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Neighborhood Interchangeability (NI) identifies the equivalent values in the domain

of a variable in a Constraint Satisfaction Problem (CSP). Weintroduce for the first time an

algorithm for computing NI sets in the presence of non-binary constraints. We integrate this

mechanism with backtrack search, in a process we call dynamic bundling. We demonstrate

that, as for the binary case[Beckwithet al., 2001], dynamic bundling yields multiple robust

solutions for less effort than necessary for computing a single solution.

We then identify the utility of this mechanism for database applications and introduce a

new algorithm based on dynamic bundling for computing a joinquery, which we model as a

CSP. We argue that the algorithm yields a compact solution space and saves memory, disk-

space, and/or network bandwidth. Finally, we discuss the application of the join algorithm

to materialize views.
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Chapter 1

Overview

The study of symmetry is receiving increased attention in Computer Science, in general,

and in the area of Constraint Processing in particular. Mostapproaches try to exploit known

symmetries in order to improve the performance of problem solving. Relatively less effort

is devoted to uncovering symmetries inherent to a given problem instance, which is con-

sidered to be a computationally challenging task. Our work fits in the latter category.

In this thesis, we are concerned with the study of symmetry indecision problems, mod-

eled as Constraint Satisfaction Problems (CSPs). In particular, we propose techniques for

detecting symmetry relations and for exploiting these relations for reasoning and problem

solving. Symmetry has been exploited to improve the performance of search at least as

far back as 1874[Glaisher, 1874]. Recently there has been a series of workshops on sym-

metry and CSPS[SymCon, 2003; 2004]. Our study focuses on the discovery and use of

approximate symmetries during search that yield multiple,robust solutions. The symmetry

relations we discuss are based on the notions oflocal value interchangeability[Freuder,

1991], which group equivalent values of a given variable in a bundle.

Most of the research in Constraint Satisfaction has focusedon problems with binary

constraints (i.e., binary CSPs). One can theoretically always reduce a non-binary CSP into
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a binary one[Rossiet al., 1990], but it can be impractical in the case of large constraints of

high arity. In this thesis, we address two issues in the studyof symmetry:

1. The computation of a special form of symmetry known as neighborhood interchange-

ability in the presence of non-binary constraints.

2. The integration of the above mechanism with search as a process for solving the CSP

and for finding sets of multiple robust solutions.

We validate our approach in two contexts:

1. Theoretical and empirical evaluations of the performance and effectiveness of our

techniques on CSPs.

2. Design of a new sort-based join algorithm for databases

In this chapter, we summarize first the questions we answered, then our contributions.

Finally, we give a short guide to this document.

1.1 Questions answered

In this thesis, we address the following questions:

1. How to detect neighborhood interchangeability in non-binary CSPs?

Answer:We establish that the techniques for computing neighborhood interchange-

ability in binary CSPs cannot be trivially extended to the non-binary case, and pro-

pose a technique to compute neighborhood interchangeability in non-binary CSPs.

2. How to exploit neighborhood interchangeability during search for solving non-binary

CSPs?

Answer:The process of interleaving the computation of neighborhood interchange-

ability with search for solving a CSP was calleddynamic bundlingby Beckwith et al.
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[2001]. We show how to implement dynamic bundling in the presence ofnon-binary

constraints. We also show how to adapt the look-ahead strategy of forward checking,

which is used for constraint propagation during search, to the context of non-binary

CSPs.

3. Is dynamic bundling a viable strategy when looking for a single solution to the CSP?

Answer:We empirically establish that dynamic bundling significantly improves the

performance of search where it matters most, that is in the region of the phase transi-

tion where the cost of search peaks. At low tightness regionswe show that dynamic

bundling yields a large number of solutions at a cost comparable to that of finding a

single solution using regular search (i.e., without bundling).

4. How does dynamic bundling behave with varying CSP parameters such as tightness,

domain size, number of variables, number of constraints?

Answer: We designed extensive experiments having datasets with varying CSP pa-

rameters to study exactly the above and we found interestingcharacteristics of the

dynamic bundling algorithm.

5. Can we extend the techniques to detect more general forms of interchangeability?

Answer:We show how the same mechanism for detecting neighborhood interchange-

ability in binary CSPs can be used to detect someneighborhood substitutablevalues

too. We also describe the extension of this feature to non-binary CSPs.

6. Are these techniques useful beyond the area of ConstraintProcessing?

Answer:We recognize the direct usefulness of our techniques in one other important

area of Computer Science, namely, databases. We identify the gap between the two

fields and re-design our algorithms to fit the requirements ofthis new context.

7. Where and how can dynamic bundling be used in databases?
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Answer:We focus on perhaps the most expensive and fundamental operator in databases,

namely, the join operator. We design a new join algorithm based on dynamic bundling

that improves the speed of the join computation and presentsresults in a compacted

manner. We also show that our new join algorithm is useful formaterialized views.

1.2 Other contributions of the thesis

Below we summarize some results, by-products of our investigations:

• We introduced a metric for capturing the practical effort ofchecking a non-binary

constraint.

• We improved the implementation of non-binary forward checking by using select

and project operations on non-binary constraints and by storing the resulting partial

constraints. This improvement allowed us to conduct fair comparisons between the

performance of search with and without dynamic bundling.

• We presented a new approach for modeling a join query as a CSP.

• We showed that the join algorithm can be used as an algorithm for view materializa-

tion and can lead to savings in disk space, main memory, and network bandwidth.

• Finally, we identified research directions to pursue in the database area using tech-

niques from CSPs.

1.3 Guide to thesis

This thesis is organized as follows. Chapter 2 reviews background information on CSPs

and interchangeability, and discusses issues related to non-binary CSPs and our solutions

to these issues. Chapter 3 describes the computation of neighborhood interchangeability
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(NI) for domain partitioning and dynamic bundling (i.e., search using dynamically com-

puted NI sets), and empirically validates our approach on randomly generated non-binary

CSPs. Chapter 4 discusses how a weaker form of interchangeability called substitutability

can be partially extracted from the same mechanism for computing neighborhood inter-

changeability, and the extension of this idea to non-binaryCSPs. Chapter 5 extends our

investigations to the context of databases. Finally, Chapter 6 states our conclusions and

suggests directions for future research.

Appendix A provides the results of experiments over all datasets that are not included in

the body of the dissertation. Appendix B discusses two alternative implementations to the

algorithm for computing NI sets presented in Chapter 3. Appendices C and D document, a

high level, the main components of our source code (e.g., directory and file structures, data

structures, and main functions).
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Chapter 2

Binary and Non-Binary CSPs

This chapter provides background information on Constraint Satisfaction Problems (CSPs).

It gives the main definitions and notations used in this document. We first recall the def-

inition of a CSP and list its parameters and characteristics. Then, we summarize how to

solve CSPs with backtrack search and how to interleave constraint propagation with the

search process in a look-ahead strategy known as forward checking. We provide an intro-

duction to interchangeability (i.e., symmetry) restricted to our use of this concept. Finally,

we introduce non-binary constraints and discuss our solution to extending forward check-

ing to non-binary CSPs. This solution is fundamental for theimplementation of dynamic

bundling, which is the main topic of this thesis.

2.1 The Constraint Satisfaction Problem (CSP)

A Constraint Satisfaction Problem (CSP) is defined byP = (V ,D, C) where:

• V= {Vi} is a set of variables.

• D= {DVi
} the set of their respective domains. In this thesis, we assume that the

domains of the variables are finite. and,
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• C a set of constraints that restrict the acceptable combination of values for variables.

Thescopeof a constraint is the set of variables to which the constraint applies, and itsarity

is the size of this set. We denote by NEIGHBORS(V ) the set of variables that appears in

the scope of any constraint that applies to a variableV . A constraint over the variablesVi,

Vj , . . ., Vk is specified as a set of tuples, which is a subset of the Cartesian product of the

domains of the variables in its scope:

CVi,Vj ,...,Vk
= {(〈Vi ai〉, 〈Vj aj〉, . . . , 〈Vk ak〉)

∗} ⊆ DVi
×DVj

× . . .×DVk

whereai ∈ DVi
and〈Vi ai〉 denotes avariable-value pair(vvp). Solving a CSP requires

assigning a value to each variable such that all constraintsare simultaneously satisfied. The

problem isNP-complete in general.

We call ano-goodany combination of variable-value pairs that cannot be extended to a

consistent solution.

2.1.1 Constraint network

A CSP is often represented by aconstraint graph, or constraint network. In this graph, a

node represents a variable and is labeled by the corresponding domain. An edge represents

a constraint and links the nodes of the variables to which theconstraint applies. Figure 2.1

shows the constraint network of a simple CSP instance with four variables and four con-

straints. For example, constraintCV1,V3, defined onV1 andV3, states that the two variables

cannot have the same value at the same time,CV1,V3 ={(d, a), (d, b)}. In the CSP shown in

Figure 2.1 an example of a no-good is the set of vvps{〈V2c〉}, 〈V3a〉, 〈V4a〉}.

2.1.2 Parameters of a CSP

The parameters used to describe CSPs include the following:
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V1
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{c, d, e, f}{ d }

Figure 2.1:Representation of a binary CSP.

• Number of variablesin the problem, denotedn (i.e., |V|).

• Maximum domain size, denoteda.

• Constraint ratio, the proportion of constraints, denotedp = number of constraints
all possible constraints.

Sometimes, we use the number of constraintsC=|C|.

• Constraint tightness, denotedt and measured for a given constraint as

t =
number of forbidden tuples

total number of possible tuples

Notice that low values ofp may cause the constraint graph to be disconnected (e.g.,C <

n− 1). Further, forp = 1 (i.e.,C = n(n− 1)/2), the constraint graph is complete. In the

example CSP shown in Figure 2.1, we have:n = 4, a = 4, p = 4
6

= 0.67, andt = is 1
3

for

CV1,V3 , 1
12

for CV2,V3,
1
12

for CV2,V4, and2
9

for CV3,V4. The arity of all constraints is obviously

2. Because no constraints have an arity larger than 2, this CSP is called abinaryCSP.

2.1.3 Random CSPs

Empirical studies on CSPs are typically performed on randomly generated CSP instances

with specified values for the above parameters:〈n, a, t, p〉, where all variables have the

same domain size, the constraints have the same tightness and are uniformly distributed in

the graph. Several theoretical models for generating random CSPs have been proposed in
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the literature[Achlioptaset al., 1997]. In this thesis, we use generators built according to

the common and widely used Model-B.

2.1.4 Phase transition

Cheeseman et al.[Cheesemanet al., 1991] presented empirical evidence, for some random

combinatorial problems, of the existence of a phase transition phenomenon at a critical

value (cross-over point) of an order parameter. They showeda significant increase in the

cost of solving these problems around the critical value. Figure 2.2 illustrates this situation.

Critical value

C
os

t o
f s

ol
vi

ng
 th

e 
pr

ob
le

m

of order parameter
Order parameter

(Constraint tightness t)

instances
Mostly solvable

Mostly unsolvable
instances

Figure 2.2:Cost of problem solving.

They also showed that the location of the phase transition and its steepness change with

the size of the problem. Because problems at the cross-over point are acknowledged to be

probabilistically the most difficult to solve, empirical studies to compare the performance

of algorithms are typically conducted in this area. In the case of CSPs, constraint tightness

(with fixed values forn, a, andp) and constraint ratio (with fixed values forn, a, andt) are

often used as order parameters.
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2.2 Solving binary CSPs with backtrack search

Because a CSP is in generalNP-complete1, it is usually solved with depth-first search using

backtracking, an exponential-time procedure.

Depth-first search systematically instantiates (or assigns a value to) one variable at

a time, checking to ensure that the instantiation made does not violate any constraints.

Depth-first search for binary CSPs proceeds by iteratively choosing a current variableVc

and instantiating it, i.e. assigning to it a value taken fromits domain and checking to en-

sure that the instantiation made does not violate any constraints. If a conflict is detected,

the instantiation is revoked, its effects are undone, and analternative instantiation to the

current variable is attempted. When all alternatives fail,search backtracks to the previous

assignment, and revokes the assignment done at this level. If the instantiation succeeds,Vc

is added to the set of instantiated variables (which we call past variables and denote asVp)

and search proceeds to the next variable determined by an ordering. The process repeats

until all variables are instantiated. Uninstantiated variables are called future variables, and

their set is denoted byVf . The process repeats until one or all solutions are found. This

procedure creates asearch spacestructured as a tree withn levels and a branching factor

equal toa.

At any point during search, the path from the root of the tree to the current variable is a

set of vvps{〈Vi ai〉} for the variablesVi ∈ Vp and their instantiationsai.

2.2.1 Variable ordering

The order in which the variables are considered for instantiation (i.e., variable ordering) and

the order in which the values are assigned to a variable (i.e., value ordering) are known to

significantly affect the performance of search. Common wisdom dictates to assign first the

1By reduction from 3SAT and because a solution is verifiable inpolynomial time.
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most constrained variable and to choose the most promising values. Many heuristics that

implement these principles exist. Further, these heuristics can be applied prior to search,

thus determining a static ordering, or during search, thus yielding a dynamic ordering. In

practice, dynamic ordering is usually significantly more effective than static ordering. In

this thesis, we only consider variable ordering and use the least domain heuristic (LD) for

variable ordering, which we apply dynamically (DLD).

2.2.2 Look-ahead: combining search with constraint propagation

Forward checking (FC), a common improvement to backtrack search, is one way of con-

ducting constraint propagation during search[Haralick and Elliott, 1980]. FC ensures that,

each time a current variable is assigned a value, the domain of each neighboring future

variable is revised to exclude from itself values inconsistent with the assignment of the

current variable. This process is called pruning and is shown in Figure 2.3 for the simple

example of Figure 2.1. Because of this pruning, FC detects failure early. Further, the

1V

3

c

V

d

4

e f
V2

b a ab d a b b da d d

b c

S

a

d

a b c

V

Figure 2.3:Forward checking during search.

domains of all future variables are always consistent, given the binary constraints, with

the instantiation of every past variable, thus eliminatingthe need for back-checking (which

is consistency checking against past variables). FC is apartial look-ahead technique. It

revises the domains of future variables that are neighbors.More ‘aggressive’ look-ahead
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techniques exist, such as Directional Arc-Consistency (DAC) [Dechter, 2003] and Main-

taining Arc-Consistency (MAC)[Sabin and Freuder, 1994]. However, the former requires

a fixed variable ordering and the latter was shown to often be too costly in practice[Yang,

2003]. In this thesis, we use forward checking (FC) and order the variables dynamically

during search according to the least domain heuristic. Search on non-binary CSPs proceeds

as described above but FC requires particular attention as discussed in Section 2.5.

2.3 Interchangeability

In its broadest sense, interchangeability allows one to recover one solution to a CSP from

another[Freuder, 1991]. When solutions to a CSP are given, one can always define a

mapping between the solutions such that one solution can be obtained from another with-

out performing search. This is calledfunctionalinterchangeability. Permutation of values

across variables is calledisomorphicinterchangeability. In this thesis, we focus our inves-

tigation on another restricted form of interchangeability: the interchangeability of values

in the domain of a single variable. This type of interchangeability does not cover the per-

mutation of values across variables, which is an isomorphicinterchangeability. Below we

recall some forms of interchangeability relevant to our work. Note that the discussion in

this section primarily targets binary CSPs and may not be applicable to the non-binary case.

2.3.1 Definitions

Definition 1. Full interchangeability (FI) (Freuder[1991]): Valuesa, b ∈ DV are FI iff

every CSP solution involvinga remains a solution whenb is substituted fora, and vice

versa.

Checking all the solutions of the CSP in Figure 2.4 we find thatthe valuesd, e, and

f are fully interchangeable forV2. Computing full interchangeability may require finding
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{ d }

{a, b, c}

V1

V3 =

{  c ,   d,  e,  f  }

==

V2 

V4
=

{a, b, d}

Figure 2.4:A binary CSP.

all solutions and hence is likely to be intractable. Freuder[1991] identified a form oflocal

interchangeability, calledneighborhood interchangeability(NI), that is a sufficient, but not

a necessary condition for full interchangeability.

Definition 2. Neighborhood interchangeability (NI) (Freuder[1991]): A valuea ∈ DV is

neighborhood interchangeable with a valueb ∈ DV iff for every constraintC onV , a and

b are consistent with exactly the same values:{x | (a, x) satisfiesC} = {x | (b, x) satisfies

C}.

NI is a sufficient, but not a necessary condition for FI. Indeed, in the CSP of Figure 2.4,

only valuese andf are NI forV2 whereas valuese, f , andd are FI forV2.

2.3.2 Computing NI sets

Algorithm 1 identifies the NI values for a variableV in O(n · a2) by building a discrimina-

tion tree (DT)[Freuder, 1991].

Figure 2.5 shows the discrimination tree generated forV2 of the CSP in Figure 2.4. In

this tree, the nodes represent variable-value pairs in the neighborhood ofV2. Some nodes

are annotated with values fromDV2, these annotations form a partition ofDV2. All the

variable-value pairs that appear in a path from the root of the tree to an annotation are

consistent with the values appearing in the annotation.

It is important, in this procedure, that variables and values be ordered in a canonical way

(e.g., lexicographical). For the CSP of Figure 2.4, valuese andf are NI forV2. If we had
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Input : V

1 current-node← Root, root of the discrimination tree
2 for each valuea ∈ DV do
3 for each variableVj ∈ NEIGHBORS(V ) do
4 for each valuex ∈ DVj

consistent witha for V do
5 if current-nodehas a child nodent with ‘〈Vj x〉’ then current-node← nt else

Generatent a node with ‘〈Vj x〉’ and make it a child ofcurrent-node
6 current-node← nt

end
end

end
7 Add a to the annotation ofcurrent-node
8 current-node← Root

end
Output : Root

Algorithm 1: Algorithm to create a DT of a variableV .

  <V    b>
  <V    a>

{d}
{c}

{e, f}

 

4
4

4

4

4

 <V    a>3

3

4

3  <V    b>

  <V    d>
  <V    a>
  <V    b>
  <V    c>

  <V    c>

Root

Figure 2.5:Partitioning the domain ofV2.

all the solutions of this CSP we would find that the valuesd, e, andf are interchangeable

for V2. Identifying such a situation may require finding all solutions to the CSP and hence

is likely to be intractable.

2.3.3 Using NI in search

Benson and Freuder used NI to improve search[1992]. A weaker form of NI, calledneigh-

borhood interchangeability according to one constraint(NIC), was also used in search by

Haselböck[1993]. This search process yields solutions where some variableshave a set

of equivalent values, called a bundle. Both papers compute interchangeability setsprior



15

to search, which corresponds tostatic bundling. Figure 2.6 shows a search tree for the

example of Figure 2.4 without bundling (left) and with static bundling (center).

1

e   d, e, fc 2

dV1

S

f V
1V d

d

V

S

V   e, f d

S

V c2 2 c

d

Figure 2.6:Search with no, static, and dynamic bundling.

Freuder[1991] noticed that computing interchangeabilityduring problem solving re-

sults in a weak type of interchangeability,dynamic interchangeability. Beckwith et al.

[2001] and Choueiry and Davis[2002] showed how to recompute interchangeability parti-

tionsduringsearch such that the resulting process,dynamic bundling(DynBndl), is always

beneficial: it yields larger bundles and reduces the search effort. Figure 2.6 (right) shows

the tree generated by dynamic bundling. The computational savings can be traced to:

1. bundles of solutions,

2. factoring out no-goods, and

3. reusing information from the discrimination tree for FC.

Further, they showed that, in comparison to dynamic bundling, static bundling is pro-

hibitively expensive, particularly ineffective, and should be avoided[Choueiry and Davis,

2002].

Finally, note that the Cross Product Representation (CPR) of Hubbe and Freuder[Hubbe

and Freuder, 1989] yields the same resulting bundles as dynamic bundling, but it requires

more space and does not bundle no-goods. It operates by doingforward checking for every

value of the current variable, comparing the CSPs induced onthe future variables, and then

bundling the values of the current variable yielding the same induced CSPs. Hence, CPR
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necessarily visits more nodes than DynBndl, even though thedifference is polynomially

bounded.

2.4 Non-Binary CSPs

Although most research in constraint satisfaction focuseson binary CSPs, many real-life

problems are more ‘naturally’ modeled as non-binary CSPs. The focus on binary CSPs

has so far been tolerated because it is always possible in principle to reduce a finite non-

binary CSP to a binary one[Rossiet al., 1990; Bacchus and van Beek, 1998]. Research on

non-binary constraints is still in its infancy, relativelyspeaking, and the traditional attitudes

on this issue are now being challenged[Bessièreet al., 2002]: it appeared that sometimes

it is more effective to operate on the non-binary encoding ofthe CSP than on its binary

reduction.

2.4.1 Representation

As stated in Section 2.1.1, a CSP can be represented by a graph, or constraint network.

Constraints are represented as simple edges in the binary-case. In the non-binary case, the

constraints are represented as hyper-edges linking the nodes in the scope of the constraint.

For sake of clarity, we represent a hyper-edge as another type of node connected to the

variables in the scope of the constraint, as shown in Figure 2.7.

{1, 2, 3}

{1, 2, 3}

{1, 2, 3

{1, 2, 3}

{1, 2, 3}

Variable

Constraint

4, 5, 6} 

C 1

3V1

V2

V3

V4
C 

C 4

V
C 2

Figure 2.7:Example of a non-binary CSP.
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2.4.2 Parameters

We use the parameters listed below to assess the worst-case complexity of an algorithm

applied to a non-binary CSP and for generating random instances. They are a superset of

the ones listed for the binary case (see Section 2.1.2).

• n number of variables,

• a maximum domain size,

• t constraint tightness defined as the ratio of the number of disallowed tuples over the

number of all possible tuples.

• deg node degree,

• ck number of constraints of arityk,

• pk = ck/
(

n

k

)

constraint ratio of arityk, and

2.5 Solving non-binary CSPs with backtrack search

Search on non-binary CSPs proceeds as described in Section 2.2 but FC requires particular

attention as discussed below.

2.5.1 Extending FC to non-binary CSPs

Uninstantiated variables are called future variables, andtheir set is denoted byVf . Instan-

tiated variables are called past variables, and their set isdenoted byVp. FC propagates the

effect of instantiating a current variableVc by removing values inconsistent witha from the

domains of the future variables adjacent toVc. If the instantiation does not wipe out the

domain of any variable inVf , Vc is added to the set of past variables,Vp. When we apply

this process to non-binary constraints, two issues arise:
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1. Choosing the subset of constraints to take into account:In binary CSPs after assign-

ing Vc a value, the set of constraints to choose is straightforwardas either a constraint

(applicable toVc) will have the second variable either inVp or inVf (but not in both).

In the case of non-binary CSPs the set of constraints that apply to Vc may have con-

straints with some variables inVp and other variables inVf . Figure 2.8 shows an

instance of such a partially instantiated constraint.

Vc

Vb

Instantiated variable
Unstantiated variable

C 
Va

{     }

{     }

Figure 2.8:Partially instantiated non-binary constraintC.

Bessière et al. discuss the following options[2002]:

• The set of constraints with at least one past variable (includingVc) and at least

one future variable.

• The set of constraints or constraint projections with at least one past variable

(includingVc) and exactly one future variable.

• The set of constraint with at least one past variable (including Vc) and exactly

one future variable.

2. Updating the constraint definitions to reflect past instantiations and domain prun-

ings: The update of a non-binary constraint according to past instantiations amounts

to intersecting the original definition of the constraint with the Cartesian product of

the (updated) domains ofVc and future variables. This operation is time consuming

in practice. We propose here an equivalent, more efficient implementation that uses

a linear number of selection and projection operations.
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2.5.2 Our approach

We adopt the strategy callednFC2 [Bessièreet al., 2002], where the constraints consid-

ered are the ones that apply to the current variable and at least one future variable and any

number of past variables (if any). We perform the update of a non-binary constraint accord-

ing to past instantiations as follows. LetVc be the current variable andC be a non-binary

constraint onVc (see Figure 2.8). Let

Scope(C) = {Va} ∪ {Vc} ∪ {Vb},

whereVa ⊆ Vp andVb ⊆ Vf . The domains of variables in{Vc} ∪ {Vb} might have already

been filtered by FC, and certain tuples inC might have become invalid. Thus, we need to

select the tuples ofC that have survived the filtering by FC according to instantiations of

the past variables. The selected tuples must satisfy the conditions:

1. 〈Vi ai〉 for Vi ∈ {Va} andai the bundle instantiated toVi; and

2. aj ∈ DVj
for Vj ∈ {Vc} ∪ {Vb}, whereDVj

are filtered domains.

We denote this operationσFC
Vp

(C). In order to compute the updated constraint, we project

σFC
Vp

(C) on{Vc} ∪ {Vb},

C ′ = π{Vc}∪{Vb}(σ
FC
Vp

(C)). (2.1)

2.5.3 Implementing non-binary FC

The way non-binary FC (without bundling) is implemented affects, to a large extent, the

number of constraint checks and CPU time spent to solve a CSP.The updated constraint

of Equation (2.1) is valid for all values inDVc
. It is wasteful to discard the result of this

computation after instantiatingVc. If the instantiation is not consistent and the search back-

tracks to the variable, thenC ′ is computed again. To avoid this expensive computation we
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store eachC ′ associated withVc. Note that by doing so we level the playing field when

comparing FC with dynamic-bundling techniques we present in the Chapter 3. Thus, our

empirical results reflect the gain due purely to bundling andexclude the gains from any

additional data structure.

2.5.4 Measuring constraints checked

The count of the constraint-checking operations during search is an important aspect for

evaluating and comparing of the performance of search algorithms[Kondrak and van Beek,

1995]. Because checking a binary constraint is easier than checking a non-binary one,

Bacchus and van Beek[1998] proposed to count constraint checks by multiplying each

operation by the arity of the constraint being checked. We propose below an alternative

way for counting constraint checks that is a closer estimation of the real computational

effort spent on this operation.

To this end, we count the number of comparisons of a vvp with a tuple of the constraint.

The comparisons done during FC are primarily for two types ofchecks:

Case 1: checking whether the instantiation of a variable is equal tothe value of the variable

in a given tuple of a constraint. In this case we count only onecomparison. This type

of comparison is done to select constraint tuples consistent with past instantiations.

Case 2: checking whether the value for a variable in a constraint tuple is present in the

current domain (of sizea) of that variable. We may do more than one comparison

in this case. In the worst case we will doa comparisons. This type of comparison

is done to select, from the constraint definition, tuples that are consistent with the

domains of the current and future variables. To illustrate the number of comparisons

being made, let us consider an example. LetV1 be a future variable whose domain is

{1, 2, 4, 3, 5} (the domain is stored in the order shown). LetCV1,V2,V3 be a constraint
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onV1. Let t = {〈V2 1〉 〈V3 2〉 〈V1 3〉} be a tuple from the constraintCV1,V2,V3. It takes

4 comparisons to check whethert is valid given the domain of variableV1. Had the

value 3 been at a different position in the domain then the number of comparisons

would have been different.

A constraint check over ak-ary constraint involves a maximum ofk such checks, one for

every variable of the constraint. This worst-case value forthe constraint check occurs when

the constraint check succeeds and when it fails due to the last variable in the scope of the

constraint. In the case of an early failure, the number of comparisons of vvps will be less

than in the case of success. Consequently, the constraint check will be less expensive than

in the worst case. Thus, this approach to measure effort accurately reflects the cost of

constraint checks in non-binary CSPs.

Summary

In this chapter, we reviewed the definition of a Constraint Satisfaction Problem, its charac-

teristics, and how to solve it with backtrack search. We alsoreviewed those definitions of

interchangeability relevant to our work. We discussed static and dynamic bundling, which

result from interleaving search, statitically or dynamically, with the detection and use of

NI-sets. Finally, we discussed non-binary CSPs, which are CSPs with one or more con-

straints of arity larger than 2, and proposed a strategy for performing forward checking in

this context and a convention for measuring for measuring, in practice, the cost of con-

straint checks. It is important to remember that we denote byFC the process of solving

a CSP with backtrack search with forward checking, and by DynBndl the same process

enhanced with dynamic bundling.
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Chapter 3

Bundling Non-Binary CSPs

In this chapter, we first discuss a technique for computing neighborhood interchangeabil-

ity in non-binary CSPs. Then, we show how to integrate this technique with search and

forward checking, which yields the dynamic bundling algorithm DynBndl. We study the

properties of this algorithm, and empirically compare its performance with that of regular

backtrack search with forward checking (FC) on randomly generated CSPs.

Appendix A describes the detailed experimental results andAppendix B discusses at-

tempts to improve the implementation the algorithm for computing NI sets in non-binary

CSPs. The content of this chapter has partially appeared in[Lal and Choueiry, 2003] and

[Lal et al., 2004].

3.1 Neighborhood interchangeability in non-binary CSPs

No technique is reported in the literature for computing theNI-sets of a CSP variable in

the presence of non-binary constraints. Recall that these sets determine a partition of the

domain of the variable, and their elements are values of the variable that are equivalent.

The idea is to identify the variable-value pairs in the neighborhood of a variableV con-

sistent with each value inDV . The values with ‘the same neighborhood’ form an equiva-
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lence class. The difficulty with non-binary constraints is that the constraints have different

arities and the ‘neighborhoods’ of two values are difficult to compare.

A direct application of Algorithm 1 of Chapter 2 to the non-binary case may yield

incorrect results. We now discuss how Algorithm 1 can be usedfor the non-binary case,

and show, with an example, that it may yield errors.

3.1.1 Direct application of Algorithm 1

With binary constraints, it is guaranteed that every variable in NEIGHBORS(V ) belongs to a

different constraint, whereas this is not the case for non-binary constraints. The DT collects

consistent values ofV ’s neighbors for every value inDV . For a given valuea in DV , we

compute the set of values inDVi
, whereVi ∈ NEIGHBORS(V ), that is consistent with〈V a〉

as follows:

• For every constraintC that applies toV andVi, select the tuples inC where〈V a〉.

Using the select operator of relational databases, the tuples selected are given by:

σV =a(C).

• For everyC, compute the values inDVi
that are consistent with〈V a〉 using the

projection operator as follows:πVi
(σV =a(C)).

• Finally, intersect the consistent values resulting from all constraints such asC (i.e.,

constraint that apply toV andVi).

Consider the non-binary CSP shown in Figure 3.1 and the constraint definitions shown in

Figure 3.2.

From the definition of constraintC1, we can see that〈V x〉 and〈V y〉 are consistent

with unequal sets of tuples and are not interchangeable. We show that a direct applica-

tion of Algorithm 1 will detect them as interchangeable. Indeed, this algorithm identifies
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C 2

C 1 V1
V2

V3

V

Figure 3.1:CSP.

C1 C2

V V1 V2 V V1 V3

x a 1 x a 1
x b 2 x b 2
x c 3 x c 3
x d 1 y a 1
y a 1 y b 2
y b 2 y c 3
y c 3

Figure 3.2:C1 andC2.

1(<V  a>)

(<V  3>)
{x, y}
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1(<V  c>)

2(<V  1>)

2(<V  2>)

2(<V  3>)

3(<V  1>)

3(<V  2>)

3

Root

Figure 3.3:DT(V ).

the two valuesx andy of variableV as interchangeable if they are consistent with the

same variable-value pairs in the neighborhood ofV . In Line 4 of Algorithm 1, this con-

dition would require, for the non-binary case, checking consistency according toall the

constraints onV simultaneously.

The values ofV1 consistent with〈V x〉 are{a, b, c, d} givenC1 and{a, b, c} given

C2. Intersecting these two sets, we obtain{a, b, c} as the values ofV1 consistent with

〈V x〉 givenC1 andC2. Similarly the values forV2 andV3 consistent with〈V x〉 given

the same constraints are{1, 2, 3} and{1, 2, 3}, respectively. For〈V y〉, we get the same

set of consistent values. The resulting DT is shown in Figure3.3. Therefore, Algorithm 1

detectsx, y as interchangeable forV when, in fact, they are not. The overlapping scopes

of constraints make the direct application of Algorithm 1 for binary CSPs to the non-binary

case unfit. Thus, the transition from binary to non-binary CSPs is non-trivial. We need a

mechanism that tests the interchangeability in every constraint.

3.1.2 Our approach

Our technique is based on building a separate discrimination tree foreachof thedeg con-

straints that apply to a variable. We call such a tree anon-binary discrimination tree(nb-

DT). Below, we introduce two processes:



25

Process 1partitions the domain of the variable by building and combining the applicable

nb-DTs; and

Process 2determines the domains of the neighboring variables consistent with each set of

the partition.

These two processes allow us to compute the NI-sets of a givenvariable in presence of

any number of binary and non-binary constraints. Further, we use both processes in Sec-

tion 3.2 for dynamic bundling (i.e., for computing the bundles of the current variable and

for forward checking).

3.1.2.1 Process 1: Computing a domain partition

First, an nb-DT is created for each one of thedeg constraints onV using Algorithm 2.

This algorithm is similar to Algorithm 1 except that it operates only on one constraint and

compares each value ofV with a tuple of a constraintC.

Input : V , C

1 current-node← Root, root of the discrimination tree
2 S← SCOPE(C) \ {V}
3 for every valuev ∈ DV do
4 for every tuplet ∈ C |σV =v(t) existsdo
5 if current-nodehas a child nodent equal toπS(t) then current-node← nt

else
Generatent a node withπS(t) and make it a child ofcurrent-node

6 current-node← nt

end
end

7 Add v to the annotation ofcurrent-node
8 current-node← Root

end
Output : Root

Algorithm 2: Algorithm for building nb-DT(V , C).
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Line 4 of Algorithm 2 replaces Line 3 and 4 of Algorithm 1. (σ andπ are the selection

and projection operators of relational algebra.)

The worst-case time complexity of Algorithm 2 is linear in the size of the constraint,

which depends on the domain size of the variable, the tightness, and the arity of the con-

straint. Therefore, the cost of buildingdeg such nb-DTs isO(deg · ak+1 · (1− t)).

Consider the non-binary CSP of Figure 3.4. The constraint definitions for this example

are given in Figure 3.5.

{1, 2, 3}

{1, 2, 3}

{1, 2, 3

{1, 2, 3}

{1, 2, 3}

Variable

Constraint

4, 5, 6} 

C 1

3V1

V2

V3

V4
C 

C 4

V
C 2

Figure 3.4:CSP.

C1 C2 C3 C4

V V1 V2 V V3 V2 V3 V4 V1 V4

1 1 3 1 3 1 2 1 1 1
1 3 3 2 3 1 2 2 2 2
2 1 3 3 2 2 2 1 3 1
2 3 3 4 2 2 2 2
3 1 1 4 2 3 1 1
3 2 2 6 1
4 1 1
4 2 2
5 3 2
6 3 2

Figure 3.5:Constraint definitions.

Figures 3.6 and 3.7 show the non-binary discrimination trees (nb-DT) for the constraints

incident toV in the example of Figures 3.4 and 3.5. Every node of the nb-DT stores the

(<V1 3>,  <V2 2>)
(<V1 2>, <V2 2>)

(<V1 1>, <V2 3>) (<V1 1>, <V2 1>)

(<V1 3>, <V2 3>)
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Figure 3.6:nb-DT(V , C1).
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Root

{1, 2} {6} {3, 4}

{5}

Figure 3.7:nb-DT(V , C2).

tuple it represents, a list of nodes connected to it, and an annotation that is by default empty.

A pointer called thecurrent-nodeis maintained and points to the last node visited by the

algorithm. Initially, thecurrent-nodepoints toRoot. The algorithm builds the tree choosing

one valuev from DV and processing each tuple ofC corresponding to〈V v〉 as follows:
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When the projected tuple matches any of the children ofcurrent-node, current-nodemoves

to the matching node. Otherwise, a new node is created and added to thecurrent-node’s

list of children, andcurrent-nodemoves to the newly created node. After processing a

v ∈ DV , v is added to the annotation ofcurrent-nodeandcurrent-nodeis repositioned at

Root. Therefore, two nodes are connected if the tuples of each of these nodes lie on the

path to a common annotation value.

Second, for each tree, we collect the annotations and the path where they appear. We

traverse the tree from the root to each annotationAi and constructPi by collecting the

nodes on the path. We form a listli = (Pi, Ai) of the particular path and the corresponding

annotation, and a listLj = {li} of these lists for each nb-DT. In the example of Figures 3.6

and 3.7:

1. For the nb-DT ofC1, L1 = (l1, l2, l3) with:

• l1 = (((〈V1 1〉, 〈V2 3〉), (〈V1 3〉, 〈V2 3〉)), {1, 2}),

• l2 = (((〈V1 3〉, 〈V2 2〉)), {5, 6}),

• l3 = (((〈V1 1〉, 〈V2 1〉), (〈V1 2〉, 〈V2 2〉)), {3, 4}).

2. For the nb-DT ofC2, L2 = (l4, l5, l6, l7) with

• l4 = (((〈V3 3〉)), {1, 2}),

• l5 = (((〈V3 nil〉)), {5}),

• l6 = (((〈V3 2〉)), {3, 4}),

• l7 = (((〈V3 2〉)), {6}).

We collect these lists inL = (L1, L2, . . . , Ldeg).

Third, we compute the partition ofDV by intersecting the annotationAi from each tree

using Algorithm 3 withL andV as input parameters. The worst-case time complexity
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Input : L, V

1 dom-values← domain ofV
2 partitioned-domain← nil
3 for every valuev remaining indom-valuesdo
4 select-path+annot← An li from everyLj ∈ L for which v ∈ ANNOTATION(li)
5 annotation← Intersect annotations in theselect-path+annot
6 Add annotationto partitioned-domain
7 dom-values← dom-values\ annotation

end
Output : partitioned-domain

Algorithm 3: Algorithm to intersect annotations.

of this algorithm isO(deg2 · a4). For the example of Figure 3.4, the domain ofV is

partitioned as{{1, 2}, {3, 4}, {5}, {6}}. We denote byEi an element of this partition,

whereEi is a set of equivalent values ofV given the constraints that apply to it.

3.1.2.2 Process 2: Computing neighboring values consistent with an E1

This process computes the values in the neighborhood ofV that are consistent with each

equivalence classEi using the nb-DTs built in Process 1. For a givenEi, we identify the

paths{Pi} in each nb-DT such thatEi ⊆ Ai. Then, for eachX ∈ NEIGHBORS(V ), we

project each pathPi on X. Intersecting the results of the projections yields the subset of

DX that is consistent withEi. In Section 3.2, we use this information to updateDX by

forward checking after assigningEi to V . The worst-case time complexity of this process

is O(|NEIGHBORS(V )| · adeg)

3.1.2.3 Avenues for improving performance

In an effort to reduce the overhead for computing bundles, wehave included in our imple-

mentation a mechanism for automatically ‘switching off’ some operations for partitioning

the domain of a given variableV when it becomes clear that all partitions are necessarily

singletons. This happens in two situations.
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1. When any nb-DT of aV results in annotations exclusively made of singleton ele-

ments (see Algorithm 2). In this case we can safely switch offbundling for building

the nb-DTs for the remaining constraints that apply to the variableV .

2. Another case is when the intersection of the annotations returns singletons (see Al-

gorithm 3).

In practice, we implement this switching off mechanism as follows. We force Algorithm 2

not to check for matching children, but to always create new nodes because the information

in the nb-DTs is useful for filtering the domains of the futurevariables.

3.2 Dynamic bundling

Dynamic Bundling (DynBndl) is the process of computing neighborhood interchangeabil-

ity sets (domain bundles) during the search process (see Section 2.3.3). DynBndl operates

by assigning a bundle toVc and propagating the effect of this decision on the future vari-

ables. The bundles ofVc are obtained by applying Process 1 of Section 3.1.2.1 using the

constraints onVc determined bynFC2. Each constraint passed to Algorithm 2 is computed

using Equation (2.1). The effects of this instantiation arethen propagated using Process 2

of Section 3.1.2.2.

Figure 3.8 shows the partially explored search tree by FC forthe example in Figures 3.4

and 3.5 with variable ordering{V , V1, V2, V3, V4}. Figure 3.9 shows the tree explored by

DynBndl. The domain ofV is partitioned as discussed in Section 3.1.2 andV is assigned

the bundle{1, 2}. FC propogates this instantiation and the domains ofV1, V2, andV3 are

set to{1,3}, {3}, and{3}, respectively. Next, the domain partitions ofV1 are computed.

We find the two domain values, 1 and 3, to be interchangeable for V1. V1 is instantiated

with {1, 3}. On propagating this instantiation, the domain ofV4 becomes{1}. Next, the

search proceeds to instantiateV2 with the only value in its domain{3}. This instantiation
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Figure 3.8:Search tree without bundling.
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Figure 3.9:Search tree using DynBndl.

results in the annihalation of the domain ofV3, and search backtracks. There are no values

remaining in the domains ofV2 andV1. Hence, the search backtracks toV . Note here that

V1 was assigned a bundle of size 2. By bundling{1, 3} for V1 together, bundling saved

visiting more nodes ofV2. On instantiatingV with {3, 4}, search is able to assign values to

the remaining variables of the CSP, yielding a solution as{〈V {3, 4}〉, 〈V1 {1}〉, 〈V2 {1}〉,

〈V3 {2}〉, 〈V4 {1}〉}. This example illustrates two situations that result in performance gain:

bundling of no-goods and bundling of solutions.

• Bundling no-goods: When DynBndl assigns{1,2} to V , {1,3} to V1 and{3} to V2,

the domain ofV3 is anihilated after visiting 3 nodes, whereas FC visits 10. The gains

due to bundlingV multiply those due to bundling ofV1, which illustrates the gains

of no-good bundling.

• Bundling solutions: When DynBndl next assigns{3,4} to V , the path is successful

and results in a solution bundle of size 2, while FC yields a single solution. DynBndl

visits 8 nodes and yields 2 robust solutions whereas FC visits 15 nodes and finds a

single solution.

Under the same variable and value ordering, DynBndl visits no more nodes than FC. Fur-

ther, when looking for a first solution, any savings of nodes visited by DynBndl can only
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be explained by the bundling of no-goods.

3.3 Effect of look-ahead strategies on dynamic bundling

In this thesis, we use the look-ahead strategy known as forward checking. Forward check-

ing is a partial look-ahead in the sense that it revises only the domains of those future vari-

ables connected to the current varirable. A more aggressivelook-ahead strategy such as

MAC (Maintaining Arc-Consistency[Sabin and Freuder, 1994]) performs arc-consistency

on the entire subproblem induced by the current and future variables. Consequently, the

use of a MAC-like algorithm necessarily performs a better filtering of the domains of the

future variables. While this may increase the number of constraint checks, it would yield

‘fatter’ solution bundles (thus improving bundling), and reduce of number of nodes visited

during search. However, even with MAC, our technique does not guarantee that the re-

sulting bundling is maximal[Lesaint, 1994]. More generally, dynamic bundling, while it

partitions the set of solutions (i.e., every solution appears in exactly one bundle) does not

guarantee that the size of the solution bundle is maximal (i.e., the size of the bundle cannot

be increased).

3.4 Criteria for evaluating the performance of search

The goal of DynBndl is to generate multiple robust solutions. We measure its effective-

ness by computing the size of the first bundle (FBS) and the number of solution bundles

(SB). To demonstrate that dynamic bundling is not an overkill and does not harm the per-

formance of search, we compare the effectiveness of FC and DynBndl using the following

measurements: Constraint Checks (CC), Nodes Visited (NV), and CPU time.

First Bundle Size (FBS): When DynBndl terminates successfully, it results in the assign-
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ment of a bundle (i.e., a set of one or more domain values) to each variable. A

solution bundle, the resulting solution, is the set of solutions in the Cartesian product

of the bundles assigned to the variables, and its size is the product of the sizes of

the assigned bundles. The size of the first solution bundle isdenoted as FBS. This

measure is useful in comparing the performance of FC and DynBndl when finding

only one solution. In the case of FC, each variable is assigned a single value, and

FBS is thus one.

Solution Bundle (SB): When finding all solutions to a CSP, DynBndl partitions the set of

solutions. We denote bySB the number of solution bundles found by search. (For

the same problem, the lower this number, the more compact is the representation.) In

the case of FC, this number is equal to the number of solutionsto the CSP.

Constraint Checks (CC): We described the mechanism used to measure constraint checks

in non-binary CSPs in Section 2.5.4 of Chapter 2.

Nodes Visited (NV): The count of node visited is incremented by one every time a a vari-

able is instantiated during search.

CPU time: CPU time allows us to account for the overhead of bundling andestimate

the savings due to bundling. We run our experiments on the computers of the Re-

search Computing Facility (RCF) of the Department. The clock resolution of LISP

onprairiefire.unl.edu andsandhills.unl.edu is 10 ms.

The goal is minimize the values ofCC, NV, SB and CPU time. When looking for one

solution, the goal is to maximize FBS.
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3.5 Finding all solutions to a CSP

In this section we theoretically compare the performance ofDynBndl and FC when finding

all solutions using static variable ordering. We show that DynBndl is guaranteed never to

perform worse than FC in terms of the following performance criteria: NV, CC andSB.

Theoretical guarantees of the relative performance of DynBndl and FC underdynamic

variable ordering are more difficult to determine because the ordering of the variables in

DynBndl and FC is no longer guaranteed to be the same. It is easy to see that forward

checking may be more effective under one ordering or the other, and thus perform better in

one strategy than the other.

3.5.1 Number of nodes visited

Theorem 3.1. Under the same variable ordering, every node visited by DynBndl is also

visited by FC when looking for all solutions to a CSP.

Sketch of proof. Dynbndl partitions the domain of a variable into equivalence classes.

By construction, when one value in an equivalence class is pruned by forward checking

in DynBndl, the other values of the class are also removed. InFC, this additional pruning

does not take place. Therefore, FC will never remove any morevalues from the domain

of a variable than DynBndl. Therefore, if there is any bundling, DynBndl will visit fewer

nodes than FC does. In the worst-case (i.e., no bundling is detected), DynBndl and FC visit

exactly the same nodes. 2

3.5.2 Number of constraint checks

Theorem 3.2.Under the same variable ordering, DynBndl never checks moreconstraints

than FC when looking for all solutions to a CSP.
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Sketch of proof. In DynBndl, nb-DT is used to partition the domain of the current variable.

The nb-DT also determines the filtered domains of the future variables relative to each

value of the current variable. The number of constraint checks done to build the nb-DT is

equivalent to that necessary to perform forward checking oneach value in the domain of

the current variable. FC operates by performing forward checking on one value at a time.

When looking for all solutions, all the values for a given variable are eventually visited.

Because FC visits at least as many nodes as DynBndl, and at each node it requires exactly

the same number of constraint checks, thus FC never performsfewer constraint checks than

DynBndl. 2

3.5.3 Solution bundles

Theorem 3.3. When looking for all solutions to a CSP, DynBndl yields a partition of the

set of solutions to a CSP.

Sketch of proof. Depth-first search proceeds systematically through the search space

visiting every combination of variable-value pairs and proceeding to the bottom of the

tree. It never re-visits the same complete path, and guarantees unique solutions. Similarly

DynBndl systematically visits the search space and never re-visits the same complete path.

By not re-visiting complete paths DynBndl guarantees that every bundle is unique and that

no solution appears in two distinct solution bundles. 2

Corollary 3.4. When looking for all solutions to a CSP, the number of solution bundles

found by DynBndl is at most equal to the number of solutions found by FC.

The above statement follows naturally from Theorem 3.3 and ensures that DynBndl

never requires more space than FC.

Theorem 3.5.The value ofSB for FC is never less than thatSB for DynBndl.
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Sketch of proof. When a CSP is solvable, the solution size of every solution using FC

is one. For a solvable CSP, every solution bundle found by DynBndl has size one in the

worst case. This can happen when there is no solution bundling (although there could be

bundling of no-goods). Thus, the number of solution bundles(found by DynBndl) cannot

exceed the number of solutions (found by FC). 2

3.6 Finding the first solution to a CSP

The advantages of using dynamic bundling to find all solutions to a CSP were established

in Section 3.5. In this section we discuss the the performance of DynBndl in finding one

solution. We assumea static variable orderingand that FC and DynBndl use the same

value ordering.

We first clarify the meaning of the statement: FC and DynBndl using the same value

ordering. LetDV ={1, 3, 5, 7} and let, without loss of generality, the value ordering be

the one of increasing value. AssumeDV is partitioned by NI into two bundles{1, 7} and

{3, 5}. In order to ensure the same ordering as in FC, the values in each bundle must be

ordered according to the value ordering (here, ascending order). The first value in a bunlde

is considered the representative value of the bundle and thebundles are visited according

to position of their representative in the order. Therefore, in our example, we will have

{1, 7} then{3, 5}. This simple rule allows us to maintain the same value ordering in the

sense that no permutation of domain partitioning will lead to selecting value 3 after value

5, unless 5 is in the equivalence class of 1, which is a value coming earlier in the ordering.

Such a value ordering of bundles is implicit in our implementation.
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3.6.1 Number of nodes visited

Theorem 3.6.For the same variable ordering, every node visited by DynBndl is also visited

by FC when finding the first solution.

Sketch of proof. DynBndl partitions the domain of a variable into equivalence classes.

By construction, if one value in an equivalence class is pruned by forward checking, the

other values of the class are also pruned. Therefore, FC willnever prune any more values

from the domain of a variable than DynBndl. Hence, if there isany bundling during search,

DynBndl will search a smaller tree than FC and visit fewer nodes. In the worst-case (i.e.,

when all bundles are singletons), DynBndl and FC search the same tree and visit the same

nodes. Further, in a backtrack-free search, the number of nodes visited (NV) is the same for

DynBndl and FC, irrespective of the amount of bundling. 2

3.6.2 Number of constraint checks

When finding one solution, we cannot make theoretical guarantees on the relative numbers

of constraint checks of DynBndl vs. FC. DynBndl partitions the domain of the current

variable using the nb-DT. The nb-DT also provides, as a side effect, the domain of the future

variables for each of the values in the domain of the current variable[Beckwithet al., 2001;

Choueiry and Davis, 2002]. This result is equivalent to performing constraint checkswith

future variables for every domain value. FC operates differently, it performs constraint

checks for one domain value at a time successively until a domain value does not lead to

domain annihilation of a future variable.

Let us consider two scenarios midway while searching for onesolution to a CSP. The

first scenario is when the value assigned to the current variable leads to a solution without

any backtracking. The second is when the first value (e.g., assigned to the current variable

fails to yield a solution, forcing search to consider a second value in the domain of the
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current variable.

In the first scenario, FC performs constraint checks for onlya subset of the domain

values when instantiating the future variables before reaching a solution. DynBndl, on

the other hand, computes domain partitions of each of the future variables and effectively

performs constraint checks for each value in the domain of the current variable. In this

scenario, DynBndl performs more constraint checks than FC.

The second scenario illustrates a situation where DynBndl executes fewer constraint

checks than FC. Let us assume that the two valuesl, m ∈ DVc
are interchangeable and

consistent with a tleast one value in the domain of a future variableV1f ∈ NEIGHBORS(Vc).

Let DV1f
= {x, y, z} such thaty is consistent withl andm for Vc andx andz are not. FC

executes 3 constraint checks comparing the instantiation of Vc to the values in the domain

of V1f and ai constraint checks exploring the (inconsistent) sub-tree rooted at〈V1f y〉.

See Figure 3.10. FC uncovers the inconsistency of the current path, and repeats the same

aichecksaichecks

V1f

Vc

V2f

Vp

x xy z zy

l

3 checks 3 checks

m

Figure 3.10:Search tree by FC.

Vc

V1f

V2f

Vp

checksk

l, m

x zy

6 checks

a

Figure 3.11:Search tree by DynBndl.

procedure when changing the instantiation ofVc from l to m, only to discover that the path

is not consistent. This failure prompts search to explore other values forVc, if there are any,

or backtrack to a past variables otherwise. The total numberof constraint checks executed

by FC in this case is 6+2×ai checks. DynBndl proceeds by first partitioning the domain of

Vc. It performs 6 constraints checks to determinel andm are interchangeable forVc. See



38

Figure 3.11. DynBndl proceeds as FC, but it explores the sub-tree rooted at〈V1f y〉 only

once to discover that the current path is doomed to failure, thus executing 6+ai constraint

checks. Further, if any bundling opportunity arises in the in the sub-tree rooted at〈V1f y〉,

the number of constraints checked in this sub-tree by DynBndl (i.e., ak) is necessarily less

than that under FC (i.e.,ai). Therefore, the savings in constraint checks are due to detecting

symmetric domain values, which saves us revisiting the sub-tree rooted at〈V1f y〉.

From the above two scenarios, it becomes clear thatwhile DynBndl performs more

checks at each node, by saving on the number of nodes visited,it compensates for these

extra checks. As a result, at some point, DynBndl performs fewer constraint checks than FC

does. It is difficult to predict the point at which the savings over-compensate the additional

effort it depends on the amount of bundling and the number of failed instantiations, which

cannot be predicted.

3.6.3 Solution bundle

While FC always returns a unique solution, the first solutionbundle returned by DynBndl

has one or more solutions. Its size is measured by FBS. Under the same variable and value

ordering, the solution returned by FC is always in the solution bundle returned by DynBndl.

3.7 Experiments

The goals of our experiments, in increasing order of importance, are as follows:

1. Assess the importance of solution bundling, which is the main goal of our approach.

2. Assess the overhead due to bundling in terms of effort necessary for computing the

domain bundles.

3. Assess the impact of bundling versus non-bundling on the performance of search.
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To this end, we compare the values of the following metrics for DynBndl and FC: the

number of solutions FBS when finding a first solution, the CPU time, the number of nodes

visitedNV, and the number of constraint checks (CC).

When seeking all solutions, DynBndl is guaranteed to visit no more nodes and do no

more constraint checks than FC (see Section 3.5). For findingthe first solution, DynBndl

does not visit more nodes than FC1 for the same variable ordering (see Theorem 3.6). Un-

der dynamic variable ordering, DynBndl and FC are not comparable either in terms of

nodes visited or constraint checks. Their behaviors need tobe evaluated experimentally

and compared. Our experiments compare the performance of FCand DynBndl under dy-

namic variable ordering. We use the common heuristic known as the least domain heuristic

(respectively, the least number of bundles in a domain).

3.8 Choice of test problems

In this section we discuss the choice of test problems: benchmarks used for symmetric

CSPs (which are too specific and not appropriate for demonstrating bundling), real-world

applications, and randomly generated problems.

NI aims at detecting equivalent values in the domain of a given CSP variable. It does

not intend to uncover permutations of values across variables, which is isomorphic inter-

changeability and is the focus of most work on symmetry in CSPs. In most published work

on symmetric CSPs, the symmetry relations aredeclared, not discovered, and as given as

input to the search algorithm. One can expect NI, and its weaker version used in dynamic

bundling, to be useful in real-world applications where domain redundancy exists or ap-

pears during search. This is not the case of the benchmark problems used for symmetric

CSPs, which are not suitable for testing bundling for the following reasons:

1Note that the savings by DynBndl in the number of nodes visited when looking for a first solution can
only be explained by the bundling of no-goods.
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1. Most exhibit only symmetries that are permutations of values over variables.

2. Most have small domains (e.g., Boolean), which are not amenable to bundling.

3. Most are modeled using a unique global constraint of exponential size. Defining the

constraint in extension amounts to solving the problem and is likely intractable.

4. Finally, for coloring problems, bundling can be done onlyin the case of list-coloring

problems (typically used to model resource allocation problems). However, such

bundling can be easily computed without nb-DTs as shown in[Choueiry and Noubir,

1998].

While looking for (strong or weak) NI sets is cost effective and should be always attempted,

no technique can find multiple robust solutions in permutation problems where there are

exactly as many variables as there are values.

The primary practical advantage of bundling is the production of robust solutions,

where any value in a bundle for a given variable can replace any other value in the bundle,

should the former become unavailable or undesirable. The practical usefulness of bundling

was established in case-based reasoning[Neagu and Faltings, 2001], nurse scheduling

[Weil and Heus, 1998], and databases[Lal and Choueiry, 2004] and Chapter 5. For ex-

ample, in Chapter 5, we show how dynamic bundling reduces thesize of a query result on

a real-world database by 54% (yet storing the same information). While we still need to

validate our approach on real-world applications, we focus, in this thesis, on introducing

the techniques and their implementation and test our algorithms on randomly generated

CSPs. Even though such problems lack the redundancy one expects to find in real-world

applications (which makes them particularly amenable to bundling), our experiments show

that dynamic bundling effectively yields multiple robust solutions.
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3.9 Experiment design and set-up

Below, we report results demonstrating the benefits of dynamic bundling on randomly gen-

erated problems. We describe a non-binary CSP with the tuple〈k, n, a, p2, c3, c4, t〉, where:

• k is constraint arity,

• n is the number of variables,

• a is the domain size,

• p2 is the constraint ratio of binary constraints,c3 andc4 are the number of ternary

and quaternary constraint respectively, and

• t the constraint tightness.

We used the random generator provided by[Lal et al., 2003] without enforcing solvability.

We ran tests on a wide range of random problems with varying number of variables, domain

size, constraint ratio and tightness values. Table 3.1 shows the data sets generated. For

brevity, we refer to the constraint ratios using the classification Table 3.2. The tightness

values for each of the 16 datasets are listed in Table 3.3. We generate 1,000 instances for

every tightness value in all the 16 datasets of Table 3.1. Thedatasets are designed to study

variation in performance over different values of tightness, domain size, constraint ratio,

and number of variables. We have included datasets that we expect to be unfavorable to

dynamic bundling. For example, the Dataset #4 in Table 3.1 has low domain size and a

large number of constraints. In such a dataset, we expect fewavenues for bundling, which

would illustrate the worst-case behavior for dynamic bundling. We have also included

datasets where we expect dynamic bundling to do well, typically datasets with large domain

size and low number of constraints (e.g., Dataset #13). In order to ensure uniform server

loads across experiments, we solve each problem instance first with DynBndl and, then

immediately after that, by FC.
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Table 3.1:Datasets of random problems.

Dataset N a Constraint ratio
p2 c3 c4

1 20 10 0.25 3 2
2 20 10 0.25 6 5
3 20 10 0.4 3 2
4 20 10 0.4 6 5
5 20 15 0.25 3 2
6 20 15 0.25 6 5
7 20 15 0.4 3 2
8 20 15 0.4 6 5
9 30 10 0.25 3 2
10 30 10 0.25 6 5
11 30 10 0.4 3 2
12 30 10 0.4 6 5
13 30 15 0.25 3 2
14 30 15 0.25 6 5
15 30 15 0.4 3 2
16 30 15 0.4 6 5

Table 3.2:Categories of constraint ratios.

p2 c3 c4 Constraint ratio
category

0.25 3 2 CR1
0.25 6 5 CR2
0.4 3 2 CR3
0.4 6 5 CR4

3.9.1 Justification of dataset size

A large number of samples ensures reliability of statistical analysis. Though a large sample

size is not required in some analysis models, having a large sample size is generally helpful.

This is because a larger number of samples better approximates the set of all possibilities

called the ‘population.’ Parametric statistical tests like the t-test are sensitive to the number

of samples. However non-parametric tests are comparatively less sensitive to sample size

than parametric tests.

In order to determine the sample size, we generated a large number of samples (10,000)

for Dataset #5 (〈n = 20, a = 15,CR1〉). We solved these instances and plotted the values

of moving averages of the CPU time looking for a sample size where the value of the mean

stabilizes. The moving average plot of the CPU time for threetightness values is shown

in Figure 3.12. We can see that the value of the mean is ‘unstable’ from 10 to 100 sample
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Table 3.3:Tightness values test for each dataset.

Dataset Tightness values
1 {0.4000, 0.4500, 0.4750, 0.5000, 0.5250, 0.5500, 0.5550, 0.5750, 0.6000, 0.6500,

0.7000}
2 {0.2750, 0.3000, 0.3500, 0.4000, 0.4625, 0.4875, 0.5000, 0.5125, 0.5250, 0.5375,

0.5500, 0.6000}
3 {0.3250, 0.3625, 0.3750, 0.3875, 0.4000, 0.4125, 0.4250, 0.4750, 0.5500, 0.6500}
4 {0.3000, 0.3250, 0.3500, 0.3625, 0.3750, 0.3875, 0.4000, 0.4250, 0.5000}
5 {0.4500, 0.5000, 0.5500, 0.5750, 0.5875, 0.6000, 0.6125, 0.6250, 0.6500, 0.7000}
6 {0.4500, 0.5000, 0.5500, 0.5750, 0.5875, 0.6000, 0.6125, 0.6250, 0.6500, 0.6750,

0.7500}
7 {0.3500, 0.4000, 0.4250, 0.4375, 0.4500, 0.4625, 0.4750,0.5000,0.5500,0.6000}
8 {0.3500, 0.4000, 0.4500, 0.4750, 0.4875, 0.5000, 0.5125, 0.5250, 0.5500, 0.6000}
9 {0.2500, 0.3000, 0.3500, 0.3750, 0.3875, 0.4000, 0.4125, 0.4250, 0.4500, 0.5000,

0.6000}
10 {0.3000, 0.3500, 0.3750, 0.4000, 0.4125, 0.4500, 0.5000, 0.5500, 0.6000}
11 {0.2000, 0.2250, 0.2500, 0.2750, 0.2875, 0.3000, 0.3125, 0.3250, 0.3500, 0.4000}
12 {0.2000, 0.2500, 0.2625, 0.2750, 0.2875, 0.3000, 0.3125, 0.3500, 0.4000, 0.4500}
13 {0.3500, 0.4000, 0.4500, 0.4750, 0.4875, 0.5000, 0.5250, 0.5500, 0.6000}
14 {0.3500, 0.4000, 0.4500, 0.4750, 0.4850, 0.5000, 0.5250, 0.5750, 0.6500, 0.7000}
15 {0.2500, 0.3000, 0.3250, 0.3500, 0.3650, 0.4250, 0.5000, 0.5500}
16 {0.2500, 0.3000, 0.3250, 0.3350, 0.3500, 0.3650, 0.3750, 0.4000, 0.4500}

points. Therefore, such sample sizes are not representative. The mean starts stabilizing

(having less variation on increasing the sample size) near 750 sample points. At 1000

sample points, it is relatively stable with significantly smaller variations than for smaller

sample sizes. The mean value at 1000 sample points is close tothat at larger samples. From

the analysis above, we chose a sample size of 1000 instances for every tightness value in

the 16 datasets.
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Figure 3.12:Moving average of CPU time for Dataset #1.

3.9.2 Statistical tests

The experiments described above generated a large amount ofdata. We describe here the

steps taken to analyze the data statistically. We first discuss the characteristics of the data,

followed by the transformation applied to the data to make itfit the data model of our

analysis. We then discuss the statistical tests used to testfor difference between the two

algorithms being compared (i.e., DynBndl and FC).

The CPU time,NV, andCC of both algorithms have extremely high variances. In spite

of the large sample size, the empirical distribution of the data did not approximate a normal

distribution. Non-normality was primarily due to the presence of relatively large values

in the data (also called outliers). Equal variances and normality of data are two important

assumptions in most of the parametric statistical tests to compare the performance of two

algorithms. In order to eliminate high variance and the effect of outliers, we applied a log

transform to our data. The log-transformed data approximates a normal distribution and

fits the data model of our tests.
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We used ANOVA (ANalysis of Variance) to study the interaction of the two methods

with varying tightness[Rees, 2001]. ANOVA results tell us whether there is a difference in

the means of two sets of measurements with the same tightnessvalue that can be attributed

to the method used to solve the instances. It allows us to judge whether there is any per-

formance improvement due to DynBndl. The null hypothesis for our analysis was that the

difference in the means of CPU time (NV andCC) of DynBndl and FC is zero when finding

the first solution. The ANOVA procedure returns an F-value asthe test statistic and the

F-value indicates whether we can reject the hypotheses. With an F-value larger than 9.4,

we can confidently reject the null hypothesis and conclude that the means due to FC are

different from those due to DynBndl.

For every tightness we estimated the difference in mean runtime and the confidence

intervals of this difference using the t-distribution. We have a large sample size and hence

we also apply the Bennerfoni correction while calculating confidence intervals of the means

[Rees, 2001].

We report in our analysis the improvement percentage due to DynBndl over FC for

the log-transformed data of CPU time,NV, andCC. We compute improvement as follows,

whereI is the improvement andX be one of the three metrics (CPU time,NV andCC).

I(X) =
FC(X)− DynBndl(X)

FC(X)
= 1−

DynBndl(X)

FC(X)
. (3.1)

The statistical analysis yields the following results:

Mean(ln(DynBndl(X))− ln(FC(X))). (3.2)

We can rewriteI as follows:

I(X) = 1− eln(
DynBndl(X)

FC(X)
) = 1− eln(DynBndl(X))−ln(FC(X)). (3.3)
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We reportI × 100 as the improvement percentage in our results.

3.10 Results and analysis

In this section, we present the results of our experiments and analyze the effect of varying

CSP parameters. First we study the performance of DynBndl incomparison to FC across

tightness values with the help of ANOVA results. From there on, we focus on tightness val-

ues around the phase-transition region (see Section2.1.4). We study the effect of increasing

domain size and number of constraints. Finally, we analyze the results of the experiments

to gain more insight into DynBndl.

3.10.1 Analysis with varying tightness

Quite expectedly, the largest FBS occurs at low tightness values, however, DynBndl finds

non-singleton solution bundles also well into the area of the phase transition (see Fig. 3.13).

Figure 3.13 compares the performance of DynBndl and FC in terms of CPU time,NV, CC,

and FBS with varying tightness in Dataset #7. We choose this dataset to present our analysis

because it has a relatively large domain size (which we expect to be favorable for DynBndl)

and also relatively high constraint ratio (which we expect to be unfavorable for DynBndl).

The results of all remaining datasets are presented in Appendix A. In our analysis, we

distinguish the performance at the following three tightness regions in Figure 3.13: low

tightness, around the cross-over point, and high tightness.

At small tightness values(t ≤ 0.425). The benefit of DynBndl here is the large FBS.

For example, FBS=33 att=0.350. In Dataset #13 we get many robust solutions in

the first bundle att=0.35, with FBS=2254.7 (see Table A.8 and Figure A.3). The

benefit of bundling no-goods is not yet visible as the first solution (bundle) is found

without much backtracking. While the cost of computing the bundles is visible (the
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Figure 3.13:The CPU Time,NV, CC and FBS results for Dataset #7.

constraint definitions are large), the overhead can be ignored given the short total time

for solving the problems. In Dataset #13, we get 2254.7 solutions from DynBndl at

an additional cost of 275ms (see Table A.8 and Figure A.3), which in practice is not a

significant additional cost. Att=0.425 (in Figure 3.13) ANOVA shows no significant

difference between the CPU time of DynBndl and FC: the overhead of computing

the bundles is compensated by the bundling of no-goods.

Around the cross-over point (0.425< t ≤ 0.500), DynBndl still returns multiple so-

lutions. For example, FBS=5 att=0.450 and FBS=2.3 att=0.462. Furthermore,

DynBndl improves the performance of search as bundling of no-goods becomes

prevalent: we encounter the maximum amount of savings, inNV, CC, and CPU time.

Here, the effort of computing bundles is insignificant compared to the savings due

to bundling. ANOVA indicates significant improvement of DynBndl over FC across
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the entire region. From these results, we can conclude that,in the phase-transition

region where solutions are the most costly to find, DynBndl still returns multiple

robust solutions while significantly improving the performance of search.

For large tightness values(0.500 < t). Most of the problems at high tightness are un-

solvable and the advantage of multiple solutions is not seenhere. Forward checking

effectively detects that most of the CSPs are not solvable early on in the search pro-

cess, thus reducingNV and the number of backtracks. The overhead due to bundling

becomes apparent, although not alarmingly so. ANOVA indicates that DynBndl and

FC are still comparable att=0.600.

3.10.2 Effect of increasing domain size

Table 3.4 shows, in the phase-transition region, the average improvement of the CPU time

and the value of FBS when increasing the domain size. We report the improvementI(X)

of a measurementX using Equation (3.3). In summary, increasing domain size ornumber

of variables improves the benefit of DynBndl both in terms of FBS value and savings of

CPU time. Increasing the domain size, for the same constraint ratio and tightness, increases

Table 3.4:Increasinga (n=30) around phase transition.

CR I(CPU) % FBS
a=10 a=15 a=10 a=15

CR1 33.35% 34.32% 5.55 11.93
CR2 28.58% 33.01% 5.01 5.52
CR3 29.82% 31.66% 3.55 4.95
CR4 28.45% 31.65% 1.23 1.43

the chances of bundling and the savings in terms nodes visited.

We know that the cost of computing the bundles increases withthe domain size (i.e.,

O(deg · ak+1 · (1− t)), see Section 3.1.2.1). However, our experiments show thatthe addi-



49

tional savings due to the bundling of no-goods exceed the increase in the cost of bundling.

Further, better bundling can only increase the value of FBS,which is the product of the size

of each bundle in the solution found. This is explained as follows. The search tree with

a=15 is larger than that fora=10, and therefore the number of nodes saved by DynBndl

is much larger and the increase in savings in CPU time due to visiting these many fewer

nodes overshadows the increase in cost of bundling due to increased domain size.

Therefore, with increasing domain size we observe more bundling and get more solu-

tions due to DynBndl at a reduced cost in terms of CPU time. This is especially promising

in the context of application to databases where large domain sizes are typical.

3.10.3 Analysis with varying constraint ratio

Table 3.5 shows to the left the effect of increasing the ratioof binary constraintsp2 from

0.25 to 0.40 while keeping constant the number of the non-binary constraints. To the right,

it shows the effect of increasing the number of non-binary constraints fromc3 = 3, c4 = 2

to c3 = 6, c4 = 5 while keeping constant the number of binary constraints. All values

reported are for the region of the phase transition. In general, increasing the number of

Table 3.5:Varying constraint ratio around phase transition.

n, a c3 = 3, c4 = 2 p2=0.25
I(CPU) % FBS I(CPU) % FBS

CR1 CR3 CR1 CR3 CR1 CR2 CR1 CR2

20, 10 27.77 25.95 2.11 0.63 27.77 27.95 2.11 0.55
20, 15 30.07 26.82 4.31 1.74 30.07 25.81 4.31 0.63
30, 10 33.34 29.82 5.55 3.55 33.34 28.57 5.55 5.01
30, 15 34.33 31.65 11.93 4.95 34.33 33.01 11.93 5.51

constraints, everything else remaining equal, reduces thebenefit of DynBndl because of an

increased probability of breaking bundles. This effect is clearly visible as both the values

of FBS and the CPU-time improvement decrease. This is explained by the fact that with
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increased constraints the chances of symmetries breaking across constraints increase (at the

intersection step), leading to thinner bundles for each variable. Thinner bundles decrease

the savings by bundling of no-goods and result in smaller FBSvalues.

3.10.4 Global observations on DynBndl

We use the data in Table 3.6 to provide more insight into DynBndl.

Table 3.6:Effect of tightness and savings inNV on CPU time improvement.

Dataset #5,n = 20, a = 15,CR1
Tightness NV(FC)-NV(DynBndl) I(CPU) %

0.5500 43.63 -7.5
0.5750 123.40 14.3
0.5875 211.39 24.2
0.6000 292.76 29.8
0.6125 289.65 32.6
0.6250 204.53 31.2
0.6500 223.63 32.7

• Observe the savings fort=0.6 andt=0.6125. Even though the savings inNV are

comparable (i.e., 292.765 versus 289.65), the improvementin CPU time increases

with t (i.e., from 29.8% to 32.6%). This can be explained by the factthat, for the

lower tightness, the constraint sizes are larger, which increases the cost of bundling.

Therefore, even with the same of savings inNV and equal problem size, the CPU

time improvement is larger for larger tightness values.

• At t = 0.55, while DynBndl visits 43 fewer nodes than FC, it takes more time to solve

the problem2. This gap can be explained by the time spent on computing the bundles,

which can reduced by an improved implementation. In summary, there exists a point

2Note however that DynBndl returns more solutions than FC.
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where the cost of computing the bundles becomes comparable with the increasing

savings due to the number of nodes visited.

Table 3.7 shows the improvement of DynBndl in terms of CPU time and the aver-

age value of FBS across all datasets in the region of the phasetransition. The maximum

Table 3.7:Average improvement in CPU time across datasets.

Dataset I(CPU) % FBS
1 27.77 2.11
2 27.95 0.55
3 25.92 0.63
4 25.94 0.64
5 30.07 4.31
6 25.81 0.63
7 26.82 1.73
8 26.44 1.15
9 33.34 5.55
10 28.57 5.01
11 29.82 3.55
12 28.45 1.22
13 34.32 11.93
14 33.01 5.51
15 31.65 4.95
16 31.64 1.42

improvement of CPU time is seen for Dataset #13. This is expected because the maxi-

mum improvement occurs for the larger values ofa (i.e., 15) and the minimum values of

constraint ratio (see discussion in Sections 3.9, 3.10.2, and 3.10.3). Conversely, the least

improvement is for Datasets #3 and #4, withn=10,a=15, and CR3 and CR4.

Finally, we observe that, across the phase-transition region, FBS is mostly larger than 1,

especially for datasets withn=30 ora=15 (i.e., Datasets #5, 7, 8, 9, 10, 11, 12, 13, 14 and

15). It is not as large as for low values of tightness, to the left of phase transition (not shown

on Table 3.7). The improvements of CPU time are more significant at the phase-transition
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area than for low tightness values because of the bundling ofno-goods.

Summary

Extending the mechanism for computing neighborhood interchangeability to the context of

non-binary constraints is a non-trivial task. We presentedan algorithm to compute domain

partitions of the domain of variable in non-binary CSPs. We described when it is advisable

to switch off bundling and how to do it. We integrated the computation of NI sets in

search with forward checking, and theoretically and empirically demonstrated the benefits

of DynBndl, the resulting algorithm. In particular, we showed that DynBndl not only finds

multiple solutions but also reduces search cost, especially around the phase transition where

it matters most.
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Chapter 4

Towards Detecting Substitutability

Previous chapters focused on detecting and exploiting values in the domain of a variable

that are interchangeable. In this chapter, we consider substitutability, which is a more re-

laxed version of symmetry, and specifies a one-way interchangeability between two values

of a given variable. We describe how to efficiently detect some of these substitutable val-

ues by modifying the DT and nb-DT, and how to integrate this approach with dynamic

bundling. We then discuss the performance of dynamic bundling using substitutability. It

is important to note that the techniques presented here detect only a subset of the possible

substitutable values in the domain of a variable but this process is, nevertheless, beneficial.

4.1 Substitutability

LetA andB be two bundles in the domain of a variableVi. We say thatA is substitutable for

B when, inanysolution with〈Vi B〉, replacing〈Vi B〉 with 〈Vi A〉 results in a new solution

to the CSP. We denote this relationship byB 7→ A. Note that there could be solutions

with 〈Vi A〉 that are not consistent solutions when〈Vi A〉 is replaced with〈Vi B〉. When

A 7→ B is also true thenA andB are interchangeable. We can see that interchangeability

is a special case of substitutability. LetSA be the set of solutions of a CSP that have〈Vi A〉,
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andSB be the set of solutions that have〈Vi B〉. The above can be restated as follows, where

Si andSj are two solution bundles to the CSP:

• ∀Si={〈V1 X1〉, . . ., 〈Vi B〉, . . ., 〈Vn Xn〉} ∈ SB ⇒ Sj={〈V1 X1〉, . . ., 〈Vi A〉, . . .,

〈Vn Xn〉} ∈ SA.

• UnlessA andB are interchangeable,∃Si, Sj (Si={〈V1 X1〉, . . ., 〈Vi A〉, . . ., 〈Vn Xn〉}

∈ SA) ∧ (Sj={〈V1 X1〉, . . ., 〈Vi B〉, . . ., 〈Vn Xn〉} 6∈ SB).

4.1.1 Using DT to detect substitutability

For a variableVi and two valuesa, b ∈ DVi
, we can test whethera is substitutable forb by

comparing the sets of values in the neighborhood ofVi that they are consistent with. If the

set of consistent values ofb is a subset of the consistent values fora, thena is substitutable

for b. We propose to use the discrimination tree to detectsomesubstitutable values. The

bundles in annotations situatedalong a pathin the discrimination tree are such that the

bundle deeper in the tree is substitutable for the bundle at the shallower level. Consider

the example shown in Figure 4.1. BundleB is consistent with a subset of the values that

A

B

Root

Figure 4.1:DT(Vi) showing substitutable values.

bundleA is consistent with. Hence, whenever〈Vi B〉 is part of a solution,〈Vi A〉 can

replace〈Vi B〉 in the same solution (i.e.,B 7→ A). The converse may not hold, because a

neighbor ofVi may take a value that is in the path between the annotated nodes shown in

the tree, and thus is consistent with〈Vi A〉 but not with〈Vi B〉.
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We illustrate the ideas above using the binary CSP of Figure 4.2. Figure 4.3 shows

DT(V2). We can see that〈V2 c〉 is consistent with a subset of values that are consistent with

= =

V1

=

V2 

V4V3 ={a, b, d} {a, b, c}

{c, d, e, f}{ d }

Figure 4.2:A binary CSP.
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Figure 4.3:DT(V2).

〈V2 {e, f}〉. Therefore{c} 7→ {e, f}. Table 4.1 shows how solutions with〈V2 {e, f}〉 can

be used to generate solutions with〈V2 {c}〉.

Table 4.1:Solutions using substitutable values.

V1 V2 V3, V4 Solution

{d} {e, f} {〈V3 a〉, 〈V4 b〉}, {〈V3 b〉, 〈V4 a〉} Yes
{d} {c} {〈V3 a〉, 〈V4 b〉}, {〈V3 b〉, 〈V4 a〉} Yes

{d} {e, f} {〈V3 a〉, 〈V4 c〉}, {〈V3 b〉, 〈V4 c〉} Yes
{d} {c} {〈V3 a〉, 〈V4 c〉}, {〈V3 b〉, 〈V4 c〉} No

4.1.2 DT does not detect all substitutability relations

The DT is not guaranteed to detect all substitutability relations because a bundleB for

Vi may be consistent with a subset of the tuples that a bundleA for Vi is consistent with

and yet the two bundles may not lie on a same path in the DT. Consider the example DT

for a variableVi with a binary constraint with a variableV1 shown in Figure 4.4. By the

definition of substitutability,B 7→ A becauseB is consistent with a subset of the tuples

that are consistent withA. However,A andB do not lie on the path from the root of the

DT to a common leaf in the DT. Our approach fails to detect thatB 7→ A. The ordering of
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 <V  2>

1 <V  1>

B

A

1

Root

 <V  5>
1 <V  3>

1 <V  4>

1 <V   5>

 <V  6>1

1

Figure 4.4:A DT(Vi) the illustrates the limits of our approach.

values affects the ability of our approach to detect all substitutability relations

4.1.3 Which bundle to use during search

Consider bundlesA andB for a variableVi such thatB 7→ A (see Figure 4.1). We identify

two ways in which to exploit this knowledge in order to reducethe search effort and infer

the existence of solutions involving one bundle given the existence of solutions involving

the other.

4.1.3.1 UsingB as a representative

When〈Vi B〉 is part of a solution, then we generate additional solutionsby simply replacing

B with A, and evidently withA ∪ B. Replacing〈Vi B〉 with 〈Vi A ∪ B〉 leads to fatter

solution bundles than those without the use of substitutability. Furthermore, no search

needs to be performed on〈Vi A〉.

However, when〈Vi B〉 is part of a no-good, we cannot infer whether or not〈Vi A〉 is

also involved in the same no-good. Therefore, we cannot restrict search toB, but must

consider〈Vi A〉 during search.
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4.1.3.2 UsingA as a representative

When the instantiation〈Vi A〉 leads to a solution, replacing〈Vi A〉 with 〈Vi B〉may or may

not lead to a solution. Under these circumstances, we recommend to proceed as follows.

Using the solutions involving〈Vi A〉, we generate a new set of instantiations by replacing

〈Vi A〉 with 〈Vi B〉, and test whether or not the new instantiations are consistent (i.e.,

are solutions to the CSP). By doing so, we save the search effort, but not the consistency

checking effort, on〈Vi B〉.

When〈Vi A〉 is involved in a no-good,〈Vi B〉 is necessarily involved in the same no-

good. Therefore, no search with〈Vi B〉 is needed.

4.1.3.3 Discussion

Given the two above approaches, usingA as a representative seems to be a more effective

strategy for the following reasons:

• When usingA as a representative, we never have to search for〈Vi B〉, unlike the

other approach where a non-solution forB necessitates to conduct search for〈Vi A〉.

Checking if an instantiation is consistent is more efficientthan conducting search

from scratch.

• The “usingA as a representative” approach scales better than the alternative. So

far, we have discussed only the case when one value (or a bundle) is substitutable

for another one. Imagine a situation where a ‘chain’ of substitutability relations is

identified such asC 7→ B 7→ A. In this situation, restricting search toA saves on the

search effort for both〈Vi B〉 and〈Vi C〉. The alternative approach restricts search to

C. Under this scenario, when〈Vi C〉 is involved in a no-good, we still need to run

search for〈Vi A〉 and〈Vi B〉. The above illustrates how longer substitutability chains

amplify the difference between the two approaches.
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In summary, in a substitutability relation of the formB 7→ A, usingA as a representative

is a better approach than the alternative approach.

4.2 Algorithm for detecting substitutability

We present here a new algorithm, Algorithm 4, for binary CSPsthat uses DT to detect some

substitutable values in addition to NI sets. We denote as ext-DT the extended discrimination

tree generated. Algorithm 4 usesA as a representative of two bundlesA andB whereB 7→

A. Along with the annotation of a bundle (i.e.,A of B 7→ A), ext-DT additionally stores a

list of values for which the annotation is substitutable, and is denoted bysubs-list (i.e.,

B of B 7→ A). ANNOTATION(n) retrieves the annotation of a noden. subs-list(n)

refers to the list of values for whichn is substitutable.
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Input : V

1 current-node← Create the root of the discrimination tree
2 subs-list-work← {}
3 for each valueav ∈ DV do
4 for each variableVj ∈ NEIGHBORS(V ) do
5 for each valuew ∈ DVj

consistent withav for V do
6 if current-nodehas a child noden with ‘〈Vj w〉’ then
7 current-node← n

8 if ∃ unmarkedANNOTATION(n) then
9 subs-list-work ← subs-list-work ∪ ANNOTATION(n) ∪

subs-list(n)
10 Mark ANNOTATION(n)

end
end

11 else
Generaten a node with ‘〈Vj w〉’ and make it a child ofcurrent-node

12 current-node← n

end
end

end
13 Add av to ANNOTATION(current-node)
14 subs-list-work← subs-list-work\ ( ANNOTATION(current-node) )
15 if current-nodeis not a leafthen
16 Traverse to a leaf fromcurrent-node
17 Add subs-list-workto thesubs-list in the annotation of the leaf node
18 Mark ANNOTATION(current-node).

end
else

19 Add subs-list-workto thesubs-list in the annotation
20 Un-mark ANNOTATION(current-node)

end
21 current-node← root of the discrimination tree
22 subs-list-work← {}

end
Output : Root of discrimination tree

Algorithm 4: ext-DT(V ) detects interchangeable and some substitutable values for V .
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When building the tree with a valueav ∈ DV , consider the case when the algorithm

encounters a node with anunmarkedannotationAj (see Line 8). In this scenario, we

are guaranteed thatAj is consistent with a subset of values thatav is consistent with in

NEIGHBORS(V ) (i.e.,Aj 7→ {av}). Therefore, Lines 9-10 of Algorithm 4 add the annota-

tion and thesubs-list of the node with annotationAj to subs-list(av ).

Line 15 in Algorithm 4 checks whether the annotation whereav appears is a leaf node in

ext-DT. Let us consider the case whenav appears in a non-leaf annotation, and letAleaf be

a leaf annotation reachable from the annotation ofav. From the discussion in Section 4.1,

we conclude that{av} 7→ Aleaf . Therefore, the algorithmmarks ANNOTATION(av) and

addsav to subs-list(Aleaf ) in Lines 16–18. When the annotation ofav is a leaf, then

Line 20 of Algorithm 4 sets the annotation tounmarked. The output of the algorithm is the

DT with the substitutability relations stored in allunmarkedannotations of the DT. Observe

that allunmarkedannotations will be leaves of the DT.

The algorithm adds a few steps to the original DT building algorithm (Lines 8–10, 14–

20). However, these additional steps operate on the DT directly and do not require any

additional constraint or consistency checks. The additional operations are characterized as

follows:

• Maintainingsubs-list requires accessing a field in the annotation data structure

and appending to a list. Both of these operations are inexpensive in terms of CPU

processing (see Line 8–10).

• The other additional operation is of traversing to a leaf of the DT (see Line 16). The

algorithm traverses the tree from the current node to any reachable leaf. Therefore,

the process simply follows a chain of pointers. This traversal does not require any

comparisons and is therefore inexpensive in terms of CPU processing.

In summary, the additional cost of detecting substitutablevalues is insignificant.
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4.3 Extension to non-binary CSPs

Similarly to the binary case, we extend the mechanisms we built to detect NI sets in non-

binary CSPs (i.e., the nb-DT and Algorithms 2 and 3 of Chapter3) to detect some substi-

tutable values along with the NI values. We call the resulting tree ext-nb-DT. As a reminder,

in the non-binary case, to compute the NI sets for a given variable, we build an nb-DT for

each of the constraints that apply to the variable, then we intersect the annotations to com-

pute the NI sets and intersect the paths leading to these annotations to collect the values of

the neighboring variables that are consistent with each NI set.

The change to Algorithm 2 for building nb-DTs into an algorithm for building the ext-

nb-DT is similar to what we did above for the binary case. The resulting algorithm is

Algorithm 5, which includes the changes to detect some substitutability relations.

4.3.1 Collecting path and annotation information

As we did in Section 3.1.2.1 for nb-DTs, we collect paths and annotations from the ext-

nb-DTs to determines NI sets and the corresponding consistent values for the neighboring

variables. The only difference in the extension to detect substitutability is that annotations

additionally store thesubs-list and are characterized as marked or unmarked. For

clarity, we restate this step here. We traverse the tree fromthe root to each annotationAi

and constructPi by collecting the nodes on the path. We form a listli= (Pi, Ai) of the

particular path and the corresponding annotation, and a list Lj = {li} of these lists for each

ext-nb-DT.L is a list of allLj ’s1 and is an input to the intersection algorithm, Algorithm 6,

which we discuss below.

1The number ofLj is deg, wheredeg is the degree of the variable or the number of constraints that apply
to the variable.
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Input : V , C

1 current-node← Create the root of the discrimination tree
2 S← SCOPE(C) \ {V}
3 for every valueav ∈ DV do
4 for every tuplet = (〈Vi ai〉, 〈Vj aj〉, . . ., 〈Vk ak〉) ∈ C do
5 if σV =av

(t) then
6 if current-nodehas a child noden with πS(t) then
7 current-node← n

8 if ∃ unmarkedANNOTATION(n) then
9 subs-list-work ← subs-list-work ∪ ANNOTATION(n) ∪

subs-list(n)
10 Mark ANNOTATION(n)

end
end

11 else
Generaten a node withπS(t) and make it a child ofcurrent-node

12 current-node← n

end
end

end
13 Add av to the ANNOTATION(current-node)
14 current-node← root of the discrimination tree
15 subs-list-work← subs-list-work\ ( ANNOTATION(current-node) )
16 if current-nodeis not a leafthen
17 Traverse to a leaf fromcurrent-node
18 Add subs-list-workto thesubs-list of the leaf node
19 Mark ANNOTATION(current-node).

end
else

20 Add subs-list-workto thesubs-list in the annotation
21 Un-mark ANNOTATION(current-node)

end
22 current-node← root of the discrimination tree
23 subs-list-work← {}

end
Output : Root of discrimination tree

Algorithm 5: ext-nb-DT(V , C), which also detects some substitutable values.
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4.3.2 Intersecting the nb-DTs

WhenB 7→ A for V , the annotation ofA must containB in its subs-list for each of

thedeg ext-nb-DTs ofV . To see ifB 7→ A holds across the ext-nb-DTs of the variableV ,

we modify the process of intersecting annotations and detect some substitutable values.

The intersection process when detecting NI sets in non-binary CSPs (see Algorithm 3)

works by processing each value,av, in the domain of variableV as follows:

1. It collects all annotations with the valueav and intersects them.

2. The result of the intersection is a partition of the domain. The intersection process

subtracts the partition from the values in the domain of the variable.

The process moves to the next value in the remaining domain, and repeats the above steps

until all values in the domain are processed.

We now present an algorithm, Algorithm 6, to intersect results from individual ext-

nb-DTs to include substitutable values. The algorithm has two steps. In the first step

(Lines 3–10), the algorithm considers only those domain values that have anunmarked

annotation (i.e., a leaf annotation) in at-least one ext-nb-DT (see Line 5) in order to not

miss detecting the longest substitutability relationship. For example, letC 7→ B 7→ A

in all the ext-nb-DTs of a variableV and letB be the first bundle fromDV in the value

ordering. If we ignore Line 5 in the algorithm, the algorithmwill processB, even though all

annotations ofB are marked, and will detect thatC 7→ B. By doing so, it misses detecting

the longer relationshipC 7→ B 7→ A. Line 5 defers detecting such chains to the second step

(Lines 11–17) of the algorithm. The second step of the algorithm (Lines 11–17) processes

the skipped domain values to detect any remaining NI or substitutability relations.

The worst-case time complexity of the algorithm remains thesame as Algorithm 3 (i.e.,

O(deg2 · a4)) because the additional intersections done forsubs-list are compensated
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Input : L, V

1 dom-values← domain ofV
2 partitioned-domain← nil
3 for every valueav remaining indom-valuesdo
4 select-path+annot← An li from everyLj ∈ L for whichav ∈ ANNOTATION(li)
5 if Any Annotation inselect-path+annotis unmarkedthen
6 annotation← Intersect annotations in theselect-path+annot
7 subs-list-intersect← Intersect thesubs-list’s from each annotation
8 Makesubs-list-intersect thesubs-list of annotation
9 Add annotationto partitioned-domain

10 dom-values← dom-values\ {annotation∪ subs-list}

end
end

11 for every valueav remaining indom-valuesdo
12 select-path+annot← An li from everyLj ∈ L for whichav ∈ ANNOTATION(li)
13 subs-list-intersect← Intersect thesubs-list’s from each annotation
14 Makesubs-list-intersect thesubs-list of annotation
15 annotation← Intersect annotations in theselect-path+annot
16 Add annotationto partitioned-domain
17 dom-values← dom-values\ {annotation∪ subs-list}

end
Output : partitioned-domain

Algorithm 6: Algorithm to intersect annotations andsubs-list.

by the reduction in thedom-valslist (Lines 10 and 17). We denote an annotation and its

subs-list as follows{annotation-bundle values}[subs-list].

Let us work through the algorithm with an example in which a variableV is constrained

by two constraintsC1 andC2. Consider the scenario shown in Figure 4.5. Let us assume

the following value ordering{v, x, y, z} of the domain ofV . Note that any of these values

could represent a bundle. The valuev has no unmarked annotations and, hence, is not

processed in the first step. Next when working with valuex, the algorithm performs:

{x, y, z}[{v}] ∩ {x, y}[{v}] = {x, y}[{v}]

We delete the values{x, y, v} from the values remaining inDV . Figure 4.6 shows only
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ext−nb−DT(V, C )1 ext−nb−DT(V, C )2

{x,y,z}[{v}]
{z}[{}]

Root Root

{v}[{}]

{x,y}[{v}]

{v}[{}]

Figure 4.5:A scenario.

the annotations of unprocessed domain values after the firststep. Now, when working with

ext−nb−DT(V, C )1 ext−nb−DT(V, C )2

{x,y,z}[{}]
{z}[{}]

RootRoot

Figure 4.6:After processing.

valuez, the algorithm performs:

{x, y, z}[{v}] ∩ {z}[{}] = {z}[{}]

Thus, all domain values are processed and the substitutablevalues detectable by our ap-

proach are indeed detected.

4.4 Improving search performance using substitutability

Search using substitutability proceeds using the same two processes used for DynBndl

described in Sections 3.1.2.1 and 3.1.2.2. These two processes use Algorithm 5 instead

of Algorithm 2, and Algorithm 6 instead of Algorithm 3. When search finds a solution, it
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attempts to generate additional solutions by substitutingvalues from thesubs-list in

the current assignments. Search checks whether this substitution breaks any constraints in

the CSP. When no constraints are broken, the new assignment is output as a solution. No

search is performed using values in thesubs-list.

Exploiting substitutability during search improves performance by the same mecha-

nisms as interchangeability, namely, bundling of no-goodsand bundling of solutions. We

compare the performance of dynamic bundling and that of substitutability with dynamic

bundling. For the following results, we assume a static variable ordering and the same

value ordering for the two approaches.

Theorem 4.1. Given a static variable ordering, search with substitutability and dynamic

bundling never visits more nodes than dynamic bundling.

Sketch of proof. The worst-case scenario for substitutability is when thereare no substi-

tutable values. In this case, the process reduces to search with dynamic bundling. When

substitutable values are detected, they reduce the number of nodes visited irrespective of

whether or not the bundle to which search is restricted leadsto a solution. Therefore,

search detecting substitutability in addition to interchangeability never visits more nodes

than dynamic bundling alone. 2

Theorem 4.2. Given a static variable ordering, search with substitutability and dynamic

bundling never performs more constraint checks than dynamic bundling.

Sketch of proof. As we note in the algorithm to build a ext-DT (see Section 4.2), the

additional steps introduced act on discrimination tree structure. Therefore, given an ext-

DT, there is no need to perform any additional consistency checking to detect substitutable

values. Hence, search using dynamic bundling with substitutability will never check more

constraints than search with dynamic bundling alone. 2



67

Theorem 4.3. Given a static variable ordering, search with substitutability and dynamic

bundling finds a bundle with FBS at least as large as that foundby dynamic bundling.

Sketch of proof. The worst case for our approach occurs when no substitutablevalues

are detected and the solutions are not fatter than those found by dynamic bundling. When

substitutable values are present, solutions can be more representative than those found by

dynamic bundling alone. 2

The algorithms presented in this chapter generalize their predecessors by performing

cheap data-structure management to detect some substitutability relations apparent in a dis-

crimination tree. One additional computational step consists in verifying the consistency

of solutions obtained by simple replacement of a bundle by another, which is an operation

that is not guaranteed to succeed but is not costly to execute. Therefore, the use of sub-

stitutability will likely improve the CPU time performancefor a majority of the CSPs in

practice, but this hypothesis remains to be empirically tested and evaluated.

Summary

In this chapter, we discussed a special form of interchangeability, called substitutability. We

showed how algorithms to detect NI sets can be extended to also detect some substitutable

values. We presented algorithms for both binary and non-binary CSPs. We discussed

integrating substitutability detection with dynamic bundling and theoretically compared its

performance to that of dynamic bundling in terms ofNV, CC and FBS. The experimental

evaluation and validation of the above ideas still need to beconducted.
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Chapter 5

Dynamic Bundling for Databases

This chapter discusses the extension of dynamic bundling todatabase algorithms. This

extension is not a straightforward application of the mechanisms developed in Chapter 3

but requires lifting the concepts and designing new algorithms to apply these concepts in

this new context. We first review some concepts of database relevant to the task at hand

and the challenges of adapting CSP techniques to database engines. Then we introduce a

new sorting-based bundling algorithm suitable for databases, and show its applicability to

materialized views. We also identify areas of applicability in databases to be investigated

in future research, and briefly discuss each one.

The content of this chapter has partially appeared in[Lal and Choueiry, 2004].

5.1 Introduction to database concepts

This section gives an overview of the concepts in database literature relevant to our task.

We first give an introduction to join algorithms followed by an introduction to Materialized

views.
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5.1.1 Join algorithms

The join operator in relational algebra takes as argument two relations and a condition,

known as thejoin condition, that constrains any two or more attributes, one from each of

the two input relations. The notation of a join isR1xθyS, whereR andS are two relations,

x andy are attributes fromR andS respectively, and the join conditionθ is a comparison

operator (e.g.,=,≥,≤, and 6=). Equality is the most commonly used join condition, and

yields theequi-join, which requires that the values of two distinct attributes be the equal.

A natural join is a special case of an equi-join that requires that the attributes themselves

be the same. The join operation is among the most I/O-intensive operators in relational

algebra because it may require multiple scans over the two input relations and also because

the size of the result can be as large as the product of the sizes of these relations.

Join algorithms can be classified into three categories: hash-based, sort-based, and

nested-loop algorithms. All these algorithms attempt to optimize the join by minimiz-

ing the number of times relations are scanned. Hash-based algorithms use hash-tables to

partition relations according to the values of an attribute, and then join the partitions corre-

sponding to the same values. The sort-based approach partitions relations by sorting them

on the attributes involved in the join condition. Thanks to sorting, each tuple in a relation

is compared with tuples of the other relation lying within a fixed range of values, which are

significantly fewer than all possible tuples. Sorting reduces the number of scans of both

relations and speeds up join processing. Nested-loop algorithms are used when relations

fit in memory or when no adequate hashing function or useful sorting order is available.

None of these techniques attempts to compact query results,although this can be beneficial

given the large size of join results. The reduction of the number of I/O operations during

query evaluation is a key factor in determining the efficiency of a database. Extensive re-

search is devoted to the development of query-evaluation plans and evaluation algorithms

that minimize the number of I/O operations.
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Our new join algorithm, described in Section 5.5, adopts theprinciple of the Progressive

Merge Join (PMJ) algorithm of Dittrich et al.[2003]. PMJ is a join algorithm that produces

query results early, and hence can provide valuable information to the query-size estimator.

These are the working conditions that we are targeting. PMJ is an instance of the sort-

merge join algorithms, which have two phases: the sorting phase and the merging phase.

We first describe sort-merge join algorithms in general, then discuss PMJ.

5.1.1.1 Sort-merge join algorithms

In the sorting phase of a sort-merge algorithm for computingthe join of two relations,R1

andR2, the memory of sizeM pages is first filled with pages ofR1. These loaded pages

are then sorted on the join-condition attributes, and stored back to disk as sub-lists, orruns,

of the relations. WhenR1 hasN pages,N
M

runs are generated. This process is repeated for

R2, which we assume to have the same size asR1. At the end of the sorting phase, we have

produced sorted runs ofR1 andR2. Now, the merging phase can start.

We first consider thatM ≥ 2 × N
M

. Now M2

2×N
pages from each of theN

M
runs ofR1

are loaded into memory, and the same is done forR2. The smallest unprocessed tuples

from the pages ofR1 andR2, respectively, are tested for the join condition. The tuples that

satisfy the join condition are joined, and the result written as output. A page is exhausted

when all its tuples have been processed. When a page is exhausted, a page from the same

run is loaded and brought in. WhenM < 2 × N
M

, multiple merge phases are necessary.

Each intermediate merging phase produces longer, but fewer, sorted runs. This process of

generating longer but fewer runs continues until the numberof runs of the two relations is

equal to the number of pages that can fit in memory.

Importantly, this sort-merge algorithm is ablockingalgorithm in the sense that the first

results come only after the sorting phase is completed.
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5.1.1.2 Progressive Merge Join (PMJ)

PMJ delivers results early by joining relations already during the sorting phase[Dittrich

et al., 2003]. Indeed, during the sorting phase, pages from both relations are read into

memory, sorted, and joined to produce early results. Because PMJ produces results early, it

is anon-blocking, or a pipelined, version of the sort-merge join algorithm. The number of

runs generated for each relation is more than that by a general sort-merge algorithm and is

given by M2

4×N
. The merging phase is similar to that of a sort-merge algorithm, except that

PMJ ensures that pages ofR1 andR2 from the same run are not joined again as they have

already produced their results in the sorting phase. The memory requirements of PMJ are

more than those of a sort-merge algorithm because the numberof runs generated during

the sorting phase is double that of a sort-merge algorithm. The number of runs generated

doubles because the memory is shared by both relations. Because of the increased number

of runs, the chances of multiple merging phases taking placeincrease. The production of

early results causes the results of PMJ to be unsorted. However, the unsorted results allow

for more accurate estimation of the result size, which is an important feature.

5.1.2 Introduction to Views

In order to introduce views in databases, we use the particularly compact and effective

introduction to views by Gupta and Mumick[1995], from which most of the following is

taken verbatim.

What is a view?A view is a derived relation defined in terms of base (stored) relations. A

view thus defines a function from a set of base tables to a derived table; this function

is typically recomputed every time a view is referenced.

What is a materialized view?A view can be materialized by storing the tuples of the view

in the database. Index structures can be built on the materialized view. Consequently,
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database accesses to the materialized view can be much faster than recomputing the

view. A materialized view is thus like a cache–a copy of the data that can be accessed

quickly.

Why use materialized views?Like a cache, a materialized view provides fast access to

data; the speed difference may be critical in applications where the query rate is high

and the views are complex so that it is not possible to recompute the view for every

query. Materialized views are useful in applications such as data warehousing, repli-

cation servers, data visualization, and mobile systems. Integrity constraint checking

and query optimization can also benefit from materialized views.

What is view maintenance?Just as a cache gets dirty when the data from which it is copied

is updated, a materialized view gets dirty whenever the underlying base relations are

modified. The process of updating a materialized view in response to changes to the

underlying data is called view maintenance.

What is incremental view maintenance?In most cases it is wasteful to maintain a view by

recomputing it from scratch. Often it is cheaper to compute the changes in the view

to update its materialization. Algorithms that compute changes to a view in response

to changes to the base relations are called incremental viewmaintenance algorithms.

5.2 CSP techniques for join computation

Although the computational problems studied in ConstraintProcessing and in databases

are incredibly similar, few researchers address the overlap of these two areas. Exceptions

include the work by Dechter and Pearl[1989; 1990], Bayardo[1996], and Miranker et al.

[1997]. Table 5.1 summarizes our understanding of how the terminology used in databases

maps into that used in Constraint Processing: In this section we present the motivation
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Table 5.1:Terminology mapping.

DB terminology CSP terminology
Table, relation Constraint (which we call relational constraint)
Join condition Constraint (which we call join-condition constraint)
Relation arity Constraint arity
Attribute CSP variable
Value of an attribute Value of a CSP variable
Domain of an attribute Domain of a CSP variable
Tuple in a table Tuple in a constraint

Tuple allowed by a constraint
Tuple consistent with a constraint

Constraint relation Constraint of linear (in)quality
(in Constraint Databases)
A sequence of natural joinsAll the solutions of the corresponding CSP

behind applying CSP concepts to join computation and the challenges involved.

5.2.1 Motivation

Dynamic bundling, discussed in Chapter 3, produces compactsolutions to a CSP by de-

tecting symmetries in the definition of a constraint. In thischapter, we extend this concept

to the computation of a join query on a database. The idea is todetect symmetries in the

relations on which the join operator is defined, and compute acompacted join result. Each

compacted tuple in the resulting table yields a set of tuplesby making the Cartesian prod-

uct of the values of the tuple’s attributes. The goal of dynamic bundling in CSPs is the

production of multiple, robust solutions at an affordable cost1. The goal of extending this

mechanism to the computation of a join query is to:

1. reduce the number of I/O operations, and

2. produce a result that can be used in data analysis and data mining.

1We showed, in Chapter 3, that the computational cost was in fact significantly reduced.
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While the second goal is outside the scope of this thesis, we achieve the first one as follows:

• We design an algorithm for detecting symmetries in the relations on which the join

query is defined (see Section 5.4). This algorithm does not use any external data

structure such as the discrimination tree, but is entirely based on a sorting mechanism.

• Then, we design a join algorithm that exploits the symmetries detected by the above

bundling algorithm (see Section 5.5).

We project two other important uses of our technique, namely:

Improving query-size estimation: Indeed, the fact that the size of the compacted tuples

produced by our technique may be large is an indicator of highredundancy in the

resulting join relation. This information can be used to boost the estimate of query-

result size, which is particularly relevant to query planning.

Supporting data analysis and mining: The fact that these compacted results group sim-

ilar solutions uncover semantic information that hold among the data items that is

useful for data analysis. Let us illustrate this advantage with the following two-

relation scenario. The relation

Customer_List(Custid, Age, Gender)

stores demographic information of all customers. The relation

Customer_Choice(Custid, Favorite_Product)

stores choices of some customers from an online survey. The query to find the fa-

vorite products by age:

SELECT Customer_List.Custid, Favorite_Product, Age

FROM Customer_Choice, Customer_List

WHERE Customer_Choice.Custid = Cust_List.Custid
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Our techniques will produce results where customers with same product and age

groups are bundled up together. This additional information can be used for data

mining and in packages for data analysis.

5.2.2 Challenges

The challenge lies in adapting CSP techniques of to fit the Database paradigm. We list here

the primary differences between the two fields, and discuss our solutions to porting CSP

algorithms to databases.

5.2.2.1 Number of I/O operations and memory usage

All database operations are optimized towards minimizing the number of I/O operations

performed as these are the most time-consuming operations.Typically, in Relational databases,

the processed data cannot large cannot be loaded at the same into the main memory. All

join algorithms are sensitive to this fact. The number of CPUoperations performed is not

considered as a significant factor. The CSP community, on theother hand, focuses on

minimizing the number of CPU operations, often by introducing memory-intensive data-

structures. Typically, in CSP algorithms, the main memory is not a bottleneck.

The algorithm for computing domain partitions relies on thenb-DT, which can, in the

worst case, be as large as the relation (see Section 3.1). In the database context, we cannot

afford such a large data structure. For this reason, our algorithm for computing the bundles

of the input relations to the join query heavily uses sortingand requires data structures that

are significantly lighter than the nb-DT. Further, our dynamic bundling algorithm assumes

that the constraints are available in memory (see Section 3.2). In the context of databases,

we are able to load only a sub-set of a relation in memory at a given time. Consequently,

we modify the dynamic bundling algorithm to allow it to operate on the portions of the

relations loaded in the main memory.
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5.2.2.2 Fit in the iterator/lazy model of database engines

As we discuss in Section 5.3, computing the join query of two relations corresponds to

finding all the solutions of the CSP that models the join query. In database, the interface of

the join algorithm to the query processor is an iterator. Thequery processor treats the join

algorithm as a black-box that has the two following interface methods:

• nextTuple(): returns the next tuple in the result of the join.

• hasMoreTuples(): returns a boolean value indicating whether there are any

more tuples remaining in the join.

These two methods indicate that the algorithm must be able toremember its state after

one tuple has been computed and be able to resume computationof the join when the

nextTuple() or hasMoreTuples() is invoked. Our dynamic bundling algorithm

does not directly fit in this interface. Our algorithms described below provide an iterator

interface.

5.3 Modeling a join query as a CSP

In this section, we show how to model a join query as a CSP usingthe following join query

as a running example:

SELECT R1.A, R1.B, R1.C

FROM R1, R2

WHERE R1.A = R2.A AND R1.B = R2.B AND R1.C = R2.C

We identify one straightforward representation of this query as a CSP where each attribute

is mapped into a CSP variable. Because this particular example is an equi-join, we also

identify an alternative CSP representation. We show in Figures 5.1 and 5.2 the constraint
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networks of these two representations, and specify the corresponding CSPsP = {V ,D, C}

as follows:

Join−condition constraint
Relational constraint

R1.BR1.A

R1 R2

R2.CR2.BR2.A

R1.C

Figure 5.1:A join as a CSP.

Relational constraint

R1.A = R2.A

R1.C = R2.CR1.B = R2.B

R1 R2

Figure 5.2:An equi-join as a CSP.

1. The attributes as CSP variables.In the first mapping,V is the set of attributes in

the join query. There are 6 variables in our example, which are the attributesR1.A,

R2.A, R1.B, R2.B, R1.C, andR2.C (see Figure 5.1). In the second mapping,

which is an equi-join query, the attributes joined by an equality constraint can be

represented by a unique CSP variable. The CSP representing the query consists of

only the 3 variables:R1.A = R2.A, R1.B =R2.B, andR1.C = R2.C (see Fig-

ure 5.2). When the query lists the two equated attributes in itsSELECT clause, the

CSP variable is simply repeated in the output.

2. The attribute values as variable domains.D is the set of the domains of the variables.

Under the first mapping, the domain of the variables is the setof values that the

attribute takes in the relation. In the second mapping, the domain of the CSP variable

representing the equated attributes is the union of the set of values that the equated

attributes take in their respective relations.

3. The relations and join conditions as CSP constraints.C is the set of constraints of the

CSP. These constraints originate from two sources, namely:the relations to be joined

and the join conditions. The relations to be joined directlymap to CSP constraints
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that are expressed extensionally. We call these constraintsrelational constraints. The

join conditions map directly to CSP constraints expressed intensionally, which we

call join-condition constraints. In the first mapping, there are 3 equality constraints

due to the join conditions in the query. In the second mapping, where the equated

attributes are represented by a unique variable, the join condition is implicit in the

CSP representation and does not need to be expressed.

Our algorithm for bundling non-binary CSPs requires that constraints be enumerated

(see Section 3.1). However, for computing interchangeability in the database scenario,

we do not enumerate the join-condition constraints or storethem explicitly. Instead, we

proceed as follows. When joining two relations specified in extension, the resulting tuple

is checked for consistency with the join-conditions specified in intension as this tuple is

being built up. When the values in the partially built tuple are not consistent with a join-

condition constraint, the tuple is discarded, as we explainin Section 5.5.1. This operation

is possible because we are guaranteed that all the CSP variables appear in at least one

constraint defined in extension, and thus all the join-condition constraints will necessarily

be checked for consistency.

5.4 Sort-based bundling

This section describes the computation of interchangeablevalues (i.e., a bundle) of an at-

tribute in a relation. Since our join algorithm is a sort-merge algorithm, the relations must

first be sorted. Thus, we need to select the order of the attributes for sorting the relations.

This order is necessarily static because we cannot afford tore-sort relations during pro-

cessing. In terms of CSPs, this corresponds to a static ordering of the variables. We first

describe our attribute ordering heuristic then the technique for computing interchangeabil-

ity.
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5.4.1 Heuristic for variable ordering

Let V be the set of variables in the CSP representing a query. We denote byVq a first-in

first-out queue of these ordered variables. We describe herehow we build this queue. First,

we initializeVq to a queue with one arbitrarily chosen variable2. We denote byVu the set

of unordered variables (i.e.,Vu = V \ Vq). Let Vc be the last variable added toVq. The next

variableVn in the order is chosen fromVu as follows:

1. Consider the variables{Vi} ⊆ Vu such thatVi is linked toVc with a join-condition

constraintCi. Vn is selected as the variable for which|Vu∩scope(Ci)| is the smallest.

2. Vn is selected as any variable from the same relation asVc.

3. Vn is selected arbitrarily fromVu.

If no variables satisfy a rule in the sequence above, the nextrule in sequence is applied to

Vu. Ties are broken by the the next rule in sequence.Vn is removed fromVu and added

to Vq. The process is repeated untilVu is empty. The goal of this ordering is to allow the

checking of join-condition constraints as early as possible. For the example of Figure 5.1,

one possible ordering is the sequenceR1.A, R2.A, R1.B, R2.B, R1.C, andR2.C.

Note that the ordering of the variables affects the size of the generated bundles and that

different ordering heuristics still need to be investigated.

5.4.2 The principle

Given the queueVq of ordered variables, we build the bundles dynamically while joining

the tuples loaded in memory. Variables in the queue are considered in sequence. The

variable under consideration is called the current variable Vc, the set of previous ones is

2One can elaborate heuristics for choosing the first variable. One possibility is to exploit the meta-data
maintained by the DBMS such as the number of unique values of an attribute. Other heuristics may choose
first the attribute that participates in the largest number of constraints. The design and evaluation of such
heuristics still needs to be investigated.
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denoted byVp, and the set of remaining ones byVf . Vf is initialized toVq, keeping the

same order of variables, andVp is set to nil. First, we find a bundle forVc as described in

Section 5.4.4. Then, we determine the subset of values in thebundle that is consistent with

at least one bundle from each of the variables inVf with a join-condition constraint with

Vc (see Algorithm 8). If such a subset is not empty, we assign it to Vc. In terms of CSPs,

this corresponds to instantiatingVc. We moveVc to Vp, and a newVc is chosen as the first

variable inVf . Otherwise, if the consistent subset forVc is empty, we compute the next

bundle ofVc from the remaining tuples and repeat the above operation. Wecontinue this

process until all the variables are instantiated. Then, we output these instantiations as the

next nested tuple of the join.

Consider the scenario where a next bundle forVc, an attribute of relationR1, needs to be

computed during a sequence of instantiations (see Figure 5.3). The bundle depends on the

R2.BR2.A

R1

V

R1.A
Relational constraint

R1.B R1.C R2.C

R2

V Vp c f

Join−condition constraint

Figure 5.3:Instantiation sequence.

instantiation of variables fromR1 in Vp (i.e., previously instantiated variables). Although

the computed bundle ofVc does not directly depend on the instantiations of past variables

from R2, the bundle subset to be assigned toVc must be consistent with those variables of

Vp that share a join-condition constraint withVc (a condition enforced by Algorithm 8 of

Section 5.5). When such a variable is fromR2, then the instantiation ofVc is affected by

the instantiations of variables fromR2.

Below, we describe the method for computing a bundle ofVc, an attribute of relation

R, given that some of the variables ofR are inVp. The bundles are computed on the tuples

of R present in the memory, calledR’. First,R’ is sorted with the variable coming earliest
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in the static ordering (see Section 5.4.1) as the primary key, the one coming second as the

secondary key, and so on. The sorting operation clusters tuples with the same values for

variables as they appear in the static ordering.

5.4.3 Data structures

We first introduce the various data structures used for computing the bundles.

• Current-Inst is a record of size equal to the number of variables in the CSP.It is

used to store the current instantiations of variables ofR in Vp. This data structure

corresponds to a current path in a search tree. When a variable is assigned a bundle

of size greater than one, only the smallest value in the bundle is stored inCurrent-

Inst, as a representative of the bundle.

• Processed-Valuesis a similar record storing cumulatively all non-representative val-

ues of the assigned bundles. While computing bundles ofVc, tuples corresponding to

values forVc in Processed-Valuesare ignored.

• Current-Constraintis a selection of the relationR’ (of whichVc is an attribute) such

that:

1. Past variables have the values stored inCurrent-Inst, and

2. the value ofVc is greater than the previous instantiation ofVc.

Initially, the Current-Constraintis set toR’.

The tuples with the same value forVc in Current-Constraintform a partitionp, and the

value ofVc in this partition is denoted VALUE(p). Figure 5.4 shows these data-structures

under various scenarios. A partitionp is marked ascheckedwhen VALUE(p) is part of an

instantiation bundle or whenp is selected to be compared with other partitions. Otherwise,
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R1.A = 1

R1.B = 12

R1.C = ?

Current−Inst Processed−Values

R1.A = 5

R1.B = 13, 14

V p = {R1.A, R1.B}

1

1

1

2

5

5

5

12 

12 

13

13

14

14

10 25

23

23

23

23

23

23

R1

Current−Constraint

R1.CR1.BR1.A

for V  = R1.Bc
given R1.A = (1, 5)

Partition of R1.A, with
Value(p) = 5when V  = R1.Ac

II

III
I

R1.A = (1, 5)
R1.B = (12, 13, 14)

Figure 5.4:Data structures shown under 3 different scenarios.

the partition is consideredunchecked. Pc refers to the unchecked partition with the lowest

value ofVc in Current-Constraint. When no checked partition exists forVc, Pc is set to a

dummy value such as -1.

5.4.4 Algorithm for bundle computation

Algorithm 7 computes the next bundle ofVc given Pc. NEXT-PARTITION(p) returns the

first uncheckedpartition inCurrent-Constraintfollowing the partitionp. Forp= -1, NEXT-

PARTITION(p) returns the first partition inCurrent-Constraint. Pc moves to the next unchecked

partition at every call of Algorithm 7.

Algorithm 7 is called by Algorithm 8 of Section 5.5 for computing the bundlebc of Vc

and the bundles of the variablesVi connected toVc with a join-condition constraint. Further,

Algorithm 8 determines the subsetInstof the bundlebc that is consistent with the variables

Vi. This consistent set of valuesInst is then used to instantiateVc. This instantiation

operation includes the update of the data structuresCurrent-InstandProcessed-Values. In

particular, the values inProcessed-Valuesthat are lesser than those associated withPc are

deleted.

We can compute all the bundles ofVc by repeatedly calling Algorithm 7, then assigning

the returned bundle toVc until Algorithm 7 returnsnil. Thus, the algorithm described
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Input : Vc, Current-Constraint
1 bundle← nil, the bundle to return
2 Pc ← NEXT-PARTITION(Pc)
3 Mark Pc as checked
4 Push VALUE(Pc) into bundle
5 P ′

c ← NEXT-PARTITION(Pc)
6 while P ′

c do
7 t← tuples ofPc

8 p← tuples ofP ′
c

9 if πVf
(t) ≡ πVf

(p) then push VALUE(P ′
c) in bundle

10 P ′
c ← NEXT-PARTITION(P ′

c)

end
Output : bundle

Algorithm 7: Algorithm to generate the next bundle ofVc.

here implements a lazy approach for computing the bundles and avoids storing the entire

partition of the domain of every variable.

In the method described aboveProcessed-Valuesis the data structure that occupies the

most space. Whereas all the other data structures have sizesproportional to the number

of variables (and therefore cause insignificant memory overhead), the size ofProcessed-

Valuesdepends on the number of tuples and the amount of bundling performed. The worst-

case scenario forProcessed-Valuesoccurs when all the values of a variable are in a single

bundle. In this case,Processed-Valuesholds all the unique values of that variable. Suppose

that there areN tuples in the relation, the relation hask attributes, and the number of unique

values of the variable isN
l
, wherel is the average length of each partition ofVc. Then, the

size ofProcessed-Valuesis N
l×k

tuples. However, if this bundle goes on to form a result

tuple, it will save more space than required for bundling. Even when this bundle fails to

yield a result tuple, it still saves on many comparisons thereby speeding up computation.
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5.5 Algorithm for join computation using dynamic bundling

This section explains how to use bundling while computing a join as a depth-first search,

as sketched in Section 5.4.2. The join algorithm discussed in this section is based on the

Progressive Merge Join. Our technique can be easily adaptedto the simpler sort-merge

join since PMJ is just an extension of sort-merge. We first describe the in-memory join

algorithm, and then place it in the schema of the external join algorithm.

5.5.1 Join computation in memory

We present here the algorithm to join the sub-sets of two relations that are currently in

memory. For the sake of readability, Algorithm 8 is restricted to binary join conditions

(i.e., where the join conditions are between two attributesfrom different relations). It can

be easily extended to join conditions with more than two attributes.

Algorithm 8 takes as input the level ofVc in the search tree (i.e., depth) and the current

path represented by the data structureCurrent-Solution. Current-Solutionis a record that

stores the assigned bundles to the variables inVp. (Note thatCurrent-Solutioncannot be ob-

tained fromCurrent-InstandProcessed-Values, which were introduced in Section 5.4.3).

Variable[] is the array of variables stored according to the static ordering sequence dis-

cussed in Section 5.4.1. When BACKTRACK is called the value forVariable[depth] in

Current-Instis reset, theProcessed-Valuesfor the variable is emptied, the value for the

variable inCurrent-Solutionis reset, andCurrent-Constraintis re-computed, thus undo-

ing the effects of the previous instantiation. The functionCOMMON() computes the set of

values in the input bundles that are consistent with each other given the applicable join-

condition constraints. Because this algorithm combines sorting and constraint propagation

with bundling, it produces solutions quickly, which compensates for the effort spent on

bundling.
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Input : depth, Current-Solution

1 while (depth≤| V |) and (depth≥ 1) do
2 Vc ← Variable[depth]
3 bc ← next bundle forVc using Algorithm 7
4 if bc is emptythen
5 BACKTRACK, decrementdepth, and GOTO L1

end
6 Inst← bc

7 repeat
8 foreachVi ∈ Vf connected toVc by a join-condition constraintdo
9 ConsiderRi the relational constraint that applies toVi

10 Selectri from Ri according toCurrent-Solution
11 repeat
12 Find a bundlebi applying Algorithm 7 onVi andri

13 if bi is emptythen break
14 Ii ← COMMON(bi, bc)

until Ii is not empty;
15 if no bi then BACKTRACK, decrementdepth and Goto L1

end
16 Inst← COMMON(I0, I1, . . ., In)

until Inst is not empty;
17 InstantiateVc with Inst
18 Current-Solution[Vc] ← Inst
19 Incrementdepth
20 L1:

end
Output : Current-Solution

Algorithm 8: Algorithm to compute the in-memory join using bundling.

5.5.2 Structure of the overall join algorithm

We have discussed join computation of tuples that are in memory and now describe the

steps for computing the join of complete relations using ourin-memory join algorithm,

Algorithm 8. The join of the two input relations is computed using an approach similar to

PMJ, in the two phases, sorting phase and merging phase, discussed below.
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5.5.2.1 Sorting phase

The sorting phase is similar to PMJ, except that for joining the pages of relations in memory

we use the bundling-based technique of Algorithm 8. The sorting phase produces the early

results and also sorted sub-lists, or runs, of the relations. These runs are stored back on

disk and used in the merging phase of the join. Since the memory is filled with pages from

both relations, the number of runs generated for each relation is 2N
M

.

5.5.2.2 Merging phase

In the merging phase, as for PMJ,M2

4×N
pages from every run created at the sorting phase

are kept in memory. LetP rel
i represent the pages in memory of relationrel andith run,

whererel ∈ {0, 1} andi ∈ {1, 2, . . . , 2N
M
}. We define the arraysolutionas follows:

solution[i][j] = P 0
i 1 P 1

j , i 6= j (5.1)

We store only the first solution of aP 0
i 1 P 1

j in the array elementsolution[i][j]. The

minimum solution fromsolution[][] is the next result of the join. The next solution from the

pages that gave the minimum solution is then computed and used to fill the corresponding

place insolution[][]. A pageP rel
i is removed from memory and replaced with another page

from the same run only if it satisfies the following two conditions for every pageP 1−rel
j .

P rel
i is being joined with:

1. No more join tuples result fromP rel
i 1 P 1−rel

j , and

2. the last tuple inP rel
i is less than that ofP rel

j .

The tuples are compared using the same comparison criteria as the ones used for sorting.

These conditions ensure the tuples are produced in sorted order (during the merging phase)

and that the algorithm is complete.
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5.6 Implementation and experiments

One of the goals of the XXL library[den Berckenet al., 2001] is to provide an infrastructure

for evaluating new algorithms in databases. For example, PMJ was evaluated experimen-

tally using this library. In our experience, XXL provides a good infrastructure for building

new database algorithms through its rich cursor algebra built on top of Java’s iterator in-

terface. We implemented our join algorithm by extending theBUFFEREDCURSORclass of

the XXL library. The current implementation is a proof of concept and offers much room

for improvement.

To show the feasibility of our technique, we tested our join algorithm on randomly

generated relations and on data from a real-world resource allocation problem in devel-

opment in our group[Lim et al., 2004]. For the real-world application, we computed the

sequence of the natural join of three relations, with 3, 4, and 3 attributes respectively. The

corresponding CSP has 4 variables, with domain size 3, 3, 300, and 250 respectively. The

resulting join of size 69 was compressed down to 32 nested tuples. For the random prob-

lems, we used relations ofn = 10,000 tuples. We set the page size to 200 tuples and the

available memory size toM = 2N
5

, whereN = 10000/200. We executed the query of our

running example over five such pairs of relations. The resultof the query had an average

of 8,500 tuples, which indicates that the the query is a selective one. The number of tuples

produced by bundling was reduced to 5,760 bundled tuples, anaverage of 1.48 tuples per

bundle. The number of pages saved was more thanN
4

and slightly less thanN
3

. Even if

the worst-case scenario for the join occurred for every in-memory join (which is a highly

unlikely event), the additional cost due to bundling is given by N
l×k

, whereN
l

is the number

of unique values of an attribute andk is the number of attributes in one relation (which is 3

here). For the worst case whenl = 1, the overhead in terms of pages is negligible. Again,

the worst-case described here is of the current implementation, which offers much room
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for improvement.

5.7 View materialization using dynamic bundling

In this section, we discuss the benefits of using our dynamic-bundling-based join algorithm

for view materialization. We also discuss issues related toview maintenance using dynamic

bundling.

5.7.1 Benefits of materializing views with bundling

View materialization is a process that executes the query defining the view and stores the

result as a new table in the database. Typically views are materialized when it is expensive

(in terms of I/O operations) to recompute them every time they are queried. Views that

are expensive to recompute invariably involve joins. We canmaterialize views defined

by joins using a dynamic-bundling-based join algorithm. The dynamic-bundling-based

join-algorithm produces compacted results that cause no overhead for ‘de-compaction.’ A

compact representation of the query results leads to a materialized view that stores more

tuples per page. Consequently, when the materialized view is queried the query processor

reads fewer pages, thus reducing the amount of I/O performedand thereby speeding up

query processing. These advantages make the dynamic-bundling-based join algorithm an

ideal tool for materializing views.

5.7.2 View maintenance

Before discussing the issues related to maintaining bundled materialized views, we sum-

marize known important concepts in view maintenance.
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5.7.2.1 Background of view maintenance

View maintenance reflects the effect, on the materialized view, of an update to the base

tables (i.e., the original tables). Views are typically maintained and updated incrementally,

and the maintenance is transparent to the database user[Gupta and Mumick, 1995]. In

incremental maintenance, we compute the change to the materialized view from the change

in the base relations. Consequently, most of the view maintenance techniques treat the view

definition as a mathematical formula and maintain the view asfollows.

Computing the update: The view maintenance techniques apply a differentiation step to

the formula defining the view in order to obtain a sequence of operations to update

the materialized view[Ceri and Widom, 1991].

Refreshing the view: The operations performed on the view are a sequence of one or more

insertions and/or deletions. The process of executing these operations is known as

the refreshstep. A view can be refreshed with the transaction that updates the base

tables (i.e., immediate update), or the refresh can be delayed (i.e., deferred update).

5.7.2.2 View maintenance and bundling

Below, we study whether there exists a speed up or an additional cost in querying a bun-

dled materialized view and in maintaining such view. From the above discussion on view

maintenance, we note that incremental maintenance of viewsdoes not depend on the stor-

age format of the tuples (i.e., bundled or otherwise). Further, the process of determining

the tuples to insert or delete from the view does not depend onthe storage format of the

materialized view. We now address two issues:

1. Is it more difficult to search or query a bundled materialized view than a conventional

one?
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2. Is it more expensive to refresh a bundled view than to refresh a conventional view?

The remainder of the section addresses these questions.

5.7.2.3 Searching bundled materialized views

Searches or queries on materialized views are often optimized by generating indexes on

one ore more attributes of the view. Tree-based indexing methods, such as B+ trees, are

popular indexing strategies. Such strategies can be easilyextended to create indexes for

bundled materialized views. The basic structure of an indexis a list of value-pointer pairs.

Figure 5.5 shows one such simple tree-based index on an attribute of a view. The pointer
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shown in the index is the row identifier (rid) of the tuple. Anrid typically stores the page

location of the tuple and the offset into the page. The presence of nested values in the view

does not interfere in the generation of these value-pointerpairs. Figure 5.6 shows an index

on a bundled materialized view. The differences between thetwo indexing schemes are as

follows:
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• In a bundled materialized-view, two different values may have the samerid whereas

in a conventional view, arid is associated with only one value.

• The number of rows, and hence the number ofrids and the size of the index, in a

bundled materialized view may be less than the corresponding ones in a conventional

view.

These differences do not hamper in any way searching the viewusing an index.

Another approach to speeding up searches on materialized views is by sorting materi-

alized view on an attribute. Although this approach is not aseffective as using indices, it

is however used when view updates are so frequent that maintaining an index causes an

expensive overhead. Bundled materialized views cannot be sorted using an ordering that

will be useful to searching, which constitutes a limitationof bundled materialized views.

5.7.2.4 Refreshing bundled materialized views

Refreshing bundled materialized views is a straightforward operation. In order to reflect

the changes made in the base tables, we can use either one of the two above-listed com-

mon approaches (i.e., immediate or deferred). As for a conventional view, a new tuple is

appended to the end of the bundled view. Deleting a row requires searching for the tuple to

delete. Searching can be optimized by the use of indices. If the tuple to be deleted is part

of a bundled tuple, only the values representing the tuple todelete are removed, otherwise

the entire tuple is deleted.

5.8 Related work

Below, we discuss works related to compacting databases and/or modeling database prob-

lems as a CSP.
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The idea of data compression is not new and is used in compressed database systems

[Roth and Horn, 1993]. In these systems, data is stored in a compressed format on disk. It

is decompressed either while loading it into memory or whileprocessing a query. The com-

pression algorithms are applied at the attribute level and are typically dictionary-based tech-

niques, which are less CPU-intensive than other classical compression techniques[West-

mannet al., 2000]. Although most of the work in compressed databases applied to rela-

tions with numerical attributes[Roth and Horn, 1993], investigations on string attributes

also were carried out by Chen et al.[2001]. Another feature of compressed databases that

differs from our approach is that the query results passed tothe next operator are uncom-

pressed and thus are likely to be large. Our work differs fromthe above in that we reduce

some of the redundancy present between tuples of a given relation. Our techniques are

independent of the data type of an attribute. Further, the results of our queries are com-

pacted, thereby assisting the next operator and reducing the storage of materialized views

on disk. When these compacted results are loaded into memoryfor query processing, the

de-compaction operation is effectively cost-free. The only costs associated with our tech-

niques are those for performing the compaction. Finally, the compaction is carried out

while the query is being evaluated, and is not a distinct function performed in separation.

Mamoulis and Papadias present a spatial-join algorithm using mechanisms of search

with forward checking[1998], which are fundamental mechanisms in Constraint Process-

ing. They store the relations representing spatial data in R-tree structures, and use the

structures to avoid unnecessary operations when computinga join. The constraints under

consideration are binary. The key idea is to reduce the computational cost by propagating

the effects of search, thereby detecting failure early. Ourtechnique is not restricted to bi-

nary constraints, and is applicable to constraints of any arity. Further, it differs from the

approach of Mamoulis and Papadias in that it reduces I/O operations and compacts join

results in addition to reducing computational operations.
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Bernstein and Chiu[1981], Wallace et al.[1995], Bayardo[1996], Miranker et al.

[1997] exploit the standard consistency-checking techniques of Constraint Processing to

reduce the number of the intermediate tuples of a sequence ofjoins. While Wallace et al.

consider Datalog queries, Bayardo and Miranker et al. studyrelational and object-oriented

databases. Our CSP model of join query differs from their work in that the constraints in

our model include both relational and join-condition constraints, whereas Bayardo and Mi-

ranker et al. model the relational constraints as CSP variables and only the join-condition

constraints as CSP constraints. Thus, our model is finer in that it allows a more flexible

ordering of the variables of the CSP, which increases the performance of bundling.

Finally, Rich et al.[1993] propose to group the tuples with the same value of the join at-

tribute (redundant value). Their approach does not bundle up the values of the join attribute

or exploit redundancies that may be present in the grouped sub-relations.

Summary

In this chapter, we discussed the use of dynamic bundling in databases. We focused our

investigations on the join operator, which we modeled as a CSP. We presented a space-

efficient sort-based bundling algorithm and a dynamic-bundling-based join-algorithm, which

uses the framework of the Progressive Merge Join algorithm.Our preliminary implemen-

tation established that the savings due to bundling are worthwhile even in the worst-case

scenario. Finally, we discussed the use of our approach in materialized views.
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Chapter 6

Future Work and Conclusions

In this chapter, we suggest some directions for future research and draw the conclusions of

the thesis.

6.1 Future work

We first discuss how sorting the definitions of the constraints, which is a popular opera-

tion in databases but not in CSPs, can improve the time complexity of the bundling al-

gorithm on CSPs. Then we envision some possibilities for using bundling in databases

beyond query join computation, such as in Constraint Databases[Revesz, 2002], sampling

methods, main-memory databases, and automatic categorization of query results. We also

present an alternative approach for computing joins by using bundled relations.

6.1.1 Sorting constraints to improve bundling

In order to reduce the complexity of our bundling algorithms, we can sort the definitions

of the constraints. By sorting a constraint, we introduce structure to the constraint that can

be exploited for quickly comparing tuples when building a discrimination tree to compute
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interchangeability. We suspect that sorting would improvethe time and space complexity,

as well as the practical performance, of the algorithms we presented in this thesis. One pos-

sible impediment to this strategy would be its combination with dynamic variable ordering.

The use of dynamic variable ordering during search significantly improves the performance

of search in practice. Sorting constraint definitions when using dynamic variable ordering

would require frequent re-sorting of the constraints, which could be prohibitively expen-

sive.

Consequently, there is a trade-off that remains to be investigated between the benefits

of sorting the constraint definitions to improve the performance of bundling and the cost of

frequent resorting under dynamic ordering of variables in search.

6.1.2 Continuous CSPs and constraint databases

Our techniques are designed for finite domains. It would be interesting to apply the con-

cepts and extend our techniques to infinite domain CSPs, usually called continuous CSPs.

Such an extension is particularly useful in the context of constraint databases, such as in

spatial databases, where the value of an attribute is a continuous interval[Revesz, 2002].

6.1.3 Sampling methods

We speculate here that the materialized views produced using dynamic bundling can help

the sampling operator to sample more accurately. Exploratory analysis of data does not

require exact answers to the queries. Results based on a sampling of data often prove satis-

factory in exploratory analysis. To answer queries used forexploratory analysis, the query

processor uses the sampling operator, which produces a subset of the relation it acts upon.

In general, the query processor can improve the effectiveness and accuracy of the sam-

pling operator by pushing it down in the query tree closer to the base relations[Gryzet al.,
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2004]. IBM’s DB2 implements sampling using two operators, RAND and TABLESAM-

PLE. The TABLESAMPLE operator is more effective than RAND, however it can only

be applied to base tables or materialized views. Gryz et al.[2004] proposed two methods

that enable pushing the sampling operator closer to the basetables and consequently al-

low the query planner to choose the TABLESAMPLE operator over RAND. The authors

suggest materializing results of intermediate queries as one of the approaches.

We believe that the materialized views produced using dynamic bundling can improve

the accuracy of TABLESAMPLE. Our claim is based on the fact that a bundled tuple

is more representative of the content of the table and can be given more weight while

sampling, thus making the sampled query-results a better approximation of the results of

the whole relations. This improvement will be in addition tothe space saved, thanks to

dynamic bundling, by the compaction of the materialized view.

6.1.4 Main-memory databases

In his keynote address in SIGMOD 2004, Jim Gray[2004] mentioned main-memory databases

as a promising research area given that large sized main-memory, up-to tera bytes, have be-

come common. In the context of such large memory, the fact that random access is consid-

erably slower than sequential access becomes critical to performance. In such a scenario,

algorithms producing related results clustered together (similar to the bundled results of

dynamic bundling) are valuable to the query processor. Further, with such large memory,

the query processor will give priority to optimizing the number of comparisons over the

amount of memory needed to process the queries. This priority matches that of most algo-

rithms in Constraint Processing. Therefore, we identify main-memory databases as an area

where algorithms from Constraint processing can improve query evaluation. Interestingly,

no contributions on main-memory databases were presented at SIGMOD 2004, and, hence,

this research direction may be a particularly promising andrewarding one.
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6.1.5 Automatic categorization of query results

In this section, we discuss how modeling query execution as an interactive and incremental

search algorithm can possibly minimize the amount of query processing when computing

query results that are categorized using the algorithms of Chakrabarti et al.[2004].

The authors address the problem of information overload of users due to large query

results by automatically categorizing the results. They develop a categorization technique

that identifies attributes to use for creating categories, and the technique also suggests an

ordering of the categorizing attributes. Let us consider the example of a user searching for

a home to purchase. The categorization algorithm identifiesNeighborhood, Price,

and #Bedrooms as the attributes to use for effective categorization. It also gives an or-

dering of attributes as{Neighborhood, Price, #Bedrooms}. For every attribute, the

categorization algorithm generates categories (i.e., ranges) for the results. For example, the

algorithm may choose three categories of price ranges (e.g., 200K–225K, 225K–250K, and

250K–300K), and three categories for number of bedrooms (e.g., 1–2, 3–4, and 5–9).

The results are presented to the user as a hierarchical tree.The user is initially shown

the root, which is used only as a structural element and givesaccess to the complete result

of the query. The categories of the first attribute, hereNeighborhood, are children of

the root node. The categories ofPrice are the children nodes of aNeighborhood node

and so on. The leaf nodes of the tree are the query results. Theuser can process the root

and all non-leaf nodes in two ways:

1. View the results at that level.

2. Expandthe node to see more categories (nodes).

In their paper, Chakrabarti et al. define and study the cost model for measuring the

user’s effort spent in browsing through the data. They focuson queries that do not involve

any aggregations and are simple Select-Project-Join (SPJ)queries.
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The current work does not address the issue of optimizing query evaluation knowing

that results will be categorized. An interesting, but yet speculative, direction can be lazy

evaluation of the query results responding to the expansionsequence of the user. Note that

the user is expanding one attribute at a time, which is a variable in CSP terminology. The

expansion of a tree node can be interpreted as instantiatinga variable. We can model the

query execution as solving a CSP using search and compute thequery result incrementally

as the user expands nodes of the tree. If a user does not expanda majority of the tree, then

the approach described above can save a significant amount ofcomputation. The issues to

be addressed in this approach:

• When implementing such a strategy, the relational constraints may be challenging to

implement. A mechanism to maintain the coupling between values of attributes from

the same tuple will have to be enforced.

• The lazy evaluation method also has the risk of presenting values to the user that will

need to be backtracked upon later as more variables are instantiated. One solution

could be to show the path leads to an empty set. Using strongerlook-ahead strategies

than simple forward checking (e.g., maintaining arc-consistency[Sabin and Freuder,

1997]) in dynamic bundling may reduce the severity of this problem. However, user

frustration with empty results may remain an issue.

6.1.6 Computing joins using bundled relations

The bundling-based join algorithm presented in Chapter 5 computes the join of normal

(i.e., ‘non-bundled’) relations to produce a bundled result. One interesting alternative to

investigate consists in storing the input relations in a bundled form, and using these bundled

relations, instead of the normal relations, for query processing[Revesz, 2005]. Figure 6.1

shows the process explored in Chapter 5, and Figure 6.2 illustrates the alternative.



99

R2R1

R2R1
(bundled)

Figure 6.1:Bundling-based join algo-
rithm of Chapter 5.

R2 (bundled)

R2

R1(bundled)

R1

R2R1

bundled)
(differently

Bundling

Figure 6.2: An alternative approach:
joining bundled relations.

The advantage of this alternative approach is that bundled relations use less disk space

than a normal relation. Further, when the query processor loads the bundled relations into

the main-memory, the bundled relations occupy less main-memory than the original ones,

thereby reducing the number of I/O operations. It is interesting to investigate whether or

not the join algorithm presented in Chapter 5 can take the bundled relations as input. One

of the challenges is the handling of bundles that are broken by join-condition constraints.

Note that the detection of new symmetries may also arise as others are broken.

We re-state this idea using CSP terminology. Each attributeof a relation is a variable,

and the relation itself is a constraint on the variable. The idea is to compute the NI sets for

all variables given their respective relational constraints. Next, we re-create the relational

constraints by using bundles instead of singletons in the constraint tuples. We use these

bundled constraints when joining two relations while accounting for any join-condition

constraints.

Once we have determined that the new approach is feasible, one still needs to compare

both approaches, their cost, and advantages.
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6.2 Conclusions

We presented an efficient method of computing Neighborhood Interchangeability (NI) in

non-binary CSPs. We used the NI computation dynamically in search to solve non-binary

CSPs and produce robust solutions. We showed that dynamic bundling is guaranteed never

to perform worse than non-bundling when finding all solutions. We conducted extensive

experiments to compare DynBndl and FC when finding one solution and to study the ef-

fect on performance of DynBndl with varying CSP parameters.We established empirically

that in the phase transition region, DynBndl produces multiple solutions and also performs

significantly better than FC in terms of CPU time,NV andCC. We also designed and im-

plemented a better implementation strategy for non-binaryforward checking. We showed

how the DT for binary CSPs can be extended to detect some substitutable values and also

presented a technique for non-binary CSPs.

We reviewed the database literature and analyzed the connections between the fields

of Constraint Satisfaction and Databases. We presented a new approach to modeling a

join query as a CSP. We developed a sort-based bundling algorithm that is more suited to

database requirements. We then used the new bundling algorithm to develop a bundling-

based join algorithm. We showed, with a proof of concept implementation, that such a join

algorithm is feasible and advantageous. We showed that the join algorithm can be used as

a view materialization algorithm and can lead to savings in disk space and main memory.

Finally, we identified future directions for research.
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Appendix A

Results of Experiments

This appendix presents the results of experiments over all the 16 datasets. The tables show

the percentage improvement, the upper (UL) and lower (LL) confidence levels of the im-

provement at 95% confidence level for CPU timeNV andCC. The tables also list the FBS

due to dynamic bundling at every tightness value. The confidence intervals are computed

using the t-distribution. The F-value is the test statisticof ANOVA. A higher F-value indi-

cates more confidence in there being a difference in between in the two means. An F-value

greater than 9.4 indicates a difference (poisitive or negative). The mean value indicates

whether the difference was an improvement or otherwise. Table A.1 is a guide to the

datasets and the tables showing their results.

The appendix also lists the graphs comparing CPU time,CC, NV and FBS performance

of DynBndl and FC for a subset of the datasets (a = 15). Figures A.1, A.2, A.3, and A.4

show these results.
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Table A.1:Index of results.

Dataset# Table
1, 2 Table A.2
3, 4 Table A.3
5, 6 Table A.4
7, 8 Table A.5
9, 10 Table A.6
11, 12 Table A.7
13, 14 Table A.8
15, 16 Table A.9
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Dataset #1, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value

UL Mean LL UL Mean LL UL Mean LL

0.4000 -25.86 -42.59 -61.53 63.86 23.01 12.91 1.49 11.94 22.13 11.83 0.18 8.13 263.4
0.4500 6.21 -6.26 -20.37 1.87 25.91 16.19 5.2 18.21 24.48 14.49 3.19 12.57 80.53
0.4750 19.41 8.70 -3.43 4.20 28.83 19.50 8.94 26.44 27.14 17.51 6.60 18.98 48.46
0.5000 30.20 20.93 10.42 27.97 33.40 24.67 14.78 43.70 31.95 22.96 12.78 34.87 25.00
0.5250 37.65 29.37 19.98 61.32 36.1 27.71 18.23 56.74 34.84 26.23 16.48 47.43 7.89
0.5500 44.12 31.93 17.09 30.03 43.27 31.07 16.23 30.77 42.06 29.49 14.2 25.03 1.07
0.5750 34.70 26.03 16.20 46.10 34.27 25.65 15.89 47.65 33.64 24.87 14.94 41.89 0.30
0.6000 37.14 28.78 19.32 58.46 35.63 27.19 17.64 54.34 35.50 26.98 17.33 50.66 0.06
0.6500 34.22 25.47 15.57 43.86 31.18 22.16 11.95 34.61 31.29 22.21 11.93 32.32 0.00
0.7000 34.88 26.23 16.43 46.95 28.14 18.72 8.05 24.32 29.55 20.24 9.70 26.22 0.00

Dataset #2, Improvement measurements
t Time #NV #CC FBS

t-distribution F-value t-distribution F-value t-distribution F-value
UL Mean LL UL Mean LL UL Mean LL

0.2750 -12.21 -30.04 -50.70 25.05 37.41 25.00 10.14 22.00 31.42 20.24 7.23 17.68 43.05
0.3000 -86.44 -114.28 -146.27 236.82 23.88 9.15 -8.43 4.32 21.57 9.19 -5.14 3.42 173.05
0.3500 -67.6 -92.62 -121.38 175.23 24.84 10.29 -7.06 4.98 22.39 10.15 -4.03 4.21 111.35
0.4000 -42.29 -63.54 -87.96 98.65 25.8 11.44 -5.69 5.73 22.59 10.37 -3.77 4.41 30.03
0.4625 13.56 0.65 -14.18 0.02 29.35 15.68 0.01 9.34 26.04 14.37 0.86 8.85 9.71
0.4875 27.85 17.08 4.70 14.3 31.3 18.01 2.14 11.95 28.34 17.04 3.94 12.83 4.57
0.5000 35.24 25.57 14.46 35.57 33.5 20.63 5.28 15.48 30.86 19.95 7.32 18.21 2.44
0.5125 35.95 26.38 15.39 38.25 34.31 21.60 6.43 16.95 31.67 20.89 8.41 20.20 1.84
0.5250 38.51 26.41 11.92 23 37.08 20.94 0.67 10.36 34.13 20.42 3.85 11.51 0.68
0.5375 34.4 24.61 13.36 32.58 33.94 21.17 5.92 16.29 31.45 20.64 8.12 19.67 0.13
0.5500 43.23 36.14 28.17 114.84 40.95 31.43 20.37 52.31 38.39 30.27 21.07 66.92 0.11
0.6000 36.53 28.61 19.69 64.81 37.38 27.28 15.55 37.86 34.67 26.06 16.31 46.93 0.00
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Dataset #3, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value

UL Mean LL UL Mean LL UL Mean LL

0.3250 25.6 13.77 0.07 7.97 41.84 30.31 16.5 33.51 37.42 27.21 15.34 34.88 15.59
0.3625 34.21 23.31 10.61 23.67 39.09 26.49 11.29 23.18 35.61 24.65 11.84 25.64 10.12
0.3750 32.36 19.36 3.86 11.83 34.22 18.4 -1.22 9.03 31.21 17.63 1.37 9.16 4.60
0.3875 41.16 22.85 -1.16 7.24 42.7 20.13 -11.34 5.62 39.04 19.54 -6.21 4.84 3.55
0.4000 38.94 27.2 13.21 25.75 36.53 21.27 2.33 11.72 33.9 20.85 5.23 13.3 2.16
0.4125 37.33 25.28 10.92 21.7 36.39 21.09 2.11 11.54 34.31 21.35 5.82 14.03 0.82
0.4250 42.95 28.83 11.21 18.66 41.25 22.95 0.1 9.5 38.31 22.61 2.92 10.1 0.19
0.4750 34.89 22.38 7.46 16.39 35.82 20.39 1.24 10.84 33.15 19.96 4.16 12.06 0.00
0.5500 32.77 19.85 4.45 12.51 34.14 18.3 -1.35 8.94 31.77 18.3 2.17 9.94 0.00
0.6500 38.27 26.4 12.26 24.01 31.21 14.66 -5.87 6.27 28.83 14.79 -2.03 6.23 0.00

Dataset #4, Improvement measurements
t Time #NV #CC FBS

t-distribution F-value t-distribution F-value t-distribution F-value
UL Mean LL UL Mean LL UL Mean LL

0.3000 -32.25 -48.52 -66.81 91.7 21.04 10.41 -1.64 7.99 19.7 9.61 -1.75 5.75 12.46
0.3250 0.48 -11.77 -25.53 7.26 22.52 12.09 0.26 10.22 21.23 11.33 0.19 8.15 7.10
0.3500 17.47 7.31 -4.1 3.38 23.57 13.28 1.61 12.06 22.61 12.89 1.94 10.73 5.01
0.3625 24.06 14.71 4.22 14.84 24.87 14.76 3.29 14.63 23.78 14.2 3.42 13.22 3.81
0.3750 33.97 25.84 16.71 52.37 26.29 16.37 5.11 17.82 25.36 15.98 5.42 17.09 1.93
0.3875 36.66 28.87 20.11 67.99 28.11 18.44 7.46 22.58 27.13 17.97 7.66 22.12 0.82
0.4000 37.49 29.79 21.15 73.32 28.29 18.63 7.68 23.06 27.39 18.27 8 22.94 0.47
0.4250 34.15 26.04 16.94 53.32 27.41 17.64 6.56 20.66 26.88 17.69 7.35 21.37 0.01
0.5000 29.81 21.17 11.47 33.16 27.71 17.98 6.94 21.46 27.3 18.17 7.88 22.65 0.00
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Dataset #5, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value

UL Mean LL UL Mean LL UL Mean LL

0.4500 -89.63 -112.82 -138.84 338.55 21.68 10.25 -2.86 6.97 19.59 9.49 -1.88 5.6 531.28
0.5000 -37.49 -59.06 -84.01 80.1 26.45 12.63 -3.78 6.86 23.47 11.12 -3.21 4.91 425.49
0.5500 7.07 -7.51 -24.38 1.95 31.53 18.66 3.38 13.37 28.17 16.59 3.13 11.62 46.26
0.5750 25.94 14.32 0.88 8.89 34.79 22.54 7.99 19.39 31.8 20.8 8.02 19.2 27.49
0.5875 37.16 24.15 8.45 17.05 40.42 25.59 7.07 15.97 37.22 23.85 7.63 15.73 13.55
0.6000 39.33 29.81 18.8 46.6 39.28 27.87 14.32 30.43 36.79 26.6 14.76 33.76 5.86
0.6125 41.76 32.62 22.05 57.97 41.38 30.37 17.29 36.92 39.13 29.31 17.91 42.49 1.64
0.6250 40.49 31.15 20.35 51.81 39.99 28.72 15.33 32.55 37.71 27.66 15.99 37.01 0.47
0.6500 41.38 32.65 22.62 63.97 42.59 32.35 20.29 46.82 40.37 31.23 20.7 54.51 0.05
0.7000 39.17 31.2 22.18 72.8 43.52 34.67 24.44 69.62 40.89 32.92 23.89 78.83 0.00

Dataset #6, Improvement measurements
t Time #NV #CC FBS

t-distribution F-value t-distribution F-value t-distribution F-value
UL Mean LL UL Mean LL UL Mean LL

0.4500 -118.28 -145.36 -175.8 465.18 21.25 10.73 -1.2 8.46 20.2 9.87 -1.79 5.76 34.66
0.5000 -40.65 -58.1 -77.72 121.16 22.36 11.99 0.22 10.18 21.16 10.96 -0.57 7.18 15.90
0.5500 20.15 10.25 -0.89 6.75 24.66 14.59 3.18 14.48 23.7 13.82 2.67 11.8 6.77
0.5750 34.32 26.18 17.02 53.18 29.93 20.56 9.94 28.59 29.05 19.87 9.5 26.17 2.01
0.5875 35.53 27.54 18.55 59.9 30.17 20.84 10.26 29.41 29.36 20.22 9.89 27.2 0.95
0.6000 36.07 28.14 19.23 63.07 30.99 21.76 11.31 32.23 30.18 21.14 10.94 30.09 0.19
0.6125 33.36 25.1 15.8 48.21 29.68 20.29 9.63 27.79 29.08 19.9 9.53 26.25 0.03
0.6250 30.73 22.14 12.48 36.17 29.36 19.92 9.22 26.76 28.68 19.46 9.03 24.96 0.00
0.6500 24.99 15.68 5.22 16.8 27.67 18 7.04 21.76 27.07 17.63 6.98 20.07 0.00
0.6750 19.16 9.13 -2.14 5.29 26.97 17.21 6.14 19.89 26.5 16.99 6.25 18.49 0.00
0.7500 11.04 0 -12.4 0 23.58 13.36 1.78 12.32 23.76 13.9 2.76 11.94 0.00
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Dataset #7, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value

UL Mean LL UL Mean LL UL Mean LL

0.3500 -83.12 -107.16 -134.34 275.46 20.81 10.24 -1.74 7.87 20.14 9.53 -2.5 5.08 33.44
0.4000 -20.91 -36.78 -54.73 50.95 22.06 11.65 -0.14 9.01 20.97 10.47 -1.43 6.2 10.91
0.4250 11.18 -0.47 -13.66 0.01 22.39 12.03 0.28 10.26 21.99 11.62 -0.12 7.74 7.13
0.4375 18.52 7.83 -4.27 3.45 23.45 13.23 1.65 12.13 23 12.77 1.18 9.48 6.36
0.4500 31.21 19.33 5.41 14.38 27.65 14.95 0.02 9.91 27 14.24 -0.75 7.18 5.62
0.4625 35.15 26.64 17.01 49.84 28.11 18.51 7.64 23.08 27.72 18.11 7.23 20.25 2.36
0.4750 39.19 31.2 22.18 72.65 30.82 21.59 11.12 31.74 30.38 21.13 10.64 28.57 0.66
0.5000 38.24 30.14 20.97 66.79 31.32 22.15 11.76 33.52 30.65 21.44 11 29.54 0.03
0.5500 31.75 22.8 12.67 34.76 29.24 19.79 9.09 26.47 29.12 19.7 9.03 24.42 0.00
0.6000 27.73 18.24 7.52 21.07 27.02 17.28 6.23 20.09 26.47 16.7 5.63 16.94 0.00

Dataset #8, Improvement measurements
t Time #NV #CC FBS

t-distribution F-value t-distribution F-value t-distribution F-value
UL Mean LL UL Mean LL UL Mean LL

0.3500 -111.68 -128.55 -146.78 916.85 16.97 9.92 2.27 14.96 16.05 9.35 2.12 12.91 8.57
0.4000 -12.39 -23.07 -34.76 41.3 18.93 10.71 1.67 12.89 18.15 10.37 1.84 11.46 4.77
0.4500 34.15 27.9 21.05 102.53 24.84 17.23 8.84 32.32 24.11 16.89 8.98 32.73 0.93
0.4750 35.4 29.26 22.54 114.88 26 18.5 10.24 37.48 25.37 18.28 10.5 38.96 0.04
0.4875 33.33 26.99 20.06 94.89 25.46 17.91 9.59 35.03 24.86 17.71 9.89 36.35 0.01
0.5000 30.98 24.43 17.25 75.18 25 17.4 9.04 33.01 24.29 17.09 9.2 33.6 0.00
0.5125 30.26 23.63 16.37 69.65 25 17.41 9.04 33.02 24.35 17.15 9.27 33.86 0.00
0.5250 27.61 20.73 13.2 51.73 24.63 16.99 8.58 31.41 23.94 16.71 8.79 31.97 0.00
0.5500 22.05 14.65 6.54 24.04 23.3 15.53 6.97 26.14 22.83 15.49 7.45 27.09 0.00
0.6000 14.2 6.04 -2.88 3.72 22.19 14.31 5.62 22.21 21.78 14.34 6.2 22.93 0.00
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Dataset #9, Improvement measurements
t Time #NV #CC FBS

t-distribution F-value t-distribution F-value t-distribution F-value
UL Mean LL UL Mean LL UL Mean LL

0.2500 -37.25 -59.57 -85.51 75.97 22.42 9.17 -6.34 4.94 22.4 9.26 -6.12 3.04 19574.08
0.3000 -8.86 -26.56 -47.14 19.3 25.87 13.21 -1.61 8.37 24.78 12.03 -2.88 5.29 11906.16
0.3500 19.26 6.13 -9.13 1.39 31.31 19.58 5.85 17.09 29.1 17.09 3.04 11.32 286.97
0.3750 36.32 25.97 13.93 31.46 33.78 22.47 9.23 22.58 32.22 20.74 7.31 17.4 93.63
0.3875 42.22 32.83 21.91 55.1 37.59 26.93 14.45 33.26 36.29 25.49 12.87 27.9 35.15
0.4000 44.13 35.05 24.49 64.79 37.49 26.82 14.32 32.97 36.35 25.57 12.95 28.09 21.37
0.4125 41.55 32.05 21 51.94 38.28 27.74 15.4 35.53 37.48 26.89 14.5 31.62 5.13
0.4250 46.42 37.71 27.58 77.95 40.52 30.36 18.47 43.6 39.92 29.74 17.84 40.16 0.96
0.4500 43.02 33.75 22.98 58.98 38.06 27.48 15.1 34.81 37.73 27.17 14.83 32.4 0.28
0.5000 38.23 28.18 16.51 38.13 38.18 27.62 15.26 35.19 37.67 27.11 14.76 32.22 0.00
0.6000 34.72 24.11 11.77 26.47 31.57 19.88 6.2 17.61 31.75 20.18 6.66 16.38 0.00

Dataset #10, Improvement measurements
t Time #NV #CC FBS

t-distribution F-value t-distribution F-value t-distribution F-value
UL Mean LL UL Mean LL UL Mean LL

0.3000 -33.05 -52.69 -75.23 74.63 24.02 11.64 -2.75 7.31 22.73 10.57 -3.49 4.62 296.19
0.3500 19.32 7.41 -6.25 2.47 29.86 18.44 5.16 16.42 28.33 17.05 4.01 12.94 59.57
0.3750 35.94 26.49 15.64 39.45 30.89 19.64 6.55 18.58 29.69 18.63 5.84 15.74 18.22
0.4000 42.85 34.42 24.74 74.13 34.87 24.27 11.93 28.8 34.05 23.68 11.68 27.04 4.8
0.4125 35.09 25.51 14.51 36.12 33.47 22.63 10.03 24.84 33.02 22.49 10.29 24.01 1.83
0.4250 41.65 33.03 23.15 66.97 35.66 25.18 12.99 31.18 35.04 24.83 13.01 30.15 0.21
0.4500 37.4 28.15 17.55 45.54 33.64 22.83 10.27 25.31 32.93 22.38 10.18 23.76 0.01
0.5000 31.84 21.78 10.23 25.13 33.35 22.5 9.88 24.54 32.82 22.26 10.03 23.47 0.00
0.5500 26.45 15.6 3.14 11.98 29.77 18.34 5.04 16.23 29.49 18.4 5.56 15.3 0.00
0.6000 30.55 20.3 8.54 21.45 28.49 16.85 3.31 13.81 28.61 17.39 4.4 13.5 0.00
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Dataset #11, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value

UL Mean LL UL Mean LL F-value UL Mean LL

0.2000 -13.29 -34.9 -60.62 23.22 26.76 12.19 -5.28 6.05 25.56 10.81 -6.86 3.16 388.07
0.2250 2.3 -15.29 -36.06 5.83 26.33 12.49 -3.95 6.74 25.23 11.24 -5.36 3.82 79.81
0.2500 20.61 6.32 -10.55 1.23 27.34 13.69 -2.52 7.78 26.3 12.51 -3.86 4.79 33.41
0.2750 38.25 27.12 14 28.83 30.48 17.42 1.91 11.76 30.04 16.95 1.41 9.26 10.4
0.2875 35.69 24.11 10.45 21.92 31.47 18.6 3.31 13.28 31.72 18.94 3.78 11.84 5.27
0.3000 44.77 34.82 23.08 52.74 36.05 24.04 9.77 22.14 35.76 23.74 9.48 19.72 1.44
0.3125 43.98 33.89 21.99 49.33 36.46 24.52 10.34 23.08 36.25 24.32 10.17 20.86 0.65
0.3250 39.98 29.17 16.42 34.26 35.72 23.64 9.3 21.38 35.49 23.43 9.1 19.13 0.01
0.3500 36.81 25.43 12 24.8 33.97 21.56 6.83 17.72 34.04 21.7 7.06 16.07 0.00
0.4000 32.41 20.24 5.87 14.72 32.89 20.28 5.31 15.69 33.09 20.57 5.71 14.24 0.00

Dataset #12, Improvement measurements
t Time #NV #CC FBS

t-distribution F-value t-distribution F-value t-distribution F-value
UL Mean LL UL Mean LL UL Mean LL

0.2000 -33 -55.06 -80.76 64.54 25.05 11.32 -4.91 6.03 23.91 10.42 -5.45 3.6 69
0.2500 17.56 3.89 -12.04 0.53 25.71 12.1 -3.99 6.65 24.75 11.41 -4.28 4.36 17.79
0.2625 27.48 15.46 1.44 9.46 26.58 13.14 -2.77 7.54 25.62 12.44 -3.08 5.23 11.43
0.2750 39.59 29.57 17.89 41.22 31.14 18.53 3.61 13.73 30.47 18.15 3.64 11.9 4.54
0.2875 29.42 17.72 4.08 12.76 29.9 17.06 1.88 11.78 29.53 17.04 2.35 10.36 1.15
0.3000 43.08 33.64 22.64 56.43 33.66 21.52 7.15 18.4 33.06 21.2 7.24 16.84 0.39
0.3125 42.47 32.93 21.81 53.52 34.38 22.37 8.15 19.91 33.87 22.15 8.36 18.61 0.05
0.3250 38.58 28.4 16.53 37.44 33.19 20.95 6.48 17.45 32.72 20.79 6.76 16.12 0.00
0.3500 34.48 23.62 10.95 24.35 31.36 18.79 3.92 14.1 31.14 18.94 4.58 13.08 0.00
0.4000 28.8 16.99 3.23 11.64 29.84 16.99 1.79 11.69 29.8 17.37 2.72 10.8 0.00
0.4500 27.07 14.98 0.88 8.84 30.08 17.28 2.14 12.06 29.6 17.13 2.45 10.48 0.00
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Dataset #13, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value

UL Mean LL UL Mean LL UL Mean LL

0.3500 -76.6 -101.86 -130.74 217.96 21.88 10.31 -2.98 6.9 21.17 9.54 -3.81 4.19 2254.77
0.4000 -4.22 -19.13 -36.17 13.53 27.04 16.23 3.82 14.98 25.13 14.07 1.39 9.58 240.46
0.4500 30.97 21.09 9.81 24.79 28.84 18.3 6.2 18.91 27.58 16.89 4.62 14.26 47.62
0.4750 45.1 37.24 28.27 95.9 36.23 26.78 15.94 42.23 35.33 25.79 14.84 37.06 10.75
0.4875 45.79 38.04 29.17 101.21 37.4 28.13 17.48 47.16 36.92 27.61 16.92 43.48 1.21
0.5000 44.02 36.01 26.86 88.07 37.32 28.04 17.38 46.83 36.59 27.23 16.49 42.09 0.06
0.5250 41.51 33.14 23.58 71.61 35.95 26.46 15.57 41.1 35.52 26 15.08 37.78 0.02
0.5500 36.28 27.17 16.75 44.41 33.88 24.09 12.85 33.45 33.53 23.72 12.46 30.55 0.00
0.6000 27.81 17.49 5.69 16.32 31.54 21.4 9.76 26.01 31.39 21.26 9.64 23.8 0.00

Dataset #14, Improvement measurements
t Time #NV #CC FBS

t-distribution F-value t-distribution F-value t-distribution F-value
UL Mean LL UL Mean LL UL Mean LL

0.3500 -105.78 -135.24 -168.92 322.75 22.33 11.4 -1.06 8.69 21.04 10.28 -1.94 5.7 297.88
0.4000 -13.23 -29.44 -47.97 29.37 24.13 13.46 1.29 11.53 22.8 12.29 0.34 8.33 51.95
0.4500 35.86 26.68 16.18 42.48 27.94 17.8 6.24 19.52 26.94 16.99 5.69 16.8 17.28
0.4650 44.07 35.6 25.84 76.85 32.4 22.34 10.79 28.24 31.7 21.86 10.6 26.52 3.30
0.4750 44.77 35.86 25.51 69.57 33.76 23.26 11.09 27.56 33.1 22.83 10.99 26.02 1.18
0.4850 43.92 35.89 26.71 87.16 33.48 24.12 13.45 36.75 32.9 23.77 13.38 35.66 0.31
0.5000 40.71 32.23 22.52 66.74 32.51 23.02 12.19 33.21 31.95 22.69 12.16 32.06 0.01
0.5250 34.84 25.51 14.84 38.24 30.99 21.29 10.22 28.12 30.39 20.91 10.14 26.65 0.00
0.5750 34.72 11.95 -18.76 1.43 38.89 17.98 -10.08 5.58 38.04 17.57 -9.67 3.62 0.00
0.6500 3.78 -9.99 -25.74 4 25.97 15.56 3.68 15.04 25.78 15.67 4.19 14.08 0.00
0.7000 -5 -20.03 -37.21 14.7 23.95 13.26 1.06 11.23 24.29 13.98 2.27 10.99 0.00
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Dataset #15, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value

UL Mean LL UL Mean LL UL Mean LL

0.2500 -73.36 -100.19 -131.17 183.73 21.8 10.34 -2.8 7.03 21.41 9.76 -3.61 4.36 79.40
0.3000 11.74 -1.92 -17.69 0.14 23.22 11.97 -0.93 8.86 22.87 11.44 -1.68 6.11 14.53
0.3250 31.4 20.79 8.53 20.71 24.11 12.99 0.24 10.18 23.87 12.59 -0.36 7.49 7.71
0.3350 36.46 26.63 15.27 36.56 26 15.15 2.72 13.4 25.72 14.71 2.07 10.47 6.09
0.3500 45.85 37.47 27.79 84.05 32.4 22.49 11.13 29.39 32.35 22.32 10.81 26.38 1.22
0.3650 45.1 36.6 26.79 79.22 32.59 22.71 11.39 30.02 32.39 22.37 10.86 26.5 0.16
0.3750 45.27 36.8 27.02 80.29 33.36 23.6 12.4 32.58 33.2 23.3 11.93 29.08 0.01
0.4250 37.81 28.19 17.08 41.82 31.36 21.3 9.77 26.23 31.15 20.95 9.24 22.86 0.00
0.5000 27.27 16.02 3.02 11.62 28.96 18.55 6.61 19.77 28.72 18.16 6.03 16.6 0.00
0.5500 61.28 55.28 48.36 246.9 26.94 16.23 3.95 15.23 26.91 16.08 3.64 12.7 0.00

Dataset #16, Improvement measurements
t Time #NV #CC FBS

t-distribution F-value t-distribution F-value t-distribution F-value
UL Mean LL UL Mean LL UL Mean LL

0.2500 -112.67 -139.44 -169.57 428.21 20.53 10.72 -0.3 9.5 19.45 9.91 -0.77 6.85 34.12
0.3000 16.87 5.51 -7.39 1.55 22.11 11.69 -0.13 9.73 21.48 11.39 0.01 7.91 8.75
0.3250 32.87 24.42 14.91 44.04 22.29 12.7 1.93 12.76 21.68 12.4 2.03 11.05 5.10
0.3350 40.55 28.75 14.6 27.65 26.58 12.3 -4.76 6.3 25.86 12.03 -4.38 4.43 3.03
0.3500 45.51 34.76 21.87 44.34 32.37 19.28 3.67 13.58 31.76 19.1 4.09 12.25 0.44
0.3650 42.63 35.4 27.27 107.28 29.15 20.41 10.59 32.39 28.67 20.22 10.77 32.14 0.01
0.3750 42.18 34.9 26.71 103.53 29.27 20.54 10.73 32.81 28.67 20.22 10.76 32.13 0.00
0.4000 38.83 31.13 22.46 78.11 28.7 19.9 10.02 30.72 28.13 19.62 10.1 30.05 0.00
0.4500 30.67 21.95 12.12 34.48 26.34 17.25 7.04 22.91 25.83 17.04 7.21 21.98 0.00
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Figure A.1:CPU time,CC, NV, FBS results forn = 20,a = 15, CR1 and CR2.
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Figure A.2:CPU time,CC, NV, FBS results forn = 20,a = 15, CR3 and CR4.
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Figure A.3:CPU time,CC, NV, FBS results forn = 30,a = 15, CR1 and CR2.
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Figure A.4:CPU time,CC, NV, FBS results forn = 30,a = 15, CR3 and CR4.
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Appendix B

Alternative Approaches to Computing

NI Sets

Despite the theoretical guarantees and empirical evidence, there is always room for im-

provement in the implementation of any mechanism. In this appendix, we discuss two al-

ternative approaches to implementing the mechanism for computing NI sets. We describe

these approaches, discuss their performance, and justify our reasons for not adopting them.

B.1 Using the DT and nb-DT jointly to compute inter-

changeability

In this section, we discuss whether it is worth building a unique DT for all the binary

constraints that apply to a variable, and one nb-DT for each of the non-binary constraints,

in order to partition the domain of a variableV . The possible advantage of using a unique

DT for all the binary constraints is avoiding the operation of intersecting the annotations

for binary constraints.

Figure B.1 shows a CSP variableV and its neighborhood. Neighboring variables can be
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V4V2
V1 V5 V63V

Variables with non−binary constraints
Variables with binary constraints

Binary Non−binaryCommon

V

Figure B.1:The neighborhood of variableV .

in the scope of either binary constraints (i.e.,V1, V2, V3, andV4) or non-binary constraints

(i.e., V3, V4, V5, andV6) or both (i.e.,V3 andV4). In this approach, we treat the variables

common to both binary and non-binary constraints in a special way. The bundles ofDV

in the presence of only non-binary constraints are computedusing nb-DTs and those for

binary are computed using one DT. We then intersect the bundles from the DT and nb-DTs

to obtain the final partition of the domain.

The problem with this approach lies in computing the consistent values in the domains

of the future variables with the partitions ofV ’s domain. The updated domain of a variable

that lies in the scope of both binary and non-binary constraints is derived from the nb-DTs

and DT by collecting and then intersecting the consistent values from both these trees. To

enable computing the updated domains of the common variables, we add additional steps

for classifying variables and intersecting paths in the implementation. Our preliminary

experiments show that the the gains from savings in intersection of annotations are lost in

these additional steps and on an average this approach proves to be more time consuming

than the implementation that builds one nb-DT per constraint defined onV .
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B.2 Using a single nb-DT for all constraints to compute

domain partitions

The rationale behind this approach is that by using a unique (combined) nb-DT for all

the constraints defined on a variable, we may be able to save onthe additional data struc-

tures and the management of separate nb-DTs. Consider the CSP of Figure B.2, where

NEIGHBORS(V )={V1, V2, V3, V4, V5}, SCOPE(C1) ∩ SCOPE(C2) ={V, V1}, and SCOPE(C2)

∩ SCOPE(C3) ={V, V3}. For every value in the domain ofV , the combined nb-DT processes

4

V2
C 1 V1

C 2
C 4 VV5

C 3V3 V

Figure B.2:Non-binary CSP.

consistent tuples with the domain value from each of the constraint as follows. Initially, the

nb-DT is empty and for the first value (saya) we iteratively collect the consistent tuples

from each constraint. Figure B.3 shows such a branch of the combined nb-DT fora ∈ DV .

When processing the subsequent domain values, the consistent constraint-tuples are added

5(<V    a>)

5(<V    b>)

{a}

 <V   c>)41(<V    b>,

 )2(<V    c>, <V    c>3

)4<V    d>3(<V    d>,

2 <V    a>,

Root

Figure B.3:Branch of a combined nb-DT.
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to the tree as follows. We check if any children of the currentnode of the nb-DT are from

the same constraint as the tuple, if there is one then we compare the two tuples. If the

two tuples match, the tree building algorithm moves to that node. Otherwise, the algorithm

creates a new node.

We now discuss the issues that indicate that a combined nb-DTfor non-binary con-

straints is not a feasible option.

1. To accomodate tuples from constraints with different scopes and arities in a single nb-

DT we additionally check for every node in the nb-DT whether it is comparable with

a tuple from the current constraint. This additional processing can prove expensive

given that the number of tuples in non-binary constraints issignificantly greater than

in binary constraints.

Using the length of the tuples to detect un-comparable tuples quickly is a good heuris-

tic. However it is ineffective when some constraints have the same arity. For our

example, the heuristic will not work for tuples fromC2 andC3. Therefore, we often

check for the variables present in the tuples of a combined nb-DT.

2. Once search instantiatesV , the nb-DT is used to determine the domain of the fu-

ture neighborhood ofV consistent with the instantiation ofV (see Section 3.1.2.2).

Determing the consistent domain of a neighbor using a combined nb-DT is cumber-

some and expensive. Given a future variableVf ∈ NEIGHBOR(V ), we first identify

all constraintsC such that{V , Vf} ⊂ SCOPE(C). Next, we collect the consistent

values ofVf due to each constraintC. To do so, for every node along a path of the

nb-DT, we determine the constraint the node belongs to and extract the value for

Vf . The intersection of these consistent values results in thedomain ofVf consistent

with the current instantiation ofV . This operation involves a minimum of one addi-

tional comparison at every node in the path to an annotation (which can be long for
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non-binary constraints) thereby, making the whole processprohibitively expensive.

3. The combined nb-DT does not indicate the constraint from which the tuple in each

node comes and this can lead to errors. Consider the scenariowhenV2 andV4 have

been instantiated. Figures B.4 and B.5 show partially the definitions1 of C2 andC3

used by the combined nb-DT. In search, the nb-DT is created only for the future

neighborhood ofV . From the definition of NI and by looking at Figures B.4 and B.5,

Vp V V3

Z x a
Z x b
Z x c
Z y a
Z y b
Z y c
Z y d

Figure B.4:Partial con-
straintC2.

Vp V V3

Z x d
Z x e
Z y e

Figure B.5:Partial con-
straintC3.

2

3

y, 

y, 

3

(<V    a>)3

(<V    b>)

(<V    c>)3

(<V    d>)3

(<V    e>)3

 

{x, y}
3x, 

x, 3

2x, 

2x, 

2x, 

2

y, 

y, 2

y, 2

Root

C

C

C

C

C

C

C

C

C

C

Figure B.6:A combined DT branch that
incorrectly detects interchangeable val-
ues.

we know thatx, y are not interchangeable values inDV . However, in the combined

nb-DT, the paths to annotations containingx andy respectively will have the same

set of tuples as shown in Figure B.6. This figure also shows, for both valuesx andy,

the constraint used at every step in building the path to their respective annotations.

Observing the source of the tuples in Figure B.6, we can clearly identify the source of

the error. The node〈V d〉 in the path to the annotation ofx originates from constraint

C3, and that fory is from C2. Hence, the two should not be compared. However, in

a combined nb-DT, there is no mechanism to detect the source of such tuples.

Thus, we need a mechanism to efficiently record and utilize the origin of each tuple.

Even if we record the originating constraint of each tuple, the algorithm will still perform

1The definitions were updated using Equation (2.1).
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an additional check at each node and the computation of future domains will remain cum-

bersome. In conclusion, this approach too is unlikely to improve performance in practice.
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Appendix C

Documentation of the Implementation of

DynBndl & FC

This chapter documents the code to implement DynBndl and FC.We first present the direc-

tory structure of the source code, and then give detailed documentation of important parts

of the code. The code we present here has been initially developed by Davis and Choueiry

and has been used in the following publications:[Beckwith et al., 2001; Davis, 2002;

Choueiry and Davis, 2002]. We have reused a substantial amount of the previously gen-

erated code and have made modifications and additions to implement the contributions of

this document.

C.1 Directory structure

The directory structure of the source code is as shown below:
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--src--+

|-- make-nb.lisp

|-- definitions----+

|-- csp-problem.lisp

|-- csp-var.lisp

|-- csp-value.lisp

|-- constraint.lisp

|-- package.lisp

|-- search---------+

|-- dnpi-fc.lisp

|-- nb-fc.lisp

|-- driver.lisp

|--interchange-----+

|-- nd-dt3.lisp

|-- nb-dt-definitions.lisp

|-- utils

|-- files-list

|-- problems-------+

|-- nb-random.lisp

The filemake-nb.lisp files is the root file to build the complete source tree. The

list of files to compile and load are read from the files stored in thefiles-list direc-

tory. Theutils directory has code for various utility functions used in thecode. The file

problems/nb-random.lisp defines the methodnb-random for creating a CSP in-

stance by reading a CSP definition file generated by our randomgenerator. In the following

sections we discuss the code to solve a CSP instance using DynBndl and FC.
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C.2 Detailed documentation

This section first gives an introduction to the code defining the data-structures. It then goes

on to describe how the basic search mechanism is implementedand then details the code

for DynBndl and FC.

C.2.1 Basic data-structures

The CSP instance generated by the methodnb-random is an object of classcsp-problem

defined indefinitions/csp-problem.lisp. The csp-problem object uses

many of the data structures and methods defined in the following files of thedefinitions/

folder:

• csp-var.lisp,

• csp-value.lisp, and

• constraint.lisp.

The fileconstraint.lisp defines a hierarchy of constraint types. For our experiments

using randomly generated CSPs we used the constraint classrelation which is a sub-

class ofexplicit-constraint. explicit-constraint in turn is derived from

generic-constraint.

C.2.2 Basic framework for search

We now present a high-level view of the code to show how a generic search is implemented

in our code. The methodsolve defined insearch/driver.lisp is where the process

of solving a CSP begins.solve is characterized as follows:

Input: The arguments given tosolve are:
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• problem, a CSP instance of the typecsp-problem. The CSP to solve.

• ordering, a string indicating the type of variable ordering to use forsolving

the CSP. The possible values for it aredld for Dynamic Least Domain,sld

for Static Least Domain, and others. All our experiments used dld.

• bundling, an optional argument specifying the type of bundling to use, if at

all. Some of the correct inputs arenone for no bundling,dnpi for dynamic

bundling. No bundling is the default value.

• find-solutions, an optional argument and it specifies the number of so-

lutions to find. There are two valid input:1 andall for finding one and all

solutions, respectively. The default value is to find one solution.

Output: The output of the method is a reference to the CSP instance after search has

finished processing it.

Processing: The methodsolve initializes theproblem object and search by clearing

all the solutions, resetting all metrics to their initial values and by performing other

data-structure management. The methodsolve also implements the basic search

mechanism using label and unlabel methods. Depending on thethe input parameters

such asbundling andordering it invokes the appropriate label and unlabel

methods. For example, ifbundling is passed the valuednpi the label-method

invoked isdnpi-fc-label. The label and unlabel methods for all types of search

are defined in files placed under thesearch directory. It also binds thenext-var

function based onordering.

A typical label method is characterized as follows:

Input: problem andlevel. Thelevel or depth at the which the search process is

currently in.
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Output: The newlevel of search.

Processing: It takes a variable (returned bynext-var), and iterates through it’s domain,

assigning a value and forward checking for that value, untilone is found to be consis-

tent i.e. no future domain is annihilated by that assignment. If no such value is found,

it setsconsistent to false, and returns the currentlevel. It makes sure to undo

any effects that this assignment would have had. If an acceptable value is found,

then that assignment is carried out, the problem set to consistent, and thelevel

incremented.

C.2.3 Implementation of DynBndl

We set thebundling parameter ofsolve to dnpi to perform search using DynBndl.

As mentioned before, we setordering to bedld in our experiments.solve binds the

methodsdnpi-fc-label anddnpi-fc-unlabel as the label and unlabel methods,

respectively. Both these methods are defined in the filesearch/dnpi-fc.lisp. Let

us look atdnpi-fc-label in more detail:

Input: problem andlevel. Thelevel or depth at the which the search process is

currently in.

Output: The newlevel of search.

Processing: In addition to the typical processing of a label method it partitions the domain

of the current variable unless it has not already partitioned. The method invoked to

partition the domain of the current variable ispartition-domain+fc defined in

interchange/nb-dt3.lisp.

We now discuss the methodpartitioned-domain+fc because this method is central

to the implementation of DynBndl:
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Input: The variable whose domain is to be partitioned.

Output: An internal data-structure calledpath+annotation representing the parti-

tioned domain and the values in the input variable’s neighborhood that each partition

is consistent with,

Processing:partition-domain+fc is the method that implements Process 1 and

Process 2 of DynBndl described in Section 3.1.2. It implements the algorithm for

building an nb-DT using the methodnb-dt (see Algorithm 2) defined in the same

file. It also controls the switching on and off domain partitioning as described in

section 3.1.2.3. And finally it implements the algorithm to intersect all the nb-DTs

using the methodintersect-part (see Algorithm 3) defined in the same file.

C.2.4 Implementation of FC

We set thebundling parameter ofsolve to none to perform search using DynBndl.

As mentioned before, we setordering to bedld in our experiments.solve binds

the methodsnb-fc-label andnb-fc-unlabel as the label and unlabel methods,

respectively. Both these methods are defined in the filesearch/nb-fc.lisp. Let us

look atnb-fc-label in more detail:

Input: problem andlevel. Thelevel or depth at the which the search process is

currently in.

Output: The newlevel of search.

Processing: This method implements our improved selection-projectionbased method for

non-binary FC described in Section 2.5.3. The main helper methods used by it

is build-constraint-defs-from-past which computes and stores partial

definitions constraints for future use.
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Appendix D

Documentation of the Implementation of

the Join Algorithm

This chapter documents the code to implement the dynamic bundling based join algorithm.

We first present a brief introduction to the XXL library, followed by a listing of the source

code files. We then document the main data-structures and functionalities of the code.

D.1 XXL library

XXL is a Java library that contains a rich infrastructure forimplementing advanced query

processing functionality[den Berckenet al., 2001]. XXL provides a demand-driven cursor

algebra, a framework for indexing and a powerful package forsupporting aggregation. The

library is publicly available under GNU LGPL and comes with afull documentation. The

documentation is available at

http://dbs.mathematik.uni-marburg.de/Home/Research

/Projects/XXL/Documentation.

We used version 1.0 of the library in our implementation.
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Cursors are one of the basic components of the XXL library. Weuse the concept of

cursors extensively in our code. A cursor is an abstract mechanism to access objects within

a stream. Cursors in XXL are independent from the specific type of the underlying objects.

The interface of a cursor is given by

interface Cursor extends java.util.Iterator {

Object peek();

void update(Object o);

void reset();

void close();

}

A cursor extends the functionality of the iterator providedin the package java.util. The

peek method reports the next object of the iteration withoutchanging the state of the iter-

ation. A call of reset sets the cursor to the beginning of the iteration. The method close

stops the iteration and releases resources like file handles. The method update modifies the

current object of the iteration. XXL offers an algebra for processing cursors, i. e. there are

a set of operations that require cursors as input and return acursor as output.

D.2 Source code documentation

In this section, we list the layout of the source tree and givedetailed documentation of

important segments of the code.

D.2.1 Source files

The source files are listed below:
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--xxl---+--App--+

|-- MyJoin.java

|-- SortJoin.java

|-- MergeJoin.java

|-- MyJoin.java

|-- Inter.java

|-- PipeCursor.java

|-- Bundle.java

|-- Context.java

The file MyJoin.java defines the class representing the new bundling-based join

algorithm. The classesSortJoin andMergeJoin represent the two steps of the join

algorithm (see algorithm in Chapter).PipeCursor is a class defining an extended Cursor.

Inter implements the algorithm to generate the next bundle of the current variable. The

filesBundle.java andContext.java define the data-structures used in the code.

D.2.2 Data structures and bundle computation

The data-structures used in the implementation are as follows:

1. PartitionValuePair is a data-structure that represents a partition of a con-

straint. It stores the partition identifier and the value associated with the partition. It

is defined inBundle.java.

2. Bundle represents a bundle assigned to a variable during join computation. It stores

the identifier of the bundle’s variable, a linked list ofPartitionValuePair ob-

jects and a boolean flag indicating whether the bundle has been checked. It is defined

in Bundle.java.
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3. Solution represents a solution bundle to the CSP or one tuple of the join query. It

stores a list ofBundle objects and also maintains the number of solutions actually

present in the solution bundle. It is defined inBundle.java.

4. Context is a data-structure that maintains the state of the join. It maintains the

Processed-Values, past instantiations and the last solution of the join. It isdefined in

Context.java.

The classInter defines methods to compute the next bundle for the variableVc from a

constraint.Inter maintains theCurrent-Constraintdata-structure and implements Algo-

rithm 7 to compute the next bundle. It also provides method toperform backtracking when

an instantiation fails.

D.2.3 Implementation of sorting phase

The sorting phase is implemented by the classSortJoin coded in the fileSortJoin.java.

An object of this class is used byMyJoin to initiate processing the join query.SortJoin

implements the in-memory join algorithm described in Algorithm 8 in a private method of

the classget one solution(int no of vars). The methodnext() computes

the next query-result tuple (solution) when invoked. It returnsnull when no more solu-

tions are possible from the sorting phase of the join.SortJoin usesInter to compute

interchangeable values. The data-structures defined in D.2.2 are also heavily used by this

class. Further,SortJoin stores the sorted runs in temporary files, which are later used

by the merging phase.

D.2.4 Implementation of merging phase

The merging phase is implemented by the classMergeJoin coded in the fileMergeJoin.java.

An object of this class is used byMyJoin after no further results are possible from
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SortJoin. This class implements the merging phase described in Section 5.5.2.2. The

methodnext() computes the next query-result tuple (solution) when invoked and when

next() has no solutions to return it signals the end of join processing.
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