
AN ONLINE REGISTRATION SYSTEM FOR THE MATH DAY EVENT

by

Matthew A. DeHaven

A THESIS

Presented to the Faculty of

The College of Art and Sciences at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Bachelor of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

May, 2017

AN ONLINE REGISTRATION SYSTEM FOR THE MATH DAY EVENT

Matthew A. DeHaven, B.S.

University of Nebraska, 2017

Adviser: Berthe Y. Choueiry

Math Day is an annual outreach event of the Department of Mathematics of the Uni-

versity of Nebraska-Lincoln, organized by the Center for for Science, Mathematics

and Computer Education (CSMCE) of UNL. Running the event requires the partici-

pation of a large number of volunteers. Currently, gathering volunteer information is

a time-intensive task. We have created a system with a database and web interfaces

to streamline the collection of volunteer information. This document describes the

foundations of the system design and of the web interface that volunteers will use to

sign up for Math Day.

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Berthe Choueiry for offering me the opportunity to conduct

this research and for her guidance and encouragement throughout.

I am grateful to Ms. Stephanie Vendetti for introducing me to the Math Day event

and guiding me through the required functionalies to implement in the system.

I am grateful to Mr. Charles Daniel for initiating me to Ruby on Rails and helping

me with all system-related issues.

The design of the database was contributed by Dylan Laible and Chrisopher Lyons.

The design of the ‘contact us’ functionality was contributed by Justin Collier. The

design of the survey page mentioned in Section 2.3.2 was contributed by Gerald

Thornton.

This research was supported by NSF Grant No. NSF RI-1619344.

iv

Contents

Contents iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Application Requirements . 2

1.3 Contributions . 3

1.4 Thesis Organization . 4

2 The Volunteers Interface 5

2.1 Volunteers’ Front Page . 5

2.1.1 The WELCOME Page . 6

2.1.2 The LOGIN Page . 7

2.1.3 The REGISTRATION Page 9

2.1.4 The ABOUT US and CONTACT US Pages 12

2.2 Application Process . 12

2.2.1 The Progress Bar . 14

v

2.2.2 The APPLICATION Form . 15

2.2.3 The YASP Form . 17

2.2.4 The TASK SIGNUP Form . 19

2.3 The DASHBOARD . 22

2.3.1 The Rationale . 23

2.3.2 The Functionalities . 25

3 The Administrator Interface 27

3.1 Active Admin Pages . 27

3.1.1 Authentication . 28

3.1.2 Namespace . 28

3.1.3 Dashboard . 29

3.1.4 Applications . 29

3.1.5 Users . 29

3.1.6 Faculty Recruiters . 30

3.2 ‘Regular’ Admin Pages . 31

3.3 Creating a New Year . 32

4 System Design 34

4.1 Software Design . 34

4.1.1 Program Organization . 35

4.1.2 Runtime Configurations . 36

4.1.3 Account Authentication . 37

4.2 Environments . 39

4.3 Database Synchronization . 40

4.3.1 Data Changes . 40

4.3.2 Schema Changes . 41

vi

5 Database Documentation 44

5.1 Activities and Tasks . 46

5.1.1 activities seeds . 46

5.1.2 activities . 47

5.1.3 tasks seeds . 48

5.1.4 tasks . 49

5.1.5 user tasks . 51

5.1.6 capable tasks seeds . 51

5.1.7 capable tasks . 52

5.1.8 visible tasks seeds . 53

5.1.9 visible tasks . 53

5.2 Volunteers . 54

5.2.1 user types . 55

5.2.2 users . 55

5.2.3 affiliations . 58

5.2.4 application . 59

5.2.5 t windows . 61

5.2.6 assignment by users . 62

5.2.7 assignments . 63

5.2.8 class recruiteds . 64

5.2.9 faculty recruiters . 65

5.3 Manager . 66

5.3.1 announcements . 66

5.3.2 locations . 67

5.3.3 surveys . 67

5.3.4 email messages . 69

vii

6 Conclusions 70

viii

List of Figures

2.1 Front page for volunteers . 6

2.2 WELCOME page . 6

2.3 LOGIN page . 7

2.4 LOG IN WITH EMAIL page . 8

2.5 FORGOT PASSWORD page . 9

2.6 REGISTRATION page . 9

2.7 Registration after MY.UNL authentication 10

2.8 Registration after authentication via email 11

2.9 Application process . 13

2.10 Four states of the progress bar . 14

2.11 Application form . 15

2.12 Accessing the APPLICATION page . 16

2.13 The YASP form . 17

2.14 Accessing the YASP form . 18

2.15 The TASK SIGNUP form . 19

2.16 Accessing the TASK SIGNUP form . 21

2.17 The routing process . 23

2.18 The DASHBOARD page . 25

ix

3.1 Four pages in Active Admin . 28

3.2 Applications page in Active Admin . 29

3.3 Accessing custom actions in Active Admin 30

3.4 Accessing faculty recruiters’ page in Active Admin 30

4.1 Model-View-Controller connections . 34

4.2 Database Data Flow . 40

4.3 Database Schema Flow . 42

5.1 Database Diagram . 45

x

List of Tables

5.1 Structure of table activities seeds . 46

5.1 Structure of table activities seeds (continued) 47

5.2 Structure of table activities . 47

5.3 Structure of table tasks seeds . 48

5.4 Structure of table tasks . 49

5.4 Structure of table tasks (continued) . 50

5.5 Structure of table user tasks . 51

5.6 Structure of table capable tasks seeds . 52

5.7 Structure of table capable tasks . 52

5.8 Structure of table visible tasks seeds . 53

5.9 Structure of table visible tasks . 53

5.9 Structure of table visible tasks (continued) 54

5.10 Structure of table user types . 55

5.11 Structure of table users . 55

5.11 Structure of table users (continued) . 56

5.12 Structure of table affiliations . 58

5.13 Structure of table applications . 59

5.13 Structure of table applications (continued) 60

xi

5.14 Structure of table t windows . 61

5.15 Structure of table assignment by users 62

5.16 Structure of table assignments . 63

5.17 Structure of table class recruiteds . 64

5.18 Structure of table faculty recruiters . 65

5.19 Structure of table announcements . 66

5.20 Structure of table locations . 67

5.21 Structure of table surveys . 67

5.21 Structure of table surveys (continued) 68

5.22 Structure of table email messages . 69

1

Chapter 1

Introduction

In this chapter, we describe the motivation behind designing and building an online

system to support the management of volunteers for running the Math Day event.

We overview the rationale behind the design decisions and the various components

of the system that we implemented. Finally, we summarize the organization of this

thesis.

1.1 Motivation

The Math Day even is annually organized by the Center for for Science, Mathematics

and Computer Education (CSMCE) of the University of Nebraska-Lincoln (UNL) as

an outreach activity of the Department of Mathematics of UNL.

Each year, over 1500 students from all over the state of Nebraska come to UNL to

participate in the event. Math Day serves as an important recruitment and outreach

activity for UNL, allowing students to learn about the opportunities of which that

they may not be aware to study mathematics at UNL. Also, a number of students

who win the competition are offered scholarships to study at UNL.

2

To run Math Day, well over 250 volunteers are needed each year. Currently,

collecting volunteer information is done by hand. This process requires a significant

amount of effort and careful follow up. Our goal is to streamline the collection and

storage of volunteer information by creating an online system that volunteers can use

to register and the event manager can examine for follow up.

1.2 Application Requirements

The web interface for volunteer signup has several requirements we have to meet.

First, because the web server is hosted at UNL, our site needs to match the

guidelines for UNL’s official web pages. This aspect is mainly a stylistic requirement

of look-and-feel features. For this reason, we decided to used UNL’s Web Developer

Network (WDN) stylesheets.

Next, the site needs to allow two different methods of authentication. Many of the

volunteers for the event will be associated with UNL and will have an account through

UNL’s Client Authentication System (CAS). As such, we want to allow volunteers to

register using UNL’s CAS if they so desire. However, there are also volunteers that

do not have UNL CAS accounts (e.g., alumni, South East Community College, and

UNMC). Such volunteers must also be able to use the site. To accommodate these

volunteers, we need to provide an email-based authentication method as well.

Additionally, we need to provide a method to capture information (i.e., properties)

about volunteers that is either ‘permanent’ (i.e., static) or may change with time (i.e.,

fluents). A person’s name is unlikely to change. However, a person’s affiliation, status,

or available time windows can change from year-to-year. This requirement implies

our system should allow a volunteer to enter the static information only once but

update fluents every year, as they volunteer to help in the event.

3

When collecting fluents from volunteers, we need to have a dynamic system that

allows the volunteer to enter information that depends on selections they have made

earlier in the process. For example, the set of tasks visible to a volunteer depends on

the volunteer’s status and role. Also, undergraduate students, but no other volunteers,

are allowed to specify a Math faculty and Math class that will grant them extra credit

for their participation.

Last, we need to provide a method for the event administrators to be able to

manage volunteers and tasks. A separate interface needs to be created that is not

accessible to anyone other than the administrators. This interface must provide func-

tionalities to view and edit applications and send individual and bulk email-messages

to volunteers and recruiting faculty.

1.3 Contributions

The contributions of this thesis as the following:

1. Elucidate the application requirements

2. Refine the design of an initial MySQL database and document it

3. Design, implement, and test the volunteer authentication process

4. Design, implement, and test various interactive webpages for collecting volun-

teer information

5. Design, implement, and test a control mechanism for linearly guiding a volunteer

through the application process

6. Design, implement, and test various mechanisms for error detection, error re-

porting, and email communications with the users

4

7. Produce an initial prototype for the administrator interface

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, we describe the interface used by the

volunteers. In Chapter 3, we describe the interface used by the event administrators.

In Chapter 4, we describe the design of the system. Finally, in Chapter 5, we describe

the database and its structure.

5

Chapter 2

The Volunteers Interface

In this chapter, we describe the various pages, forms, and processes that form the

interface accessible by a volunteer. The description is organized in three main sections:

The front page, the application process, and the dashboard.

2.1 Volunteers’ Front Page

Volunteers access the system through the URL:

http://mathdayvolunteers.unl.edu

The first page that they see is the WELCOME page, shown in Figures 2.1 and 2.2,

which gives them access gives a volunteer access to the following pages:

1. WELCOME (Section 2.1.1)

2. LOGIN (Section 2.1.2)

3. REGISTRATION (Section 2.1.3)

4. ABOUT US and CONTACT US (Section 2.1.4)

Below, we discuss in detail each of these pages.

6

REGISTRATION	page	

LOGIN	page	

CONTACT	US	page	

ABOUT	US	page	

WELCOME	page	

Figure 2.1: Front page for volunteers

2.1.1 The WELCOME Page

The first page displayed to a volunteer is the WELCOME page, shown in Figure 2.2.

On this page, the volunteer sees, on top, announcements (i.e., message of the day or

Figure 2.2: WELCOME page

MOTD) and, in the middle, general information about Math Day. At the bottom of

this page, are two buttons: one to login to an existing account (i.e., the LOGIN page)

and another one for registering a new account (i.e., the REGISTRATION page).

7

2.1.2 The LOGIN Page

When a volunteer selects the ‘LOGIN’ option on the WELCOME page, they are

taken to the LOGIN page shown in Figure 2.3. A volunteer would choose this option

Figure 2.3: LOGIN page

if they have an existing account that they need to access. This page is similar to the

WELCOME page (Figure 2.2), but has two different options at the bottom, namely,

‘LOG IN WITH MY.UNL’ and ‘LOG IN WITH EMAIL.’ Because we provide two

different methods for account authentication, we have two different links that the

volunteer can use depending on which method they used to create their account.

2.1.2.1 Login with My.UNL

If a volunteer chooses to login with My.UNL, they are taken to the My.UNL authen-

tication page, which is not part of our system but belongs the UNL Central Authen-

tication Service (CAS) of the university. If they are successfully authenticated, they

are immediately directed to the Math Day site. The My.UNL authentication system

provides the Math Day site with the information needed to identify the user that has

just signed in providing the user’s CAS username.

Because My.UNL account authentication is beyond our control, utilities such as

password resetting are provided by that system for those registering under this option.

8

This functionality significantly reduces the burden of remembering usernames and

password for UNL users.

2.1.2.2 Login by Email

If a volunteer chooses to ‘LOG IN WITH EMAIL,’ they are directed to the form

shown in Figure 2.4. This form simply asks for the email address and password that

Figure 2.4: LOG IN WITH EMAIL page

the volunteer had initially used to register. If they provide the correct combination

of email address and password, they are given access to their account.

Because these accounts are managed by the MathDay site, we need to provide a

functionality for a volunteer to recover their account if they forgot their password. A

link to recover an account is provided on the LOGIN page. Choosing this link takes

the volunteer to the FORGOT PASSWORD page shown in Figure 2.5. When the

form on this page is submitted, our system sends a link the email address provided.

Clicking that link allows the user to change the password for that account.

9

Figure 2.5: FORGOT PASSWORD page

2.1.3 The REGISTRATION Page

The first time a volunteer accesses our system, they must create an account by reg-

istering. To this end, from the WELCOME page, they press the ’Register’ button,

which directs them to the REGISTRATION page, see Figure 2.6.

Figure 2.6: REGISTRATION page

This page is similar to the WELCOME page (Figure 2.2). It has the same layout,

but two different buttons, which now are: ‘Register with My.UNL’ and ‘Register

with email,’ which are the two authentication methods that we provide. We allow a

volunteer to create their account based on their My.UNL login, which may be more

convenient for many students because they will not have to create a new account

and password. They can simply use their existing account they already use for many

other UNL services. If a volunteer does not have a My.UNL account, or would rather

10

not use it, they can instead register with an email address.

2.1.3.1 My.UNL Registration

If a volunteer chooses to register with their My.UNL account by choosing ‘Register

with My.UNL’ from the REGISTRATION page, they are directed to the My.UNL

login page, which is not part of our system. After authentication with My.UNL,

the volunteer is given a form to input their profile, as shown in Figure 2.7. This

Figure 2.7: Registration after MY.UNL authentication

form asks for the volunteers name, cellphone number, email, and gender. We need

this information so we know who is registering and how to contact them. When

registering using this method, the volunteer does not need to enter a password because

the My.UNL system manages the authentication process.

After successfully submitting the form, the volunteer is directed back to the WEL-

COME page and shown a message prompting them to check their provided mailbox

for an activation link. Clicking the link in that email message activates the account

and completes the registration.

11

2.1.3.2 Registration by Email

If a volunteer elects to register with an email address by choosing ‘Register with email’

in the REGISTRATION page, they are directed to the registration form shown in

Figure 2.8.

Figure 2.8: Registration after authentication via email

This form is almost identical to the form a volunteer fills out when registering

with My.UNL (see Figure 2.7). The only difference is that the volunteer must enter

a password. Because they are registering with an email address, we have to provide

the authentication and, consequently, the volunteer must provide a password.

After successfully submitting the form, the volunteer is taken back to the WEL-

COME page and prompted to check their provided mailbox for an activation link.

Clicking the link in that email message activates the account and completes the reg-

istration.

12

2.1.4 The ABOUT US and CONTACT US Pages

There are two pages available from the REGISTRATION page that are not part

of the normal registration process. These are the ABOUT US and CONTACT US

pages. Both pages are accessible to any visitor of the site through the top bar (see

Figure 2.1). The ABOUT US page simply contains information describing the Math

Day event. The CONTACT US page allows a visitor of the site to send a message to

either the Math Day administrator or the website administrators.

2.2 Application Process

Once a volunteer has created an account, they need to complete the application

process, which is a sequence of forms that they need to fill out to indicate how they

can help on Math Day. The forms are the following:

1. APPLICATION (Section 2.2.2)

2. YASP (Section 2.2.3)

3. TASK SIGNUP (Section 2.2.4)

Because there are multiple parts to this process, we guide volunteers through it in a

step-by-step manner.

Figure 2.9 describes the application process. This diagram shows that there are

three parts to the process, namely, APPLICATION, YASP, and TASK SIGNUP.

Each step is a different form that must be completed. The APPLICATION and the

YASP forms must be completed by all volunteers. The last form, TASK SIGNUP,

is available only to volunteers who are ’activity workers.’ A volunteer indicates if

they are an activity worker in the APPLICATION form. This fact means that it is

13

Start	

Input	error?	Yes
No

Redirect	to	APPLICATION	

Redirect	to	YASP	

Form	signed?	

Redirect	to	TASK	SIGNUP	

Ac6vity	worker?	

Redirect	to	DASHBOARD	

Email	confirma6on	 Input	error?	

No
Yes

No Yes

No Yes

Figure 2.9: Application process

important that the steps be completed in sequence because later steps rely on input

provided in earlier steps.

To ensure that each step is completed in order while keeping the process simple, we

guide a volunteer through the process in a step-by-step manner. We first show them

the APPLICATION form. If they submit the form and there are errors in the input,

we keep them on the application form until it is submitted without errors. Once it has

been submitted without errors, we then show the volunteer the YASP form. Again,

if there are any errors on the form, the volunteer is kept on the YASP form until it

is error free. Once the YASP form is submitted without errors, the process continues

in one of two ways. If the volunteer indicated on the APPLICATION form to be an

14

activity worker, the TASK SIGNUP form is displayed. Otherwise, the application

process is completed.

When the volunteer is directed to the TASK SIGNUP form, they are prevented

from moving on in the process until the form is submitted without errors. Once

the TASK SIGNUP form is completed, the volunteer has completed the application

process.

Regardless of the path that the volunteer followed to complete the application pro-

cess, after the process is completed, the volunteer is directed to the DASHBOARD

page (see Section 2.3) and receive a confirmation message by email listing all the

details of the application. After completing the process, a volunteer can still make

changes to any of the forms previously filled out. Further, at each update, a confir-

mation message with the updated information is sent to the volunteer for traceability.

2.2.1 The Progress Bar

The volunteer’s progress in the application process follows Figure 2.9 and its state is

reflected by a progress bar shown in each of the three forms. The progress bar can be

in any of the four states shown in Figure 2.10 indicating whether or not a given form

was completed. Notice that the TASK SIGNUP option is shown only if a volunteer

has indicated to be an activity worker on the APPLICATION form.

Figure 2.10: Four states of the progress bar

15

If a volunteer clicks on a link to try to access a part of the process that they

should not yet access, they will be redirected to the earliest step of the process

that they have not yet completed. For instance, if a person has not yet completed

the APPLICATION form, it is possible for that person to click the YASP link on

the progress bar. The volunteer is not given access to the YASP form until the

APPLICATION form has been completed. Even without the links in the progress

bar, a volunteer could enter in the browser the URL of a later step. Therefore, any

time a step in the process is requested, our system ensures that the volunteer has

access to the requested step. Note that any completed step can be accessed from the

progress bar at any time.

2.2.2 The APPLICATION Form

The first form that the volunteer has to fill is the APPLICATION form. This form

is shown in Figure 2.11. In the application form, the volunteer enters information

Figure 2.11: Application form

about the roles they would like to perform, their current status, affiliation, and for

undergraduate math students, the instructor who has recruited them for the event

16

and the name of the class in which they were recruited so that they receive proper

credit for their participation.

The logic that controls the process is shown in Figure 2.12. Given that the AP-

Start	

Redirect	to	APPLICATION	

Submit	APPLICATION	

Errors	on	form?	

Applica7on	process	
completed?	 Email	confirma7on	

Redirect	to	DASHBOARD	Redirect	to	YASP	

Yes
No

No

Yes

Figure 2.12: Accessing the APPLICATION page

PLICATION form is the first step in the application process, no no conditions are

checked to determine whether or not a volunteer can be shown this form.

If there is an error on the form when it is submitted, the volunteer is prompted

with the appropriate message about the error and shown the application form again.

Once the volunteer has submitted the form, one of two actions can occur. If

the volunteer has already completed all of the other forms in the process, which can

occur only in the case that the volunteer is updating the APPLICATION form, the

volunteer is redirected to the DASHBOARD (see Section 2.3) and receives an email

summarizing the content of the updated application. Otherwise, the volunteer is

shown the earliest form in the process that is yet to be completed, which is, either

the YASP form, if it has not been completed, or the TASK SIGNUP form.

17

2.2.3 The YASP Form

The second form in the application process is the YASP form. This form is shown in

Figure2.13. This form simply displays an official university document and prompts

Figure 2.13: The YASP form

the volunteer to sign it indicating that they agree with the guidelines specified in that

document.

The logic controlling the process of filling out the YASP form is shown in Fig-

ure 2.14. The YASP form is only available if the APPLICATION form has been

completed. If a volunteer requests the YASP form before first filling the APPLICA-

TION form, the volunteer is redirected to the APPLICATION form.

The YASP form is unique in comparison to the other forms in the process in that it

18

Start	

Applica+on	complete?	 Redirect	to	Applica'on	

YASP	complete?	 Display	read	only	YASP	

Redirect	to	YASP	

Submit	YASP	

Errors	on	form?	

Ac+vity	Worker?	 Email	confirma+on	

Redirect	to	DASHBOARD	Redirect	to	TASK	SIGNUP	

Yes

No

Yes

No

Yes

No

Yes

No

Figure 2.14: Accessing the YASP form

cannot be edited once it has been submitted. This is because it is just a confirmation

that the volunteer agrees to the terms specified by the document displayed in the

form. Therefore, if a volunteer has already filled out the YASP form, and requests it

again, they will receive a read-only version of the form duly indicating the date on

which the form was signed.

If the YASP form has not yet been submitted but the APPLICATION form has,

the user is directed to the YASP form. If the YASP form is submitted with errors,

the volunteer will be shown the form again. Otherwise, one of two actions will occur.

In case the volunteer indicated on the APPLICATION form to be an activity worker,

they are directed to the TASK SIGNUP form. Otherwise, the volunteer is directed to

the DASHBOARD (Section 2.3) and receives a confirmation message by email with

a summary of the application.

19

2.2.4 The TASK SIGNUP Form

The third and last form in the application process is the TASK SIGNUP form. This

form is shown in Figure 2.15.

Figure 2.15: The TASK SIGNUP form

In this form, a volunteer indicates the time intervals in which they can make

themselves available during the Math Day event by increments of 15 minutes.

The list of all the tasks to which a volunteer can be assigned is displayed even

if the tasks that do not fit in the time windows selected by the volunteer. The

tasks that a volunteer is shown depends on the information that they entered in

the APPLICATION form, notably their status. Different volunteer statuses can be

entrusted on different tasks.

The tasks that are contained within the time windows selected by the volunteer

are highlighted in green, and the volunteer is given the option of indicating one of

four preferences for each task (i.e., Preferred, Acceptable, Avoid, and Can’t Do) of

the green-colored tasks.

20

We intentionally choose to show a volunteer all of the tasks their status entitles

them to do, even if a given task is not contained in any of the time windows they

indicated. The reason behind this decision is that, sometimes, volunteers may adjust

their availability depending on the tasks that they prefer to do. If they know when

all the tasks are occurring, then they can be sure to edit their availability to match

whatever tasks they prefer.

Additionally, each task has a tool-tip that gives a description of the task. The

name of the task alone may not be particularly meaningful to a volunteer. If a

volunteer would like to know more about the task, they simply hover over the question

mark symbol displayed with each task and a more information about that task will

be shown.

The logic controlling the process is shown in Figure 2.16. If a volunteer requests

access to the TASK SIGNUP form before finishing either the APPLICATION form

or the YASP form, the volunteer is shown the earliest form in the process that has not

yet been completed. If the volunteer has completed both of those two forms, but did

not indicate on the APPLICATION form to be an activity worker, then they are not

offered the option of filling out the TASK SIGNUP form, and are instead redirected

to the DASHBOARD (see Section 2.3).

If all earlier forms have been completed and the volunteer indicated to be an

activity worker, the volunteer is shown the TASK SIGNUP form. When the volunteer

submits the form with errors, they are shown the form again with a message indicating

the errors to be fixed. Otherwise, the volunteer is redirected to the DASHBOARD

and receives a confirmation message by email summarizing their selections.

As part of the TASK SIGNUP form, a volunteer indicates the window times

at which they are available. It is possible for a volunteer to enter time windows

that overlap. If two time windows overlap at all, they are updated to form the

21

Start	

Applica+on	complete?	 Redirect	to	Applica'on	

YASP	complete?	 Redirect	to	YASP	

Ac+vity	Worker?	

Email	confirma+on	

Redirect	to	DASHBOARD	

Redirect	to	TASK	SIGNUP	

Yes

No

No

Yes

Yes

Submit	TASK	SIGNUP	

Errors	on	form?	

Yes
No

No

Figure 2.16: Accessing the TASK SIGNUP form

smallest encompassing time window. Therefore, every time a volunteer enters a new

time window, we run the algorithm MergingNewInterval (Algorithm 1) to test

whether or not the new entered window overlaps with any previously entered time

window and, when so, do the merger. The volunteer has the option of removing any

of the entered or computed windows.

The algorithm operates by iterating through the existing time windows. Any

time window that overlaps with the new time window entered is merged with the new

window and the result replaces the older window. Time windows that do not overlap

with the new window are kept. The new merged window is added to the list of time

windows after all existing overlapping time windows are merged with it.

22

Algorithm 1: MergingNewInterval(IntervalList ,NewInterval)

Input: I[·]: a zero-based index vector of n intervals where no two intervals
overlap in time
T: a new time interval

Output: R[·]: a zero-based index vector of m intervals where m ≤ n + 1 and
no two intervals overlap in time

i← 01

j ← 02

repeat3

if overlap(T , I [i]) then4

begin(T)← min(begin(T), begin(I [i]))5

end(T)← max (end(T), end(I [i]))6

else7

R[j]← I[i]8

j ← j + 19

i← i + 110

until I[i] = nil11

R[j]← T12

return R[·]13

The algorithm assumes that, at any point in time, all the stored time windows

entered do not overlap. This means this algorithm has to be run every time a new

time window is entered, or it may not be correct. We ensure that this algorithm is

executed every time a new time window is entered by attaching it to the pre-save

event on the database. Before the database saves a record in the time windows table,

it executes this code and ensures that the new entry has no overlaps with any other

already recorded time windows.

2.3 The DASHBOARD

DASHBOARD gives access to all the forms filled by a volunteer in the application

process so that they can view them in one place and make changes and updates as

they see fit.

23

2.3.1 The Rationale

We do not want a volunteer to have access to all of these forms before the application

process is completed because it can be confusing and overwhelming to see all the forms

at once. Therefore, we do not allow a volunteer to access the DASHBOARD until

the application process is completed. Figure 2.17 shows the process for determining

where to direct a volunteer when they try to access the DASHBOARD.

Start	

Is	user	logged	in?	

Redirect	to		
WELCOME	

Is	applica4on	
process	completed?	

Redirect	to		
DASHBOARD	 Is	applica4on	filled?	

Redirect	to		
APPLICATION	 Is	YASP	form	signed?	

Redirect	to		
TASK	SIGNUP	

Redirect	to		
YASP	

Yes No

No

No Yes

Yes

Yes No

Figure 2.17: The routing process

If a volunteer is not signed in and tries to access the DASHBOARD, they are

redirected to the WELCOME page with a message indicating that they must first

sign in. If a volunteer tries to access the DASHBOARD while signed in but before

completing the application process, the volunteer is redirected to the earliest step in

the application process that has not yet been completed with a message indicating

the entire application process must be completed before the DASHBOARD becomes

accessible. Only once the volunteer is signed in and the entire application process is

24

completed does the DASHBOARD become accessible.

The process of checking whether or not the volunteer is allowed to access their

DASHBOARD is executed every time a request to accessing the DASHBOARD page

is made. This check is necessary because it is possible for a volunteer who can ac-

cess their DASHBOARD to make a change in one of the forms that then enables

options in the process that were not completed. For instance, suppose a volunteer

did not indicate on the APPLICATION form to be an activity worker, which means

that volunteer is not be shown the TASK SIGNUP form. After completing the ap-

plication process, that volunteer can then make changes to the information entered

on the APPLICATION form. If that volunteer then changes the APPLICATION

form to indicate that they are an activity worker, the volunteer now needs to fill

out the TASK SIGNUP form. So, although this volunteer could at one point access

their DASHBOARD, after updating the APPLICATION form, their application is

no longer complete. In this case, the volunteer is redirected to complete the TASK

SIGNUP form before being allowed access to the DASHBOARD.

Another issue can arise when having all of the forms in the process accessible on

one page. Some parts of the forms are dependent on information entered in earlier

steps of the application process. For instance, on the TASK SIGNUP form, the vol-

unteer is shown different tasks depending on the status they indicated in the APPLI-

CATION form. On the DASHBOARD, they have access to both the APPLICATION

and the TASK SIGNUP forms. The volunteer could possibly change information in

either form in a way that is not consistent. They should be prevented from doing so.

If a volunteer changes their status on the APPLICATION form, the options shown

in the TASK SIGNUP form may no longer be correct. If the volunteer also changes

entries in the TASK SIGNUP form, both the APPLICATION and the TASK SIGNUP

forms may end up totally inconsistent, which is a major problem. To solve this

25

problem, each form has its own submit button. This means that, though all the

forms are visible at once, only one form can be changed at any given time. Anytime

any form is entered or modified, the DASHBOARD page is refreshed and the changes

are reflected in the options available in the other forms.

This method could potentially be confusing to a person editing forms on the

DASHBOARD. A person may make changes in two different places, press a submit

button, and see the changes they made on one of the forms undone. However, the

tradeoff is that it is much simpler to do it the way we designed and implemented.

Allowing all of the forms to be changed in parallel, the corresponding pages would

have to be dynamic, updating every time a value in a field is changed, which may

occur overhead and delays.

2.3.2 The Functionalities

After a volunteer has registered their account (Section 2.1) and completed the appli-

cation process (Section 2.2), they are able to access the DASHBOARD. The DASH-

BOARD is shown in Figure 2.18. On this page, an accordion gives the volunteer to

Figure 2.18: The DASHBOARD page

the various forms filled in the application process and also other functionalities as

listed below:

26

PROFILE A form that allows a volunteer to modify their profile information in

one of two possible forms, either as shown in Figure 2.7 or as shown in Fig-

ure 2.8, depending on the authentication system with which they registered

their account.

APPLICATION This option allows the volunteer to update the information pre-

viously entered in the APPLICATION form shown in Figure 2.11.

YASP This option allows the volunteer to update the information entered in the

YASP form shown in Figure 2.13.

TASK SIGNUP This option allows the volunteer to update the information entered

in the TASK SIGNUP form shown in Figure 2.15.

PREVIOUS YEARS This option displays a table showing all the tasks that the

volunteer had performed on in the previous Math Day events stored in the

database.

SURVEY Finally, this option allows the volunteer to fill out an optional survey

to provide feedback about the site. The information entered is stored in the

database without any identifying information and a copy is sent by email to the

administrator of our system. A volunteer can enter as many surveys as they

wish. The values entered at one point are not shown in future attempts. The

survey page was contributed by Gerald Thornton.

Summary

In this chapter, we reviewed all the pages available to a volunteer for registering on

the system, applying for a Math Day event, and viewing updating their application.

27

Chapter 3

The Administrator Interface

In this chapter, we describe the various pages, forms, and processes that make up the

interface accessible by an administrator. The description is organized in two main

sections:

1. The Active Admin pages, which is a temporary interface for the administrator

(Section 3.1). It provides access, to the Math Day administrator, to the data

in the database. However, the functionalities lack ‘flexibility.’ It constitutes a

quick and temporary solution.

2. The ‘regular’ administrator pages, which is a proof of concept of the system to

be built (Section 3.2).

3.1 Active Admin Pages

As a temporary measure to add critical administrator functionalities, we are using

a Rails gem called ‘Active Admin.’ This gem provides a framework for quickly and

easily creating admin pages. The downside of this solution is that there is little room

for customizing the look of the pages created by this framework.

28

Currently, we have four pages available on the active-admin pages, shown in Fig-

ure 3.1: the dashboard, applications, users, and faculty recruiters.

Figure 3.1: Four pages in Active Admin

The Active Admin dashboard can be found at [url]/admin temporary.

3.1.1 Authentication

Because the Active Admin pages provide access to most of the data in the database,

only the event administrator should have access to these pages. Active Admin has a

built-in method for authentication. We have placed this authentication method has

in the file config/initializers/active admin.rb. This functionality allows only

users with the admin field set to true to access these pages.

3.1.2 Namespace

The path of Active Admin is by default set to [url]/admin. Because we already

use this path in our pages for the admin, we had to use a different path. We set

the value of the variable config.default namespace to admin temporary in file

config/initializers/active admin.rb. This initialization changes the path of

the Active Admin pages from [url]/admin to [url]/admin temporary.

29

3.1.3 Dashboard

This page is currently empty. It does not serve any purpose. It could be used to

display summary information that could be useful to an administrator, such as how

many people have signed up, who has recently signed up, or explanations about the

various pages provided.

3.1.4 Applications

This page shows all of the applications in the database (see Figure 3.2). It includes

actions to email the faculty recruiters, de-activate/re-activate applications, email in-

dividual/group volunteers, and end a date for the SOR attribute.

Figure 3.2: Applications page in Active Admin

The custom actions that can be performed on this page are available by selecting

the check-boxes of the relevant applications, then clicking the batch actions check-box

as seen in Figure 3.3.

3.1.5 Users

This page shows all the users in the database. There are currently no custom actions

on this page. Nevertheless, this page is useful for viewing, editing, and deleting

applicants.

30

Figure 3.3: Accessing custom actions in Active Admin

3.1.6 Faculty Recruiters

This page currently has only one custom action, which allows the administrator to

email the faculty recruiters (see Figure 3.4). This functionality can be used, for

example, when the administrator needs to contact recruiters to alert them that more

volunteers are needed and to solicit the help of students in their classes.

Figure 3.4: Accessing faculty recruiters’ page in Active Admin

31

3.2 ‘Regular’ Admin Pages

The long-term solution to the administration needs to run the event are located in

the directory [url]/admin. The files in this directory will eventually provide all the

functionalities to be used by the event administrator with a look-and-feel matching

the volunteer pages.

Currently, the pages located in this namespace are temporary solutions used to

enter previous years data. There are two main pages, namely, users and activities,

which allow an administrator to edit users and activities, respectively. To access these

two pages, a user has to pass the authentication process described below.

As with ‘Active Admin,’ the ‘regular’ admin pages should provide access to most

of the data in the database and offer all the functionalities that an administrator may

need. We need to restrict access to these pages to only admin users.

To limit access to only admin users, we created a base admin controller

app/controllers/admin controller.rb .

This controller provides the authentication method that checks to ensure the current

user is an admin user. This controller sets that method as a ‘before action,’ which

means that the authentication method will run before any requests are handled. If a

user, who is not an admin user, tries to access an admin page they are redirected to

WELCOME page.

To enforce this behavior on all of the admin pages, it is critical that each controller

in the admin namespace (app/controllers/admin) inherit the admin controller.

If any controller in this namespace does not inherit the admin controller, the pages

it serves will be accessible to any user. All existing controllers in this namespace

currently inherit the admin controller. In the future, any newly created controllers

in this namespace need to manually be set to inherit the admin controller as new

32

controllers default to inheriting the applications controller.

Currently, the method that authenticates users accessing the admin pages is com-

mented out. We adopted this temporary solution because these pages are currently

being used to enter previous years data by student workers who do not have admin

accounts. However, before the site goes live, this method has to be uncommented.

Again, this method is located in app/controllers/admin controller.rb.

3.3 Creating a New Year

An important functionality for the administrator interface that is not yet implemented

is creating the activities and tasks for a new year. This operation is achieved by

copying the seed tables, but it is (yet) not as simple as it should be. When copying

the seed tables, the associations between activities and tasks for the new year must be

built. For example, when copying a task seed, the task seed must link to an activity

seed. However, for the new year’s tables of activities and tasks, we need to link each

new task (not task seed) to the appropriate new activity (not the activity seed).

The method for copying the seeds for a new year is implemented and can be found

in app/models/new year.rb. This method will copy the seed tables and add all the

associations between the new records. A link to call this new-year method will have

to be added to the final/regular administrator interface. Until then, this method

can be called from the rails console as needed. We have already used this method

to create the 2017 tasks and activities, so it should not be needed again until 2018.

Note that the tables of tasks and activities for 2014, 2015, and 2016 do not have the

appropriate associations (because they predated the seed creation).

33

Summary

In this chapter, we described two interfaces for the event administrator. The first one,

a quick but temporary solution, is built with the gem ‘Active Admin.’ The second

one is a prototype of the interface to be deployed. Finally, we described a method

that generates new tables for activities and tasks from seeds.

34

Chapter 4

System Design

In this chapter, we review the system design.

4.1 Software Design

We implemented the website using Ruby on Rails. Rails uses a Model-View-Controller

design pattern, which is thus the design pattern we use. The html webpages are

the ‘view’ component in the design. The connections between models, views, and

controllers is illustrated in Figure 4.1.

Figure 4.1: Model-View-Controller connections

When a volunteer requests information, the request is routed to a controller for

that page of the browser. The controller determines which view to send to the browser.

Then, the controller loads the data from the model, which connects to the database,

to insert the data into the view.

35

When a volunteer submits information, the volunteer enters the data into a view.

The data is then routed to a controller. The controller then sends the data to the

model to store in the database. The controller then determines what view to send

back to the page of the browser.

4.1.1 Program Organization

Ruby on Rails has a default structure for organizing the files of a project. Our project

conforms to this default style, which makes it easy to figure where a file can be found.

The directories are the following:

app/views/ This directory contains all of the views (HTML templates) and email

templates.

app/controllers/ This directory contains all controller files, which are Ruby files.

app/models/ This directory contains all model files, which are Ruby files.

app/assets/stylesheets/ This directory contains all css stylesheets used in the

views.

app/assets/javascripts/ This directory contains all javascript files that are used

in the views.

app/assets/images/ This directory contains all images used in the views.

config/ This directory contains all of the configuration files for the project.

Rails creates other directories that it uses, but the above listed directories are those

containing almost all of our work.

36

4.1.2 Runtime Configurations

There are some configurations that we make accessible to the Math Day managers

that they can change while the system is running. These configurations are needed

because there are certain options that the organizers will be changing over time and

we want them to be able to control these options easily without having to dig into

files and restart the server. We use global variables to represent these configuration

options. Any parts of the system that depend on these settings refer to these global

variables. However, the only place these global variables are set are at startup and

in the administrator’s interface where the organizers will be given forms in order to

change the values of those global variables.

The most obvious and important global variable is certainly the ‘current’ year. The

organizers of the event have indicated that they would like to have control over which

year the system is to run for. For instance, it may be 2017, but the organizers may

want the system to run as though it is 2016. This means that everything displayed to a

visitor of the site should appear as though the current year is 2016. If a volunteer goes

to their dashboard, they should see the application they filled out for 2016, not 2017.

This functionality is accomplished with the global variable indicating the current year.

This variable is used throughout the code to determine which information from the

database should be loaded.

There are two different versions of current year variable. The normal version of

current year changes the appearance of the site to volunteers. The other version

is the ’browse current year’ variable. When this variable is set, it should change

the appearance of the administrator interfaces only. This way, an administrator can

look at different years without affecting what volunteers are seeing. The browse

current year variable has been created, but has not been added throughout the code.

37

Currently, the normal version of ’current year’ is being used throughout the site.

This will need to be changed in the future. All of the admin pages should refer to the

’browse current year’ and all the volunteer pages should refer to the normal ’current

year’.

One downside of this method of storing runtime configurations is that they do not

persist. If an organizer changes one of these options and the server reset overnight,

when they view the site again the next day, it would not reflect the change they made.

An alternative implementation that would solve this problem is a database table that

stores these runtime configurations. At the moment, the options for which we are

using global variables are not needed to persist, so this method works fine for now.

4.1.3 Account Authentication

One interesting aspect of this project is that we provide two methods of account

authentication. A volunteer can either use their My.UNL login or an email address

to register. However, because of the entailed security issues, we defer to libraries to

handle this work for us.

4.1.3.1 My.UNL Authentication

The authentication method used by My.UNL is the Central Authentication Service

(CAS) protocol. A library called RubyCAS handles the interfacing with My.UNL’s

CAS system making it simple for us. This library redirects a volunteer to the My.UNL

login page. After the volunteer successfully logs in, they are redirected back to the

Math Day website and their the CAS library stores their My.UNL username in a

session cookie.

Because we still have My.UNL authenticated volunteers fill out profile information

38

that is stored in the Math Day database, we have a user record in the database for

all volunteers, regardless of which authentication method is used. One of the fields

in the user table is the My.UNL username. When a My.UNL authenticated volunteer

submits their profile form during registration, we store their My.UNL username in

their user record, which allows our system to associate a user record with a My.UNL

account. This is also how we differentiate between volunteers who ‘authenticate’ with

My.UNL and volunteers who ‘authenticate’ with email addresses. A volunteer who

‘authenticates’ with an email address has no value in the My.UNL username field of

their user record.

4.1.3.2 Email Authentication

Email authentication requires that we have a way to validate a volunteer with an

email/password combination. Because it is common for people to use the same pass-

word across multiple sites, we do not want to store a volunteer’s actual password in

the database. To avoid using this solution, we use a library called BCrypt. This

library creates a hash value of a password and stores instead the hash value in the

database. Because we never store any actual passwords, even if an untrusted source

gained access to our database, the source would not have access to the volunteers’

passwords and therefore will not be able to access their accounts on other sites where

they reuse the same password.

When a user enters login information, the BCrypt library hashes the entered

password and compares it to the hashed value stored in the database. If the two

hashed values do not match, the volunteer is not logged in. If the volunteer is logged

in, their user ID is stored in the same session cookie that is used to store a volunteer’s

My.UNL ID.

39

4.2 Environments

We have different (development) environments in different locations. Each different

environment requires a separate database. Below are the different environments and

where they reside.

Production This environment is the one intended for actual use with live data. At

any time, all data in this environment should be real. No testing data should

be introduced in this environment. The database for this environment is on

the CSE server and is called mathday. The code for this environment is on the

CSCE server.

Evaluation This environment is intended for use by anyone and for demo and testing

purposes. Fake information is allowed here because it is only for testing the site.

The database for this environment is also on the CSE server, but is a separate

instance than the Production database. It is called mathdayeval. However, the

code is on the CSCE server and is the same code as the Production namespace.

This means the Production and Evaluation namespace are always running the

same version of the code.

Development This environment is actually not a single environment. Any developer

working on the project has their own development environment. Therefore,

there may be multiple development environments existing at the same time.

The database and code for any development environment is located on the

developer’s own computer.

40

4.3 Database Synchronization

When changes are made in the database of one environment, it is sometimes necessary

for those changes to be moved to another environment. There are mainly two different

types of changes that are made to our databases, namely, changes to the data and

changes to the schema. Propagating such changes to other environments should be

done differently depending on change’s type.

4.3.1 Data Changes

The Production environment contains all of the live data, which is considered the

correct data. Therefore, when copying data from one environment to another, the

source should always be the Production environment. The trigger for copying data

is different depending on the target environment. Figure 4.2 illustrates the way data

should be copied between environments.

CSE	
Evalua)on	

CSE	
Produc)on	

Developer	1	 Developer	n Developer	2	

Daily via a
scheduled script

Manually by each developer

Figure 4.2: Database Data Flow

The Data in the Production environment is copied into the Evaluation environ-

ment daily via a scheduled script. This is because we often enter fake data in the

Evaluation environment and we want the changes to be regularly cleared.

When copying data to a development environment, the developer executes manu-

ally the copy. This rationale is the following. As a developer is making changes and

41

exploring alternatives, their schemas may differ from the schemas in the development

development environment. Therefore, a developer is given manual control over when

to copy the Production data into the database in their environment.

Regardless of the target and source environments, the method for copying data

is always the same. All databases in the three environments are mysql databases.

Therefore, we always use the mysql utilities to dump and import databases when

copying data.

Exports production database into a sql file

On CSE:

mysqldump -u mathday -p mathday > mathday_production.sql

Imports production database into development database

On developer machine with mathday_production.sql

in current directory:

mysql -u [user-name] -p mathdaydev < mathday_production.sql

4.3.2 Schema Changes

New development always occurs in the development environments, therefore, all new

schema changes come from the development environment and must be propagated to

the Production environment. The process for moving a given change of a database

schema from one environment to another one is shown in Figure 4.3.

Rails stores all database changes in code files and can apply the changes to the

database it is connected to using a command. A schema change originates from a

change in the code of one of the development environments. To make that change

accessible to the other environments, developers push their changes to the code reposi-

42

CSE	
Evalua)on	

CSE	
Produc)on	

Developer	1	 Developer	n Developer	2	

Database
copy

Database
migration Code	Repository	

Figure 4.3: Database Schema Flow

tory. From there, all other developers can pull this code change to their local machines

and run Rails’ database migration command to update their database.

Pulls new code and runs new migrations

In project directory on developer machine:

git pull

rake db:migrate

Because the Production and Evaluation environments share a code base and be-

cause the Production database is copied over the Evaluation database every day,

schema changes need to be applied to both the Production and Evaluation envi-

ronments at the same time. First, the new code is pulled to the Production and

Evaluation environments. Next, the Rails command to execute the database migra-

tion on the Production database is executed. Finally, the Production database is

copied over the Evaluation database, bringing the schema changes with it.

Pulls new code to production/evaluation

and runs migration on production DB.

On CSCE in project directory:

./update_VITA_with_master_branch.sh

rake db:migrate RAILS_ENV=production

43

Copies production database back to evaluation

On CSE in mathday user’s home directory:

./database_dump_to_test_db.sh

Summary

In this chapter, we described the software organization, the various environments

used, and the synchronization between the various environment databases in the

system we developed. This chapter is a must read for anyone wanting to add to the

system functionalities.

44

Chapter 5

Database Documentation

This chapter provides a list and the description of all tables in the database and

columns in those tables. Below, Figure 5.1 shows a diagram of all tables and their

relations.

45

Figure 5.1: Database Diagram

46

5.1 Activities and Tasks

Below, we list all the tables pertainting to activities and tasks. Those tables are:

1. activities seeds

2. activities

3. tasks seeds

4. tasks

5. user tasks

6. capable tasks seeds

7. capable tasks

8. visible tasks seeds

9. visible tasks

5.1.1 activities seeds

The table activities seeds (Table 5.1) is used as a template to create a new year

of MathDay activities.

Table 5.1: Structure of table activities seeds

Column Type Null Default

id int(11) No

name varchar(255) Yes NULL

description text Yes NULL

created at datetime Yes NULL

47

Table 5.1: Structure of table activities seeds (continued)

Column Type Null Default

updated at datetime Yes NULL

It is mostly static but can be modified by the manager as the organization of

MathDay evolves over the years. It has the following attributes:

• name: the activity’s name.

• description: the activity’s description

5.1.2 activities

The table activities (Table 5.2) lists all activities, their descriptions, and the year

the activity took place.

Table 5.2: Structure of table activities

Column Type Null Default

id int(11) No

name varchar(255) Yes NULL

description text Yes NULL

year smallint(6) Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

Each activity is a set of tasks. The table activities has the following attributes:

• name: the activity’s name. For example, TIMER, GRADER, SET-UP, MOD-

48

ERATOR.

• description: the activity’s description. For example, the description of SET-

UP is “Sets out the PROBE I exam, bubble sheets, pencils and scratch paper

before participants arrive. When students and teachers arrive, makes sure they

are in their assigned rooms.”

• year (integer): the year of the activity. For example, 2016.

5.1.3 tasks seeds

The table tasks seeds (Table 5.3) is a static table used as a template to create a

new year of MathDay tasks.

Table 5.3: Structure of table tasks seeds

Column Type Null Default

id int(11) No

activities seed id int(11) Yes NULL

name varchar(255) Yes NULL

description text Yes NULL

starts at datetime Yes NULL

ends at datetime Yes NULL

load int(11) Yes NULL

backup load int(11) Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

display string varchar(255) Yes NULL

preemtable tinyint(1) Yes 0

49

• activities seed id: The activity to which the task belongs.

• name: The name of the task.

• description: The task’s description.

• starts at: The time at which the task begins.

• ends at: The time at which the task ends.

• load: The number of users which must be assigned to the task.

• backup load: The number of users which must be assigned as backups to the

task.

• display string: The name of the task that will be displayed to the users.

• preemtable: Indicates whether the task can be preempted.

5.1.4 tasks

The table tasks (Table 5.4) contains atomic tasks to which users are assigned.

Table 5.4: Structure of table tasks

Column Type Null Default

id int(11) No

activity id int(11) Yes NULL

name varchar(255) Yes NULL

description text Yes NULL

starts at datetime Yes NULL

ends at datetime Yes NULL

50

Table 5.4: Structure of table tasks (continued)

Column Type Null Default

load int(11) Yes NULL

backup load int(11) Yes NULL

year smallint(6) Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

display string varchar(255) Yes NULL

preemtable tinyint(1) Yes 0

• activity id: The activity to which the task belongs.

• name: The name of the task.

• description: The task’s description.

• starts at: The time at which the task begins.

• ends at: The time at which the task ends.

• load: The number of users which must be assigned to the task.

• backup load: The number of users which must be assigned as backups to the

task.

• year: The year the task occurred.

• display string: The name of the task that will be displayed to the users.

• preemtable: Indicates whether the task can be preempted.

51

5.1.5 user tasks

The table user tasks (Table 5.5) contains all the tasks that can be assigned to each

user for all occurrences of the MathDay event.

Table 5.5: Structure of table user tasks

Column Type Null Default

id int(11) No

task id int(11) Yes NULL

user id int(11) Yes NULL

year smallint(6) Yes NULL

preference int(11) Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

• tasks id: The task that corresponds to this user task.

• users id: The user that corresponds to this user task.

• year: The year the task occurred.

• preference: The user’s preference for the task on a scale of 1 to 4, where 1

indicates a strong preference for the task and 4 indicates a strong preference

against the task.

5.1.6 capable tasks seeds

The table capable tasks seeds (Table 5.6) is a static table used as a template to

create a new year of MathDay capable tasks.

52

Table 5.6: Structure of table capable tasks seeds

Column Type Null Default

id int(11) No

tasks seed id int(11) Yes NULL

user type id int(11) Yes NULL

• tasks seed id: The user’s type.

• user type id: The task the user type can be assigned.

5.1.7 capable tasks

The table capable tasks (Table 5.7) indicates which users can be assigned to each

task based on the user’s type.

Table 5.7: Structure of table capable tasks

Column Type Null Default

id int(11) No

task id int(11) Yes NULL

user type id int(11) Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

year smallint(6) Yes NULL

• user types id: The user’s type.

• tasks id: The task to which the user can be assigned.

53

• year: The year the task occurred.

5.1.8 visible tasks seeds

The table visible tasks seeds (Table 5.8) is a static table used as a template to

create a new year of MathDay visible tasks.

Table 5.8: Structure of table visible tasks seeds

Column Type Null Default

id int(11) No

tasks seed id int(11) Yes NULL

user type id int(11) Yes NULL

• user types id: The user’s type.

• tasks id: The task visible to the user type.

5.1.9 visible tasks

The table visible tasks (Table 5.9) indicates which tasks are visible to users based

on the user’s type.

Table 5.9: Structure of table visible tasks

Column Type Null Default

id int(11) No

task id int(11) Yes NULL

user type id int(11) Yes NULL

created at datetime Yes NULL

54

Table 5.9: Structure of table visible tasks (continued)

Column Type Null Default

updated at datetime Yes NULL

year smallint(6) Yes NULL

• user types id: The user’s type.

• tasks id: The task visible to the user type.

• year: The year the task occurred.

5.2 Volunteers

Below, we list all the tables pertainting to volunteers. Those tables are:

1. user types

2. users

3. affiliations

4. applications

5. t windows

6. assignment by users

7. assignments

8. class recruiteds

9. faculty recruiters

55

5.2.1 user types

The table user types (Table 5.10) groups users based on the users’ affiliation at

UNL.

Table 5.10: Structure of table user types

Column Type Null Default

id int(11) No

name varchar(255) Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

priority int(11) Yes NULL

approved tinyint(1) Yes 0

• name: The name of the user type (e.g., Undergraduate, Graduate, Staff, etc.)

• priority: Determines the ordering of the user types.

5.2.2 users

The table users (Table 5.11) contains all users that use the MathDay website.

Table 5.11: Structure of table users

Column Type Null Default

id int(11) No

email varchar(255) Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

56

Table 5.11: Structure of table users (continued)

Column Type Null Default

unl id varchar(255) Yes NULL

office tel number varchar(255) Yes NULL

office number varchar(255) Yes NULL

password digest varchar(255) Yes NULL

cas username varchar(255) Yes NULL

remember digest varchar(255) Yes NULL

phone number varchar(255) Yes NULL

address varchar(255) Yes NULL

admin tinyint(1) Yes 0

admin key varchar(255) Yes NULL

activation digest varchar(255) Yes NULL

activated tinyint(1) Yes 0

activated at datetime Yes NULL

password reset digest varchar(255) Yes NULL

password reset sent at datetime Yes NULL

gender varchar(255) Yes NULL

first name varchar(255) Yes NULL

middle name varchar(255) Yes NULL

last name varchar(255) Yes NULL

preferred name varchar(255) Yes NULL

• first name: The user’s first name.

• middle name: The user’s middle name.

57

• last name: The user’s last name.

• preferred name: The user’s preferred first name.

• gender: The user’s gender.

• email: The user’s email address.

• unl id: The user’s UNL ID number.

• office tel number: The user’s office telephone number.

• office number: The user’s office number.

• password digest: The hash of the user’s password.

• cas username: The user’s CAS username. Populated only if the user used their

my.UNL account to register.

• rember digest: The hash code used to match a remember me cookie to a user.

This allows a user to return to the site and still be logged in.

• phone number: The user’s cell phone number.

• address: The user’s home address.

• admin: Indicates if the user is an administrator.

• admin key: Not sure what this does.

• activation digest: The hash code used to match a activation link to a user.

This allows a user to authenitcate their account via an email link.

• activated: Indicates if the user has activated his or her account.

• activated at: Indicates when the user activated his or her account.

58

• password reset digest: The hash code used to match a password reset link

to a user. This allows a user to reset their password from an email link.

• password reset sent at: The time at which the user requested a password

reset.

5.2.3 affiliations

The table affiliations (Table 5.12) gives the institutational affiliation of each vol-

unteer.

Table 5.12: Structure of table affiliations

Column Type Null Default

id int(11) No

name varchar(255) Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

priority int(11) Yes NULL

approved tinyint(1) Yes 0

color varchar(255) Yes NULL

The table affiliations has the following attributes:

• name: the affiliation’s name (e.g., Math Department, Computer Science Depart-

ment, Nebraska Wesleyan University, and Mutual of Omaha).

• priority: groups together similar affiliations in order to determine their order-

ing when displayed on the interface.

59

• approved: indicates if the administrator has approved an affiliation entry. If

approved, the affiliation will appear in the list of affiliations displayed to the

user when he/she applies for an instance of MathDay.

• color: The background color for this option in a select box dropdown list.

5.2.4 application

The table applications (Table 5.13) stores all the applications submitted to the

system for all users and for all years.

Table 5.13: Structure of table applications

Column Type Null Default

id int(11) No

user id int(11) Yes NULL

year int(11) Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

affiliation id int(11) Yes NULL

class recruited id int(11) Yes NULL

faculty recruiter id int(11) Yes NULL

user type id int(11) Yes NULL

advisor varchar(255) Yes NULL

major varchar(255) Yes NULL

department display tinyint(1) Yes 0

speaker tinyint(1) Yes 0

activity worker tinyint(1) Yes 1

60

Table 5.13: Structure of table applications (continued)

Column Type Null Default

youth form date datetime Yes NULL

sor check datetime Yes NULL

comments text Yes NULL

active tinyint(1) Yes 1

It stores an applicant’s information that can vary from year to year such as the

role (e.g., activity worker and/or speaker), the major of study, and the dates at which

the YASP form was signed. The table has the following attributes:

• users id: the user who submitted the application.

• user type id: the user’s type (e.g., Undergraduate, Graduate, Staff, etc.)

• year: the year for which the user is applying

• affiliation id: the department, university, business, or any other affiliation

to which the user belongs

• class recruited id: the class from which the user was recruited

• faculty recruiter id: the faculty member who recruited the user

• advisor: the name of the user’s advisor, which is a Math instructor.

• major: the user’s major, which can change from year to year.

• activity worker: indicates if the user is an activity worker for the MathDay

event.

• speaker: indicates if the user is a speaker for the MathDay event.

61

• department display (boolean, default: false): indicates if the user will present

a department display at the MathDay event.

• youth form date: the date at which the user signed the Youth Activity Safety

Policy Activity Worker Guidelines form.

• sor check: the date at which the user’s status has been checked on the Sex

Offender Registry.

• comments: any comments the user may enter.

5.2.5 t windows

The table t windows (Table 5.14) contains time windows that indicate when a user

is available to be assigned to tasks.

Table 5.14: Structure of table t windows

Column Type Null Default

id int(11) No

user id int(11) Yes NULL

starts at datetime Yes NULL

ends at datetime Yes NULL

year smallint(6) Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

• users id: The user to whom the time window belongs.

• starts at: The start time of the time window.

62

• ends at: The end time of the time window.

• year: The year to which the time window belongs.

5.2.6 assignment by users

The table assignment by users (Table 5.15) contains assignments made for each

user.

Table 5.15: Structure of table assignment by users

Column Type Null Default

id int(11) No

assignment id int(11) Yes NULL

user id int(11) Yes NULL

task id int(11) Yes NULL

status varchar(255) Yes executed

starts at datetime Yes NULL

ends at datetime Yes NULL

t override tinyint(1) Yes 0

location id int(11) Yes NULL

comments text Yes NULL

backup tinyint(1) Yes 0

• assignment id: The assignment for the user.

• user id: The user the assignment is for.

• task id: The task the user is assigned.

63

• status: The status of the assignment (Was is completed or not?).

• starts at: When the assignment starts.

• ends at: When the assignment ends.

• t override: Not sure what this is for.

• location id: Where the assignment is located.

• comments: Any additional comments.

• backup: Is this assignment a backup?

5.2.7 assignments

The table assignments (Table 5.16) is used to group all tasks assigned to users for

each MathDay event.

Table 5.16: Structure of table assignments

Column Type Null Default

id int(11) No

user id int(11) Yes NULL

year smallint(6) Yes NULL

activity worker tinyint(1) Yes 1

department display tinyint(1) Yes 0

speaker tinyint(1) Yes 0

• user id: The user who was assigned (a) task(s).

• year: The year the assignment occurred.

64

• activity worker: Indicates if the user is an activity worker for the MathDay

event

• speaker: Indicates if the user is a speaker for the MathDay event.

• department display: Indicates if the user will present a department display

at the MathDay event.

5.2.8 class recruiteds

The table class recruiteds (Table 5.17) contains the classes from which users are

recruited.

Table 5.17: Structure of table class recruiteds

Column Type Null Default

id int(11) No

name varchar(255) Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

priority int(11) Yes NULL

approved tinyint(1) Yes 0

• name: The name of the class.

• priority: Determines the ordering of the class recruiters.

• approved: Indicates if the administrator has approved a class recruiter entry. If

approved, the class recruiter will appear in the list of class recruiters displayed

to the user when he or she applies for an instance of MathDay.

65

5.2.9 faculty recruiters

The table faculty recruiters (Table 5.18) is a table of faculty members who recruit

users for MathDay.

Table 5.18: Structure of table faculty recruiters

Column Type Null Default

id int(11) No

created at datetime Yes NULL

updated at datetime Yes NULL

priority int(11) Yes NULL

approved tinyint(1) Yes 0

first name varchar(255) Yes NULL

last name varchar(255) Yes NULL

email varchar(255) Yes NULL

• first name: The first name of the faculty member.

• last name: The last name of the faculty member.

• email: The faculty memeber’s email address.

• priority: Determines the ordering of the faculty members.

• approved: Indicates if the administrator has approved a faculty member entry.

If approved, the faculty member will appear in the list of faculty recruiters

displayed to the user when he or she applies for an instance of MathDay.

66

5.3 Manager

Below, we list all the tables pertaining to the manager’s functionalities. Those tables

are:

1. announcements

2. locations

3. surveys

4. email messages

5.3.1 announcements

The table announcements (Table 5.19) stores the messages from the manager that

are displayed on the website’s login.

Table 5.19: Structure of table announcements

Column Type Null Default

id int(11) No

content text Yes NULL

author varchar(255) Yes NULL

start at datetime Yes NULL

end at datetime Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

• content: the announcement’s text content.

67

• author: the announcement’s author

• start at: the time at which the announcement will begin being displayed on

the website’s homepage

• end at: the time at which the announcement will stop being displayed on the

website’s homepage

5.3.2 locations

The table locations (Table 5.20) contains the locations of tasks.

Table 5.20: Structure of table locations

Column Type Null Default

id int(11) No

location name varchar(255) Yes NULL

• location name: The name of the location.

5.3.3 surveys

The table surveys (Table 5.21) contains the responses of surveys filled out by users

of the system.

Table 5.21: Structure of table surveys

Column Type Null Default

id int(11) No

year int(11) Yes NULL

navigate ease int(11) Yes NULL

68

Table 5.21: Structure of table surveys (continued)

Column Type Null Default

navigate flexibility int(11) Yes NULL

navigate robustness int(11) Yes NULL

data entry ease int(11) Yes NULL

data entry flexibility int(11) Yes NULL

data entry robustness int(11) Yes NULL

prefer paper tinyint(1) Yes NULL

application revisions int(11) Yes NULL

superfluous questions tinyint(1) Yes NULL

missing info tinyint(1) Yes NULL

other comments text Yes NULL

created at datetime No

updated at datetime No

• year: The year the survey was filled out.

• navigate ease: How easy it is to navigate the site on a scale of 1-4.

• navigate flexibility: How flexible the site naviation is on a scale of 1-4.

• navigate robustness: How robust the site navigation is on a scale of 1-4.

• data entry ease: How easy it is to enter data on a scale of 1-4.

• data entry flexibility: How much flexibility there is in data entry on a scale

of 1-4.

• data entry robustness: How robust the data entry is on a scale of 1-4.

69

• prefer paper: Would you prefer to fill forms out on paper instead?

• application revisions: How many times the user revised their application.

• superflous questions: Where there any superfluous questions?

• missing info: Was there any missing information?

• other comments: Any additional comments.

5.3.4 email messages

The table email messages (Table 5.22) contains emails sent from MathDay admin-

istrators.

Table 5.22: Structure of table email messages

Column Type Null Default

id int(11) No

content text Yes NULL

subject text Yes NULL

author varchar(255) Yes NULL

created at datetime Yes NULL

updated at datetime Yes NULL

• content: The content of the email.

• subject: The subject of the email.

• author: The name of the email’s author.

70

Chapter 6

Conclusions

In this thesis, we described the various components of the system that we designed and

built for the management of volunteers of the Math Day event. The system is ready

for deployment to receive applications for the Math Day event of November 2017.

We have implemented and tested all the functionalities to receive users’ applications.

Additionally, has been included a temporary administrator interface that provides

some basic functionalities until the long-term solution is refined and can be deployed.

Naturally, there is still work that needs to be done. The long-term administrator

interface has to be created to replace the temporary one. Additionally, an automated

solver and an interactive one to assign volunteers to tasks through an interactive,

graphical interface need to be implemented. However, all functionalities needed for

volunteers to register are available for 2017 Math Day.

