

6 Algorithms for Learning No-Goods in FC-CBJ 17

7 Reducing the List of No-goods 21

8 No-good Propagation 22

9 Experiments 26
9.1 CSP Parameters & Phase Transition . . . . . . . . . . . . . . . . 27
9.2 Random Instances with Variable Tightness . . . . . . . . . . . . . 27
9.3 Random Instances with Variable Density and Tightness . . . . . . 31
9.4 Benchmarks Instances . . . . . . . . . . . . . . . . . . . . . . . 38

10 Conclusions and Future Research 41

A Pseudocode 44

2



1 Introduction
Constraint Processing (CP) is a powerful and flexible framework for modeling
and solving many real-world problems such as planning and resource alloca-
tion, design and product configuration, and hardware and software verification
[Dechter, 2003]. It is an active area of Artificial Intelligence and Theoretical
Computer Science. Constraint Satisfaction Problems (CSPs) are in general NP-
Complete. Backtrack search is the only complete and sound algorithm for solving
a CSP instance. The performance of search is improved by several mechanisms.
In this thesis, we focus on two such independent mechanisms: forward checking
(FC) and conflict-directed backjumping (CBJ).

• FC propagates, after each variable instantiation, the impact of the decision
to the rest of the problem. FC improves the performance of search by re-
ducing the size of of the future subproblem.

• CBJ maintains data structures that allow search, at every dead-end, to rec-
ognize the deepest reason for failure and jump back to that instantiation past
intermediate, irrelevant ones. It thus reduces the backtracking effort.

The combination of those orthogonal two mechanisms yields forward checking
with conflict-directed backjumping (FC-CBJ) [Prosser, 1993].

FC-CBJ traces the reasons for failure along a search path within its data struc-
tures and learns an inconsistent combination of variable-value pairs (i.e., no-good)
at each backtrack. Unfortunately, those no-goods are not maintained throughout
the search process but are discarded when the data structures are reinitialized to
store new conflicts. As a result, potential benefits of the newly discovered no-
goods are lost for the remaining of the search process. If remembered throughout
the search and propagated whenever applicable, those no-goods could be used
to prune unexplored subtrees of the search space and, consequently, reduce the
overall effort of solving the CSP.

We propose a strategy for extracting, storing, and propagating the no-goods
discovered during FC-CBJ search. Because space is a large concern of storing no-
goods, we propose a technique for generalizing the set of learned no-goods into a
reduced set. We show how our strategy of storing and utilizing the no-goods saves
on overall search effort. Furthermore, we show how our strategy for reducing the
set of no-goods saves on storage space.

This thesis is organized as follows. Section 2 provides background informa-
tion of CSPs and SAT problems. Section 3 reviews how no-goods are learned and

3



used in CP and SAT solvers. Section 4 describes the new algorithms for learning,
propagating, and reduced the no-goods discovered in FC-CBJ. Section 5 proposes
a new mechanism to handle backtracking in the presence of no-goods. Section 6
describes the actual algorithms and provided the corresponding pseudocode. Sec-
tion 7 discusses how the discovered no-goods are summarized (i.e., reduced).
Section 8 describes our method for propagating no-goods during search. Sec-
tion 9 discusses our experimental results on randomly generated problems and on
benchmark instances. Section 10 concludes this document. Finaly, Appandix A
provides original pseudocode of the main function that we modify [Prosser, 1993].

2 Background
In the following two sections, we introduce and CSPs and SAT problems and
discuss the main techniques used for solving of each them.

2.1 Constraint Satisfaction Problems
Formally, a Constraint Satisfaction Problem (CSP) is defined as P = (V ,D, C),
where V is a set of variables, D is a set of domains, and C is a set of constraints.
Each variable Vi ∈ V is associated with a domainD(Vi), which is a set of possible
values for the variable Vi. A constraint ci ∈ C is defined by a scope scope(ci)
and a relation Ri. The scope of the constraint is a subset of the variables in V and
Ri is a relation over the domains of the variables in scope(ci). The cardinality of
scope(ci) is the arity of the constraint. In this thesis, we restrict ourselves to binary
CSPs. Solving a CSP corresponds to assigning a domain value di ∈ D(Vi) to each
variable Vi ∈ V such that all the constraints are satisfied. Determining whether
a CSP is solvable or consistent is a satisfiability problem and is in general NP-
complete). Counting the number of solutions of a CSP is the associated model-
counting problem and is in general #P.

Graph coloring can easily be modeled as a CSP. The example given in Figure
1 is taken from Dechter [2003]. In this example,

• V = {X1, X2, . . . , X6}.

• D(X1) = D(X2) = · · · = D(X6) = {red, blue, green}.

• The constraints in this example require the two adjacent areas cannot be
given the same color. They are shown as are shown as dotted edges linking
the vertices corresponding to the variables.

4



Figure 1: Graph coloring example.

• The representation of the variables and the constraints as vertices and edges
of a graph define the constraint graph of the CSP.

A solution to the problem in Figure 1 is {X1 = red, X2 = blue, X3 = blue, X4 =
green, X5 = red, X6 = green}.

A variable-value pair (Vi, vi) is a tuple corresponding to the assignment to
a variable Vi of a value vi from its domain vi ∈ D(Vi). A partial solution is
set of variable-value pairs. The partial solution is consistent if it satisfies all the
constraints defined on its variables. A no-good is a set of variable-value pairs that
does not participate in any solution of the problem [Dechter, 1990]. A no-good is
said to be minimal if and only if every strict subset of it appears in some solution
to the CSP.

Below we discuss methods for solving CSPs.

2.1.1 Backtrack Search

Backtrack search (BT) is an exhaustive, systematic, enumeration of the combina-
tions of variables-values pairs of a CSP. It proceeds in a depth-first manner in order
to maintain a linear space-requirement. Variables are considered in sequence for
instantiation (i.e., value assignment). A path is extended only when the assign-
ment of the last variable is consistent with all past assignments (i.e., consistent
partial solution). A solution is found (and search is ended) when all variables
have been instantiated and all constraints are satisfied. If a current partial solu-
tion reaches a dead-end (i.e., no consistent value is found in the domain of the
considered variable), search backtracks to the latest assignment, undoes it, and
attempts to find another labeling to the unlabeled variable. The process proceeds
systematically until a solution is found or the problem is found to be unsolvable.

5



Figure 2 depicts the BT search in a simple example where the variable V4 has
no value in its domain consistent with the partial solution {V1 ← 1, V2 ← 1, V3 ←
1}. Search backtracks to the most recently instantiated variable V3, undoes the

V1⟵1	
  

V2⟵1	
  

V3⟵1	
  

{1,2,3,4,5} 

{1,2,3,4,5} 

{1,2,3,4,5} 

{1,2,3,4,5} 

{1,2,3,4,5} 

V2 

V1 

V3 

V4 

V5 

CV3,V5:V3>V5 

CV2,V4: V2> V4 
V4	
  ⟵1	
   V4	
  ⟵2	
   V4	
  ⟵3	
   V4	
  ⟵4	
   V4	
  ⟵5	
  

V3⟵2	
  

Figure 2: Simple BT example.

instantiation, then proceeds with another value for V3.

2.1.2 Conflict-Directed Backjumping (CBJ)

Conflict-Directed Backjumping (CBJ) is an improvement to chronological back-
tracking. When search reaches a dead-end, instead of undoing the deepest as-
signment, CBJ jumps past those variables that could not have possibly caused
the conflict that caused the dead-end. It recognizes the deepest assignment that
may have yielded the conflict, jumps back to it, and undoes it after undoing all
intermediary assignments. Thus, it avoids thrashing and is guaranteed not to lose
any solution. CBJ is able to keep jumping across conflicts while guaranteeing
completeness [Kondrak and van Beek, 1995].

To achieve this mechanism, CBJ maintains a data structure where the confSet(Vi)
of each variable Vi stored for all variables in the current path of the search tree.
The conflict set of a variable Vi is the set of all the variables in the current path
whose current assignment is inconsistent with a value in the domain values of Vi

that was discarded from instantiation. If, during search, there are no consistent
domain values for the variable Vi,

1. confSet(Vh) is updated to (confSet(Vi) \ {Vh}) ∪ confSet(Vh).

6



2. For all Vx, x ∈ (h, i], confSet(Vx)← ∅.

3. The search jumps back to the deepest variable Vh in confSet(Vi) undoing
the current instantiation of Vh.

If immediately after backjumping, Vh is found to have no feasible domain values,
CBJ continues backjumping again from Vh to the deepest variable in conflict set of
Vh until a variable with feasible domain values is found [Prosser, 1993]. Figure 3
illustrates the backtrack portion of CBJ. Notice after the first backjump to V4, we

V2⟵1	
  

V3⟵1	
  

V4⟵1	
  

V5⟵1	
   V5⟵2	
  

V6⟵1	
   V6⟵2	
   V6⟵3	
  

V4⟵2	
  

ConfSet[V5] = 
{V3} 

ConfSet[V3] = {} 

ConfSet[V4] = 
{V2} 

ConfSet[V6] = {V1,V4} 

ConfSet[V2] = {} 

V4⟵3	
  

V2⟵2	
  

{1,2,3} 

{1,2,3} 

{1,2,3} 

{1,2,3} 

{1,2,3} 

V3 

V2 

V4 

V5 

V6 

V4 > V6 

V3< V5 

V2= V4 

{1,2,3} V1 

V1≠ V6 

ConfSet[V4] = {V1,V2} 

V1⟵1	
   ConfSet[V1] = {} 

Figure 3: Simple CBJ example.

backjump again to V2 instead of backtracking chronologically to V3.

2.1.3 Forward Checking (FC)

Forward Checking (FC) improves upon backtrack search by incorporating con-
straint propagation as a lookahead strategy [Haralick and Elliott, 1980]. At the

7



instantiation of the current variable Vi the algorithm looks ahead to the uninstan-
tiated variables (future variables) and clears the domain values of those future
variables that inconsistent with the variable instantiation of Vi. This algorithm
guarantees that all the values in the domains of the future variables are consistent
with the current partial solution because all inconsistent values have already been
removed. If a future variable’s domain is “wiped out” by the instantiation of the
current variable Vi, FC backtracks chronologically.

2.1.4 Hybrid FC-CBJ

Prosser [1993] proposed FC-CBJ as a hybrid backtrack search algorithm that com-
bines FC and CBJ for which he provide the detailed pseudocode. This algorithm
is the one that we will improve upon because it was empirically shown to be the
most effective in practice [Prosser, 1993]. The pseudocode has one important
function FC-CBJ-UNLABEL, which we report in Algorithm 11 in Appendix A.

2.2 Satisfiability
A Satisfiability (SAT) sentence is defined by a set of Boolean variables and a set
of constraints over these variables. In conjunctive normal form (CNF), a SAT
sentence is specified as a conjunction of clauses, where each clause is a disjunc-
tion of literals and each literal is a term (i.e., Boolean variable) or its negation.
Solving a SAT instance requires finding an assignment of truth values for the
terms such that the SAT sentence holds. Sound and complete SAT solvers are
based on backtrack search, more specifically the DPLL procedure, which relies
on unit propagation to speed up the search [Davis et al., 1962; Davis and Putnam,
1960]. Recently, DPLL has been extended to incorporate ‘two-watched-literals’
unit propagation, conflict-clause learning, and conflict resolution [Marques-Silva
and Sakallah, 1999; Moskewicz et al., 2001; Bordeaux et al., 2006]. The resulting
procedure is commonly called conflict-driven clause learning (CDCL).

SAT solvers frequently implement watched literals to assist in propagation
[Zhang and Malik, 2002; Eén and Sörensson, 2004; Moskewicz et al., 2001].
Two literals per learned clause are selected to ensure that the learned clause is
not violated. These literals are known as watched literals, w1, w2, and, while
both watched literals are uninstantiated no propagation can be made with regard
to the no-good associated to the watched literals. When one watched literal, say
w1, becomes false, we look for another uninstantiated literal in the no-good as a

8



replacement. If none exists, w2 is instantiated to verify the clause and propagated
accordingly.

3 Previous Approaches to No-Good Learning
In this section, we report a wide review of the state of the art on no-good learning
in CP and SAT.

The concept of no-good learning has originated from the conflict-sets dis-
covered by CBJ. In the history of CP, one paper questioned the utility of CBJ
in the presence of particularly effective heuristics for dynamic variable ordering
[Bessière and Régin, 1996]. That reason, along with the implementation ‘diffi-
culty’ of CBJ, has resulted in CBJ being snubbed by the CP research community
in favor of FC, a more aggressive lookahead strategy called than MAC [Sabin
and Freuder, 1994], and dynamic variable ordering. As a result, the study of the
no-goods generated by CBJ was overlooked by the CP community. However,
the opportunity was embraced by the SAT community in an influential paper that
brought a simple CP mechanism to empower SAT solvers [Bayardo and Schrag,
1997], fueling up the power SAT solvers.

3.1 No-Good Learning in CSP
A number of learning techniques have been proposed to improve the performance
of search. Those mainly include value-based learning, graph-based shallow learn-
ing, jumpback learning, and deep learning [Dechter, 1990; Frost and Dechter,
1994]. In those learning schemes, the learned conflict added is called a “conflict-
set,” which is a no-good. Generally speaking, a no-good discovered during search
is a subset of the current path (i.e., partial assignment) that has yielded the dead-
end.

• Value-based learning removes all irrelevant variable-value pairs from a con-
flict set before adding the conflict set to the problem. An irrelevant variable
is a variable that is consistent with all of the domain values of the dead-end
variable.

• Graph-based shallow learning derives conflict sets by analyzing the con-
straint graph after a dead-end is encountered.

9



• Jumpback learning uses the conflict-set maintained by CBJ. Because the
new conflict-set is provided by CBJ itself, no additional analysis is required
and the complexity of computing the conflict-set is constant.

• Deep learning records all and only minimal conflict sets during search. Im-
plementation of deep learning can be done by means of enumeration: first
considering all conflict-sets containing a single variable-value pair, then all
those two, etc. This approach is costly and may require exponential time
and space complexity at each dead-end [Dechter, 1990].

Other techniques proposed by Katsirelos and Bacchus [2003; 2005] and Kat-
sirelos [2008] incorporate no-good learning into FC-CBJ and GAC by means of
both standard and generalized no-good learning. A standard no-good consists
only of variable assignments that do not participate in any solution while a gen-
eralized no-good can contain both variable assignments and variable prunings
that do not participate in any solution. For example, for a CSP with variables
V = {V1, V2, V3} and domains D(V1) = D(V2) = D(V3) = {1, 2, 3}:

• The standard no-good ngst = {V1 ← 1, V2 ← 1} states that the that as-
signments of V1 ← 1 and V2 ← 1 together are inconsistent. That is, if
V1 ← 1 then 1 must be pruned from D(V2) (and vice versa) because the
combination {V1 ← 1, V2 ← 1} is not part of any solution.

• The generalized no-good nggen = {V1 ← 1, V2 6← 1} states that both the
assignment V1 ← 1 and the pruning of the domain value 1 from D(V2) are
inconsistent. Thus, if V1 ← 1 then the value 1 cannot be pruned from the
domain of V2 or, if the value 1 has pruned from D(V2), then the value 1
must be pruned from D(V1).

Lecoutre et al. [2007] combine no-good learning with randomized restarts.
Where no-goods are only minimized and recorded immediately before the restart.

Another mechanism for generating no-goods is lazy clause-generation [Gent
et al., 2010]. Unlike other learning algorithms, this mechanism does not explicitly
store the reason for pruning a value from a variable’s domain as CBJ does. Rather,
whenever a dead-end is encountered because of a domain wipe-out, it invokes a
function to analyze the reason for failure and generate a no-good.

In addition to no-good learning, no-good forgetting was proposed to cope with
the large overhead associated with storing and propagating no-goods. Dechter

10



[1990] and Frost and Dechter [1994] implement first, second, third, and fourth-
order learning for standard no-goods. In i-order learning, only no-goods consist-
ing of i or fewer variables are recorded. Feydy and Stuckey [2009] and Ohri-
menko et al. [2009] implicitly incorporate clause forgetting by means of external
SAT solver usage. Gent et al. [2012] applies no-good forgetting to the generalized
no-goods and further enhances lazy clause generation by incorporating no-good
forgetting.

3.2 Clause Learning in SAT
Clause learning has become a fundamental technique at the heart of the success
of modern SAT solvers. Bayardo and Schrag [1996] implemented CBJ with third-
order learning, originally introduced for CSPs [Dechter, 1990; Frost and Dechter,
1994].

In SAT, a variable is assigned a value either by a decision of the algorithm
(i.e., decision variable), or by means of propagation from either a clause in the
original problem or a clause learned during search. Negative variable assignments
correspond to the variables being assigned the value ‘false.’ Similarly, a positive
variable assignment corresponds to the variable being assigned the value ‘true.’ A
conflict corresponds to assigning both ‘true’ and ‘false’ values to the same vari-
able Vi. An implication graph is a directed acyclic graph whose vertices represent
variable assignments. The edges in the implication graph represent the reasons
that a variable was assigned a value. For a given vertex Vi, the vertices at the
originating end of the edges pointing to Vi are called the antecedent vertices of
Vi. Note that decision variables have no edge pointing to them and, thus, have
no antecedent vertices. When a conflict occurs, we collect every decision vari-
able at the root of some path in the implication graph leading to the conflicting
assignment. We form a conflict clause as the disjunction of the negations of those
assignments. The learned conflict clause is added to the theory. We backtrack
to the deepest decision variable in the conflict clause to avoid the conflict. This
operation corresponds to learning no-goods and implementing CBJ. Such learned
clauses are not desirable because the decisions on which they are built are un-
likely to be encountered again. Preferable choices can be made by exploiting the
implication graph.

Indeed, a conflict clause can be formed by performing a cut through the ver-
tices of an implication graph partitioning it into two parts: the conflict portion and
the reason portion. The decision variables are in the reason portion. The con-
flict portion obviously contains the conflicting clause variable {Vi ← true, Vi ←

11



false} and the two vertices corresponding the conflicting assignments of Vi. For
any cut, the vertices in the reason side that have an edge leading to vertices in
the conflict side are used to form a conflict clause. The question becomes which
clause is more desirable.

Unique Implication Point (UIP) is another clause-learning techniques cur-
rently widely used in SAT solvers [Marques-Silva and Sakallah, 1999]. A unique
implication point (of the decision variable at the current decision level) is an inter-
nal vertex of the implication graph through which go all the paths from the vertex
corresponding to the decision variable of the current assignment to the conflicting
variables. The first UIP is the one closest to the conflict. The method of choice is
build the conflict clause that uses the first UIP [Moskewicz et al., 2001].

4 No-good Learning and Propagation in FC-CBJ
In this section, we discuss our proposition to implement no-good learning in FC-
CBJ. As FC-CBJ builds a solution for a CSP, it maintains several lists to track the
filtering in the domains of the uninstantiated variables. For each variable, Vi,

• pastFC(Vi) maintains the set of past variables that pruned one or more
values from the domain of Vi, D(Vi).

• confSet(Vi) is the list of variables that conflicted with Vi’s instantiation.

Together, these two sets of variables encapsulate the reason why a specific value
v ∈ D(Vi), where D(Vi) is the domain of Vi, was pruned from D(Vi). If the
domain of variable Vi is wiped-out and FC-CBJ must backtrack, the reason for
the domain wipe-out is captured by confSet(Vi) ∪ pastFC(Vi). Thus, a new
no-good, ng, can be defined by the variable-value pairs of the variables listed in
confSet(Vi) ∪ pastFC(Vi).

For example, consider the constraint model of the Zebra puzzle [Prosser, 1993].
The variables V0, V1, . . . , V24 represent five nationalities, five house colors, five
pets, five cigarette brands, and five beverages. The domain values for each vari-
able D(V0) = D(V1) = · · · = D(V24) = {1, 2, 3, 4, 5} represent a house iden-
tifier. The goal is to assign a unique nationality, color, pet, cigar, beverage to
(the person who lives in) each of the houses. Consider the following sequence of
assignments depicted in Figure 4:

• The assignment V20 ← 1 prunes the value 1 from D(V21), D(V22), D(V23),
D(V24). Thus, pastFC(V21) = pastFC(V22) = · · · = pastFC(V24) =
{V20}.

12



V20⟵1	
  

{3}	
  

V1⟵2	
  

V22⟵4	
  

V23⟵2	
  

V2⟵3	
  

V0⟵1	
  

V4⟵5	
  

V6	
  

V11	
  

V12	
  

V15	
  

V21	
  

V8	
  

V5	
  

V3⟵4	
  

{1,3}	
   {}	
  

{}	
  

{3,4,5}	
  

{}	
  

{1,2,3,4,5}	
   {}	
  

{2,3,4,5}	
   {}	
  

{4}	
  

{}	
  

{1,2,3,4,5}	
  

{2,3,4,5}	
   {}	
  

{4,5}	
   {V20,	
  V2}	
  

{}	
  

{}	
  

{4,5}	
   {}	
  

{5}	
   {}	
  

{V1}	
  

{5}	
  

{2}	
   {}	
  

{2}	
   {}	
  

{}	
  

V24	
   {3,5}	
   {}	
  

{V20,	
  V2}	
  

{V23}	
  

{V1}	
  

{}	
  

{}	
  

{V22}	
  

{}	
  

{V20}	
  

{V20,	
  V23}	
  

{V0}	
  

{V1	
  ,V2	
  ,V0}	
  

{V1,	
  V2,	
  V0,	
  V3	
  }	
  

{V4}	
  

{V1}	
  

{V23}	
  

{V20,	
  V23	
  ,	
  V22}	
  

In
st

an
tia

te
d 

va
ria

bl
es

 
 

U
ni

ns
ta

nt
ia

te
d 

va
ria

bl
es

 
 

past-fc[var] D[var] var ConfSet[var] 

NG={V0⟵1	
  ,V1⟵2}	
  
	
  
	
  

Figure 4: No-good generation example.

• Attempting the assignment V1 ← 1 causes a domain wipe-out for the unas-
signed variable V0. Thus confSet(V1) = confSet(V1)∪ pastFC(V0) = ∅.
Assigning V1 ← 2 removes the value 2 from D(V2), D(V3), D(V4) and the
values in {1, 3, 4, 5} from D(V6). Thus, pastFC(V2) = pastFC(V3) =
pastFC(V4) = pastFC(V6) = {V1}.

• Attempting the assignment V2 ← 1 causes a domain wipe-out for the unas-
signed variable V0. Thus, confSet(V2) = confSet(V2)∪pastFC(V0) = ∅.
The assignment V2 ← 3 removes the value 3 from D(V3), D(V4) and the
values in {2, 4, 5} from D(V21). Thus, the following updates are made:
pastFC(V3) = pastFC(V4) = {V1, V2} and pastFC(V21) = {V20, V2}.

13



• The assignment V23 ← 2 removes the value 2 from D(V22) and D(V24), the
values in {2, 4, 5} from D(V15), and the values in {1, 3, 4, 5} from D(V8).
As a result, the following updates are made: pastFC(V8) = pastFC(V15) =
{V23} and pastFC(V22) = pastFC(V24) = {V20, V23}.

• The assignment V22 ← 3 causes a domain wipe-out for the unassigned
variable V21. Thus, confSet(V22) = confSet(V22) ∪ pastFC(V21) =
{V20, V2}. The assignment V22 ← 4 removes the value 4 from D(V24)
and the values in {1, 2, 3, 5} from D(V12). Thus, the following updates
are made: pastFC(V12) = {V22} and pastFC(V24) = {V20, V23, V22}.

• The assignment V0 ← 1 prunes the value 1 from D(V3) and D(V4) and the
values in {1, 3, 4, 5} from D(V5). Thus, the following updates are made:
pastFC(V3) = pastFC(V4) = {V1, V2, V0} and pastFC(V5) = {V0}.

• The assignment V3 ← 4 removes the value 4 from D(V4). Thus, pastFC(V4) =
{V1, V2, V0, V3}.

• The assignment V4 ← 5 removes the values in {1, 2, 3, 4} from D(V11).
Thus, pastFC[V11] = {V4}.

• The assignment V5 ← 2 causes a domain wipe-out in the unassigned vari-
able V6. Thus, confSet(V5) ← confSet(V5) ∪ pastFC(V6) = {V1}. Be-
cause D(V5)− {2} = ∅, we must backtrack.

Note that values in {1, 3, 4, 5} were pruned from D(V5) by the assignment V0 ←
1, the reason for these prunings is recorded in pastFC(V5). Furthermore, the
remaining domain value 2 in D(V5) is pruned as a result of a future domain wipe-
out by V6 whose domain had already been pruned by the assignment V1 ← 2,
the reason the pruning of the value 2 is then recorded in confSet(V5). Thus,
the reason for the backtrack is encapsulated by {confSet(V5) ∪ pastFC(V5)} =
{V0 ← 1, V1 ← 2}.

At each backtrack in FC-CBJ, the no-good ng ← confSet(Vi)∪pastFC(Vi),
where Vi is the current variable, is the reason for the backtrack, and should be
added to the current list of no-goods. To do so, we alter the original pseudocode
of FC-CBJ-UNLABEL [Prosser, 1993], provided for reference as Algorithm 11
in Section A in the appendix. The new no-good must be recorded before the
confSet(i) and pastFC(i) lists are updated. We introduce FC-CBJ-UNLABEL+NG
(Algorithm 1), which calls in lines 8 and 9 BUILDNG (Algorithm 5) to generate
the new no-good.

14



5 Blame Variables
As stated above, for a variable Vi, confSet(Vi) and pastFC(Vi) contain the rea-
sons that each domain value of Vi was pruned. In FC-CBJ-UNLABEL+NG (Al-
gorithm 1), the current instantiation, val[Vh] to the past variable, Vh, is pruned.
However, val[Vh] is not added to the reductions list. Furthermore, neither confSet(Vh)
nor pastFC(Vh) is updated to reflect the reason of pruning the domain value
val[Vh]. Given that Vh ← val[Vh] is consistent with the current partial solution
of variables {V0, V1, . . . , Vh−1} and did not explicitly cause a domain wipe-out
among the uninstantiated variables {Vh+1, Vh+2, . . . , Vn}, it is not immediately
obvious why this value was pruned. However, not assigning a reason for the prun-
ing of this domain value can result in unnecessary prunings immediately after the
backtrack is complete.

For example, consider the Zebra puzzle again. It is defined by the set of vari-
ables V = {V0, V1, . . . , V25} with domains D(V0) = D(V1) = . . . = D(V25) =
{1, 2, 3, 4, 5}.

• Consider the following the current partial solution: {V0 ← 1, V13 ← 3,
V5 ← 2, V6 ← 3, V23 ← 5, V8 ← 5, V12 ← 1, V16 ← 3, V3 ← 2,
V4 ← 5, V19 ← 2, V11 ← 5, V17 ← 5, V10 ← 4}. Consider also that the
uninstantiated variable V7 has the following sets:

confSet(V7) = {V5, V6, V8, V10}
pastFC(V7) = {V8, V6, V5}
D(V7) = {4}.

• The instantiation V7 ← 4 causes a domain wipe-out in a future variable and
the no-good, ng1 ← {V10 ← 4, V8 ← 5, V6 ← 3, V5 ← 2} is added to
ngList at the unlabel.

• Because V10 is the deepest variable in confSet(V7)∪pastFC(V7), we back-
track to V10, which has only one value (i.e., value 2) left in its domain. Be-
cause V10 ← 4 is consistent with the past, the value 4 is not added to the
reduction list of V10, but it is also pruned from the current domain of V10

because the assignment V10 ← 4 has just been undone by the unlabel (note
that this is the issue that needs be addressed). Because V10 has been identi-
fied as the past variable, confSet(V10) ← confSet(V10) ∪ confSet(V7) ∪
pastFC(V7).

15



• At the next label, the instantiated V10 ← 2 causes a domain wipe-out with
a future variable and, because the value 2 is the last domain value left in
D(V10) we must unlabel V10.

• In unlabel, a second no-good, ng2, is learned, and we backtrack to V11. The
domain of V10 is updated to D(V10) ← {2, 4} although the variable value
pair V10 ← 4 violates the ng1. This inconsistency will be discovered at the
next label.

V0⟵1	
  

{{1}{5}{3}{2}}	
  

V13⟵3	
  

V23⟵5	
  

V6⟵3	
  

V5⟵2	
  

V8⟵5	
  

V16⟵3	
  

V4⟵5	
  

V11⟵5	
  

V17⟵5	
  

V10⟵4	
  

V7⟵4	
  

V19⟵2	
  

V3⟵2	
  

V12⟵1	
  

{{5}{3}{1}}	
   {}	
  

{V8,V6,V5}	
  

{{3}{1}{4,2}}	
   {}	
  

{V10⟵4,V8⟵5,V6⟵3,V5⟵2}	
  

Figure 5: Search at first unlabel.

V0⟵1	
  

{{5}{3}{1}}	
  

V13⟵3	
  

V23⟵5	
  

V6⟵3	
  

V5⟵2	
  

V8⟵5	
  

V16⟵3	
  

V4⟵5	
  

V11⟵5	
  

V17⟵5	
  

V10⟵4	
  

V19⟵2	
  

V3⟵2	
  

V12⟵1	
  

{V10⟵4,V8⟵5,V6⟵3,V5⟵2}	
  

{V8,	
  V6,	
  V5}	
  

{{3}{1}{4,2}}	
   {}	
  

V7⟵2	
  

{V13⟵3,V12⟵1,V11⟵5,V8⟵5,V6⟵3,V5⟵2}	
  

V10⟵2	
  

Reduction 

Learnt no-goods 

Conflict set 

Figure 6: Search at second unlabel. Notice that the
value 4 is returned to the domain of V10 although it
violates the first no-good.

To avoid this unnecessary propagation of ng1, the domain value 4 must be
added to the reduction list of V10 as soon as the assignment V10 ← 4 is undone
and before we make the assignment V10 ← 2. We add the deepest variable of the
no-good, in this case ng1, to pastFC(V10). This deepest variable of the no-good
that is credited for the pruning of V10 ← 4 is referred to as the blame variable.
Adding the blame variable to pastFC of the current variable in the unlabel pre-
vents unnecessary propagations of the no-goods at the next label. In this case, the

16



value 4 is not restored to D(V10) at the second backtrack, which will prevent ng1
from being propagated at the next unlabel.

Figures 5 and 6 depict this situation. The current partial solution is shown in
the left column. The variables in pastFC(Vi) are depicted by the back arrows
from variable Vi to previously instantiated variables. The rectangular boxes in
the middle column represent the domain values that have been pruned by past
variables (i.e., the reductions list of Vi). The rectangles in the right column depict
the variables in confSet(Vi). At the top of each figure, the list of no-goods in
ngList are given in the shaded boxes.

It is important to note that blame variables are only useful for avoiding re-
dundant propagations. While the blame variable provides the correct point along
the search path at which the pruned value should be added back to the domain
of the variable, the blame variable does not fully encapsulate the reason why
the domain value was pruned. The full reason that the value was pruned is the
no-good itself. The remaining variables of the no-good must be stored in an-
other data structure that maps the domain values of a variable to a list of no-good
variables causing the filtering of the domain values. We refer to this structure
as pastNgV ariables[Vi, di], where Vi is the variable whose domain value was
pruned implicitly by the no-good and di ∈ D(Vi) is the domain value that was
pruned from the domain of Vi. When a new no-good is generated, we must add the
variable-value pairs associated to the variables in pastNgV ariables[Vi, val[Vi]].
Furthermore, when a variable-value pair Vi ← val[Vi] has been uninstantiated, the
list pastNgV ariables[Vi, val[Vi]] can be cleared.

6 Algorithms for Learning No-Goods in FC-CBJ
In order to incorporate no-good learning in FC-CBJ, we provide the following
updated or new algorithms:

• FC-CBJ-UNLABEL+NG (Algorithm 1) is an updated version of FC-CBJ-
UNLABEL originally proposed by Prosser [1993], which is reported as Al-
gorithm 11 in Section A for reference.

• FINDBLAMEVARIABLE (Algorithm 2) determines the blame variable based
on a particular no-good, ng; the blame variable cannot be a particular vari-
able var.

• ADDBLAMETOREDUCTION (Algorithm 3) adds the blame variable to the
reductions list of the variable whose domain is being pruned if the blame

17



variable is not already part of the pruned variable’s past variable set. That
is, prev is the previous variable that the blame variable is being added to,
blame is the blame variable that is being added to pastFc(prev), value is
the domain value of prev that blame pruned.

• REMOVEPASTNGVARIABLES (Algorithm 4) resets the past no-good vari-
ables of the variable Vj .

• BUILDNG (Algorithm 5) creates the new no-good based upon the following
sets of the input variable Vi: pastFC(Vi), confSet(Vi), and pastNgV ariables[Vi, dk]
where k = 0, 1, . . . , |D(Vi)|.

The global variables propagateWipeout and nogoodConflict are Boolean flags,
and ngCreatedFrom stores a CSP variable.

18



Algorithm 1: FC-CBJ-UNLABEL+NG(h).
Input: index index of current variable, consistent indicates the status of

the partial solution
Output: h the index of the next variable to instantiated

1 i← index;
2 if ¬propagateWipeout ∧¬nogoodConflict then
3 Vh ← DEEPESTVAR(UNION(confSet(Vi), pastFC(Vi)))

4 else
5 i← propagateBlameV ar
6 h← propagateBlameV ar
7 index←# instantiated variables

8 if ¬propagateWipeout then ng ← BUILDNG(Vi)
9 else ng ←BUILDNG(ngCreatedFrom)

10 Vblm ← FINDBLAMEVARIABLE(ng)
11 ADD-NO-GOOD(ng)
12 confSet(Vh)← UNION(confSet(Vh), confSet(Vi), pastFC(Vi))) \{Vh}
13 UPDATENGLISTS(Vi)
14 for j ← index DOWNTO h+ 1 do
15 confSet(Vj)← {∅}
16 UNDOREDUCTIONS(Vj)
17 UPDATECURRDOM(Vj)
18 REMOVEPASTNGVARIABLES(Vj)

19 UNDOREDUCTIONS(Vh)
20 REMOVEPASTNGVARIABLES(Vh)
21 Dcurr[Vh]← REMOVE(val[Vh], D

curr[Vh])
22 consistent← Dcurr[Vh] 6= nil
23 UPDATECURRDOM(Vi)
24 REMOVEPASTNGVARIABLES(Vi)
25 UPDATENGLISTS(Vh)
26 ADDBLAMETOREDUCTION(Vh, blame, val[h])
27 foreach {(var, value)} ∈ newNg do
28 if var 6= blame then
29 PastNgV ariables[Vh, val[Vh]]←

PastNgV ariables[Vh, val[Vh]] ∪ {var}

30 return h

19



Algorithm 2: FINDBLAMEVARIABLE(ng, var).
Input: ng a no-good set within which to find the blame variable, var a

variable that should not be blamed.
Output: blame the deepest variable in ng credited for the pruning

1 blame← variable of first variable-value pair in ng
2 foreach {(ngV ar, value)} ∈ ng do
3 if DEPTH(blame) < DEPTH(ngV ar) and blame 6= var then
4 blame← ngV ar

5 return blame

Algorithm 3: ADDBLAMETOREDUCTION(prev, blame, value).
Input: prev, blame two variables; value: a value for prev

1 reduction← nil
2 if blame ∈ pastFC(prev) then reduction← reductions[prev, blame]

else pastFC(prev)← pastFC(prev) ∪ {blame}
3 reduction← reduction ∪ {value}
4 reductions[prev, blame]← reduction

Algorithm 4: REMOVEPASTNGVARIABLES(Vj)
Input: j the index of the variable to reset the pastNgVariable set.

1 foreach dj ∈ Dcurr[Vj] do
2 pastNgV ariables[Vj, dj]← {∅}

Algorithm 5: BUILDNG(Vi).
Input: Vi: the variable from which the no-good is built
Output: ngnew : the resulting no-good

1 varsng ← confSet(Vi) ∪ pastFC(Vi)
2 foreach di ∈ D(Vi) do
3 varsng ← varsng ∪ pastNgV ariables[Vi, di]

4 ngnew ← ∅
5 foreach var ∈ varsng do ngnew ← ngnew ∪ {(var, value(var))}
6 return ngnew

20



7 Reducing the List of No-goods
To reduce space requirements, each time a new no-good, ng, is generated, it is
compared with each of the existing no-goods ngi ∈ ngList. If ngi ⊆ ng, ng is
not added to ngList. Similarly, if ng ⊂ ngi, ngi is removed from ngList, and
ng is added to NgList. If ng is unrelated to all of the no-goods in ngList, that
is (ng 6⊂ ngi) ∧ (ngi 6⊂ ng) for each ngi ∈ ngList, ng is added to ngList.
This method of adding no-goods ensures that the smallest known set of no-goods
is maintained throughout the search without searching for the minimal no-goods
[Frost and Dechter, 1994]. If the new no-good is unary, the domain value of
the no-good is removed from the initial domain of the variable associated with
this no-good. Otherwise, two watchers are assigned to the first two variables in
the no-good. These watcher variables assist in the propagation of the no-good.
ADDNOGOOD (Algorithm 6) determines whether or not the new no-good ng must
be added to ngList and adds the corresponding watcher when appropriate. The
watcher is denoted by the tuple (watcher1ng, watcher2ng) where watcher1ng
and watcher2ng are composed of the variables associated to the first and second
tuples of the no-good.

Algorithm 6: ADDNOGOOD(ng).
Input: ng the new no-good generated at the FC-CBJ-Unlabel

1 foreach ngi ∈ ngList do
2 if ngi ⊂ ng then return
3 if ng ⊂ ngi then ngList← ngList \ {ngi}
4 ngList← ngList ∪ {ng}
5 if |ng| = 1 then
6 ngV ar ← ng[0]variable
7 ngV alue← ng[0]value
8 D(ngV ar)← D(ngV ar) \ {ngV alue}
9 else

10 watcher1ng ← first variable-value pair in ng
11 watcher2ng ← second variable-value pair in ng
12 watcherList← watcherList ∪ {(watcher1ng, watcher2ng)}
13 return

This reduced list of no-goods can be divided into two sublists: open no-goods
and used no-goods. An open no-good is a no-good that has not been propagated.
In contrast, a used no-good is one that has already been propagated. Thus, only the

21



no-goods in the open no-good list need to be checked for propagation. Both lists,
openNg and usedNg must be updated when a no-good has been propagated or
when a variable has been uninstantiated. When a no-good is propagated, the no-
good is simply moved from openNg to usedNg. However, when a variable Vi is
uninstantiated, we must move the no-goods containing the tuple {Vi, val[Vi]} from
usedNg to openNg because the no-good can now be propagated. The pseudocode
for updating these two lists during an unlabel of Vi is given in UPDATENGLISTS

(Algorithm 7).
Algorithm 7: UPDATENGLISTS(Vi).

Input: Variable Vi is being uninstantiated
1 foreach ng ∈ usedNg do
2 if {(Vi, val[i])} ∈ {ng} then
3 openNg ← openNg ∪ {ng}
4 usedNg ← usedNg \ {ng}
5 watcher1ng ← ng[0]variable
6 watcher2ng ← ng[1]variable
7 watcherList← watcherList ∪ {(watcher1ng, watcher2ng)}

8 No-good Propagation
In order to ensure that the no-goods are not in violation before a new variable
is instantiated, the no-goods must be propagated at the beginning of FC-CBJ-
LABEL, which is the only modification done to the original FC-CBJ-LABEL

function [Prosser, 1993]. Two watchers are assigned to each no-good to assist
in the propagation. In the propagate method, both watchers for each no-good are
checked in order to determine if the no-good must be propagated or if a watcher
needs to be updated. When the variable-value pair of a watcher has been instan-
tiated, we say that the watcher is active. This technique is inspired from SAT
solvers. Two cases can occur:

1. Both watchers of a no-good remain inactive.

2. Only one watcher of a no-good has become active. Further, in this case,

(a) Another variable in the no-good is available to become a watch vari-
able.

22



(b) No other variables in the no-good are available to become watch vari-
ables.

In the first case, neither watcher is incremented. In case (2a) the watcher is incre-
mented to the next available variable and we continue with the next no-good. In
case (2b), the variable-value pair associated with the inactive watcher is pruned,
the no-good is removed from openNg and added to usedNg. A backtrack is also
necessary in the case of (2b) when the domain value pruned is the last remaining
domain value of the variable or when the pruned variable-value pair has already
been instantiated (i.e., the no-good is in conflict).

A no-good is propagated when only one variable-value pair in the no-good is
not part of the current partial solution or when the no-good is in conflict with the
current partial solution. The variable whose domain value is pruned is denoted
Vprn and the value being removed from its domain prune valprn. At each pruning,
we must update the reductions list and pastFC of the pruned variable. Like in
FC-CBJ-UNLABEL+NG (Algorithm 1), we must determine Vblm, the variable
responsible for the pruning. The blame variable will be the deepest instantiated
variable in the no-good. If valprn has not already been pruned from the domain
of Vprn, we can simply add Vblm to pastFC(Vprn). However, it could be the case
that the domain value that is to be pruned from the domain of Vprn has already
been pruned by another variable during the search. If this is the case, we still must
determine the blame variable. If the new blame variable is deeper then the variable
currently credited for the pruning, V curr

blm , of the pruned value then if the search
backtracks past the current blame variable but not past the new blame variable,
the no-good will be propagated again. To avoid this redundant propagation, the
reductions list must be updated to credit the blame variable for the pruning if the
new blame variable is deeper then the current blame variable. As in Section 5, the
blame variable does not completely encapsulate the reason for the pruning, thus
we must add the rest of the no-good variables to pastNgV ariables[Vprn, valprn].

PROPAGATE (Algorithm 8) provides the pseudocode for the propagate method.
In this algorithm, we check each of the watchers to determine if a no-good needs
to be propagated. If propagation is necessary and the variable-value pair has al-
ready been pruned, we determine the new blame variable. If a backtrack is nec-
essary the remaining variables of the no-good are added to the pastNgV ariables
of the variable-value pair being pruned. RESETBLAME (Algorithm 9) determines
if the new blame variable Vblm should replace the current variable credited for
the pruning of the variable-value pair (Vprn, valprn). If Vblm should be credited
for the pruning, the reductions list and pastFC(Vprn) list of Vprn are updated ac-

23



cordingly. REMOVEFROMWATCHERLIST (Algorithm 10) removes a particular
watcher watcher at index index in ngList.

24



Algorithm 8: PROPAGATE().
Output: true if backtrack is needed, false otherwise.

1 foreach {(watcher1, watcher2)} ∈ watcherList do
2 ng ← no-good associated to watcher
3 i←INDEXOF(ng)
4 W1 ← ISACTIVE(watcher1)
5 W2 ← ISACTIVE(watcher2)
6 if W1 then watcher1← watcher2
7 else if W2 then watcher2 ← NEXTAVAILABLEVAR(ng)
8 if (W1 ∨W2) ∧ watcher2 = nil then
9 valprn ← value(watcher1)

10 Vprn ← variable(watcher1)
11 if val[Vprn] = valprn then
12 Vprn ← deepest variable in ng
13 Vblm ← FINDBLAMEVAR(ng, Vprn)
14 ADDBLAMETOREDUCTION(Vprn,Vblm, val[Vprn])
15 Dcurr[Vprn]← Dcurr[Vprn] \ {val[Vprn]}
16 V prop

blm ← Vprn

17 if Dcurr[Vprn] = ∅ then V prop
blm ← Vblm

18 REMOVEFROMWATCHERLIST({(watcher1, watcher2)}, i)
19 nogoodConflict← true
20 return true

21 Vblm ← FINDBLAMEVAR(ng, Vprn)
22 V curr

blm ← Vblm

23 if valprn 6∈ Dcurr[Vprn] then Vblm ←
RESETBLAME(Vprn, valprn, Vblm)

24 if Vblm = V curr
blm then

25 foreach di ∈ Dcurr[Vprn] do
26 pastNgV ariables[Vprn, di]←

pastNgV ariables[Vprn, di] ∪ {Vblm}

27 REMOVEFROMWATCHERLIST({(watcher1, watcher2)}, i)
28 Dcurr[Vprn]← Dcurr[Vprn] \ {valprn}
29 if Dcurr[Vprn]← ∅ then
30 ngCreatedFrom← Vprn

31 propagateV ar ← Vblm

32 propagateWipeout← true
33 return true

34 return false 25



Algorithm 9: RESETBLAME(Vprn, valprn, Vblm).
Input: Vprn the variable that the blame variable is being changed for, valprn

specific domain value blame variable is associated to, Vblm current
blame variable based on no-good

Output: V new
blm the updated blame variable

1 V curr
blm ← nil

2 for each var ∈ pastFC(Vprn) do
3 if valprn ∈ reductions[Vprn, var] then
4 V curr

blm ← var
5 break

6 V new
blm ← V curr

blm

7 if DEPTH(V curr
blm ) <DEPTH(Vblm) then

8 reductions[Vprn, V
curr
blm ]← reductions[Vprn, V

curr
blm ] \ {valprn}

9 ADDBLAMETOREDUCTIONS(Vprn, Vblm, valprn)
10 V new

blm ← Vblm

11 return V new
blm

Algorithm 10: REMOVEFROMWATCHERLIST(watcher, index)
Input: watcher the watcher to be removed from the watcherList, index the

index of the no-good
Output: No return value

1 watcherList← watcherList \ {watcher}
2 usedNGs← usedNGs ∪ {nogoodList[index]}
3 openNGs← openNGs \ {nogoodList[index]}
4 return

9 Experiments
In this section, we compare the performance of FC-CBJ and FC-CBJ+RedNG
over binary CSP taken from benchmark from the CP Solver Competition 1 as well
as randomly generated problem instances.

1http://www.cril.univ-artois.fr/CPAI09/.

26



9.1 CSP Parameters & Phase Transition
These random instances are generated using the Model B generator [Achlioptas et
al., 1997]. An instance is fully described by the following parameters:

• n is the number of variables.

• a is the number of values per variable, or domain size. All variables have
the same domain size.

• d is the constraint density. The constraint density of a binary CSP is d =
e

emax
where emax = n(n−1)

2
, e is the number of constraints.

• t = |forbidden tuples|
|all tuples| is the constraint tightness. All constraints have the same

tightness value.

Randomly generated problems have been qualitatively characterized by the
macroscopic behavior encountered by any algorithm for solving them, called the
phase transition phenomenon. This phenomenon links both the likelihood of the
existence of a solution and the cost of finding it to the value of an order parameter.
For CSPs, this order parameter is the density d or the tightness t.

• For small values of the order parameter, the problem is likely to have many
solutions and they are on average easy to find for most algorithms.

• For large values of the order parameter, the problem is likely to have no
solutions and this fact is on average quickly determined for most algorithms.

• Around a critical value of the order parameter, known as the phase transi-
tion, typically, half of the instances are solvable and half are inconsistent.
Very few solutions exist for a given instance, and most the paths in the
search tree are ‘almost solutions’ with means partial solutions that fail to
complete into complete solutions. For that reason, almost all algorithms en-
counter a peak of their cost around the critical values of the order parameter.

9.2 Random Instances with Variable Tightness
We tested our algorithm, FC-CBJ+REDNG, against FC-CBJ on 450 random in-
stances with the following parameters: 〈n = 32, a = 8, t ∈ {0.1, 0.2, . . . , 0.9}, d =
20%〉. We collected the following data for both algorithms: number of nodes vis-
ited, number of constraint checks, and CPU time in milliseconds. Nodes visited

27



refers to the number of attempted variable instantiations, constraint checks refers
to the number of constraints checked when attempting to instantiate the variables,
and CPU time measures the amount of search time required in milliseconds. For
FC-CBJ+REDNG we collected the following additional data with regards to the
no-goods: number of reduced no-goods remaining after termination of search,
number of variable-value pairs pruned by the no-goods, max, min, median, and
average size of reduced no-good, and the largest no-good learnt throughout search.

Figures 7, 8, and 9 compare the performance of FC-CBJ+REDNG to FC-
CBJ in terms of nodes visited, constraint checks, and CPU time. Figure 10 depicts
parameters of interest regarding the no-goods: number of reduced no-goods, num-
ber of values pruned by no-goods, and the sizes of no-goods. At low tightness,
where the instances are easily solvable, and at high tightness, where instances are
easily found to be unsolvable, only a few no-goods are generated and pruning
power is limited. Notice the largest and greatest number of no-goods occur at the
middle tightnesses. Also, at the middle tightnesses we see the most number of
prunings performed by the reduced no-goods.

We see fairly impressive performance improvement of FC-CBJ+REDNG with
respect to nodes visited and constraint checks particularly at the phase transition.
The number of no-goods, values pruned by no-goods and sizes of no-goods in-
crease at t = 4 and t = 5, the tightnesses where we see the most improvement of
FC-CBJ+REDNG over FC-CBJ. The no-goods, particularly at those tightnesses,
are being propagated frequently and pruning subtrees of the search space thus de-
creasing the number of the nodes visited and constraint checks. We also save on
CPU time in FC-CBJ+REDNG, however the savings are not as dramatic as the
savings in constraint checks and nodes visited. Particularily at t = 4 and t = 5,
we spend a significant amount of time processing the large number of no-goods.
The small savings in CPU time could also be an effect implementation or due to
cost of reducing the set of no-goods. Howver, we see an overall improvement of
FC-CBJ+REDNG over FC-CBJ.

28



0	
  

200	
  

400	
  

600	
  

800	
  

1000	
  

1200	
  

1400	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  

#N
od

es
	
  V
isi
te
d	
  

Tightness	
  

Comparing	
  Number	
  of	
  Nodes	
  Visited	
  

FC-­‐CBJ	
  
FC-­‐CBJ+RedNG	
  

Figure 7: FC-CBJ vs. FC-CBJ+RedNG: Comparing the number of nodes visited for
〈n = 32, a = 8, t ∈ {0.1, 0.2, . . . , 0.9}, d = 20%〉.

0	
  

5000	
  

10000	
  

15000	
  

20000	
  

25000	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  

#C
on

st
ra
in
t	
  C

he
ck
s	
  

Tightness	
  

Comparing	
  Number	
  of	
  Constraint	
  Checks	
  

FC-­‐CBJ	
  

FC-­‐CBJ+RedNG	
  

Figure 8: FC-CBJ vs. FC-CBJ+RedNG: Comparing the number of constraint checks for
〈n = 32, a = 8, t ∈ {0.1, 0.2, . . . , 0.9}, d = 20%〉.

0	
  

200	
  

400	
  

600	
  

800	
  

1000	
  

1200	
  

1400	
  

1600	
  

1800	
  

2000	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  

Ti
m
e	
  
(m

s)
	
  

Tightness	
  

Comparing	
  CPU	
  >me	
  

FC-­‐CBJ	
  

FC-­‐CBJ+ReducedNG	
  

Figure 9: FC-CBJ vs. FC-CBJ+RedNG: Comparing the CPU time for 〈n = 32, a =
8, t ∈ {0.1, 0.2, . . . , 0.9}, d = 20%〉.

29



0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  

#R
ed

uc
ed

	
  N
G	
  

Tightness	
  

Number	
  of	
  Reduced	
  No-­‐Goods	
  

FC-­‐CBJ+RedNG	
  

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  

#V
al
ue

s	
  P
ru
ne

d	
  

Tightness	
  

Values	
  Pruned	
  by	
  No-­‐Goods	
  

FC-­‐CBJ+RedNG	
  

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  

Si
ze
	
  o
f	
  N

G	
  

Tightness	
  

Reduced	
  No-­‐Good	
  Sizes	
  

Max	
  Reduced	
  NG	
  Size	
  

Min	
  Reduced	
  NG	
  Size	
  

Avg	
  Reduced	
  NG	
  Size	
  

Median	
  Reduced	
  NG	
  Size	
  

Figure 10: FC-CBJ+RedNG on 〈n = 32, a = 8, d = 20%, t〉: number of reduced
no-goods stored, filtering by no-goods, and size of stored no-goods.

30



9.3 Random Instances with Variable Density and Tightness
In this section we experimented with 810 randomly generated instances with pa-
rameters 〈n = 40, a = 10, d, t〉, 10 instances per tightness-density combination.
For each of those instances the same data as in Section 9.2 was collected. Fig-
ures 11, 12, 13 depict the ratio of FC-CBJ to FC-CBJ+REDNG with respect to
the number nodes visited, constraint checks, and CPU time. Additionally Fig-
ures 14, 15, and 16 display the number of values pruned by the no-goods, the
number of reduced no-goods generated, and the median size of reduced no-goods.
Each figure contains a 3D graph as well as two cross section graphs.

Like in Section 9.2 we see the most performance increase with respect to con-
straint checks and nodes visited. There are five and nine tightness-density combi-
nations in which FC-CBJ out-performed FC-CBJ+REDNG on nodes visited and
constraint checks respectively. Otherwise, FC-CBJ+REDNG performed as well
or better then FC-CBJ. In the best cases FC-CBJ+REDNG had slightly more
than two hundred times fewer nodes visited and constraint checks then FC-CBJ.
In the worst cases FC-CBJ+REDNG had only slightly over one time as many con-
straint checks and nodes visisted. Thus, even when FC-CBJ outperformed FC-
CBJ+REDNG it was by a much smaller margin then when FC-CBJ+REDNG
outperformed FC-CBJ.

In terms of CPU time, the majority of the time FC-CBJ+REDNG outperforms
FC-CBJ, however in the best case FC-CBJ+REDNG is only ten times faster than
FC-CBJ. In the worst case (d = 40%, t = 30%), FC-CBJ+REDNG is thirty-four
times slower than FC-CBJ. The no-good graphs show that the greatest number of
reduced no-goods and pruning done by these no-goods occurs at this worst case
data point for CPU time. Thus, the slow-down in CPU time could due to the
frequent processing of a large number of no-goods or implementation of the no-
good processing functions.

With respect to the no-goods, the largest reduced no-goods appear in at low
densities (d = 10% or d = 20%). The median size of no-goods is close to 1 for
the majority of density-tightness combinations. The largest number of reduced
no-goods were learned at d = 10%, d = 20%, and d = 30%. The large median
size at d = 10% and d = 20% could contribute to the large amount of reduced no-
goods at those densities because no-goods with a large number of variable-value
pairs will be less likely to be a subset the existing no-goods. In terms of CPU time,
the savings resulting the pruning of a large set of no-goods could be outweighed
by the cost of processing that large set at each label.

31



10%	
  

30%	
  

50%	
  
70%	
  
90%	
  

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

Nodes	
  Visited	
  	
  
Ra7o	
  of	
  FC-­‐CBJ	
  to	
  FC-­‐CBJ+RedNG	
  

Tightness	
  

De
ns
ity
	
  FC

-­‐C
BJ
	
  N
V/
FC
-­‐C
BJ
+R

ed
N
G	
  
N
V	
  

0.9	
  

1	
  

1.1	
  

1.2	
  

1.3	
  

1.4	
  

1.5	
  

1.6	
  

1.7	
  

1.8	
  

1.9	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

Nodes	
  Visited	
  	
  
Ra8o	
  of	
  FC-­‐CBJ	
  to	
  FC-­‐CBJ+RedNG	
  

t=50%	
  

FC
-­‐C
BJ
	
  N
V/
FC
-­‐C
BJ
+R

ed
N
G	
  
N
V	
  

Density	
   0.9	
  
1	
  

1.1	
  
1.2	
  
1.3	
  
1.4	
  
1.5	
  
1.6	
  
1.7	
  
1.8	
  
1.9	
  
2	
  

2.1	
  
2.2	
  
2.3	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

Nodes	
  Visited	
  	
  
Ra8o	
  of	
  FC-­‐CBJ	
  to	
  FC-­‐CBJ+RedNG	
  

d=70%	
  

FC
-­‐C
BJ
	
  N
V/
FC
-­‐C
BJ
+R

ed
N
G	
  
N
V	
  

Tightness	
  

Figure 11: FC-CBJ vs. FC-CBJ+RedNG: Comparing number of nodes visited for 〈n =
40, a = 10, d, t〉.

32



10%	
  

30%	
  

50%	
  
70%	
  
90%	
  

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

CPU	
  Time	
  
	
  Ra6o	
  of	
  	
  FC-­‐CBJ	
  to	
  FC-­‐CBJ+RedNG	
  

Tightness	
  

De
ns
ity
	
  FC
-­‐C
BJ
	
  6
m
e/
FC
-­‐C
BJ
+R

ed
N
G	
  
tim

e	
  

0.9	
  

1	
  

1.1	
  

1.2	
  

1.3	
  

1.4	
  

1.5	
  

1.6	
  

1.7	
  

1.8	
  

1.9	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

FC
-­‐C
BJ
	
  N
V/
FC
-­‐C
BJ
+R

ed
N
G	
  
N
V	
   Constraint	
  Checks	
  	
  

	
  RaEo	
  of	
  FC-­‐CBJ	
  to	
  FC-­‐CBJ+RedNG	
  
t=50%	
  

	
  

Density	
  
0.9	
  

1	
  

1.1	
  

1.2	
  

1.3	
  

1.4	
  

1.5	
  

1.6	
  

1.7	
  

1.8	
  

1.9	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

FC
-­‐C
BJ
	
  N
V/
FC
-­‐C
BJ
+R

ed
N
G	
  
N
V	
   Constraint	
  Checks	
  	
  
	
  RaEo	
  of	
  FC-­‐CBJ	
  to	
  FC-­‐CBJ+RedNG	
  

t=50%	
  
	
  

Density	
  

Figure 12: FC-CBJ vs. FC-CBJ+RedNG: Comparing number of constraint checks for
〈n = 40, a = 10, d, t〉.

33



10%	
  

30%	
  

50%	
  
70%	
  
90%	
  

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

CPU	
  Time	
  
	
  Ra6o	
  of	
  	
  FC-­‐CBJ	
  to	
  FC-­‐CBJ+RedNG	
  

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

CPU	
  Time	
  	
  
	
  Ra6o	
  of	
  FC-­‐CBJ	
  to	
  	
  FC-­‐CBJ+RedNG	
  

d=50%	
  	
  

FC
-­‐C
BJ
	
  C
PU

	
  6
m
e/
FC
-­‐C
BJ
+R

ed
N
G	
  
CP

U
	
  T
im

e	
  

Tightness	
  
0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

1.2	
  

1.4	
  

1.6	
  

1.8	
  

2	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

CPU	
  Time	
  	
  
	
  Ra7o	
  of	
  FC-­‐CBJ	
  to	
  	
  FC-­‐CBJ+RedNG	
  t=30%	
  

Density	
  

FC
-­‐C
BJ
	
  C
PU

	
  7
m
e/
FC
-­‐C
BJ
+R

ed
N
G	
  
CP

U
	
  T
im

e	
  

Figure 13: FC-CBJ vs. FC-CBJ+RedNG: Comparing number of CPU time(ms) for 〈n =
40, a = 10, d, t〉.

34



10%	
  

30%	
  

50%	
  
70%	
  
90%	
  

0	
  

20000	
  

40000	
  

60000	
  

80000	
  

100000	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

No-­‐Good	
  Prunings	
  

Density	
  

#P
ru
ne

d	
  
va
lu
es
	
  

Ti
gh
tn
es
s	
  

0	
  

2000	
  

4000	
  

6000	
  

8000	
  

10000	
  

12000	
  

14000	
  

16000	
  

18000	
  

20000	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

Tightness	
  

#	
  
Pr
un

ed
	
  V
al
ue

s	
   No-­‐Good	
  Prunings	
  
d=50%	
  

0	
  

10000	
  

20000	
  

30000	
  

40000	
  

50000	
  

60000	
  

70000	
  

80000	
  

90000	
  

100000	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

Density	
  

#	
  
Pr
un

ed
	
  V
al
ue

s	
   No-­‐Good	
  Prunings	
  
t=30%	
  

Figure 14: FC-CBJ+RedNG: Pruning achieved learned no-goods for 〈n = 40, a =
10, d, t〉.

35



10%	
  

30%	
  

50%	
  
70%	
  
90%	
  

0	
  

1000	
  

2000	
  

3000	
  

4000	
  

5000	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

#	
  Reduced	
  No-­‐Goods	
  

Density	
  

#R
ed

uc
ed

	
  N
o-­‐
Go

od
s	
  

Ti
gh
tn
es
s	
  

0	
  

500	
  

1000	
  

1500	
  

2000	
  

2500	
  

3000	
  

3500	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

Tightness	
  

#	
  
Re

du
ce
d	
  
N
o-­‐
Go

od
s	
   #	
  Reduced	
  No-­‐Goods	
  

d=50%	
  

0	
  

1000	
  

2000	
  

3000	
  

4000	
  

5000	
  

6000	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

Density	
  

#	
  
Re

du
ce
d	
  
N
o-­‐
Go

od
s	
   #	
  Reduced	
  No-­‐Goods	
  

t=30%	
  

Figure 15: FC-CBJ+RedNG: Number of reduced no-goods for 〈n = 40, a = 10, d, t〉.

36



10%	
  

30%	
  

50%	
  

70%	
  
90%	
  

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

Median	
  Size	
  of	
  Reduced	
  No-­‐Goods	
  

Density	
  

Re
du

ce
d	
  
N
o-­‐
Go

od
	
  S
ize

	
  

Ti
gh
tn
es
s	
  

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

9	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

Tightness	
  

Re
du

ce
d	
  
N
o-­‐
Go

od
	
  S
ize

	
  

Median	
  Size	
  of	
  Reduced	
  No-­‐Goods	
  
d=50%	
  

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
  

Density	
  

Re
du

ce
d	
  
N
o-­‐
Go

od
	
  S
ize

	
  

Median	
  Size	
  of	
  Reduced	
  No-­‐Goods	
  
t=30%	
  

Figure 16: FC-CBJ+RedNG: Median Size of reduced no-goods for 〈n = 40, a =
10, d, t〉.

37



9.4 Benchmarks Instances
We compared the performance of FC-CBJ+REDNG to FC-CBJ to with 77 bench-
mark problems. We report the results of 13 of those benchmark instances in Ta-
bles 1 and 2. We measured total number of no-goods learned and the maximum
size of no-good that was learned during search in addition to the same data that
was recorded for the instances in Section 9.2.

Similar to the random instances, we see the most consistent savings in num-
ber of constraint checks and nodes visited. In the best case FC-CBJ+REDNG
outperforms FC-CBJ by five orders of magnitude for both constraint checks and
nodes visited. However, in terms of CPU time FC-CBJ+REDNG is not consis-
tently better than FC-CBJ. The lack of consistent savings on CPU time could be
due to the overhead associated with processing a large amount of no-goods with
a large amount of variable-value pair. Another factor influencing the CPU time
for FC-CBJ+REDNG is the cost of reducing the set of no-goods. Both of these
operations can become very costly when the no-good set is large. In Table 2, we
can compare the sum of the domain sizes to the number of no-good pruning. In
most cases the number of pruning is greater than the sum of the domain sizes.
Having a large number of redundant prunings implies that the no-goods causes
the redundant prunings are not reduced enough and could negatively affect the
CPU time.

In Table 2 the power of reducing the no-goods is seen by comparing the total
number of no-goods to the number of reduced no-goods. In all cases the number
of reduced no-goods is less the total number of no-goods. In the worst case and
best cases the number of reduced no-goods is smaller than the total number of no-
goods by a factor of 0.77 and 9.07E−07 respectively. To further explore the power
of reducing the set of no-goods on two of those benchmark instances: qcp-10-
67-13 (unsolveable) and qwh-10-57-0 (solveable). We record at each back track
the maximum, minimum, average, and median size of the no-goods. We ran each
of these instances on FC-CBJ+REDNG and FC-CBJ+NG, where FC-CBJ+NG
records but does not reduce the set of no-goods. Figure 17 depicts the unsolvable
instance; in those graphs we see the most change between FC-CBJ+REDNG
and FC-CBJ+NG in the maximum no-good size. Figure 18 depicts the solvable
instance. In that solvable instance we see a clearer advantage of reducing the
no-goods. The maximum, average, and median no-good are considerably smaller
in for FC-CBJ+REDNG. Reducing the no-good set, though initially costly, has
obvious benefits because it saves in the long-term when we have to iterate through
the no-goods during propagation.

38



Ta
bl

e
1:

FC
-C

B
J

vs
.F

C
-C

B
J+

R
ed

N
G

:C
om

pa
ri

ng
co

ns
tr

ai
nt

ch
ec

k,
no

de
s

vi
si

te
d,

an
d

C
PU

tim
e

on
be

nc
hm

ar
k

pr
ob

le
m

s.
#C

C
#N

V
C

PU
InstanceName

#Vars

SAT/UNSAT

Basic

RedNG

Basic

RedNG

Basic

RedNG

dr
iv

er
lo

gw
-0

5c
35

1
1

32
,5

84
,5

87
23

2,
46

5
46

6,
72

4
1,

89
4

75
0,

02
6

9,
80

4
dr

iv
er

lo
gw

-0
2c

30
1

1
8,

15
1,

15
0

68
5,

90
1

17
5,

06
5

11
,7

09
11

4,
75

2
56

,5
42

qc
p-

10
-6

7-
13

10
0

0
85

8,
78

9,
33

0
6,

63
1

50
,6

25
,3

26
17

6
4,

86
0,

91
1

99
8

qc
p-

10
-6

7-
5

10
0

1
35

,1
25

19
,1

28
2,

31
7

1,
12

3
2,

93
9

6,
46

9
qc

p-
15

-1
20

-4
22

5
1

47
6,

65
4

18
,6

83
20

6,
57

6
qc

p-
15

-1
20

-1
22

5
1

18
3,

75
7,

76
9

46
1,

29
3

9,
26

6,
82

8
20

,0
68

2,
94

1,
59

0
21

2,
43

1
qw

h-
10

-5
7-

0
10

0
1

27
,2

06
15

,8
71

1,
69

5
88

4
3,

19
4

4,
95

6
qw

h-
15

-1
06

-5
22

5
1

2,
06

8,
71

3
69

3,
01

2
10

5,
51

1
31

,8
90

35
,6

83
60

7,
37

9
qw

h-
15

-1
06

-6
22

5
1

12
0,

36
9

27
,3

95
6,

90
8

78
3

6,
03

8
4,

67
4

ra
nd

-2
3-

23
-2

53
-1

31
-4

60
21

23
0

1,
10

7,
16

1,
30

9
90

4,
06

9,
15

0
22

,9
67

,9
68

18
,3

19
,5

18
4,

31
3,

95
8

5,
93

6,
37

6
ra

nd
-2

3-
23

-2
53

-1
31

-5
50

21
23

0
1,

08
4,

01
9,

21
8

87
5,

33
0,

45
4

22
,6

18
,7

26
17

,8
26

,2
76

4,
60

6,
70

2
4,

09
5,

48
6

ra
nd

-2
4-

24
-2

76
-1

39
-4

80
21

24
1

44
3,

45
7,

35
9

37
9,

47
2,

84
2

8,
92

6,
16

3
7,

46
9,

83
6

2,
27

3,
36

6
2,

15
1,

66
2

ra
nd

-2
4-

24
-2

76
-1

39
-4

90
21

24
0

2,
52

8,
01

2,
84

8
2,

19
9,

18
4,

17
3

50
,1

83
,4

70
42

,7
10

,9
83

10
,1

94
,9

28
13

,7
42

,4
83

39



Ta
bl

e
2:

FC
-C

B
J+

R
ed

N
G

:D
om

ai
n

fil
te

ri
ng

by
no

-g
oo

ds
,n

um
be

ra
nd

si
ze

of
no

-g
oo

ds
on

be
nc

hm
ar

k
pr

ob
le

m
s.

InstanceName

Sumdomsizes

NG-Pruning

Total#NG

#RedNG

MaxNGSize

MaxRedNGSize

MinRedNGSize

MedianRedNGSize

AvgRedNGSize

dr
iv

er
lo

gw
-0

5c
1,

34
5

15
9

48
3

17
0

22
21

2
6

6
dr

iv
er

lo
gw

-0
2c

1,
16

1
2,

21
9

4,
33

6
1,

56
2

51
45

1
20

20
qc

p-
10

-6
7-

13
70

3
9

83
38

32
27

1
15

15
qc

p-
10

-6
7-

5
70

3
19

7
70

3
38

5
65

64
12

39
38

qc
p-

15
-1

20
-4

1,
90

5
9,

48
5

12
,2

92
3,

12
1

15
7

19
80

80
qc

p-
15

-1
20

-1
1,

90
5

8,
56

9
13

,2
05

3,
68

3
16

2
19

99
91

qw
h-

10
-5

7-
0

61
3

76
48

7
29

9
60

55
12

35
34

qw
h-

15
-1

06
-5

1,
70

9
16

,2
27

21
,1

96
5,

62
6

17
1

16
5

19
10

6
95

qw
h-

15
-1

06
-6

1,
70

9
58

31
3

24
2

14
6

13
9

19
62

65
ra

nd
-2

3-
23

-2
53

-1
31

-4
60

21
52

9
22

2,
99

7
11

,3
86

,8
87

23
15

1
1

1
1

ra
nd

-2
3-

23
-2

53
-1

31
-5

50
21

52
9

22
2,

97
3

11
,0

78
,1

89
23

15
1

1
1

1
ra

nd
-2

4-
24

-2
76

-1
39

-4
80

21
57

6
10

8,
48

2
4,

66
6,

73
4

33
15

10
1

5
5

ra
nd

-2
4-

24
-2

76
-1

39
-4

90
21

57
6

59
8,

37
9

26
,5

31
,8

15
24

16
1

1
1

1

40



0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

50	
   70	
   90	
   110	
   130	
   150	
   170	
   190	
  

All	
  no-­‐goods	
  discovered	
  are	
  stored	
  and	
  reduced	
  

New	
  NG	
  
Size	
  
Avg.	
  

Max	
  

Min	
  

Step	
  

N
o-­‐
go
od

	
  S
ize

	
  

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

50	
   100	
   150	
   200	
  

New	
  NG	
  
Size	
  
Avg.	
  

Max	
  

Min	
  

All	
  no-­‐goods	
  discovered	
  are	
  stored	
  but	
  not	
  reduced	
  
	
  

Step	
  

N
o-­‐
go
od

	
  S
ize

	
  

Figure 17: FC-CBJ+RedNG vs. FC-CBJ+AllNG: Comparing the sizes of no-goods
learned between FC-CBJ+RedNG and FC-CBJ+AllNG for unsolvable random instances.

10 Conclusions and Future Research
The addition of no-good learning and no-good reduction to FC-CBJ is beneficial
in general. For FC-CBJ+REDNG , we see consistent and significant savings

41



Step 
0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

140	
  

160	
  

180	
  

200	
  

0	
   5000	
   10000	
   15000	
   20000	
  

All	
  no-­‐goods	
  discovered	
  are	
  stored	
  and	
  reduced	
  

New	
  
NG	
  Size	
  

Avg.	
  

Max	
  

Min	
  

Step 
0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

140	
  

160	
  

180	
  

0	
   5000	
   10000	
   15000	
   20000	
  

New	
  NG	
  
Size	
  
Avg.	
  

Max	
  

Min	
  

All no-goods discovered are stored but not 
reduced 
 

Figure 18: FC-CBJ+RedNG vs. FC-CBJ+AllNG: Comparing the sizes of no-goods
learned between for solvable random instances.

in terms of the number of constraint checks and nodes visited. The CPU time,
however, has less consistent savings. The lack of consistent savings for CPU time
could be due to a number of factors including: overhead of reducing the set of no-

42



goods, the overhead of processing the no-goods, or inefficient implementation.
If the no-good set consists of a large number of no-goods with several variable-
value pair when FC-CBJ+REDNG begins learning no-goods that are subsets of
the existing no-goods, it can be very costly to reduce the no-goods set. Also, with
a large set of no-goods, each no-good consisting of several variable-value pairs,
the overhead for processing the no-goods will increase. Finally, a more efficient
implementation of the key functions for reducing the no-good set and propagating
the no-goods could improve the performance of FC-CBJ+REDNG in terms of
CPU time.

Our approach for learning and propagating no-goods as well as reducing the
set of no-goods provides an opening for interesting future research. Instead of
adding the learnt no-goods to the problem, our approach could be adjusted to alter
the original problem constraints. If the scope of a no-good is the same as the scope
of an original problem constraint, that original constraint can be filtered or added
to depending on if the constraint is a support or conflict. However, if the new no-
good’s scope does not match any original problem constraint, it still must be added
to the list of no-goods. Analysis on the scopes of the no-goods in the no-good list
could result in combining no-goods with the same scope. The combination of
altering original problem constraints and combining no-goods could result further
savings during search. Both our original approach of adding no-goods and the
approach of altering the original problem constraints and no-goods list could be
extended to non-binary CSPs. The latter approach could be particularly effective
in non-binary CSPs because the scopes of the original problem constraints are
more likely to have the same scope as a learned no-good.

Acknowledgments
I am very grateful to my thesis advisor, Dr. Berthe Y. Choueiry, for her con-
tinuous support, encouragement, and mentoring. Her feedback and ideas have
been invaluable to me during the full course of my research. I would also like
to thank Dr. Berthe Y. Choueiry, Dr. Matthew Dwyer, Mr. Robert J. Woodward,
and Dr. Elena Sherman their support and mentoring during a year-long group re-
search study of CSPs and SAT that inspired the topic of my thesis. Finally, I
am very appreciative of the financial support provided by CREU-W of the CRA,
Undergraduate Creative Activities and Research Experiences Program of the Uni-
versity of Nebraska-Lincoln, and National Science Foundation REU supplements
for Grant #CNS-0720654 and Grant #RI-111795.

43



A Pseudocode
Algorithm 11: FC-CBJ-UNLABEL(i, consistent).

Input: i index of current variable, consistent indicates the status of the
partial solution

Output: h the index of the variable backtrack to/instantiate
1 Vh ← DEEPESTVAR(UNION(confSet(Vi), pastFC(Vi)))
2 confSet(Vh)← UNION(confSet(Vh), confSet(Vi), pastFC(Vi)) \ {Vh}
3 for j ← i DOWNTO h+ 1 do
4 confSet(vj)← {0}
5 UNDOREDUCTIONS(Vj)
6 UPDATECURRDOM(Vj)

7 UNDOREDUCTIONS(Vh)
8 Dcurr[Vh]← Dcurr[h] \ {val[Vh]}
9 consistent← Dcurr[h] 6= nil

10 return h

The function FC-CBJ-UNLABEL. UNDOREDUCTIONS and UPDATECUR-
RDOM are taken from [Prosser, 1993].

44



References
[Achlioptas et al., 1997] Dimitris Achlioptas, Lefteris M. Kirousis, Evangelos

Kranakis, Danny Krizanc, Michael S.O. Molloy, and Yanning C. Stamatiou.
Random Constraint Satisfaction: A More Accurate Picture. In Proceeding of
the International Conference on Principles and Practice of Constraint Pro-
gramming (CP 1997), volume 1330 of Lecture Notes in Computer Science,
pages 107–120. Springer, 1997.

[Bayardo and Schrag, 1996] Roberto J. Bayardo and Robert Schrag. Using CSP
Look-Back Techniques to Solve Exceptionally Hard SAT Instances. In Princi-
ples and Practice of Constraint Programming, volume 1118 of Lecture Notes
in Computer Science, pages 46–60. Springer, 1996.

[Bayardo and Schrag, 1997] Roberto J. Bayardo and Robert C. Schrag. Using
CSP Look-Back Techniques to Solve Real-World SAT Instances. In Proceed-
ings of the 14th National Conference on Artificial Intelligence (AAAI 1997),
pages 203–208, 1997.

[Bessière and Régin, 1996] Christian Bessière and Jean-Charles Régin. MAC
and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard
Problems. In Principles and Practice of Constraint Programming (CP 1996),
volume 1118 of LNCS, pages 61–75. Springer, 1996.

[Bordeaux et al., 2006] Lucas Bordeaux, Youssef Hamadi, and Lintao Zhang.
Propositional Satisfiability and Constraint Programming: A comparative sur-
vey. ACM Computing Surveys, 38(4), December 2006.

[Davis and Putnam, 1960] Martin Davis and Hilary Putnam. A Computing Pro-
cedure for Quantification Theory. J. ACM, 7(3):201–215, July 1960.

[Davis et al., 1962] Martin Davis, George Logemann, and Donald Loveland. A
Machine Program for Theorem-Proving. Commun. ACM, 5(7):394–397, July
1962.

[Dechter, 1990] R. Dechter. Enhancement Schemes for Constraint Processing:
Backjumping, Learning, and Cutset Decomposition. Artificial Intelligence,
41(3):273–312, January 1990.

[Dechter, 2003] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

45



[Eén and Sörensson, 2004] Niklas Eén and Niklas Sörensson. An Extensible
SAT-Solver. In Theory and Applications of Satisfiability Testing, volume 2919
of Lecture Notes in Computer Science, pages 502–518. Springer, 2004.

[Feydy and Stuckey, 2009] Thibaut Feydy and Peter J. Stuckey. Lazy Clause
Generation Reengineered. In Proceedings of the 15th International Confer-
ence on Principles and Practice of Constraint Programming (CP 2009), vol-
ume 5732 of Lecture Notes in Computer Science, pages 352–366. Springer,
2009.

[Frost and Dechter, 1994] Daniel Frost and Rina Dechter. Dead-end Driven
Learning. In Proceedings of AAAI-94, pages 294–300, Seattle, WA, 1994.

[Gent et al., 2010] Ian P. Gent, Ian Miguel, and Neil C.A. Moore. Lazy Explana-
tions for Constraint Propagators. In Proceedings of the 12th International Con-
ference on Practical Aspects of Declarative Languages (PADL 2010), pages
217–233. Springer, 2010.

[Gent et al., 2012] Ian P. Gent, Ian Miguel, and Neil C.A. Moore. An Empirical
Study of Learning and Forgetting Constraints. AI Communications, 25(2):191–
208, 2012.

[Haralick and Elliott, 1980] Robert M. Haralick and Gordon L. Elliott. Increasing
Tree Search Efficiency for Constraint Satisfaction Problems. Artificial Intelli-
gence, 14:263–313, 1980.

[Katsirelos and Bacchus, 2003] George Katsirelos and Fahiem Bacchus. Unre-
stricted Nogood Recording in CSP Search. In In Principles and Practice of
Constraint Programming, pages 873–877. Springer, 2003.

[Katsirelos and Bacchus, 2005] George Katsirelos and Fahiem Bacchus. Gener-
alized Nogoods in CSPs. In Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI 2005), pages 390–396. AAAI Press, 2005.

[Katsirelos, 2008] George Katsirelos. Nogood Processing in CSPS. PhD thesis,
University of Toronto, Toronto, Ont., Canada, Canada, 2008. AAINR58019.

[Kondrak and van Beek, 1995] Grzegorz Kondrak and Peter van Beek. A Theo-
retical Evaluation of Selected Backtracking Algorithms. In Proceedings of the
14 th International Joint Conference on Artificial Intelligence, pages 541–547,
Montréal, Québec, Canada, 1995.

46



[Lecoutre et al., 2007] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and
Vincent Vidal. Recording and Minimizing Nogoods from Restarts. Journal of
Satisfiability, 1(3-4):147–167, 2007.

[Marques-Silva and Sakallah, 1999] Joao P. Marques-Silva and Karem A.
Sakallah. GRASP: A Search Algorithm for Propositional Satisfiability. IEEE
Transactions on Computers, 48:506–521, 1999.

[Moskewicz et al., 2001] M.W. Moskewicz, C.F. Madigan, Ying Zhao, Lintao
Zhang, and S. Malik. Chaff: Engineering an Efficient SAT Solver. In Pro-
ceedings of the Design Automation Conference (DAC 2001), pages 530–535,
2001.

[Ohrimenko et al., 2009] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish.
Propagation via Lazy Clause Generation. Constraints, 14(3):357–391, Septem-
ber 2009.

[Prosser, 1993] Patrick Prosser. Hybrid Algorithms for the Constraint Satisfac-
tion Problem. Computational Intelligence, 9 (3):268–299, 1993.

[Sabin and Freuder, 1994] Daniel Sabin and Eugene C. Freuder. Contradicting
Conventional Wisdom in Constraint Satisfaction. In Proceedings of the 11 th

European Conference on Artificial Intelligence, pages 125–129, Amsterdam,
The Netherlands, 1994.

[Zhang and Malik, 2002] Lintao Zhang and Sharad Malik. The Quest for Effi-
cient Boolean Satisfiability Solvers. In Proceedings of the 14th International
Conference on Computer Aided Verification (CAV 2002), volume 2392 of Lec-
ture Notes in Computer Science, pages 17–36. Springer, 2002.

47


