NEIGHBORHOOD INTERCHANGEABILITY FOR NON-BINARY CSPS &
APPLICATION TO DATABASES

by

Anagh Lal

A THESIS

Presented to the Faculty of
The Graduate College at the University of Nebraska
In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

May, 2005

NEIGHBORHOOD INTERCHANGEABILITY FOR NON-BINARY CSPS &
APPLICATION TO DATABASES

Anagh Lal, M.S.
University of Nebraska, 2005

Advisor: Berthe Y. Choueiry

Neighborhood Interchangeability (NI) identifies the eglént values in the domain
of a variable in a Constraint Satisfaction Problem (CSP)imfeduce for the first time an
algorithm for computing NI sets in the presence of non-hianstraints. We integrate this
mechanism with backtrack search, in a process we call dynlinmdling. We demonstrate
that, as for the binary cagBeckwithet al., 2001, dynamic bundling yields multiple robust
solutions for less effort than necessary for computing glsisolution.

We then identify the utility of this mechanism for databagplecations and introduce a
new algorithm based on dynamic bundling for computing aguiary, which we model as a
CSP. We argue that the algorithm yields a compact solutianespnd saves memory, disk-
space, and/or network bandwidth. Finally, we discuss tipdi@ation of the join algorithm

to materialize views.

ACKNOWLEDGEMENTS

| would like to thank my advisor, Professor Berthe Y. Choudwor her tireless support
and guidance since the beginning of this research. Witheuhélp this work would not
have been possible. | would like to thank my committee mes)ldenofessors Matthew
Dwyer, Steve Goddard, and Peter Revesz for their carefdimgand insightful
comments, which allowed me to significantly improve thisuloent. In particular,
Professor Peter Revesz inspired the idea discussed iro8&cti.6 for an alternative
approach for applying and exploiting the mechanisms expwsthis thesis.

| would like to acknowledge the invaluable guidance | haweneed for the statistical
analysis of my empirical results from the Statistics Deparit's help-desk, especially
from Mr. Bradford Danner. Mr. Mansour Abdoli, from the Depaent of Industrial and
Management Systems Engineering at UNL, has helped us gstanted with our
statistical analysis. | am indebted to the Office of Systermiuilstration and the
managers of the Research Computing Facilities of the Dieyasuttof Computer Science
and Engineering for their prompt and quality support. | Heglgleasure of working with
excellent colleagues at the Constraint Systems Laboré@uoySystLab). | would like to
acknowledge the help of Joel Gompert, Praveen Guddeti, Ryanand Yaling Zheng. |
would like to thank Joel Gompert, Ryan Lim, and Cate Andeffsoproof-reading
various portions of my thesis (and in the case of Joel, thieeethbcument).

| would also like to acknowledge the constant support of ngnfils. Finally, | am grateful
to my parents and my brother who have provided me with cohstativation to maintain

my commitment. This work is a fruit of their confidence in meatighout my life.

Supported by NSF CAREER Award #0133568 and the Maude Hanfrliagd-aculty Research

Fellowship. Experiments conducted using the Research GamggFacility of UNL.

Dedication

To my parents, who have always been a great source of suppihapiration.

Contents

1 Overview
1.1 Questionsanswered
1.2 Other contributionsofthethesiso...

1.3 Guidetothesis

2 Binary and Non-Binary CSPs

2.1 The Constraint Satisfaction Problem (CSP)
2.1.1 Constraintnetworko o L.
2.1.2 ParametersofaCSP
2.1.3 RandomCSPs
2.1.4 Phasetransition,

2.2 Solving binary CSPs with backtracksearch
2.2.1 \Variableordering
2.2.2 Look-ahead: combining search with constraint prapag

2.3 Interchangeability
2.3.1 Definitions
2.3.2 ComputingNlsets
2.3.3 UsingNlinsearch

24 Non-BinaryCSPs
241 Representation

2.4.2 Parameters e e e

2.5 Solving non-binary CSPs with backtrack search
2.5.1 Extending FCtonon-binaryCSPs
25.2 Ourapproach
2.5.3 Implementingnon-binary FC
2.5.4 Measuring constraintschecked

3 Bundling Non-Binary CSPs
3.1 Neighborhood interchangeability in non-binary CSPs
3.1.1 Direct application of Algorithm1
3.1.2 Ourapproach e
3.2 Dynamicbundling
3.3 Effect of look-ahead strategies on dynamic bundling

17
AN
.19
91
20

22
22
23

3.4 Criteria for evaluating the performance ofsearch 31

3.5 Finding all solutionstoaCSP 33
3.5.1 Numberofnodesvisited 33
3.5.2 Number of constraintchecks 3 3
3.5.3 Solutionbundles 34

3.6 Finding the first solutiontoaCSP 35
3.6.1 Numberofnodesvisited 36
3.6.2 Number of constraintchecks 6 3
3.6.3 Solutionbundle 38

3.7 EXperiments e e 38

3.8 Choiceoftestproblems 39

3.9 Experimentdesignandset-up. 41
3.9.1 Justification of datasetsize 42
3.9.2 Statisticaltests 44

3.10 Resultsandanalysis. 46
3.10.1 Analysiswithvaryingtightness 46
3.10.2 Effect of increasing domainsize 48
3.10.3 Analysis with varying constraintratio 49
3.10.4 Global observationsonDynBndl 50

Towards Detecting Substitutability 53

4.1 Substitutability 53
4.1.1 Using DT to detect substitutability 54
4.1.2 DT does not detect all substitutability relations 55
4.1.3 Whichbundletouseduringsearch 56

4.2 Algorithm for detecting substitutability 58

4.3 Extensiontonon-binaryCSPs 61
4.3.1 Collecting path and annotation information 61
4.3.2 Intersectingthenb-DTs. 3 6

4.4 Improving search performance using substitutability... 65

Dynamic Bundling for Databases 68

5.1 Introductionto databaseconcepts. 68
5.1.1 Joinalgorithms 69
5.1.2 IntroductiontoViews 71

5.2 CSP techniques for joincomputation 72
5.2.1 Motivation 73
522 Challenges 75

5.3 ModelingajoinqueryasaCSP 6 7

54 Sort-basedbundling oo 78
5.4.1 Heuristic forvariableordering 79
5.4.2 Theprinciple 79
5.4.3 Datastructures 81

5.4.4 Algorithm for bundle computation
5.5 Algorithm for join computation using dynamic bundling.
5.5.1 Joincomputationinmemory
5.5.2 Structure of the overall join algorithm
5.6 Implementation and experiments
5.7 View materialization using dynamic bundling
5.7.1 Benefits of materializing views with bundling
5.7.2 Viewmaintenance
58 Relatedwork

6 Future Work and Conclusions
6.1 Futurework e
6.1.1 Sorting constraints to improve bundling
6.1.2 Continuous CSPs and constraint databases

6.1.3 Samplingmethods

6.1.4 Main-memorydatabases
6.1.5 Automatic categorization of queryresults
6.1.6 Computing joins using bundled relations C e

6.2 Conclusions

A Results of Experiments

B Alternative Approaches to Computing NI Sets
B.1 Usingthe DT and nb-DT jointly to compute interchangégbi.
B.2 Using a single nb-DT for all constraints to compute donpartitions

C Documentation of the Implementation of DynBndl & FC
C.1 Directorystructure e
C.2 Detaileddocumentation
C.2.1 Basicdata-structures
C.2.2 Basicframework forsearch
C.2.3 Implementationof DynBndl
C.2.4 Implementationof FC

D Documentation of the Implementation of the Join Algorithm
D.1 XXLlibrary
D.2 Source codedocumentation
D.2.1 Sourcefiles
D.2.2 Data structures and bundle computation
D.2.3 Implementation of sortingphase
D.2.4 Implementation of mergingphase

Bibliography

List of Figures

2.1 RepresentationofabinaryCSP.. 8
2.2 Costofproblemsolving.. 9
2.3 Forward checkingduringsearch. 11
2.4 AbinaryCSP. 13
2.5 Partitioningthedomaindfs. 14
2.6 Search with no, static, and dynamic bundling.. 15
2.7 Exampleofanon-binaryCSP.. 16
2.8 Partially instantiated non-binary constra@it 18
3.1 CSP. . . e 24
3.2 01 andC’2 24
3.3 DT(V). . o o o e e e e e 24
3.4 CSP. . . 26
3.5 Constraint definitions. e 26
3.6 Nb-DT(V,C1). « v o o e e e e e e e e e e e e e 26
3.7 nb-DT(V,C9). . . o o e e e s e e e e e e e e 26
3.8 Search tree withoutbundling. L. 30
3.9 SearchtreeusingDynBndl. 30
3.10 Searchtree by FC.. e 37
3.11 SearchtreebyDynBndl.. 37
3.12 Moving average of CPU time for Dataset #1. 44
3.13 The CPU TimeNV, CCand FBS results for Dataset #7. 47
4.1 DT(V;) showing substitutablevalues. 54
4.2 AbinaryCSP. e e e e e 55
4.3 DT(V2). o o o e e e e e e e e e e e 55
4.4 A DT(V;) the illustrates the limits of our approach.. 56
45 ASCENANO.. . . . v v i i e e e e e e 65
4.6 After processing.. o o o e e e e e e e 65
51 AjoinasaCSP. e e 77
5.2 Anequi-joinasaCSP.. 77
5.3 Instantiation sequence. e e e e e 80

5.4 Data structures shown under 3 different scenarios. 82

5.5
5.6

6.1
6.2

Al
A.2
A3
A4

B.1
B.2
B.3
B.4
B.5
B.6

lMlustration of anindex.. v . v v v i e e e e e e e e 90
lllustration of an index on a bundled materialized view. a0
Bundling-based join algorithm of Chapter5.. 99
An alternative approach: joining bundled relations.. 99
CPU time,CC, NV, FBS results fon = 20,a =15,CR1and CR2.. 111
CPU time,CC, NV, FBS results fon = 20,a =15,CR3and CR4. 112
CPU time,CC, NV, FBS results fon = 30, =15,CR1land CR2.. 113
CPU time,CC, NV, FBS results fon =30,a =15,CR3and CR4.. 114
The neighborhood of variablé. 116
Non-binary CSP.. e e e e 117
Branch ofacombinednb-DT. 117
Partial constrain€s. e e 119
Partial constrain€'s. e e e e e e e 119

A combined DT branch that incorrectly detects interchabtgesalues.. 119

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
5.1

Al
A.2
A.3
A4
A5
A.6
A7
A.8
A.9

Datasets of random problems..o 42
Categories of constraintratios.. 42
Tightness values testfor each dataset. 43
Increasingz (n=30) around phase transition.. 48
Varying constraint ratio around phase transition. 49
Effect of tightness and savings MV on CPU time improvement. 50
Average improvement in CPU time across datasets. 51
Solutions using substitutablevalues.. 55
Terminology mapping. e e e e e e e 73
Indexofresults. 102
Results for Datasets#land 2.., 103
Results for Datasets #3and 4.. oo e 104
Results for Datasets #5and 6.. o e 105
Results for Datasets #7and 8.. 106
Results for Datasets #9and 1Q. 107
Results for Datasets #11land 12.« v v v v v 108
Results for Datasets #13and 14. o 109

Results for Datasets #15and 16. v v v v v e e 110

11

List of Algorithms

O~NO O P WNPE

Algorithm to create a DT ofavariablé. 14
Algorithm for building nb-DT{, C). o 25
Algorithm to intersect annotations.. 28
ext-DT(V) detects interchangeable and some substitutable valués fo. 59

ext-nb-DT({/, (), which also detects some substitutable values. 62

Algorithm to intersect annotations asdibs-list.. 64
Algorithm to generate the next bundlewdf. 83

Algorithm to compute the in-memory join using bundling.. 85

Chapter 1

Overview

The study of symmetry is receiving increased attention im@ater Science, in general,
and in the area of Constraint Processing in particular. Mpptoaches try to exploit known
symmetries in order to improve the performance of probleivisg. Relatively less effort
is devoted to uncovering symmetries inherent to a givenlprobnstance, which is con-
sidered to be a computationally challenging task. Our waskiffithe latter category.

In this thesis, we are concerned with the study of symmetdetision problems, mod-
eled as Constraint Satisfaction Problems (CSPs). In pdatiove propose techniques for
detecting symmetry relations and for exploiting thesetite for reasoning and problem
solving. Symmetry has been exploited to improve the perdmte of search at least as
far back as 187{Glaisher, 1874 Recently there has been a series of workshops on sym-
metry and CSP$SymCon, 2003; 2034 Our study focuses on the discovery and use of
approximate symmetries during search that yield multigleyst solutions. The symmetry
relations we discuss are based on the notion®cdl value interchangeabilitjFreuder,
1991], which group equivalent values of a given variable in a bandl

Most of the research in Constraint Satisfaction has focasegdroblems with binary

constraints (i.e., binary CSPs). One can theoreticallagbwreduce a non-binary CSP into

2
a binary ondRossiet al,, 1994, but it can be impractical in the case of large constraints of

high arity. In this thesis, we address two issues in the stidymmetry:

1. The computation of a special form of symmetry known ashgghood interchange-

ability in the presence of non-binary constraints.

2. The integration of the above mechanism with search asa@gsdor solving the CSP

and for finding sets of multiple robust solutions.
We validate our approach in two contexts:

1. Theoretical and empirical evaluations of the perforneaand effectiveness of our

techniques on CSPs.

2. Design of a new sort-based join algorithm for databases

In this chapter, we summarize first the questions we answéheth our contributions.

Finally, we give a short guide to this document.

1.1 Questions answered

In this thesis, we address the following questions:

1. How to detect neighborhood interchangeability in namaby CSPs?
Answer:We establish that the techniques for computing neighbathaerchange-
ability in binary CSPs cannot be trivially extended to the+onary case, and pro-

pose a technique to compute neighborhood interchanggabihon-binary CSPs.

2. How to exploit neighborhood interchangeability duriegsch for solving non-binary
CSPs?
Answer: The process of interleaving the computation of neighbodhoterchange-

ability with search for solving a CSP was calldéghamic bundlindpy Beckwith et al.

3

[2001]. We show how to implement dynamic bundling in the presenc®atbinary
constraints. We also show how to adapt the look-ahead gyratdorward checking,
which is used for constraint propagation during searchhéocontext of non-binary

CSPs.

. Is dynamic bundling a viable strategy when looking forregk solution to the CSP?
Answer: We empirically establish that dynamic bundling signifidammnproves the
performance of search where it matters most, that is in tiemeof the phase transi-
tion where the cost of search peaks. At low tightness regianshow that dynamic
bundling yields a large number of solutions at a cost coniparta that of finding a

single solution using regular search (i.e., without bumglli

. How does dynamic bundling behave with varying CSP pararasuch as tightness,
domain size, number of variables, number of constraints?

Answer: We designed extensive experiments having datasets wigtnga€CSP pa-
rameters to study exactly the above and we found interestiagacteristics of the

dynamic bundling algorithm.

. Can we extend the techniques to detect more general fdrimtechangeability?
Answer:We show how the same mechanism for detecting neighborhtedirange-
ability in binary CSPs can be used to detect sor@ghborhood substitutablalues

too. We also describe the extension of this feature to noafgiCSPs.

. Are these techniques useful beyond the area of ConsReocessing?
Answer:We recognize the direct usefulness of our techniques in trex anportant
area of Computer Science, namely, databases. We idengifyajp between the two

fields and re-design our algorithms to fit the requirementhisfnew context.

. Where and how can dynamic bundling be used in databases?

4
Answer:We focus on perhaps the most expensive and fundamentaloperdatabases,
namely, the join operator. We design a new join algorithnebdas dynamic bundling
that improves the speed of the join computation and preseststs in a compacted

manner. We also show that our new join algorithm is usefuhiaterialized views.

1.2 Other contributions of the thesis

Below we summarize some results, by-products of our ingastins:

¢ We introduced a metric for capturing the practical effortcbecking a non-binary

constraint.

e We improved the implementation of non-binary forward chiegkoy using select
and project operations on non-binary constraints and byngtohe resulting partial
constraints. This improvement allowed us to conduct famparisons between the

performance of search with and without dynamic bundling.
e We presented a new approach for modeling a join query as a CSP.

e We showed that the join algorithm can be used as an algorithwidéw materializa-

tion and can lead to savings in disk space, main memory, ambriebandwidth.

¢ Finally, we identified research directions to pursue in taabase area using tech-

niques from CSPs.

1.3 Guide to thesis

This thesis is organized as follows. Chapter 2 reviews backgl information on CSPs
and interchangeability, and discusses issues relatedntdimary CSPs and our solutions

to these issues. Chapter 3 describes the computation dibwigood interchangeability

5
(NI) for domain partitioning and dynamic bundling (i.e.aseh using dynamically com-
puted NI sets), and empirically validates our approach adwenly generated non-binary
CSPs. Chapter 4 discusses how a weaker form of interchaitigeadiled substitutability
can be partially extracted from the same mechanism for ctimgpueighborhood inter-
changeability, and the extension of this idea to non-bifG8Ps. Chapter 5 extends our
investigations to the context of databases. Finally, Giraptstates our conclusions and
suggests directions for future research.

Appendix A provides the results of experiments over all sietsthat are not included in
the body of the dissertation. Appendix B discusses tworadtiare implementations to the
algorithm for computing NI sets presented in Chapter 3. Ayjpees C and D document, a
high level, the main components of our source code (e.g¢ttiry and file structures, data

structures, and main functions).

Chapter 2

Binary and Non-Binary CSPs

This chapter provides background information on Constigatisfaction Problems (CSPs).
It gives the main definitions and notations used in this damimWe first recall the def-
inition of a CSP and list its parameters and characterisii¢gen, we summarize how to
solve CSPs with backtrack search and how to interleave @nspropagation with the
search process in a look-ahead strategy known as forwagkicige We provide an intro-
duction to interchangeability (i.e., symmetry) restritte our use of this concept. Finally,
we introduce non-binary constraints and discuss our swiut extending forward check-
ing to non-binary CSPs. This solution is fundamental forithplementation of dynamic

bundling, which is the main topic of this thesis.

2.1 The Constraint Satisfaction Problem (CSP)

A Constraint Satisfaction Problem (CSP) is defined™y: (V, D, C) where:
e V={V;} is a set of variables.

e D= {Dy.} the set of their respective domains. In this thesis, we assiat the

domains of the variables are finite. and,

7

e C a set of constraints that restrict the acceptable comloimati values for variables.

Thescopeof a constraint is the set of variables to which the constegplies, and itgrity

is the size of this set. We denote bye sHBORY V) the set of variables that appears in
the scope of any constraint that applies to a varidhlé\ constraint over the variablds,

Vi, ..., Vi is specified as a set of tuples, which is a subset of the Cant@soduct of the

domains of the variables in its scope:

CVz',iju,Vk = {(<V; Cli>, <‘/] aj), ey <V}C ak))*} g DVz X va X ... X DVk

wherea; € Dy, and(V; a;) denotes aariable-value pair(vvp). Solving a CSP requires
assigning a value to each variable such that all constraietsimultaneously satisfied. The
problem isNP-complete in general.

We call ano-goodany combination of variable-value pairs that cannot bereded to a

consistent solution.

2.1.1 Constraint network

A CSP is often represented bycanstraint graph or constraint network In this graph, a
node represents a variable and is labeled by the corresppddimain. An edge represents
a constraint and links the nodes of the variables to whicltdmstraint applies. Figure 2.1
shows the constraint network of a simple CSP instance with ¥ariables and four con-
straints. For example, constraifit, v,, defined on/; andVs, states that the two variables
cannot have the same value at the same tthey, ={(d, a), (d, b)}. In the CSP shown in

Figure 2.1 an example of a no-good is the set of Wdsc) }, (Vza), (Via)}.

2.1.2 Parameters of a CSP

The parameters used to describe CSPs include the following:

Figure 2.1:Representation of a binary CSP.

Number of variables the problem, denotexd (i.e.,

V).

Maximum domain sizelenoted.

number of constraints
all possible constraints

Constraint ratiq the proportion of constraints, denoteé-

Sometimes, we use the number of constrairegC|.

Constraint tightnesslenoted and measured for a given constraint as

_ number of forbidden tuples
~ total number of possible tuples

Notice that low values op may cause the constraint graph to be disconnected (&.¢.,

n — 1). Further, forp = 1 (i.e.,C = n(n — 1)/2), the constraint graph is complete. In the
example CSP shown in Figure 2.1, we hares 4, a = 4, p = ¢ = 0.67, andt = is 3 for
Cvi vy, 15 for C, vy, 15 for Chy, v, and2 for Cy, v, The arity of all constraints is obviously

2. Because no constraints have an arity larger than 2, tHsi€&alled ainary CSP.

2.1.3 Random CSPs

Empirical studies on CSPs are typically performed on rafgaeanerated CSP instances
with specified values for the above parametefs;a, ¢, p), where all variables have the
same domain size, the constraints have the same tightng@sseinniformly distributed in

the graph. Several theoretical models for generating nan@8Ps have been proposed in

9

the literaturg Achlioptaset al, 1997. In this thesis, we use generators built according to

the common and widely used Model-B.

2.1.4 Phase transition

Cheeseman et dICheesemast al, 1991 presented empirical evidence, for some random
combinatorial problems, of the existence of a phase tiansghenomenon at a critical
value (cross-over point) of an order parameter. They shavgdnificant increase in the

cost of solving these problems around the critical valugufé 2.2 illustrates this situation.

Mostly solvable
instances

Cost of solving the problem

Mostly unsolvable
instances

Critical value Order parameter
of order parameter (Constraint tightness

Figure 2.2:Cost of problem solving.

They also showed that the location of the phase transitidntaisteepness change with
the size of the problem. Because problems at the cross-owuetrgre acknowledged to be
probabilistically the most difficult to solve, empiricalslies to compare the performance
of algorithms are typically conducted in this area. In theecaf CSPs, constraint tightness
(with fixed values fom, a, andp) and constraint ratio (with fixed values far a, andt) are

often used as order parameters.

10
2.2 Solving binary CSPs with backtrack search

Because a CSP is in genel#P-completé, it is usually solved with depth-first search using
backtracking, an exponential-time procedure.

Depth-first search systematically instantiates (or assmvalue to) one variable at
a time, checking to ensure that the instantiation made doesialate any constraints.
Depth-first search for binary CSPs proceeds by iterativetyosing a current variabl&.
and instantiating it, i.e. assigning to it a value taken friesrdomain and checking to en-
sure that the instantiation made does not violate any caingdr If a conflict is detected,
the instantiation is revoked, its effects are undone, andl@nnative instantiation to the
current variable is attempted. When all alternatives sghrch backtracks to the previous
assignment, and revokes the assignment done at this |etet ihstantiation succeeds,
is added to the set of instantiated variables (which we et pariables and denote Hg)
and search proceeds to the next variable determined by @&nirmgd The process repeats
until all variables are instantiated. Uninstantiatedatles are called future variables, and
their set is denoted by,. The process repeats until one or all solutions are founds Th
procedure createssearch spacstructured as a tree with levels and a branching factor
equal toa.

At any point during search, the path from the root of the toeé current variable is a

set of vwps{(V; a;)} for the variabled/; € V, and their instantiations;.

2.2.1 Variable ordering

The order in which the variables are considered for insa#éiot (i.e., variable ordering) and
the order in which the values are assigned to a variable ¥a&ie ordering) are known to

significantly affect the performance of search. Common ansdlictates to assign first the

1By reduction from 3SAT and because a solution is verifiabledlynomial time.

11

most constrained variable and to choose the most promisilugs. Many heuristics that
implement these principles exist. Further, these heasistan be applied prior to search,
thus determining a static ordering, or during search, theislyng a dynamic ordering. In
practice, dynamic ordering is usually significantly morfeetive than static ordering. In
this thesis, we only consider variable ordering and usedhstldomain heuristic (LD) for

variable ordering, which we apply dynamically (DLD).

2.2.2 Look-ahead: combining search with constraint propagtion

Forward checking (FC), a common improvement to backtraekcée is one way of con-
ducting constraint propagation during sealilaralick and Elliott, 198D FC ensures that,
each time a current variable is assigned a value, the donfiaaah neighboring future
variable is revised to exclude from itself values incormsistwith the assignment of the
current variable. This process is called pruning and is shiowFigure 2.3 for the simple

example of Figure 2.1. Because of this pruning, FC detedigdaearly. Further, the

Figure 2.3:Forward checking during search.

domains of all future variables are always consistent, rgivee binary constraints, with
the instantiation of every past variable, thus eliminatimgneed for back-checking (which
is consistency checking against past variables). FCpartial look-ahead technique. It

revises the domains of future variables that are neighbdse ‘aggressive’ look-ahead

12

techniques exist, such as Directional Arc-Consistency@pfOechter, 200Band Main-
taining Arc-Consistency (MAC)Sabin and Freuder, 19R4However, the former requires
a fixed variable ordering and the latter was shown to ofterobeostly in practicéYang,
200d. In this thesis, we use forward checking (FC) and order thimbkes dynamically
during search according to the least domain heuristic.cBear non-binary CSPs proceeds

as described above but FC requires particular attentiorsasssed in Section 2.5.

2.3 Interchangeability

In its broadest sense, interchangeability allows one tow&cone solution to a CSP from
another[Freuder, 1991 When solutions to a CSP are given, one can always define a
mapping between the solutions such that one solution camtaened from another with-

out performing search. This is calléahctionalinterchangeability. Permutation of values
across variables is callesomorphicinterchangeability. In this thesis, we focus our inves-
tigation on another restricted form of interchangeahilitye interchangeability of values

in the domain of a single variable. This type of interchargés does not cover the per-
mutation of values across variables, which is an isomorpiterchangeability. Below we
recall some forms of interchangeability relevant to ourkvdXote that the discussion in

this section primarily targets binary CSPs and may not béegipe to the non-binary case.

2.3.1 Definitions

Definition 1. Full interchangeability (FI) (Freuddd991]): Valuesa, b € Dy are FI iff
every CSP solution involving remains a solution when is substituted fow, and vice

Versa.

Checking all the solutions of the CSP in Figure 2.4 we find thatvalues!, e, and

f are fully interchangeable fdr,. Computing full interchangeability may require finding

13

Figure 2.4:A binary CSP.

all solutions and hence is likely to be intractable. Fredd©1] identified a form ofocal
interchangeability, calledeighborhood interchangeabilifil), that is a sufficient, but not

a necessary condition for full interchangeability.

Definition 2. Neighborhood interchangeability (NI) (Freudd991)): A valuea € Dy is
neighborhood interchangeable with a value D, iff for every constrainC' onV, a¢ and
b are consistent with exactly the same valugs] (a, x) satisfie€'} = {x | (b, x) satisfies

C}.

NI is a sufficient, but not a necessary condition for Fl. Indjaee the CSP of Figure 2.4,

only values and f are NI forV; whereas values, f, andd are Fl forVs.

2.3.2 Computing NI sets

Algorithm 1 identifies the NI values for a variabiéin O(n - %) by building a discrimina-
tion tree (DT)[Freuder, 1991

Figure 2.5 shows the discrimination tree generated4aof the CSP in Figure 2.4. In
this tree, the nodes represent variable-value pairs ineighborhood ofl;. Some nodes
are annotated with values frol,, these annotations form a partition bf,. All the
variable-value pairs that appear in a path from the root efttbe to an annotation are
consistent with the values appearing in the annotation.

Itis important, in this procedure, that variables and value ordered in a canonical way

(e.g., lexicographical). For the CSP of Figure 2.4, vakuaad f are NI for V5. If we had

14

Input: V
current-node— Root root of the discrimination tree
for each valuex € Dy do
for each variableV; € NEIGHBORYV) do
for each valuer € Dy, consistent withu for V' do
if current-nodehas a child node, with (V; z)’ then current-node— n, else
Generatey; a node with {V; z)’ and make it a child oturrent-node
6 current-node— n;
end
end

a b W N P

end
Add « to the annotation ofurrent-node
8 current-node— Root

end

Output: Root

Algorithm 1: Algorithm to create a DT of a variablé.

Figure 2.5:Partitioning the domain of%.

all the solutions of this CSP we would find that the valdes, and f are interchangeable
for V4. Identifying such a situation may require finding all sabuis to the CSP and hence

is likely to be intractable.

2.3.3 Using NI in search

Benson and Freuder used NI to improve sedf@97. A weaker form of NI, calledheigh-
borhood interchangeability according to one constrgiNt:), was also used in search by
Haselboc1993. This search process yields solutions where some varihiles a set

of equivalent values, called a bundle. Both papers commigzdhangeability sefgrior

15

to search, which corresponds static bundling Figure 2.6 shows a search tree for the

example of Figure 2.4 without bundling (left) and with stdtundling (center).

Figure 2.6:Search with no, static, and dynamic bundling.

Freuder{1991 noticed that computing interchangeabiliyring problem solving re-
sults in a weak type of interchangeabiligynamic interchangeability Beckwith et al.
[2001] and Choueiry and Davi20074 showed how to recompute interchangeability parti-
tionsduring search such that the resulting proceisgiamic bundlingDynBndl), is always
beneficial: it yields larger bundles and reduces the sedfott.eFigure 2.6 (right) shows

the tree generated by dynamic bundling. The computati@wihgs can be traced to:
1. bundles of solutions,
2. factoring out no-goods, and
3. reusing information from the discrimination tree for FC.

Further, they showed that, in comparison to dynamic bugdistatic bundling is pro-
hibitively expensive, particularly ineffective, and shaie avoided Choueiry and Davis,
2003.

Finally, note that the Cross Product Representation (CPRJbbe and Freud¢Hubbe
and Freuder, 1989ields the same resulting bundles as dynamic bundling tatjuires
more space and does not bundle no-goods. It operates byfdowayd checking for every
value of the current variable, comparing the CSPs inducdt@future variables, and then

bundling the values of the current variable yielding the sanduced CSPs. Hence, CPR

16

necessarily visits more nodes than DynBndl, even thougldifference is polynomially

bounded.

2.4 Non-Binary CSPs

Although most research in constraint satisfaction focusebinary CSPs, many real-life
problems are more ‘naturally’ modeled as non-binary CSHse focus on binary CSPs
has so far been tolerated because it is always possiblerinipie to reduce a finite non-
binary CSP to a binary orf®Rossiet al., 1990; Bacchus and van Beek, 199Research on
non-binary constraints is still in its infancy, relativedgeaking, and the traditional attitudes
on this issue are now being challend@@ssiereet al,, 2007: it appeared that sometimes
it is more effective to operate on the non-binary encodinthef CSP than on its binary

reduction.

2.4.1 Representation

As stated in Section 2.1.1, a CSP can be represented by a, gnapbnstraint network.

Constraints are represented as simple edges in the biaagy-n the non-binary case, the
constraints are represented as hyper-edges linking thesnodhe scope of the constraint.
For sake of clarity, we represent a hyper-edge as anotherdiypode connected to the

variables in the scope of the constraint, as shown in Figuie 2

v(@ed 2 A
w@l &

G D variable
——‘\ Constraint

Figure 2.7:Example of a non-binary CSP.

17

2.4.2 Parameters

We use the parameters listed below to assess the worst-cagdexity of an algorithm
applied to a non-binary CSP and for generating random instanThey are a superset of

the ones listed for the binary case (see Section 2.1.2).

e n number of variables,

a maximum domain size,

t constraint tightness defined as the ratio of the number afldised tuples over the

number of all possible tuples.

deg node degree,

¢, humber of constraints of arity,

pr = c/(}) constraint ratio of arity:, and

2.5 Solving non-binary CSPs with backtrack search

Search on non-binary CSPs proceeds as described in Se@ibutZC requires particular

attention as discussed below.

2.5.1 Extending FC to non-binary CSPs

Uninstantiated variables are called future variables,thatt set is denoted by;. Instan-
tiated variables are called past variables, and their stnsted by/,. FC propagates the
effect of instantiating a current variable by removing values inconsistent wittfrom the
domains of the future variables adjacentifo If the instantiation does not wipe out the
domain of any variable iy, V. is added to the set of past variabl&s, When we apply

this process to non-binary constraints, two issues arise:

18

1. Choosing the subset of constraints to take into accoumivinary CSPs after assign-
ing V. a value, the set of constraints to choose is straightforaselther a constraint
(applicable td) will have the second variable eitheriy) or in V; (but not in both).
In the case of non-binary CSPs the set of constraints thdy &pp,. may have con-
straints with some variables M, and other variables iw;. Figure 2.8 shows an

instance of such a partially instantiated constraint.

Instantiated variable]
VC Unstantiated variable)

)

Vel
Ce=

VAR

Figure 2.8:Partially instantiated non-binary constrarit

Bessiére et al. discuss the following optid2804:

e The set of constraints with at least one past variable (diolyV,.) and at least

one future variable.

e The set of constraints or constraint projections with astese past variable

(includingV,) and exactly one future variable.

e The set of constraint with at least one past variable (inolgd’,.) and exactly

one future variable.

2. Updating the constraint definitions to reflect past instatitins and domain prun-
ings: The update of a non-binary constraint according to pastimisttions amounts
to intersecting the original definition of the constraintiwihe Cartesian product of
the (updated) domains &f and future variables. This operation is time consuming
in practice. We propose here an equivalent, more efficieptamentation that uses

a linear number of selection and projection operations.

19

2.5.2 Our approach

We adopt the strategy called=C2 [Bessiereet al, 2004, where the constraints consid-
ered are the ones that apply to the current variable andsttdea future variable and any
number of past variables (if any). We perform the update afralmnary constraint accord-
ing to past instantiations as follows. L&t be the current variable and be a non-binary

constraint or/, (see Figure 2.8). Let
Scope(C) = {Vo} U{V.} U{V,},

whereV, C V, andV, C V;. The domains of variables §V.} U {V}} might have already
been filtered by FC, and certain tuplesiimight have become invalid. Thus, we need to
select the tuples of’ that have survived the filtering by FC according to instditres of

the past variables. The selected tuples must satisfy thditomms:
1. (V; a;) for V; € {V,} anda; the bundle instantiated ig; and
2. a; € Dy, forV; € {V.} U{V,}, whereDy, are filtered domains.
We denote this operatiQﬂEPC(C). In order to compute the updated constraint, we project

oy, (C)on{Ve} U {V},

C" = mvaum (o, (C)). (2.1)

2.5.3 Implementing non-binary FC

The way non-binary FC (without bundling) is implementeceat§, to a large extent, the
number of constraint checks and CPU time spent to solve a G&Pupdated constraint
of Equation (2.1) is valid for all values iy . It is wasteful to discard the result of this
computation after instantiating.. If the instantiation is not consistent and the search back-

tracks to the variable, theti’ is computed again. To avoid this expensive computation we

20

store eachC’ associated witlV,. Note that by doing so we level the playing field when
comparing FC with dynamic-bundling techniques we presethé Chapter 3. Thus, our
empirical results reflect the gain due purely to bundling ardude the gains from any

additional data structure.

2.5.4 Measuring constraints checked

The count of the constraint-checking operations duringcdes an important aspect for
evaluating and comparing of the performance of search igthgos[Kondrak and van Beek,
1995. Because checking a binary constraint is easier than ahgekinon-binary one,
Bacchus and van Bedk 999 proposed to count constraint checks by multiplying each
operation by the arity of the constraint being checked. VWgpg@se below an alternative
way for counting constraint checks that is a closer estionatif the real computational
effort spent on this operation.

To this end, we count the number of comparisons of a vvp witlpketof the constraint.

The comparisons done during FC are primarily for two typeshafcks:

Case 1. checking whether the instantiation of a variable is equ#i¢ovalue of the variable
in a given tuple of a constraint. In this case we count onlyaraparison. This type

of comparison is done to select constraint tuples congistith past instantiations.

Case 2: checking whether the value for a variable in a constrainketig present in the
current domain (of size) of that variable. We may do more than one comparison
in this case. In the worst case we will docomparisons. This type of comparison
is done to select, from the constraint definition, tuples #ra consistent with the
domains of the current and future variables. To illustragertumber of comparisons
being made, let us consider an example. ebe a future variable whose domain is

{1, 2, 4, 3, § (the domain is stored in the order shown). &% v, 1, be a constraint

21

onVi. Lett = {(V5 1) (V5 2) (V4 3)} be a tuple from the constraift, v, v,. It takes
4 comparisons to check whetheis valid given the domain of variablé . Had the
value 3 been at a different position in the domain then thebermof comparisons

would have been different.

A constraint check over kA-ary constraint involves a maximum éfsuch checks, one for
every variable of the constraint. This worst-case valudtferconstraint check occurs when
the constraint check succeeds and when it fails due to thedagble in the scope of the
constraint. In the case of an early failure, the number ofgamisons of vvps will be less
than in the case of success. Consequently, the constraok etill be less expensive than
in the worst case. Thus, this approach to measure effortraiaty reflects the cost of

constraint checks in non-binary CSPs.

Summary

In this chapter, we reviewed the definition of a Constrainisiction Problem, its charac-
teristics, and how to solve it with backtrack search. We atstewed those definitions of
interchangeability relevant to our work. We discussedcstatd dynamic bundling, which
result from interleaving search, statitically or dynanficawith the detection and use of
NI-sets. Finally, we discussed non-binary CSPs, which é8B<with one or more con-
straints of arity larger than 2, and proposed a strategydaiopming forward checking in
this context and a convention for measuring for measuringpractice, the cost of con-
straint checks. It is important to remember that we denoteé®ythe process of solving
a CSP with backtrack search with forward checking, and byHBdyh the same process

enhanced with dynamic bundling.

22

Chapter 3

Bundling Non-Binary CSPs

In this chapter, we first discuss a technique for computinghimrhood interchangeabil-
ity in non-binary CSPs. Then, we show how to integrate thebitéque with search and
forward checking, which yields the dynamic bundling altfum DynBndl. We study the
properties of this algorithm, and empirically compare gsfprmance with that of regular
backtrack search with forward checking (FC) on randomlyegeted CSPs.

Appendix A describes the detailed experimental resultsAgeendix B discusses at-
tempts to improve the implementation the algorithm for catimg NI sets in non-binary
CSPs. The content of this chapter has partially appearficairand Choueiry, 20d3and
[Lal et al, 2004.

3.1 Neighborhood interchangeability in non-binary CSPs

No technique is reported in the literature for computing tHesets of a CSP variable in

the presence of non-binary constraints. Recall that thetsedetermine a partition of the

domain of the variable, and their elements are values ofdnable that are equivalent.
The idea is to identify the variable-value pairs in the nbeigihood of a variabl® con-

sistent with each value if,,. The values with ‘the same neighborhood’ form an equiva-

23
lence class. The difficulty with non-binary constraintshattthe constraints have different
arities and the ‘neighborhoods’ of two values are difficalcbmpare.

A direct application of Algorithm 1 of Chapter 2 to the nomdary case may vyield
incorrect results. We now discuss how Algorithm 1 can be dsethe non-binary case,

and show, with an example, that it may yield errors.

3.1.1 Direct application of Algorithm 1

With binary constraints, it is guaranteed that every vdeiaibNEIGHBORYV) belongsto a
different constraint, whereas this is not the case for noa#ly constraints. The DT collects
consistent values df’s neighbors for every value ib,,. For a given value in Dy, we
compute the set of values iy, whereV; € NEIGHBORYV), that is consistent witkl" a)

as follows:

e For every constraint’ that applies td” andV;, select the tuples i’ where(V a).

Using the select operator of relational databases, thedwg®lected are given by:

O'V:a(C).

e For everyC, compute the values iy, that are consistent witl” a) using the

projection operator as followsy, (o —.(C)).

e Finally, intersect the consistent values resulting frohtahstraints such as' (i.e.,

constraint that apply t&” andV;).

Consider the non-binary CSP shown in Figure 3.1 and the @nstlefinitions shown in
Figure 3.2.

From the definition of constraint;, we can see thafl” x) and(V" y) are consistent
with unequal sets of tuples and are not interchangeable. Ho that a direct applica-

tion of Algorithm 1 will detect them as interchangeable. dad, this algorithm identifies

24

o [& -

VIVi W[V (V,)

Xx |la |l |x |a |1 (<V, b>)

X |b |2 |x |b |2 (Y)

x |c |3 |x |c |3 E:% -

x |[d |1 |y |a]|l (<\, 3>)

y [a |1l |y |b |2 E<é ;>;

y |b |2y |c |3 B3

v le |3 (<\f 3>)
Figure 3.1:CSP. Figure 3.2:Cy andCs. Figure 3.3:DT(V).

the two valuesr andy of variableV as interchangeable if they are consistent with the
same variable-value pairs in the neighborhood’ofin Line 4 of Algorithm 1, this con-
dition would require, for the non-binary case, checkingsistency according tall the
constraints oV simultaneously.

The values ofl; consistent witkV' =) are{a, b, ¢, d givenC; and{a, b, ¢ given
(5. Intersecting these two sets, we obtdm b, g as the values o¥/; consistent with
(V z) givenCy andC,. Similarly the values fol, and V5 consistent with(V' z) given
the same constraints afé, 2, 3} and{1, 2, 3}, respectively. FofV" y), we get the same
set of consistent values. The resulting DT is shown in Figu8e Therefore, Algorithm 1
detectsr, y as interchangeable fé&f when, in fact, they are not. The overlapping scopes
of constraints make the direct application of Algorithm Libmary CSPs to the non-binary
case unfit. Thus, the transition from binary to non-binaryP€$& non-trivial. We need a

mechanism that tests the interchangeability in every caimst

3.1.2 Our approach

Our technique is based on building a separate discriminatez foreachof the deg con-
straints that apply to a variable. We call such a trema-binary discrimination tre¢nb-

DT). Below, we introduce two processes:

25

Process 1partitions the domain of the variable by building and conmgrthe applicable

nb-DTs; and

Process 2determines the domains of the neighboring variables camtisith each set of

the partition.

These two processes allow us to compute the NI-sets of a gaeable in presence of
any number of binary and non-binary constraints. Furtheruge both processes in Sec-
tion 3.2 for dynamic bundling (i.e., for computing the bueslbf the current variable and

for forward checking).

3.1.2.1 Process 1: Computing a domain partition

First, an nb-DT is created for each one of the constraints orl/ using Algorithm 2.
This algorithm is similar to Algorithm 1 except that it opgra only on one constraint and

compares each value bfwith a tuple of a constraind’'.

Input: V, C
1 current-node— Root root of the discrimination tree
2 S— ScopPH(C) \ {V}
3 for every valuey € Dy do
4 | for everytupleg € C'|oy—,(t) existsdo
5 if current-nodehas a child node, equal torg(t) then current-node— n,
else

Generate:; a node withrg(¢) and make it a child o€urrent-node

6 current-node— n,

end
end
7 Add v to the annotation ofurrent-node
8 current-node— Root
end
Output: Root

Algorithm 2: Algorithm for building nb-DT{/, C).

26

Line 4 of Algorithm 2 replaces Line 3 and 4 of Algorithm L. &ndr are the selection
and projection operators of relational algebra.)

The worst-case time complexity of Algorithm 2 is linear irethize of the constraint,
which depends on the domain size of the variable, the tigistrend the arity of the con-
straint. Therefore, the cost of buildingg such nb-DTs ig)(deg - a**1 - (1 —t)).

Consider the non-binary CSP of Figure 3.4. The constraifmitiens for this example

are given in Figure 3.5.

L & [& [& [& |
Vivi |V |V V3| Va| V| Vua||Vi|Va
11113 1] 3 1121 1] 1
1|1 3|3} 2] 3 112]| 2 2| 2
C 211332 21211 3|1
v(Gzd Y% 23 |3|4al2]2]2]2
V2 3|11 |1 4] 2 31111
@ A 32261
_ 4|22
G D Variable
5|1 3] 2
—‘\Constraint 6| 3 2
Figure 3.4:CSP. Figure 3.5:Constraint definitions.

Figures 3.6 and 3.7 show the non-binary discriminatiorst(ab-DT) for the constraints

incident toV” in the example of Figures 3.4 and 3.5. Every node of the nb-iofes the

Root Root @ [{5}
(<V,1>, <V, 3> (V4 1>, <\, 1>
1 > v, 35, <V, 25 1 5 1>)
(<V13>, <V, 3> (<V;2>, <V, 2>) (<V33>)g (<V5 1> (<V32>)

L2 [(56] 34 1.2
Figure 3.6:nb-DT(V, C4). Figure 3.7:nb-DT(V, C»).

tuple it represents, a list of nodes connected to it, and aatation that is by default empty.
A pointer called thecurrent-nodeis maintained and points to the last node visited by the
algorithm. Initially, thecurrent-nodepoints toRoot The algorithm builds the tree choosing

one valuev from Dy, and processing each tuple ©fcorresponding t@V" v) as follows:

27
When the projected tuple matches any of the childrecuofent-nodecurrent-nodemoves
to the matching node. Otherwise, a new node is created aretldddhecurrent-nodés
list of children, andcurrent-nodemoves to the newly created node. After processing a
v € Dy, v is added to the annotation ofirrent-nodeand current-nodeis repositioned at
Root Therefore, two nodes are connected if the tuples of eachesfetnodes lie on the
path to a common annotation value.

Second, for each tree, we collect the annotations and thewdatre they appear. We
traverse the tree from the root to each annotatigrand constructP; by collecting the
nodes on the path. We form a list= (P}, A;) of the particular path and the corresponding
annotation, and a ligt; = {/;} of these lists for each nb-DT. In the example of Figures 3.6

and 3.7:
1. For the nb'DT 0@1, Ll - <l17 lg, l3> W|th

o i =((((Vi 1), (V23)), (Vi 3), (V2 3))), {1,2}),
o [=(((("1 3), (V2 2))), {5, 6}),

o I3=((((Vi 1), (V2 1)), (V1 2), (V2 2))), {3, 4}).

2. Forthe nb-DT of’y, L, = <l4, l5, g, l7> with

o li=((((V53)), {1, 2}),
e 5 =((((Vs nil))), {5}),
e ls=((((V52)), {3, 4,
o I7=((((V5 2))), {6}).
We collect these lists iy = (L1, Lo, . .. , Laeg)-

Third, we compute the partition ddy, by intersecting the annotatioty from each tree

using Algorithm 3 withZ and V" as input parameters. The worst-case time complexity

28

Input: L,V
dom-values— domain ofV/
partitioned-domain— ni |
for every values remaining indom-valuesdo
select-path+annot— An [; from everyL; € L for whichv € ANNOTATION(/;)
annotation— Intersect annotations in tleelect-path+annot
Add annotationto partitioned-domain
dom-values— dom-values, annotation

end
Output: partitioned-domain

N o o~ WN P

Algorithm 3: Algorithm to intersect annotations.

of this algorithm isO(deg? - a*). For the example of Figure 3.4, the domainlofis
partitioned as{{1, 2}, {3, 4}, {5}, {6}}. We denote byF; an element of this partition,

wherekFE; is a set of equivalent values bf given the constraints that apply to it.

3.1.2.2 Process 2: Computing neighboring values consistemith an F;

This process computes the values in the neighborhodd thiat are consistent with each
equivalence clasg; using the nb-DTs built in Process 1. For a given we identify the
paths{P;} in each nb-DT such that; C A;. Then, for eachX € NEIGHBORYV), we
project each patl®; on X. Intersecting the results of the projections yields thesstibf
Dy that is consistent witl;. In Section 3.2, we use this information to updalg by
forward checking after assigning; to V. The worst-case time complexity of this process

is O(INEIGHBORYV)| - a9)

3.1.2.3 Avenues for improving performance

In an effort to reduce the overhead for computing bundleshawe included in our imple-
mentation a mechanism for automatically ‘switching offhne® operations for partitioning
the domain of a given variablé when it becomes clear that all partitions are necessarily

singletons. This happens in two situations.

29

1. When any nb-DT of & results in annotations exclusively made of singleton ele-
ments (see Algorithm 2). In this case we can safely switctboifdling for building

the nb-DTs for the remaining constraints that apply to theatde V.

2. Another case is when the intersection of the annotatietusis singletons (see Al-

gorithm 3).

In practice, we implement this switching off mechanism d®¥es. We force Algorithm 2
not to check for matching children, but to always create nedes because the information

in the nb-DTs is useful for filtering the domains of the futuegiables.

3.2 Dynamic bundling

Dynamic Bundling (DynBndl) is the process of computing tdigrhood interchangeabil-
ity sets (domain bundles) during the search process (sé®©$2c3.3). DynBndl operates
by assigning a bundle tg. and propagating the effect of this decision on the future var
ables. The bundles df. are obtained by applying Process 1 of Section 3.1.2.1 ubilag t
constraints o1V, determined bynFC2. Each constraint passed to Algorithm 2 is computed
using Equation (2.1). The effects of this instantiationtaen propagated using Process 2
of Section 3.1.2.2.

Figure 3.8 shows the patrtially explored search tree by F@htoexample in Figures 3.4
and 3.5 with variable orderingV’, V1, V;, V3, V,}. Figure 3.9 shows the tree explored by
DynBndl. The domain of/ is partitioned as discussed in Section 3.1.2 &nig assigned
the bundle{1, 2}. FC propogates this instantiation and the domaing;of;, andV; are
set to{1,3}, {3}, and{3}, respectively. Next, the domain partitionsgf are computed.
We find the two domain values, 1 and 3, to be interchangeabl& fol; is instantiated
with {1, 3}. On propagating this instantiation, the domaini@foecomes1}. Next, the

search proceeds to instantidtewith the only value in its domaifi3}. This instantiation

30

\ V)
()

<

@ No good
v V4 bundle (a)
4 - - ;/
First SOIUt'On Solution bundl
Figure 3.8:Search tree without bundling. Figure 3.9:Search tree using DynBndl.

results in the annihalation of the domainigf and search backtracks. There are no values
remaining in the domains df;, andV;. Hence, the search backtracksifo Note here that

V1 was assigned a bundle of size 2. By bundliig 3} for V; together, bundling saved
visiting more nodes of,. On instantiating” with {3, 4}, search is able to assign values to
the remaining variables of the CSP, yielding a solutioR@s {3, 4}), (Vi {1}), (Vo {1}),

(V3 {2}), (V4 {1})}. This example illustrates two situations that result if@@nance gain:

bundling of no-goods and bundling of solutions.

e Bundling no-goodsWhen DynBndl assign§l,2} to V, {1,3} to V; and{3} to 5,
the domain ofl; is anihilated after visiting 3 nodes, whereas FC visits 1ie §ains
due to bundling” multiply those due to bundling df;, which illustrates the gains

of no-good bundling.

e Bundling solutionsWhen DynBndl next assigns3,4} to V, the path is successful
and results in a solution bundle of size 2, while FC yieldswglsi solution. DynBndl
visits 8 nodes and yields 2 robust solutions whereas FGCsvi&itnodes and finds a

single solution.

Under the same variable and value ordering, DynBndl visitsnore nodes than FC. Fur-

ther, when looking for a first solution, any savings of nodis#ted by DynBndl can only

31

be explained by the bundling of no-goods.

3.3 Effect of look-ahead strategies on dynamic bundling

In this thesis, we use the look-ahead strategy known as fdraleecking. Forward check-

ing is a partial look-ahead in the sense that it revises drdydbomains of those future vari-
ables connected to the current varirable. A more aggressdleahead strategy such as
MAC (Maintaining Arc-Consistenc{Sabin and Freuder, 1994erforms arc-consistency
on the entire subproblem induced by the current and futur@ahlas. Consequently, the
use of a MAC-like algorithm necessarily performs a bettéerihg of the domains of the

future variables. While this may increase the number of tamg checks, it would yield

‘fatter’ solution bundles (thus improving bundling), aretluce of number of nodes visited
during search. However, even with MAC, our technique dodsgoarantee that the re-
sulting bundling is maximdlLesaint, 1994 More generally, dynamic bundling, while it
partitions the set of solutions (i.e., every solution appé&aexactly one bundle) does not
guarantee that the size of the solution bundle is maxin&l (he size of the bundle cannot

be increased).

3.4 Criteria for evaluating the performance of search

The goal of DynBndl is to generate multiple robust solutiok¢e measure its effective-
ness by computing the size of the first bundle (FBS) and thebeuarof solution bundles
(SB). To demonstrate that dynamic bundling is not an overkitl dnes not harm the per-
formance of search, we compare the effectiveness of FC an8img using the following

measurements: Constraint Check€), Nodes Visited V), and CPU time.

First Bundle Size (FBS): When DynBndl terminates successfully, it results in thegmss

32

ment of a bundle (i.e., a set of one or more domain values) ¢b gariable. A
solution bundle, the resulting solution, is the set of Soh& in the Cartesian product
of the bundles assigned to the variables, and its size isrbstupt of the sizes of
the assigned bundles. The size of the first solution bundie®ted as FBS. This
measure is useful in comparing the performance of FC and Dgh®hen finding
only one solution. In the case of FC, each variable is asdigngingle value, and

FBS is thus one.

Solution Bundle (SB): When finding all solutions to a CSP, DynBndlI partitions thedfe
solutions. We denote b$B the number of solution bundles found by search. (For
the same problem, the lower this number, the more compdau iepresentation.) In

the case of FC, this number is equal to the number of solutmtiee CSP.

Constraint Checks (CC): We described the mechanism used to measure constraintscheck

in non-binary CSPs in Section 2.5.4 of Chapter 2.

Nodes Visited (\V): The count of node visited is incremented by one every timearia v

able is instantiated during search.

CPU time: CPU time allows us to account for the overhead of bundling estémate
the savings due to bundling. We run our experiments on thepaters of the Re-
search Computing Facility (RCF) of the Department. Thelcl@solution of LISP

onprairiefire.unl.eduandsandhills. unl.eduis10ms.

The goal is minimize the values @C, NV, SB and CPU time. When looking for one

solution, the goal is to maximize FBS.

33
3.5 Finding all solutions to a CSP

In this section we theoretically compare the performand@ywiBndl and FC when finding
all solutions using static variable ordering. We show thghBndl is guaranteed never to
perform worse than FC in terms of the following performandgteda: NV, CC andSB.
Theoretical guarantees of the relative performance of DytiBnd FC undedynamic
variable ordering are more difficult to determine becausedttdering of the variables in
DynBndl and FC is no longer guaranteed to be the same. It isteasee that forward
checking may be more effective under one ordering or theroginel thus perform better in

one strategy than the other.

3.5.1 Number of nodes visited

Theorem 3.1. Under the same variable ordering, every node visited by Dyt also

visited by FC when looking for all solutions to a CSP.

Sketch of proof. Dynbndl partitions the domain of a variable into equivakemtasses.
By construction, when one value in an equivalence classusgat by forward checking
in DynBndl, the other values of the class are also removeéQnthis additional pruning
does not take place. Therefore, FC will never remove any malges from the domain
of a variable than DynBndl. Therefore, if there is any bunglliDynBndl will visit fewer

nodes than FC does. In the worst-case (i.e., no bundlingestézl), DynBndl and FC visit

exactly the same nodes. O

3.5.2 Number of constraint checks

Theorem 3.2.Under the same variable ordering, DynBndl never checks roonstraints

than FC when looking for all solutions to a CSP.

34
Sketch of proof. In DynBndl, nb-DT is used to partition the domain of the catreariable.
The nb-DT also determines the filtered domains of the futamables relative to each
value of the current variable. The number of constraint keelone to build the nb-DT is
equivalent to that necessary to perform forward checkingawh value in the domain of
the current variable. FC operates by performing forwarcckimg on one value at a time.
When looking for all solutions, all the values for a givenighte are eventually visited.
Because FC visits at least as many nodes as DynBnd|, andrahede it requires exactly
the same number of constraint checks, thus FC never perfemeas constraint checks than

DynBndlI. O

3.5.3 Solution bundles

Theorem 3.3. When looking for all solutions to a CSP, DynBndl yields a ppiern of the

set of solutions to a CSP.

Sketch of proof. Depth-first search proceeds systematically through theclsespace

visiting every combination of variable-value pairs andgaeding to the bottom of the
tree. It never re-visits the same complete path, and gusganinique solutions. Similarly
DynBndl systematically visits the search space and neveisits the same complete path.
By not re-visiting complete paths DynBndl guarantees thatyebundle is unique and that

no solution appears in two distinct solution bundles. O

Corollary 3.4. When looking for all solutions to a CSP, the number of sofubandles

found by DynBndl is at most equal to the number of solutionsddy FC.

The above statement follows naturally from Theorem 3.3 amsiuees that DynBndl

never requires more space than FC.

Theorem 3.5. The value 0SB for FC is never less than th&B for DynBndl.

35

Sketch of proof. When a CSP is solvable, the solution size of every solutiongusC

is one. For a solvable CSP, every solution bundle found byHbwih has size one in the
worst case. This can happen when there is no solution bunithough there could be
bundling of no-goods). Thus, the number of solution bun{fiesnd by DynBndl) cannot

exceed the number of solutions (found by FC). O

3.6 Finding the first solution to a CSP

The advantages of using dynamic bundling to find all sol@itana CSP were established
in Section 3.5. In this section we discuss the the performaidynBndl in finding one
solution. We assuma static variable orderingand that FC and DynBndl use the same
value ordering.

We first clarify the meaning of the statement: FC and DynBrsithg the same value
ordering. LetDy={1, 3, 5, 4 and let, without loss of generality, the value ordering be
the one of increasing value. Assumk; is partitioned by NI into two bundle§l, 7} and
{3, 5}. In order to ensure the same ordering as in FC, the valuex@andle must be
ordered according to the value ordering (here, ascenduohgyprThe first value in a bunlde
is considered the representative value of the bundle anduhéles are visited according
to position of their representative in the order. Therefameour example, we will have
{1, 7} then{3, 5}. This simple rule allows us to maintain the same value ondein the
sense that no permutation of domain partitioning will leadelecting value 3 after value
5, unless 5 is in the equivalence class of 1, which is a valugrmgearlier in the ordering.

Such a value ordering of bundles is implicit in our implenaion.

36

3.6.1 Number of nodes visited

Theorem 3.6.For the same variable ordering, every node visited by Dyn&ralso visited

by FC when finding the first solution.

Sketch of proof. DynBndI partitions the domain of a variable into equivalertasses.

By construction, if one value in an equivalence class is gdulny forward checking, the
other values of the class are also pruned. Therefore, FGhexttr prune any more values
from the domain of a variable than DynBndl. Hence, if therang bundling during search,
DynBndl will search a smaller tree than FC and visit feweresdn the worst-case (i.e.,
when all bundles are singletons), DynBndl and FC searchaimedree and visit the same
nodes. Further, in a backtrack-free search, the numberddsaisited V) is the same for

DynBndl and FC, irrespective of the amount of bundling. O

3.6.2 Number of constraint checks

When finding one solution, we cannot make theoretical guaeson the relative numbers
of constraint checks of DynBndl vs. FC. DynBndl partitiom® tdomain of the current
variable using the nb-DT. The nb-DT also provides, as a didetethe domain of the future
variables for each of the values in the domain of the curranable[Beckwithet al,, 2001;
Choueiry and Davis, 2002This result is equivalent to performing constraint chesks
future variables for every domain value. FC operates diffdy, it performs constraint
checks for one domain value at a time successively until aailovalue does not lead to
domain annihilation of a future variable.

Let us consider two scenarios midway while searching forsmotetion to a CSP. The
first scenario is when the value assigned to the currenthlarieads to a solution without
any backtracking. The second is when the first value (e.gigmesd to the current variable

fails to yield a solution, forcing search to consider a secealue in the domain of the

37

current variable.

In the first scenario, FC performs constraint checks for @nsubset of the domain
values when instantiating the future variables beforehgca solution. DynBndl, on
the other hand, computes domain partitions of each of thedutariables and effectively
performs constraint checks for each value in the domain @fctirrent variable. In this
scenario, DynBndl performs more constraint checks than FC.

The second scenario illustrates a situation where DynBxelt\@es fewer constraint
checks than FC. Let us assume that the two values € Dy, are interchangeable and
consistent with a tleast one value in the domain of a futurialséeV, € NEIGHBORYV,).
Let Dy,, = {,y, z} such thaty is consistent witli andm for V.. andz andz are not. FC
executes 3 constraint checks comparing the instantiafidéf to the values in the domain
of Vi; anda; constraint checks exploring the (inconsistent) sub-toesed at(V;; y).

See Figure 3.10. FC uncovers the inconsistency of the dypegh, and repeats the same

6 check

Figure 3.10:Search tree by FC. Figure 3.11:Search tree by DynBndl.

procedure when changing the instantiatiovpfrom [to m, only to discover that the path
is not consistent. This failure prompts search to expldneiotalues folt,, if there are any,

or backtrack to a past variables otherwise. The total nurobeonstraint checks executed
by FC in this case is 6+2a; checks. DynBndl proceeds by first partitioning the domain of

V.. It performs 6 constraints checks to determiradm are interchangeable fdf.. See

38

Figure 3.11. DynBndl proceeds as FC, but it explores thetseérooted atV; ; y) only
once to discover that the current path is doomed to failimes executing 64; constraint
checks. Further, if any bundling opportunity arises in théhie sub-tree rooted &v; y),
the number of constraints checked in this sub-tree by DyhBmd, a;) is necessarily less
than that under FC (i.eq;). Therefore, the savings in constraint checks are due extieg
symmetric domain values, which saves us revisiting thetsedorooted afV; ; v).

From the above two scenarios, it becomes clear wiate DynBndl performs more
checks at each node, by saving on the number of nodes vigitmimpensates for these
extra checks. As aresult, at some point, DynBndl performsirfeonstraint checks than FC
does lt is difficult to predict the point at which the savings oxmMmpensate the additional
effort it depends on the amount of bundling and the numbeaitéd instantiations, which

cannot be predicted.

3.6.3 Solution bundle

While FC always returns a unique solution, the first solubandle returned by DynBndlI
has one or more solutions. Its size is measured by FBS. Uhdeaime variable and value

ordering, the solution returned by FC is always in the solubiundle returned by DynBndlI.

3.7 Experiments

The goals of our experiments, in increasing order of impur¢aare as follows:
1. Assess the importance of solution bundling, which is tlargoal of our approach.

2. Assess the overhead due to bundling in terms of effortssaeg for computing the

domain bundles.

3. Assess the impact of bundling versus non-bundling on énfpnance of search.

39

To this end, we compare the values of the following metriasDgnBnd| and FC: the
number of solutions FBS when finding a first solution, the CiPu&t the number of nodes
visitedNV, and the number of constraint checkac].

When seeking all solutions, DynBndl is guaranteed to visitmore nodes and do no
more constraint checks than FC (see Section 3.5). For fintimdrst solution, DynBndl
does not visit more nodes than For the same variable ordering (see Theorem 3.6). Un-
der dynamic variable ordering, DynBndl and FC are not cowuplar either in terms of
nodes visited or constraint checks. Their behaviors nedxbtevaluated experimentally
and compared. Our experiments compare the performance ahBO®ynBndl under dy-
namic variable ordering. We use the common heuristic knasvth@least domain heuristic

(respectively, the least number of bundles in a domain).

3.8 Choice of test problems

In this section we discuss the choice of test problems: beadks used for symmetric
CSPs (which are too specific and not appropriate for demativggrbundling), real-world
applications, and randomly generated problems.

NI aims at detecting equivalent values in the domain of argi@SP variable. It does
not intend to uncover permutations of values across vasabvhich is isomorphic inter-
changeability and is the focus of most work on symmetry in €3 most published work
on symmetric CSPs, the symmetry relationsdeelared not discovered, and as given as
input to the search algorithm. One can expect NI, and its eeakrsion used in dynamic
bundling, to be useful in real-world applications where dmredundancy exists or ap-
pears during search. This is not the case of the benchmabitepns used for symmetric

CSPs, which are not suitable for testing bundling for theofeing reasons:

Note that the savings by DynBndl in the number of nodes \dsithen looking for a first solution can
only be explained by the bundling of no-goods.

40

1. Most exhibit only symmetries that are permutations ofigalover variables.
2. Most have small domains (e.g., Boolean), which are nonaivle to bundling.

3. Most are modeled using a unique global constraint of eeptial size. Defining the

constraint in extension amounts to solving the problem ariéely intractable.

4. Finally, for coloring problems, bundling can be done anlthe case of list-coloring
problems (typically used to model resource allocation fenmis). However, such
bundling can be easily computed without nb-DTs as showW@&houeiry and Noubir,

1994.

While looking for (strong or weak) NI sets is cost effectivelashould be always attempted,
no technique can find multiple robust solutions in permataproblems where there are
exactly as many variables as there are values.

The primary practical advantage of bundling is the produrctf robust solutions,
where any value in a bundle for a given variable can replage#rer value in the bundle,
should the former become unavailable or undesirable. Taeipal usefulness of bundling
was established in case-based reasofiteagu and Faltings, 2001nurse scheduling
[Weil and Heus, 1998 and databasdéal and Choueiry, 2004and Chapter 5. For ex-
ample, in Chapter 5, we show how dynamic bundling reducesisteeof a query result on
a real-world database by 54% (yet storing the same infoomatiWhile we still need to
validate our approach on real-world applications, we foaushis thesis, on introducing
the techniques and their implementation and test our dhgns on randomly generated
CSPs. Even though such problems lack the redundancy onetsexpdind in real-world
applications (which makes them particularly amenable talbing), our experiments show

that dynamic bundling effectively yields multiple robustions.

41
3.9 Experiment design and set-up

Below, we report results demonstrating the benefits of dyoammdling on randomly gen-

erated problems. We describe a non-binary CSP with the téple a, ps, 3, ¢4, t), where:

e k is constraint arity,
e 1 is the number of variables,
e ¢ is the domain size,

e 1, is the constraint ratio of binary constraintg,andc, are the number of ternary

and quaternary constraint respectively, and

¢ ¢ the constraint tightness.

We used the random generator providedIbgl et al,, 2003 without enforcing solvability.
We ran tests on a wide range of random problems with varyimga®s of variables, domain
size, constraint ratio and tightness values. Table 3.1 shbe data sets generated. For
brevity, we refer to the constraint ratios using the claszifon Table 3.2. The tightness
values for each of the 16 datasets are listed in Table 3.3. aifergte 1,000 instances for
every tightness value in all the 16 datasets of Table 3.1.dB&sets are designed to study
variation in performance over different values of tightyedomain size, constraint ratio,
and number of variables. We have included datasets that peceko be unfavorable to
dynamic bundling. For example, the Dataset #4 in Table 3slitva domain size and a
large number of constraints. In such a dataset, we expeavewues for bundling, which
would illustrate the worst-case behavior for dynamic bumgll We have also included
datasets where we expect dynamic bundling to do well, tylgidatasets with large domain
size and low number of constraints (e.g., Dataset #13). deraio ensure uniform server
loads across experiments, we solve each problem instastevith DynBndl and, then

immediately after that, by FC.

42

Table 3.1:Datasets of random problems. Table 3.2:Categories of constraint ratios.

Dataset| N | a | Constraint ratio p2 | c3 | ¢4 | Constraint ratig

P2 || category

1 201 10| 0.25| 3 2 025 3|2 CR1

2 201 10| 0.25| 6 5 025/ 6 |5 CR2

3 20110| 04 | 3 2 04| 3|2 CR3

4 20110| 04 | 6 5 04 |6 |5 CR4

5 201 15|0.25| 3 2

6 20115/ 0.25| 6 5

7 20115| 04 | 3 2

8 20115| 04 | 6 5

9 30110 0.25| 3 2

10 30/10|0.25| 6 5

11 30/10| 04 | 3 2

12 30/10| 04 | 6 5

13 30| 15|0.25| 3 2

14 30|15|0.25| 6 5

15 30/15| 04 | 3 2

16 30/15| 04 | 6 5

3.9.1 Justification of dataset size

A large number of samples ensures reliability of statifaoalysis. Though a large sample
size is not required in some analysis models, having a lagpke size is generally helpful.
This is because a larger number of samples better appraesniag set of all possibilities
called the ‘population.” Parametric statistical testg like t-test are sensitive to the number
of samples. However non-parametric tests are companatees$ sensitive to sample size
than parametric tests.

In order to determine the sample size, we generated a largbenof samples (10,000)
for Dataset #5 ((n = 20,a = 15, CR1)). We solved these instances and plotted the values
of moving averages of the CPU time looking for a sample sizerevthe value of the mean
stabilizes. The moving average plot of the CPU time for thigletness values is shown

in Figure 3.12. We can see that the value of the mean is ‘ulestabm 10 to 100 sample

43

Table 3.3:Tightness values test for each dataset.

| Dataset | Tightness values |

1 {0.4000, 0.4500, 0.4750, 0.5000, 0.5250, 0.5500, 0.555@50, 0.6000, 0.650(
0.700G

2 {0.2750, 0.3000, 0.3500, 0.4000, 0.4625, 0.4875, 0.506026, 0.5250, 0.5375
0.5500, 0.600¢

3 {0.3250, 0.3625, 0.3750, 0.3875, 0.4000, 0.4125, 0.428@50, 0.5500, 0.6500

4 {0.3000, 0.3250, 0.3500, 0.3625, 0.3750, 0.3875, 0.408250, 0.5000

5 {0.4500, 0.5000, 0.5500, 0.5750, 0.5875, 0.6000, 0.618350, 0.6500, 0.7000

6 {0.4500, 0.5000, 0.5500, 0.5750, 0.5875, 0.6000, 0.618250, 0.6500, 0.675(
0.7500

7 {0.3500, 0.4000, 0.4250, 0.4375, 0.4500, 0.4625, 0.475100,0.5500,0.6000

8 {0.3500, 0.4000, 0.4500, 0.4750, 0.4875, 0.5000, 0.518350, 0.5500, 0.6000

9 {0.2500, 0.3000, 0.3500, 0.3750, 0.3875, 0.4000, 0.412250, 0.4500, 0.500(
0.6000

10 {0.3000, 0.3500, 0.3750, 0.4000, 0.4125, 0.4500, 0.508600, 0.6000

11 {0.2000, 0.2250, 0.2500, 0.2750, 0.2875, 0.3000, 0.313350, 0.3500, 0.4000

12 {0.2000, 0.2500, 0.2625, 0.2750, 0.2875, 0.3000, 0.313500, 0.4000, 0.4500

13 {0.3500, 0.4000, 0.4500, 0.4750, 0.4875, 0.5000, 0.525600, 0.6000

14 {0.3500, 0.4000, 0.4500, 0.4750, 0.4850, 0.5000, 0.525@50, 0.6500, 0.7000

15 {0.2500, 0.3000, 0.3250, 0.3500, 0.3650, 0.4250, 0.508600}

16 {0.2500, 0.3000, 0.3250, 0.3350, 0.3500, 0.3650, 0.378000, 0.4500

points. Therefore, such sample sizes are not representalive mean starts stabilizing

(having less variation on increasing the sample size) nB@rsample points. At 1000

sample points, it is relatively stable with significantlyater variations than for smaller

sample sizes. The mean value at 1000 sample pointsis cltsat tat larger samples. From

the analysis above, we chose a sample size of 1000 instaorcegdry tightness value in

the 16 datasets.

44

%007 Moving Averages
n =20, a=15, CR1

250
t=0.575

[msg

N
a
o

CPU time

100 Wy

50 t=0.650

- = ™ = = ™ = ™ = = = = = ¥ ¥ ™ ¥ = ¥ ™= v+ v+ v+ = +

Figure 3.12:Moving average of CPU time for Dataset #1.

3.9.2 Statistical tests

The experiments described above generated a large amodataof\We describe here the
steps taken to analyze the data statistically. We first dstiue characteristics of the data,
followed by the transformation applied to the data to makkt ithe data model of our
analysis. We then discuss the statistical tests used tdotedifference between the two
algorithms being compared (i.e., DynBndl and FC).

The CPU timeNV, andCC of both algorithms have extremely high variances. In spite
of the large sample size, the empirical distribution of theadlid not approximate a normal
distribution. Non-normality was primarily due to the prese of relatively large values
in the data (also called outliers). Equal variances and abityrof data are two important
assumptions in most of the parametric statistical test®topare the performance of two
algorithms. In order to eliminate high variance and theatféd outliers, we applied a log
transform to our data. The log-transformed data approxmatnormal distribution and

fits the data model of our tests.

45

We used ANOVA (ANalysis of Variance) to study the interaotiof the two methods
with varying tightnes$Rees, 200[L ANOVA results tell us whether there is a difference in
the means of two sets of measurements with the same tightalegsthat can be attributed
to the method used to solve the instances. It allows us toejudgether there is any per-
formance improvement due to DynBndl. The null hypothesiofar analysis was that the
difference in the means of CPU timi\(andCC) of DynBndl and FC is zero when finding
the first solution. The ANOVA procedure returns an F-valughastest statistic and the
F-value indicates whether we can reject the hypothesedh avit--value larger than 9.4,
we can confidently reject the null hypothesis and conclude ttie means due to FC are
different from those due to DynBndI.

For every tightness we estimated the difference in meanmenand the confidence
intervals of this difference using the t-distribution. Weavk a large sample size and hence
we also apply the Bennerfoni correction while calculatiogftdence intervals of the means
[Rees, 2001L

We report in our analysis the improvement percentage dueyttBBd| over FC for
the log-transformed data of CPU tingy, andCC. We compute improvement as follows,

wherel! is the improvement and be one of the three metrics (CPU tinlM/ andCC).

_ FC(X) — DynBndl(X) DynBndl(X)
1) = FO(X) B FO(X) 3-1)
The statistical analysis yields the following results:
Mean(In(DynBndl(X)) — In(FC(X))). (3.2)

We can rewritel as follows:

DynBndl(X)

_[(X) -1 eln(Fox)) —1— eln(Dyandl(X))—ln(FC(X)). (33)

46

We report/ x 100 as the improvement percentage in our results.

3.10 Results and analysis

In this section, we present the results of our experimerdsaaalyze the effect of varying
CSP parameters. First we study the performance of DynBnethimparison to FC across
tightness values with the help of ANOVA results. From themewe focus on tightness val-
ues around the phase-transition region (see Section2WWed3tudy the effect of increasing
domain size and number of constraints. Finally, we analjeedsults of the experiments

to gain more insight into DynBndl.

3.10.1 Analysis with varying tightness

Quite expectedly, the largest FBS occurs at low tightneksegahowever, DynBndl finds
non-singleton solution bundles also well into the area efthase transition (see Fig. 3.13).
Figure 3.13 compares the performance of DynBndl and FC mdeaf CPU timeNV, CC,
and FBS with varying tightness in Dataset #7. We choose Hieset to present our analysis
because it has a relatively large domain size (which we éxtpédxe favorable for DynBndl)
and also relatively high constraint ratio (which we expedbvé unfavorable for DynBndl).
The results of all remaining datasets are presented in AppeX In our analysis, we
distinguish the performance at the following three tiglsgieegions in Figure 3.13: low

tightness, around the cross-over point, and high tightness

At small tightness values(t < 0.425). The benefit of DynBndl here is the large FBS.
For example, FBS=33 at0.350. In Dataset #13 we get many robust solutions in
the first bundle at=0.35, with FBS=2254.7 (see Table A.8 and Figure A.3). The
benefit of bundling no-goods is not yet visible as the firsusoh (bundle) is found

without much backtracking. While the cost of computing tiadies is visible (the

=]

n

®

CPU Time [sec]
>

CPU time [sec] /
=20,a=15, /
CR3 Y

|

——DynBndI
-=-FC

Tightness

7.0E+07

6.0E+07

5.0E+07 4

4.0E+07

#CC

3.0E+07

2.0E+07

1.0E+07

#CC
n=20,a=15,
CR3

r

——DynBndI
-=-FC

0.0E+00

0.35 04

0.45

Tightness

0.5

47

2500

2000

1500

#NV

1000

500

#NV
n=20,a=15,
CR3

—— DynBndI
-=-FC

L]
I \

0.4 045

05 0.55 06
Tightness

FBS
n=20,a=15,
CR3

0.37 0.39 0.41

0.43 0.45 0.47 0.49

Tightness

Figure 3.13:The CPU TimeV, CCand FBS results for Dataset #7.

constraint definitions are large), the overhead can be gghgiven the short total time

for solving the problems. In Dataset #13, we get 2254.7 gwiatfrom DynBndl at

an additional cost of 275ms (see Table A.8 and Figure A.3ickvim practice is not a

significant additional cost. At=0.425 (in Figure 3.13) ANOVA shows no significant

difference between the CPU time of DynBndl and FC: the owvalh&f computing

the bundles is compensated by the bundling of no-goods.

Around the cross-over point (0.425< ¢ < 0.500), DynBndl still returns multiple so-

lutions. For example, FBS=5 &t0.450 and FBS=2.3 at0.462. Furthermore,

DynBndl improves the performance of search as bundling egomds becomes

prevalent: we encounter the maximum amount of savingsVjrCC, and CPU time.

Here, the effort of computing bundles is insignificant congplato the savings due

to bundling. ANOVA indicates significant improvement of IBmdl over FC across

48
the entire region. From these results, we can concludeith#éte phase-transition
region where solutions are the most costly to find, DynBnilll itturns multiple

robust solutions while significantly improving the perf@nte of search.

For large tightness values(0.500 < t). Most of the problems at high tightness are un-
solvable and the advantage of multiple solutions is not $eee. Forward checking
effectively detects that most of the CSPs are not solvabilg ea in the search pro-
cess, thus reducingV and the number of backtracks. The overhead due to bundling
becomes apparent, although not alarmingly so. ANOVA ingis#hat DynBndl and
FC are still comparable £0.600.

3.10.2 Effect of increasing domain size

Table 3.4 shows, in the phase-transition region, the agdragrovement of the CPU time
and the value of FBS when increasing the domain size. We trépoimprovement (X)
of a measurement” using Equation (3.3). In summary, increasing domain sizeuonber
of variables improves the benefit of DynBndl both in terms BSFvalue and savings of

CPU time. Increasing the domain size, for the same constetin and tightness, increases

Table 3.4:Increasingz (n=30) around phase transition.

CR | I(CPU)% FBS

a=10 | =15 | a=10]| =15
CR1| 33.35%| 34.32%| 5.55| 11.93
CR2| 28.58%| 33.01%| 5.01 | 5.52
CR3| 29.82%| 31.66%| 3.55 | 4.95
CR4 | 28.45%| 31.65%| 1.23 | 1.43

the chances of bundling and the savings in terms nodesdisite
We know that the cost of computing the bundles increasestiwéldomain size (i.e.,

O(deg - a**' - (1 —t)), see Section 3.1.2.1). However, our experiments shovthieaddi-

49
tional savings due to the bundling of no-goods exceed thease in the cost of bundling.
Further, better bundling can only increase the value of RBfih is the product of the size
of each bundle in the solution found. This is explained a¥ed. The search tree with
a=15 is larger than that fo#=10, and therefore the number of nodes saved by DynBndl
is much larger and the increase in savings in CPU time duesiting these many fewer
nodes overshadows the increase in cost of bundling due teased domain size.

Therefore, with increasing domain size we observe more Immednd get more solu-
tions due to DynBndl at a reduced cost in terms of CPU times hespecially promising

in the context of application to databases where large dosiaes are typical.

3.10.3 Analysis with varying constraint ratio

Table 3.5 shows to the left the effect of increasing the ratibinary constraintg, from
0.25 to 0.40 while keeping constant the number of the noasgioonstraints. To the right,
it shows the effect of increasing the number of non-binanyst@ints fronr; = 3,¢4 = 2
to c3 = 6,c4 = 5 while keeping constant the number of binary constraintd. values

reported are for the region of the phase transition. In génarcreasing the number of

Table 3.5:Varying constraint ratio around phase transition.

n,a c3=3,c4 =2 p2=0.25

I(CPU) % FBS I(CPU) % FBS
CR1 ‘ CR3 | CR1 ‘ CR3| CR1 | CR2 | CR1 ‘ CR2
20, 10| 27.77| 25.95| 2.11 | 0.63 | 27.77| 27.95| 2.11 | 0.55
20, 15| 30.07| 26.82| 4.31 | 1.74 || 30.07| 25.81| 4.31 | 0.63
30, 10| 33.34| 29.82| 5.55 | 3.55| 33.34| 28.57| 5.55 | 5.01
30, 15| 34.33| 31.65| 11.93| 4.95 || 34.33| 33.01| 11.93| 5.51

constraints, everything else remaining equal, reducelsehefit of DynBndl because of an
increased probability of breaking bundles. This effectléady visible as both the values

of FBS and the CPU-time improvement decrease. This is engyiby the fact that with

50

increased constraints the chances of symmetries breagiogsconstraints increase (at the
intersection step), leading to thinner bundles for eachalée. Thinner bundles decrease

the savings by bundling of no-goods and result in smaller #&&es.

3.10.4 Global observations on DynBndl

We use the data in Table 3.6 to provide more insight into DydiBn

Table 3.6:Effect of tightness and savings NV on CPU time improvement.

Dataset #5,n = 20,a = 15, CR1
Tightness | N\V(FC)-NV(DynBndl) | I(CPU) %
0.5500 43.63 -7.5
0.5750 123.40 14.3
0.5875 211.39 24.2
0.6000 292.76 29.8
0.6125 289.65 32.6
0.6250 204.53 31.2
0.6500 223.63 32.7

e Observe the savings far0.6 andt=0.6125. Even though the savingsNV are
comparable (i.e., 292.765 versus 289.65), the improveme@PU time increases
with ¢ (i.e., from 29.8% to 32.6%). This can be explained by the fiat, for the
lower tightness, the constraint sizes are larger, whicreeses the cost of bundling.
Therefore, even with the same of savingd\wi and equal problem size, the CPU

time improvement is larger for larger tightness values.

e Att¢=0.55, while DynBndl visits 43 fewer nodes than FC, it takesertime to solve
the probler. This gap can be explained by the time spent on computinguthéles,

which can reduced by an improved implementation. In sumntieye exists a point

2Note however that DynBndl returns more solutions than FC.

51

where the cost of computing the bundles becomes comparathlighve increasing

savings due to the number of nodes visited.

Table 3.7 shows the improvement of DynBndl in terms of CPUetiamd the aver-

age value of FBS across all datasets in the region of the glras&tion. The maximum

Table 3.7:Average improvement in CPU time across datasets.

| Dataset | /(CPU) % | FBS |

1 27.77 2.11
2 27.95 0.55
3 25.92 0.63
4 25.94 0.64
5 30.07 4.31
6 25.81 0.63
7 26.82 1.73
8 26.44 1.15
9 33.34 5.55
10 28.57 5.01
11 29.82 3.55
12 28.45 1.22
13 34.32 11.93
14 33.01 5.51
15 31.65 4.95
16 31.64 1.42

improvement of CPU time is seen for Dataset #13. This is eegelbecause the maxi-
mum improvement occurs for the larger values:df.e., 15) and the minimum values of
constraint ratio (see discussion in Sections 3.9, 3.10@,310.3). Conversely, the least
improvement is for Datasets #3 and #4, with10, =15, and CR3 and CR4.

Finally, we observe that, across the phase-transitiooreBS is mostly larger than 1,
especially for datasets with=30 ora=15 (i.e., Datasets #5, 7, 8, 9, 10, 11, 12, 13, 14 and
15). Itis not as large as for low values of tightness, to tfteigphase transition (not shown

on Table 3.7). The improvements of CPU time are more sigmifiagthe phase-transition

52

area than for low tightness values because of the bundling-gfoods.

Summary

Extending the mechanism for computing neighborhood ihtemgeability to the context of
non-binary constraints is a non-trivial task. We preseatedlgorithm to compute domain
partitions of the domain of variable in non-binary CSPs. \Wealibed when it is advisable
to switch off bundling and how to do it. We integrated the comapion of NI sets in
search with forward checking, and theoretically and erogily demonstrated the benefits
of DynBndl, the resulting algorithm. In particular, we shexthat DynBndl not only finds
multiple solutions but also reduces search cost, espgaialnd the phase transition where

it matters most.

53

Chapter 4

Towards Detecting Substitutability

Previous chapters focused on detecting and exploitingegailn the domain of a variable
that are interchangeable. In this chapter, we considetisutiability, which is a more re-
laxed version of symmetry, and specifies a one-way inteigbalility between two values
of a given variable. We describe how to efficiently detect samhthese substitutable val-
ues by modifying the DT and nb-DT, and how to integrate thisrapch with dynamic
bundling. We then discuss the performance of dynamic bngdlsing substitutability. It
is important to note that the techniques presented heretdw@iy a subset of the possible

substitutable values in the domain of a variable but this@ss is, nevertheless, beneficial.

4.1 Substitutability

Let A andB be two bundles in the domain of a variable We say thatl is substitutable for

B when, inanysolution with(V; B), replacing(V; B) with (V; A) results in a new solution

to the CSP. We denote this relationship By— A. Note that there could be solutions
with (V; A) that are not consistent solutions wh@n A) is replaced with(V; B). When

A +— B is also true theml and B are interchangeable. We can see that interchangeability

is a special case of substitutability. L&t be the set of solutions of a CSP that halvgA),

54

andSp be the set of solutions that ha{l B). The above can be restated as follows, where

S; and.S; are two solution bundles to the CSP:

° VSF{(Vl X1>, ce <V; B>, R <Vn Xn>} € SB = S]:{U/I X1>, Ce <‘/z A), .
(Vi X0)} € Sa.

e Unless4 andB are interchangeablg,s;, S; (S;={(Vi X1),..., (Vi 4), ..., (V. X»)}
€ Sa) A= (Vi Xa)s o (Vi By oo (Vi X)) € S)-

4.1.1 Using DT to detect substitutability

For a variabld/; and two values, b € Dy, we can test whetheris substitutable fob by
comparing the sets of values in the neighborhood;dhat they are consistent with. If the
set of consistent values bfs a subset of the consistent valuesdothena is substitutable
for b. We propose to use the discrimination tree to desechesubstitutable values. The
bundles in annotations situatatbng a pathin the discrimination tree are such that the
bundle deeper in the tree is substitutable for the bundlaeashallower level. Consider

the example shown in Figure 4.1. Bundbeis consistent with a subset of the values that

Root

Figure 4.1:DT(V;) showing substitutable values.

bundle A is consistent with. Hence, whenev@r; B) is part of a solution(V; A) can
replace(V; B) in the same solution (i.eB — A). The converse may not hold, because a
neighbor ofV; may take a value that is in the path between the annotated rsbaevn in

the tree, and thus is consistent w{thj A) but not with(V; B).

55

We illustrate the ideas above using the binary CSP of Figuze Bigure 4.3 shows

DT(1:). We can see thal; c) is consistent with a subset of values that are consisteht wit

Figure 4.2:A binary CSP.

V3 a>
<V3 b>
<V3 d>
<V4 a>
<V4 b>
<V, c>

{e f}

Figure 4.3:DT(1%).

(Va {e, f}). Therefore{c} — {e, f}. Table 4.1 shows how solutions with, {e, f}) can

be used to generate solutions w{th {c}).

Table 4.1:Solutions using substitutable values.

Ve

| Solution |

{d}

{e f}

Yes

{d}

{c}

Yes

{d}

{e f}

Yes

{d}

{c}

No

4.1.2 DT does not detect all substitutability relations

The DT is not guaranteed to detect all substitutability tretes because a bundlé for

V; may be consistent with a subset of the tuples that a buadta V; is consistent with

and yet the two bundles may not lie on a same path in the DT.iGenthe example DT

for a variableV; with a binary constraint with a variablé shown in Figure 4.4. By the

definition of substitutabilityB — A becauseB is consistent with a subset of the tuples

that are consistent witd. However,A and B do not lie on the path from the root of the

DT to a common leaf in the DT. Our approach fails to detect that A. The ordering of

56

<V1 3>
<V1 4>
<V1 5>

<V1 6>

Figure 4.4:A DT(V;) the illustrates the limits of our approach.

values affects the ability of our approach to detect all stuiability relations

4.1.3 Which bundle to use during search

Consider bundled andB for a variableV; such thatB — A (see Figure 4.1). We identify
two ways in which to exploit this knowledge in order to redtice search effort and infer
the existence of solutions involving one bundle given thisterce of solutions involving

the other.

4.1.3.1 UsingB as a representative

When(V; B) is part of a solution, then we generate additional solutiprsimply replacing
B with A, and evidently withA U B. Replacing(V; B) with (V; A U B) leads to fatter
solution bundles than those without the use of substitlitabiFurthermore, no search
needs to be performed dir; A).

However, whenV; B) is part of a no-good, we cannot infer whether or figt A) is
also involved in the same no-good. Therefore, we cannaticesearch toB, but must

consider(V; A) during search.

57

4.1.3.2 UsingA as a representative

When the instantiatiofl; A) leads to a solution, replacind; A) with (V; B) may or may
not lead to a solution. Under these circumstances, we reemaro proceed as follows.
Using the solutions involvingV; A), we generate a new set of instantiations by replacing
(V; A) with (V; B), and test whether or not the new instantiations are comsigte.,
are solutions to the CSP). By doing so, we save the searctt, dftd not the consistency
checking effort, onV; B).

When (V; A) is involved in a no-good({V; B) is necessarily involved in the same no-

good. Therefore, no search with; B) is needed.

4.1.3.3 Discussion

Given the two above approaches, usih@s a representative seems to be a more effective

strategy for the following reasons:

e When usingA as a representative, we never have to searchiifo3), unlike the
other approach where a non-solution f®necessitates to conduct search(figr A).
Checking if an instantiation is consistent is more efficitretn conducting search

from scratch.

e The “using A as a representative” approach scales better than thealtern So
far, we have discussed only the case when one value (or adjusdubstitutable
for another one. Imagine a situation where a ‘chain’ of stlgstbility relations is
identified such a8’ — B — A. In this situation, restricting search tbsaves on the
search effort for botk{V; B) and(V; C). The alternative approach restricts search to
C'. Under this scenario, whefV; C) is involved in a no-good, we still need to run
search foV; A) and(V; B). The above illustrates how longer substitutability chains

amplify the difference between the two approaches.

58

In summary, in a substitutability relation of the foreh— A, usingA as a representative

is a better approach than the alternative approach.

4.2 Algorithm for detecting substitutability

We present here a new algorithm, Algorithm 4, for binary CRsuses DT to detect some
substitutable values in addition to NI sets. We denote aPdxhe extended discrimination

tree generated. Algorithm 4 usdsas a representative of two bundiésndB whereB —

A. Along with the annotation of a bundle (i.ed,of B — A), ext-DT additionally stores a

list of values for which the annotation is substitutable] sxdenoted bgubs- | i st (i.e.,

B of B — A). ANNOTATION(n) retrieves the annotation of a node subs- | i st (n)

refers to the list of values for which is substitutable.

59

11

12

13
14
15
16
17
18

19
20

21
22

Input: V
current-node— Create the root of the discrimination tree
subs-list-work— {}
for each valuex, € Dy do
for each variablel’; € NEIGHBORS V') do
for each valuew € Dy, consistent withu,, for V' do
if current-nodehas a child node with * (V; w)’ then
current-node— n,
if 3 unmarkedANNOTATION(n) then
subs-list-work <« subs-list-work U ANNOTATION(n) U
subs-1i st (n)
Mark ANNOTATION(n)
end
nd
Ise
Generate: a node with {V; w)’ and make it a child oturrent-node
current-node— n

@ @

end
end

end
Add a, to ANNOTATION(current-nodg
subs-list-work— subs-list-work\, (ANNOTATION(current-nodg)
if current-nodes not a leafthen
Traverse to a leaf fromurrent-node
Add subs-list-worko thesubs- | i st in the annotation of the leaf node
Mark ANNOTATION(current-nodg.
nd
Ise
Add subs-list-worko thesubs- | i st in the annotation
Un-mark ANNOTATION(current-nodg

@ D

end
current-node— root of the discrimination tree
subs-list-work— {}

end
Output: Root of discrimination tree

Algorithm 4: ext-DT(V) detects interchangeable and some substitutable valués fo

60

When building the tree with a value, € Dy, consider the case when the algorithm
encounters a node with ammarkedannotationA, (see Line 8). In this scenario, we
are guaranteed that; is consistent with a subset of values thatis consistent with in
NEIGHBORYYV) (i.e., A; — {a,}). Therefore, Lines 9-10 of Algorithm 4 add the annota-
tion and thesubs- | i st of the node with annotatioA; to subs- I i st (a,).

Line 15 in Algorithm 4 checks whether the annotation wherappears is a leaf node in
ext-DT. Let us consider the case whenappears in a non-leaf annotation, andAet, ; be
a leaf annotation reachable from the annotationofFrom the discussion in Section 4.1,
we conclude thafa,} — Ai.r. Therefore, the algorithmmarks ANNOTATION(a,) and
addsa, tosubs- | i st (A;..f) in Lines 16—-18. When the annotationafis a leaf, then
Line 20 of Algorithm 4 sets the annotationaamarked The output of the algorithm is the
DT with the substitutability relations stored in albhmarkedannotations of the DT. Observe
that allunmarkedannotations will be leaves of the DT.

The algorithm adds a few steps to the original DT buildingatm (Lines 8-10, 14—
20). However, these additional steps operate on the DTtllirand do not require any
additional constraint or consistency checks. The additioperations are characterized as

follows:

e Maintainingsubs- | i st requires accessing a field in the annotation data structure
and appending to a list. Both of these operations are inestypeim terms of CPU

processing (see Line 8-10).

e The other additional operation is of traversing to a leahefDT (see Line 16). The
algorithm traverses the tree from the current node to arshadale leaf. Therefore,
the process simply follows a chain of pointers. This traakdoes not require any

comparisons and is therefore inexpensive in terms of CPUgssing.

In summary, the additional cost of detecting substitutablaes is insignificant.

61
4.3 Extension to non-binary CSPs

Similarly to the binary case, we extend the mechanisms wletbuilletect NI sets in non-
binary CSPs (i.e., the nb-DT and Algorithms 2 and 3 of Chap}do detect some substi-
tutable values along with the NI values. We call the resgltiee ext-nb-DT. As a reminder,
in the non-binary case, to compute the NI sets for a giveralséaj we build an nb-DT for
each of the constraints that apply to the variable, then vezsact the annotations to com-
pute the NI sets and intersect the paths leading to theseatioms to collect the values of
the neighboring variables that are consistent with eacreNI s

The change to Algorithm 2 for building nb-DTs into an algbnit for building the ext-
nb-DT is similar to what we did above for the binary case. Tésulting algorithm is

Algorithm 5, which includes the changes to detect some gubmbility relations.

4.3.1 Collecting path and annotation information

As we did in Section 3.1.2.1 for nb-DTs, we collect paths andaodations from the ext-
nb-DTs to determines NI sets and the corresponding consi&iéues for the neighboring
variables. The only difference in the extension to detebsstutability is that annotations
additionally store thesubs-1i st and are characterized as marked or unmarked. For
clarity, we restate this step here. We traverse the tree themoot to each annotatiof;

and construct’; by collecting the nodes on the path. We form a ljst (P;, A;) of the
particular path and the corresponding annotation, and & Jis- {/;} of these lists for each
ext-nb-DT.L is a list of all Z;'s and is an input to the intersection algorithm, Algorithm 6,

which we discuss below.

1The number of_; is deg, wheredeg is the degree of the variable or the number of constraintsiyaly
to the variable.

62

© 0o N O O b~ W DN B

10

11

12

13
14
15
16
17
18
19

20
21

22
23

Input: V,C
current-node— Create the root of the discrimination tree
S« scopPEC)\ {V}
for every values,, € Dy do
for every tuplet = ((V; ai), (Vj a;), ..., (Vi a)) € C do
if oy —q,(t) then
if current-nodehas a child node with wg(t) then
current-node— n
if 3 unmarkedANNOTATION(n) then
subs-list-work « subs-list-work U ANNOTATION(n)
subs-1i st (n)
Mark ANNOTATION(n)
end
end
else
Generaten a node withrg(t) and make it a child ofurrent-node
current-node— n
end
end
end
Add a, to the ANNOTATION(current-nodég
current-node— root of the discrimination tree
subs-list-work— subs-list-work\, (ANNOTATION(current-nodg)
if current-nodes not a leafthen
Traverse to a leaf fromurrent-node
Add subs-list-worko thesubs- | i st of the leaf node
Mark ANNOTATION(current-nodé.
end
else
Add subs-list-workto thesubs- | i st in the annotation
Un-mark ANNOTATION(current-nodg
end
current-node— root of the discrimination tree
subs-list-work— {}
end

Output: Root of discrimination tree

U

Algorithm 5: ext-nb-DT({/, C), which also detects some substitutable values.

63
4.3.2 Intersecting the nb-DTs

WhenB — A for V, the annotation o/l must containB in its subs- 1 i st for each of

thedeg ext-nb-DTs ofV. To see ifB — A holds across the ext-nb-DTs of the variable

we modify the process of intersecting annotations and tletene substitutable values.
The intersection process when detecting NI sets in nonpi@&Ps (see Algorithm 3)

works by processing each valug, in the domain of variabl&” as follows:
1. It collects all annotations with the valug and intersects them.

2. The result of the intersection is a partition of the domdaihe intersection process

subtracts the partition from the values in the domain of tueable.

The process moves to the next value in the remaining domadhrepeats the above steps
until all values in the domain are processed.

We now present an algorithm, Algorithm 6, to intersect risstriom individual ext-
nb-DTs to include substitutable values. The algorithm hes steps. In the first step
(Lines 3-10), the algorithm considers only those domaimieslthat have annmarked
annotation (i.e., a leaf annotation) in at-least one exbib(see Line 5) in order to not
miss detecting the longest substitutability relationshifor example, leC' — B — A
in all the ext-nb-DTs of a variabl& and letB be the first bundle fronD, in the value
ordering. If we ignore Line 5 in the algorithm, the algorithnil processB, even though all
annotations o8 are marked, and will detect that— B. By doing so, it misses detecting
the longer relationship’ — B — A. Line 5 defers detecting such chains to the second step
(Lines 11-17) of the algorithm. The second step of the allgoriLines 11-17) processes
the skipped domain values to detect any remaining NI or gukebility relations.

The worst-case time complexity of the algorithm remainssdn@e as Algorithm 3 (i.e.,

O(deg? - a*)) because the additional intersections donesfais- | i st are compensated

64

Input: L,V
dom-values— domain ofV/
partitioned-domain— ni |
for every valuex,, remaining indom-valuesdo
select-path+annot- An [; from everyL; € L for whicha, € ANNOTATION(;)
if Any Annotation irselect-path+annas unmarkedhen
annotation— Intersect annotations in tleelect-path+annot
subs-1list-intersect < Intersect thesubs- | i st’s from each annotation
Makesubs- i st -i ntersect thesubs-1i st of annotation
Add annotationto partitioned-domain
dom-values— dom-values, {annotationU subs-1i st }

end

© 0o N O O b~ W DN B

=
o

end

11 for every valuer,, remaining indom-valuesdo

12 select-path+annot— An [; from everyL; € L for whicha, € ANNOTATION(;)

13 subs-1list-intersect «— Intersect thesubs- i st’s from each annotation
14 Makesubs- 1 i st-intersect thesubs-1i st ofannotation

15 annotation— Intersect annotations in ttselect-path+annot

16 Add annotationto partitioned-domain

17 dom-values— dom-values, {annotationu subs-1i st }

end
Output: partitioned-domain

Algorithm 6: Algorithm to intersect annotations asdbs- | i st .

by the reduction in thelom-valdlist (Lines 10 and 17). We denote an annotation and its
subs- | i st as follows{annotation-bundle valuggsubs- | i st].

Let us work through the algorithm with an example in which aafale V' is constrained
by two constraint€’; andC;. Consider the scenario shown in Figure 4.5. Let us assume
the following value orderingv, X, y, z} of the domain ofl”. Note that any of these values
could represent a bundle. The valudhas no unmarked annotations and, hence, is not

processed in the first step. Next when working with vatuthe algorithm performs:

{z,y, 2} {o}] 0 {z, y3{v}] = {2, y}[{v}]

We delete the value&r, y, v} from the values remaining iy,. Figure 4.6 shows only

65

Root Root
/\V}[{}] A}[{}]

{x y Z}[{V}] XYMV]
ext-nb-DT(V, G) ext-nb-DT(V, G)

Figure 4.5:A scenario.

the annotations of unprocessed domain values after thetést Now, when working with

Root Root
z}{}]
XY, Zz}H{}]
ext-nb-DT(V, G) ext-nb-DT(V, G)

Figure 4.6:After processing.

valuez, the algorithm performs:

{z,y, 2} {o 0 {=zH{} = {z}[{}]

Thus, all domain values are processed and the substitutahles detectable by our ap-

proach are indeed detected.

4.4 Improving search performance using substitutability

Search using substitutability proceeds using the same tecepses used for DynBndl
described in Sections 3.1.2.1 and 3.1.2.2. These two pesasse Algorithm 5 instead

of Algorithm 2, and Algorithm 6 instead of Algorithm 3. Wheaasch finds a solution, it

66

attempts to generate additional solutions by substitutadges from thesubs-1i st in
the current assignments. Search checks whether this tsuiostibreaks any constraints in
the CSP. When no constraints are broken, the new assignmeutput as a solution. No
search is performed using values in thebs- | i st .

Exploiting substitutability during search improves penfi@ance by the same mecha-
nisms as interchangeability, namely, bundling of no-gaauts$ bundling of solutions. We
compare the performance of dynamic bundling and that oftgutability with dynamic
bundling. For the following results, we assume a staticalde ordering and the same

value ordering for the two approaches.

Theorem 4.1. Given a static variable ordering, search with substitutapiand dynamic

bundling never visits more nodes than dynamic bundling.

Sketch of proof. The worst-case scenario for substitutability is when tla#eeno substi-
tutable values. In this case, the process reduces to sedttilymamic bundling. When
substitutable values are detected, they reduce the numinexdes visited irrespective of
whether or not the bundle to which search is restricted |l¢éads solution. Therefore,
search detecting substitutability in addition to intemg@ability never visits more nodes

than dynamic bundling alone. O

Theorem 4.2. Given a static variable ordering, search with substitutapiand dynamic

bundling never performs more constraint checks than dya&omdling.

Sketch of proof. As we note in the algorithm to build a ext-DT (see Section /4tR¢
additional steps introduced act on discrimination treacstire. Therefore, given an ext-
DT, there is no need to perform any additional consistenegkimg to detect substitutable
values. Hence, search using dynamic bundling with sulbability will never check more

constraints than search with dynamic bundling alone. O

67

Theorem 4.3. Given a static variable ordering, search with substitutapiand dynamic

bundling finds a bundle with FBS at least as large as that fduwndynamic bundling.

Sketch of proof. The worst case for our approach occurs when no substitutahles
are detected and the solutions are not fatter than those foyidynamic bundling. When
substitutable values are present, solutions can be moresamative than those found by
dynamic bundling alone. O
The algorithms presented in this chapter generalize thedlgressors by performing
cheap data-structure management to detect some sulistitytelations apparent in a dis-
crimination tree. One additional computational step cgtssn verifying the consistency
of solutions obtained by simple replacement of a bundle ogree, which is an operation
that is not guaranteed to succeed but is not costly to exediterefore, the use of sub-
stitutability will likely improve the CPU time performander a majority of the CSPs in

practice, but this hypothesis remains to be empiricalliettand evaluated.

Summary

In this chapter, we discussed a special form of interchabitigacalled substitutability. We

showed how algorithms to detect NI sets can be extendeddalatect some substitutable
values. We presented algorithms for both binary and noafi€SPs. We discussed
integrating substitutability detection with dynamic blind and theoretically compared its
performance to that of dynamic bundling in termsN\M, CC and FBS. The experimental

evaluation and validation of the above ideas still need todrelucted.

68

Chapter 5

Dynamic Bundling for Databases

This chapter discusses the extension of dynamic bundlirdatabase algorithms. This

extension is not a straightforward application of the mectras developed in Chapter 3
but requires lifting the concepts and designing new alpor# to apply these concepts in
this new context. We first review some concepts of databdeears to the task at hand

and the challenges of adapting CSP techniques to databgseenThen we introduce a

new sorting-based bundling algorithm suitable for databaand show its applicability to

materialized views. We also identify areas of applicapilit databases to be investigated
in future research, and briefly discuss each one.

The content of this chapter has partially appeardd.at and Choueiry, 2004

5.1 Introduction to database concepts

This section gives an overview of the concepts in datab&smiure relevant to our task.
We first give an introduction to join algorithms followed by eatroduction to Materialized

views.

69

5.1.1 Join algorithms

The join operator in relational algebra takes as argumeatrédations and a condition,
known as thgoin condition that constrains any two or more attributes, one from each of
the two input relations. The notation of a joinR%,4,S, whereR andS are two relations,

x andy are attributes fronR andS respectively, and the join conditighis a comparison
operator (e.g.=, >, <, and=#). Equality is the most commonly used join condition, and
yields theequi-join, which requires that the values of two distinct attributeslie equal.

A natural joinis a special case of an equi-join that requires that thebates themselves
be the same. The join operation is among the most I/O-interggberators in relational
algebra because it may require multiple scans over the tpud irelations and also because
the size of the result can be as large as the product of the gizbese relations.

Join algorithms can be classified into three categoriesh-based, sort-based, and
nested-loop algorithms. All these algorithms attempt tGmojze the join by minimiz-
ing the number of times relations are scanned. Hash-bagedthims use hash-tables to
partition relations according to the values of an attribatel then join the partitions corre-
sponding to the same values. The sort-based approachqetitlations by sorting them
on the attributes involved in the join condition. Thanks dotisig, each tuple in a relation
is compared with tuples of the other relation lying withinyefl range of values, which are
significantly fewer than all possible tuples. Sorting reskithe number of scans of both
relations and speeds up join processing. Nested-loopitigw are used when relations
fit in memory or when no adequate hashing function or usefulrgporder is available.
None of these techniques attempts to compact query realilisugh this can be beneficial
given the large size of join results. The reduction of the bhanof I/O operations during
guery evaluation is a key factor in determining the efficieata database. Extensive re-
search is devoted to the development of query-evaluat@msphnd evaluation algorithms

that minimize the number of 1/O operations.

70

Our new join algorithm, described in Section 5.5, adoptptireciple of the Progressive
Merge Join (PMJ) algorithm of Dittrich et d2003. PMJ is a join algorithm that produces
guery results early, and hence can provide valuable infboméo the query-size estimator.
These are the working conditions that we are targeting. PVRhiinstance of the sort-
merge join algorithms, which have two phases: the sortimgpland the merging phase.

We first describe sort-merge join algorithms in general tiscuss PMJ.

5.1.1.1 Sort-merge join algorithms

In the sorting phase of a sort-merge algorithm for computivggjoin of two relationsR1
andR2, the memory of sizé/ pages is first filled with pages &.. These loaded pages
are then sorted on the join-condition attributes, and dtbeek to disk as sub-lists, auns
of the relations. WheR1 hasN pages,% runs are generated. This process is repeated for
R2, which we assume to have the same sizRlasAt the end of the sorting phase, we have
produced sorted runs &L andR2. Now, the merging phase can start.

We first consider thal/ > 2 x . Now 2 pages from each of th§ runs of Rl
are loaded into memory, and the same is doneRidr The smallest unprocessed tuples
from the pages oR1l andR2, respectively, are tested for the join condition. The tapleat
satisfy the join condition are joined, and the result writées output. A page is exhausted
when all its tuples have been processed. When a page is ézlaagpage from the same
run is loaded and brought in. Whed < 2 x £, multiple merge phases are necessary.
Each intermediate merging phase produces longer, but feaged runs. This process of
generating longer but fewer runs continues until the nurobenns of the two relations is
equal to the number of pages that can fit in memory.

Importantly, this sort-merge algorithm id¢ockingalgorithm in the sense that the first

results come only after the sorting phase is completed.

71

5.1.1.2 Progressive Merge Join (PMJ)

PMJ delivers results early by joining relations alreadyinigithe sorting phasDittrich

et al, 2003. Indeed, during the sorting phase, pages from both relativa read into
memory, sorted, and joined to produce early results. BecBWM] produces results early, it
is anon-blockingor a pipelined, version of the sort-merge join algorithrheThumber of
runs generated for each relation is more than that by a geswtamerge algorithm and is

given byj‘ffv. The merging phase is similar to that of a sort-merge algaritexcept that

PMJ ensures that pageskit andR2 from the same run are not joined again as they have
already produced their results in the sorting phase. Theanemequirements of PMJ are
more than those of a sort-merge algorithm because the nuofilvens generated during
the sorting phase is double that of a sort-merge algorithne Aumber of runs generated
doubles because the memory is shared by both relationsuBecd the increased number
of runs, the chances of multiple merging phases taking ptawrease. The production of
early results causes the results of PMJ to be unsorted. Howt&e unsorted results allow

for more accurate estimation of the result size, which isvgwoirtant feature.

5.1.2 Introduction to Views

In order to introduce views in databases, we use the paatigutompact and effective
introduction to views by Gupta and Mumi¢k995, from which most of the following is

taken verbatim.

What is a viewA view is a derived relation defined in terms of base (storetfjtions. A
view thus defines a function from a set of base tables to aatbtable; this function

is typically recomputed every time a view is referenced.

What is a materialized view& view can be materialized by storing the tuples of the view

in the database. Index structures can be built on the mizedaview. Consequently,

72

database accesses to the materialized view can be muchtfesteecomputing the
view. A materialized view is thus like a cache—a copy of thiadlaat can be accessed

quickly.

Why use materialized viewsl2ke a cache, a materialized view provides fast access to
data; the speed difference may be critical in applicatiohsn& the query rate is high
and the views are complex so that it is not possible to recoeniine view for every
guery. Materialized views are useful in applications sucdata warehousing, repli-
cation servers, data visualization, and mobile systeniegtity constraint checking

and query optimization can also benefit from materializesivel

What is view maintenancezist as a cache gets dirty when the data from which it is copied
is updated, a materialized view gets dirty whenever the tyidg base relations are
modified. The process of updating a materialized view in@asp to changes to the

underlying data is called view maintenance.

What is incremental view maintenance™most cases it is wasteful to maintain a view by
recomputing it from scratch. Often it is cheaper to comph&dhanges in the view
to update its materialization. Algorithms that computerges to a view in response

to changes to the base relations are called incrementalnewtenance algorithms.

5.2 CSP techniques for join computation

Although the computational problems studied in ConstrRirtcessing and in databases
are incredibly similar, few researchers address the qveridhese two areas. Exceptions
include the work by Dechter and PeftB89; 1990, Bayardo[1994, and Miranker et al.

[1997. Table 5.1 summarizes our understanding of how the termgyalised in databases

maps into that used in Constraint Processing: In this seaetie present the motivation

73

Table 5.1:Terminology mapping.

| DB terminology | CSP terminology |
Table, relation Constraint (which we call relational constraint)
Join condition Constraint (which we call join-condition constraint)
Relation arity Constraint arity
Attribute CSP variable
Value of an attribute Value of a CSP variable
Domain of an attribute Domain of a CSP variable
Tuple in a table Tuple in a constraint

Tuple allowed by a constraint
Tuple consistent with a constraint
Constraint relation Constraint of linear (in)quality
(in Constraint Databases)
A sequence of natural joinsAll the solutions of the corresponding CSP

behind applying CSP concepts to join computation and théesiges involved.

5.2.1 Motivation

Dynamic bundling, discussed in Chapter 3, produces congmations to a CSP by de-
tecting symmetries in the definition of a constraint. In tthapter, we extend this concept
to the computation of a join query on a database. The ideadst&ct symmetries in the
relations on which the join operator is defined, and computenapacted join result. Each
compacted tuple in the resulting table yields a set of tupjesiaking the Cartesian prod-
uct of the values of the tuple’s attributes. The goal of dyitabundling in CSPs is the
production of multiple, robust solutions at an affordabdstt The goal of extending this

mechanism to the computation of a join query is to:
1. reduce the number of I/O operations, and

2. produce a result that can be used in data analysis and d@tegm

We showed, in Chapter 3, that the computational cost wasirsfgnificantly reduced.

74

While the second goal is outside the scope of this thesisciviewe the first one as follows:

e We design an algorithm for detecting symmetries in the i@taton which the join
query is defined (see Section 5.4). This algorithm does netamy external data

structure such as the discrimination tree, but is entiraell on a sorting mechanism.

e Then, we design a join algorithm that exploits the symmettietected by the above

bundling algorithm (see Section 5.5).
We project two other important uses of our technique, namely

Improving query-size estimation: Indeed, the fact that the size of the compacted tuples
produced by our technique may be large is an indicator of heglundancy in the
resulting join relation. This information can be used to fidbe estimate of query-

result size, which is particularly relevant to query plami

Supporting data analysis and mining: The fact that these compacted results group sim-
ilar solutions uncover semantic information that hold agdme data items that is
useful for data analysis. Let us illustrate this advantagé e following two-
relation scenario. The relation

Custoner List(Custid, Age, Cender)
stores demographic information of all customers. Theigalat
Cust omer _Choi ce(Custid, Favorite_ Product)
stores choices of some customers from an online survey. libg/qo find the fa-

vorite products by age:

SELECT Custoner List. Custid, Favorite Product, Age
FROM Cust oner _Choi ce, Custoner Li st
WHERE Custoner Choice. Custid = Cust List.Custid

75

Our techniques will produce results where customers withesproduct and age
groups are bundled up together. This additional infornmatan be used for data

mining and in packages for data analysis.

5.2.2 Challenges

The challenge lies in adapting CSP techniques of to fit thalixete paradigm. We list here
the primary differences between the two fields, and discussalutions to porting CSP

algorithms to databases.

5.2.2.1 Number of I/O operations and memory usage

All database operations are optimized towards minimizhreyiumber of I/O operations
performed as these are the most time-consuming operafigpgally, in Relational databases,
the processed data cannot large cannot be loaded at the istanted main memory. All
join algorithms are sensitive to this fact. The number of GRldrations performed is not
considered as a significant factor. The CSP community, orother hand, focuses on
minimizing the number of CPU operations, often by introshgcmemory-intensive data-
structures. Typically, in CSP algorithms, the main memermat a bottleneck.

The algorithm for computing domain partitions relies on teeDT, which can, in the
worst case, be as large as the relation (see Section 3.1je bletabase context, we cannot
afford such a large data structure. For this reason, ouriiigofor computing the bundles
of the input relations to the join query heavily uses sorting requires data structures that
are significantly lighter than the nb-DT. Further, our dymabundling algorithm assumes
that the constraints are available in memory (see Sectin B the context of databases,
we are able to load only a sub-set of a relation in memory avengiime. Consequently,
we modify the dynamic bundling algorithm to allow it to optran the portions of the

relations loaded in the main memory.

76

5.2.2.2 Fitin the iterator/lazy model of database engines

As we discuss in Section 5.3, computing the join query of telatrons corresponds to
finding all the solutions of the CSP that models the join quirglatabase, the interface of
the join algorithm to the query processor is an iterator. ghery processor treats the join

algorithm as a black-box that has the two following integfacethods:
e next Tupl e() : returns the next tuple in the result of the join.

e hasMor eTupl es() : returns a boolean value indicating whether there are any

more tuples remaining in the join.

These two methods indicate that the algorithm must be abiertember its state after
one tuple has been computed and be able to resume compuatibe join when the

next Tupl e() or hasMor eTupl es() is invoked. Our dynamic bundling algorithm
does not directly fit in this interface. Our algorithms désed below provide an iterator

interface.

5.3 Modeling a join query as a CSP

In this section, we show how to model a join query as a CSP ubmfpllowing join query

as a running example:

SELECTR1.A, R1.B, R1.C
FROM R1, R2
WHERE R1.A = RR.A ANDRL.B=R2.B ANDRL.C = R2.C

We identify one straightforward representation of thisrgues a CSP where each attribute
is mapped into a CSP variable. Because this particular ebeaim@n equi-join, we also

identify an alternative CSP representation. We show inffég®.1 and 5.2 the constraint

77

networks of these two representations, and specify thesponding CSPR = {V,D,C}

as follows:

R1.A R1.B R1.C R1.A=R2.A

R1 R2
R2.A R2.B R2.C R1.B=R2.B R1.C=R2.C
M Relational constraint
[1Join—condition constraint B Relational constraint
Figure 5.1:A join as a CSP. Figure 5.2:An equi-join as a CSP.

1. The attributes as CSP variable$n the first mapping)’ is the set of attributes in
the join query. There are 6 variables in our example, whiettlae attributef1. A,
R2. A Rl. B, R2. B, Rl. C, andR2. C (see Figure 5.1). In the second mapping,
which is an equi-join query, the attributes joined by an ditypuaonstraint can be
represented by a unique CSP variable. The CSP represeharguery consists of
only the 3 variablesR1. A = R2. A, R1. B =R2. B, andR1. C = R2. C (see Fig-
ure 5.2). When the query lists the two equated attributetsiBELECT clause, the

CSP variable is simply repeated in the output.

2. The attribute values as variable domaifiis the set of the domains of the variables.
Under the first mapping, the domain of the variables is theoéetlues that the
attribute takes in the relation. In the second mapping, timeain of the CSP variable
representing the equated attributes is the union of thefsetlees that the equated

attributes take in their respective relations.

3. The relations and join conditions as CSP constraigts the set of constraints of the
CSP. These constraints originate from two sources, nartiedyrelations to be joined

and the join conditions. The relations to be joined direatlgp to CSP constraints

78

that are expressed extensionally. We call these constralational constraintsThe
join conditions map directly to CSP constraints express¢ehisionally, which we
call join-condition constraintsin the first mapping, there are 3 equality constraints
due to the join conditions in the query. In the second mappiitere the equated
attributes are represented by a unique variable, the jawditon is implicit in the

CSP representation and does not need to be expressed.

Our algorithm for bundling non-binary CSPs requires thatistmints be enumerated
(see Section 3.1). However, for computing interchangagbii the database scenario,
we do not enumerate the join-condition constraints or stioeen explicitly. Instead, we
proceed as follows. When joining two relations specifiedxtension, the resulting tuple
is checked for consistency with the join-conditions spedifin intension as this tuple is
being built up. When the values in the partially built tupte aot consistent with a join-
condition constraint, the tuple is discarded, as we expraection 5.5.1. This operation
is possible because we are guaranteed that all the CSP learigpear in at least one
constraint defined in extension, and thus all the join-ctimiadiconstraints will necessarily

be checked for consistency.

5.4 Sort-based bundling

This section describes the computation of interchangeadless (i.e., a bundle) of an at-
tribute in a relation. Since our join algorithm is a sort-gerlgorithm, the relations must
first be sorted. Thus, we need to select the order of the at&stfor sorting the relations.
This order is necessarily static because we cannot afford-tmrt relations during pro-
cessing. In terms of CSPs, this corresponds to a staticingdef the variables. We first

describe our attribute ordering heuristic then the teammigr computing interchangeabil-

ity.

79

5.4.1 Heuristic for variable ordering

Let V be the set of variables in the CSP representing a query. Wateley), a first-in
first-out queue of these ordered variables. We describehoeveve build this queue. First,
we initializeV, to a queue with one arbitrarily chosen varigblé/e denote by, the set
of unordered variables (i.e8/, =V \ V,). Let V. be the last variable added Y. The next

variableV,, in the order is chosen fromi, as follows:

1. Consider the variableg/;} C V, such thatV; is linked toV, with a join-condition

constraintC;. V,, is selected as the variable for whigh, N scope(C;)| is the smallest.
2. V, is selected as any variable from the same relatior.as

3. V, is selected arbitrarily frony,,.

If no variables satisfy a rule in the sequence above, theméxin sequence is applied to
V.. Ties are broken by the the next rule in sequenigeis removed fromy, and added
to V,. The process is repeated unti] is empty. The goal of this ordering is to allow the
checking of join-condition constraints as early as possibbr the example of Figure 5.1,
one possible ordering is the sequeRie A, R2. A, R1. B, R2. B, R1. C, andR2. C.

Note that the ordering of the variables affects the size ®fj#nerated bundles and that

different ordering heuristics still need to be investigate

5.4.2 The principle

Given the queu®’, of ordered variables, we build the bundles dynamically @/foining
the tuples loaded in memory. Variables in the queue are dereil in sequence. The

variable under consideration is called the current vaeiab] the set of previous ones is

20One can elaborate heuristics for choosing the first variaBiee possibility is to exploit the meta-data
maintained by the DBMS such as the number of unique valuer aftabute. Other heuristics may choose
first the attribute that participates in the largest numberomstraints. The design and evaluation of such
heuristics still needs to be investigated.

80

denoted byV,, and the set of remaining ones by. V; is initialized toV,, keeping the
same order of variables, an{} is set to nil. First, we find a bundle fdf. as described in
Section 5.4.4. Then, we determine the subset of values ibuhéle that is consistent with
at least one bundle from each of the variable¥’jrwith a join-condition constraint with
V. (see Algorithm 8). If such a subset is not empty, we assigm if.t In terms of CSPs,
this corresponds to instantiating. We moveV, to V,, and a new/, is chosen as the first
variable in);. Otherwise, if the consistent subset fidris empty, we compute the next
bundle ofV, from the remaining tuples and repeat the above operationcaifenue this
process until all the variables are instantiated. Then, wpud these instantiations as the
next nested tuple of the join.

Consider the scenario where a next bundléfgman attribute of relatioR1, needs to be

computed during a sequence of instantiations (see Fig8je Bhe bundle depends on the

Relational constrainii
Join—condition constrairit]

Figure 5.3:Instantiation sequence.

instantiation of variables frorR1 in V), (i.e., previously instantiated variables). Although
the computed bundle df. does not directly depend on the instantiations of past bkesa
from R2, the bundle subset to be assigned’/tanust be consistent with those variables of
V, that share a join-condition constraint with (a condition enforced by Algorithm 8 of
Section 5.5). When such a variable is fr&8, then the instantiation df, is affected by
the instantiations of variables froR2.

Below, we describe the method for computing a bundl&ofan attribute of relation
R, given that some of the variablesRfare in),. The bundles are computed on the tuples

of Rpresent in the memory, call® . First,R is sorted with the variable coming earliest

81
in the static ordering (see Section 5.4.1) as the primarytkeyone coming second as the

secondary key, and so on. The sorting operation clustetegwyth the same values for

variables as they appear in the static ordering.

5.4.3 Data structures

We first introduce the various data structures used for coimgpthe bundles.

e Current-Instis a record of size equal to the number of variables in the @SP.
used to store the current instantiations of variableR af V,. This data structure
corresponds to a current path in a search tree. When a vaigabssigned a bundle
of size greater than one, only the smallest value in the leuisd$tored inCurrent-

Inst, as a representative of the bundle.

e Processed-Valuds a similar record storing cumulatively all non-represeint val-
ues of the assigned bundles. While computing bundlé3,dtiples corresponding to

values forV/, in Processed-Valueare ignored.

e Current-Constraints a selection of the relatidR’ (of whichV, is an attribute) such
that:
1. Past variables have the values store@umrent-Inst and

2. the value of/, is greater than the previous instantiatioriof
Initially, the Current-Constrainis set toR' .

The tuples with the same value fof in Current-Constrainform a partitionp, and the
value of V. in this partition is denoted M.UE(p). Figure 5.4 shows these data-structures
under various scenarios. A partitipns marked asheckedvhen VALUE(p) is part of an

instantiation bundle or whemis selected to be compared with other partitions. Otherwise

82

R1 m 7 _={R1.A, R1.B}
b A, RL.
R1.A|RL.B|R1.Q [1]
I Current-Inst Processed-Value
11228 Current-Constraintfor V. = R1.B RLA=5
1|13 |23 given R1.A = (1, 5) -
1|14 |23 |y R1.B =13, 14
2|10 25 :
P (1]
512 |23 | A N _ ‘
P Partition of R1.A, with R1.A=(1,5)
Value(p) = 5when \, = R1.A =
S erapealil (9] en\, R1.B = (12, 13, 14)

Figure 5.4:Data structures shown under 3 different scenarios.

the partition is consideredncheckedP. refers to the unchecked partition with the lowest
value ofV, in Current-Constraint When no checked partition exists for, P, is set to a

dummy value such as -1.

5.4.4 Algorithm for bundle computation

Algorithm 7 computes the next bundle bf given P.. NEXT-PARTITION(p) returns the
first uncheckegbartition in Current-Constrainfollowing the partitionp. Forp=-1, NEXT-
PARTITION(p) returns the first partition i€urrent-Constraint 2. moves to the next unchecked
partition at every call of Algorithm 7.

Algorithm 7 is called by Algorithm 8 of Section 5.5 for comng the bundlé, of V.
and the bundles of the variablEsconnected td, with a join-condition constraint. Further,
Algorithm 8 determines the subdest of the bundle. that is consistent with the variables
V;. This consistent set of valudsst is then used to instantiafé.. This instantiation
operation includes the update of the data structGuasent-InstandProcessed-Valuesn
particular, the values iRrocessed-Valuahat are lesser than those associated Withare
deleted.

We can compute all the bundlesigfby repeatedly calling Algorithm 7, then assigning

the returned bundle t®, until Algorithm 7 returnsni | . Thus, the algorithm described

83

Input: V., Current-Constraint
bundle < ni | , the bundle to return
P. « NEXT-PARTITION(P,)
Mark P. as checked
Push \ALUE(P,) into bundle
P! «— NEXT-PARTITION(P,)
while P! do
t «— tuples ofP.
p < tuples of P!
if Ty, (t) = 7y, (p) then push \ALUE(F)) in bundle
P! — NEXT-PARTITION(P))
end
Output: bundle

© 00 N o o b~ W N P

=
o

Algorithm 7: Algorithm to generate the next bundle \gf.

here implements a lazy approach for computing the bundlés®&oids storing the entire
partition of the domain of every variable.

In the method described abokeocessed-Valuds the data structure that occupies the
most space. Whereas all the other data structures havesigsrtional to the number
of variables (and therefore cause insignificant memorytmes), the size dProcessed-
Valuesdepends on the number of tuples and the amount of bundlirigrpeed. The worst-
case scenario fdProcessed-Valuesccurs when all the values of a variable are in a single
bundle. In this casé&rocessed-Valudwlds all the unique values of that variable. Suppose
that there aréV tuplesin the relation, the relation hasattributes, and the number of unique
values of the variable i§, where! is the average length of each partitionlgf Then, the
size of Processed-Valueis % tuples. However, if this bundle goes on to form a result
tuple, it will save more space than required for bundlingefEwhen this bundle fails to

yield a result tuple, it still saves on many comparisonsahgispeeding up computation.

84
5.5 Algorithm for join computation using dynamic bundling

This section explains how to use bundling while computingia s a depth-first search,
as sketched in Section 5.4.2. The join algorithm discussedis section is based on the
Progressive Merge Join. Our technique can be easily adaptée simpler sort-merge
join since PMJ is just an extension of sort-merge. We firstules the in-memory join

algorithm, and then place it in the schema of the externalaégorithm.

5.5.1 Join computation in memory

We present here the algorithm to join the sub-sets of twdiogla that are currently in
memory. For the sake of readability, Algorithm 8 is resettto binary join conditions
(i.e., where the join conditions are between two attrib@iteis different relations). It can
be easily extended to join conditions with more than twalaites.

Algorithm 8 takes as input the level &f in the search tree (i.e., depth) and the current
path represented by the data structGregrent-Solution Current-Solutionis a record that
stores the assigned bundles to the variablé3 irfNote thatCurrent-Solutiorcannot be ob-
tained fromCurrent-Instand Processed-Valuesvhich were introduced in Section 5.4.3).
Variabld] is the array of variables stored according to the stataledng sequence dis-
cussed in Section 5.4.1. Whem8KTRACK is called the value folNariablddepthj in
Current-Instis reset, theProcessed-Valuefr the variable is emptied, the value for the
variable inCurrent-Solutionis reset, andCurrent-Constrainis re-computed, thus undo-
ing the effects of the previous instantiation. The funct@mvmMoN() computes the set of
values in the input bundles that are consistent with eacéralven the applicable join-
condition constraints. Because this algorithm combinesngpand constraint propagation
with bundling, it produces solutions quickly, which compates for the effort spent on

bundling.

85

Input: depth Current-Solution
1 while (depth<| V |) and depth> 1) do

2 V. <+ VariablddeptH
3 b. < next bundle folV, using Algorithm 7
4 if b. is emptythen
5 ‘ BACKTRACK, decrementlepth, and GOTOL1
end
6 Inst < b,
7 repeat
8 foreach V; € V; connected td/. by a join-condition constraintio
9 ConsiderR; the relational constraint that appliesitp
10 Selectr; from R; according taCurrent-Solution
11 repeat
12 Find a bundlé; applying Algorithm 7 onV; andr;
13 if b; is emptythen break
14 I; — CoOMMON(b;, b..)
until 7; is not empty
15 if nob; then BACKTRACK, decrementlepth and Goto L1
end
16 Inst«— COMMON([y, I, ..., I,,)
until Inst is not empty
17 Instantiatel. with Inst
18 Current-SolutiofiV] < Inst
19 Incrementdepth
20 L1:
end

Output: Current-Solution

Algorithm 8: Algorithm to compute the in-memory join using bundling.

5.5.2 Structure of the overall join algorithm

We have discussed join computation of tuples that are in mgm@oed now describe the

steps for computing the join of complete relations using ioememory join algorithm,

Algorithm 8. The join of the two input relations is computesing an approach similar to

PMJ, in the two phases, sorting phase and merging phasasdest below.

86

5.5.2.1 Sorting phase

The sorting phase is similar to PMJ, except that for joinhmgpgages of relations in memory
we use the bundling-based technique of Algorithm 8. Tharspphase produces the early
results and also sorted sub-lists, or runs, of the relatidiese runs are stored back on
disk and used in the merging phase of the join. Since the memmdiled with pages from

both relations, the number of runs generated for each mela'ﬂi%.

5.5.2.2 Merging phase

In the merging phase, as for PME’!% pages from every run created at the sorting phase
are kept in memory. LeP’ represent the pages in memory of relatieh andi‘ run,

whererel € {0,1} andi € {1,2,..., 27}. We define the arragolutionas follows:
solutionli][j] = P W P}, i #j (5.1)

We store only the first solution of & X P} in the array elementolution[i][j]. The
minimum solution fronsolutior{][] is the next result of the join. The next solution from the
pages that gave the minimum solution is then computed araitodél the corresponding
place insolutior][]. A page P/ is removed from memory and replaced with another page
from the same run only if it satisfies the following two comalits for every pagéjjlf’”d.

Prelis being joined with:
1. No more join tuples result from’ X P}*’"el, and
2. the last tuple i/ is less than that o'

The tuples are compared using the same comparison critetleeaones used for sorting.
These conditions ensure the tuples are produced in soded @uring the merging phase)

and that the algorithm is complete.

87
5.6 Implementation and experiments

One of the goals of the XXL librarfjden Berckert al,, 2007 is to provide an infrastructure
for evaluating new algorithms in databases. For example] Rk evaluated experimen-
tally using this library. In our experience, XXL provides aagl infrastructure for building
new database algorithms through its rich cursor algebra ditop of Java’s iterator in-
terface. We implemented our join algorithm by extendingBlueFEREDCURSORCcIass of
the XXL library. The current implementation is a proof of cept and offers much room
for improvement.

To show the feasibility of our technique, we tested our jdgoathm on randomly
generated relations and on data from a real-world resodloeation problem in devel-
opment in our groupLim et al, 2004. For the real-world application, we computed the
sequence of the natural join of three relations, with 3, 4], Zaattributes respectively. The
corresponding CSP has 4 variables, with domain size 3, 3,80D250 respectively. The
resulting join of size 69 was compressed down to 32 nestddgupor the random prob-
lems, we used relations af = 10,000 tuples. We set the page size to 200 tuples and the
available memory size td/ = % whereN = 10000/200. We executed the query of our
running example over five such pairs of relations. The resuihe query had an average
of 8,500 tuples, which indicates that the the query is a sekeone. The number of tuples
produced by bundling was reduced to 5,760 bundled tupleayarage of 1.48 tuples per
bundle. The number of pages saved was more $hamd slightly less tharl. Even if
the worst-case scenario for the join occurred for every emory join (which is a highly
unlikely event), the additional cost due to bundling is givey % where% is the number
of unique values of an attribute akds the number of attributes in one relation (which is 3
here). For the worst case wheée- 1, the overhead in terms of pages is negligible. Again,

the worst-case described here is of the current implementawhich offers much room

88

for improvement.

5.7 View materialization using dynamic bundling

In this section, we discuss the benefits of using our dyndmiwling-based join algorithm
for view materialization. We also discuss issues relatetisw maintenance using dynamic

bundling.

5.7.1 Benefits of materializing views with bundling

View materialization is a process that executes the queigidg the view and stores the
result as a new table in the database. Typically views arenafized when it is expensive
(in terms of 1/0O operations) to recompute them every time thiee queried. Views that
are expensive to recompute invariably involve joins. We oaterialize views defined
by joins using a dynamic-bundling-based join algorithm. eTdynamic-bundling-based
join-algorithm produces compacted results that cause adchead for ‘de-compaction.” A
compact representation of the query results leads to a ialated view that stores more
tuples per page. Consequently, when the materialized \@eueried the query processor
reads fewer pages, thus reducing the amount of /0O perfomnedthereby speeding up
guery processing. These advantages make the dynamicHbgridised join algorithm an

ideal tool for materializing views.

5.7.2 View maintenance

Before discussing the issues related to maintaining banaligterialized views, we sum-

marize known important concepts in view maintenance.

89

5.7.2.1 Background of view maintenance

View maintenance reflects the effect, on the materializesvydf an update to the base
tables (i.e., the original tables). Views are typically mained and updated incrementally,
and the maintenance is transparent to the databasd@spta and Mumick, 1995 In
incremental maintenance, we compute the change to theiaiated view from the change
in the base relations. Consequently, most of the view maamtee techniques treat the view

definition as a mathematical formula and maintain the viefolbews.

Computing the update: The view maintenance techniques apply a differentiatiep &b
the formula defining the view in order to obtain a sequencepefations to update

the materialized vievCeri and Widom, 1991

Refreshing the view: The operations performed on the view are a sequence of onerer m
insertions and/or deletions. The process of executingetbpgrations is known as
therefreshstep. A view can be refreshed with the transaction that @sd&ie base

tables (i.e., immediate update), or the refresh can be dél@ye., deferred update).

5.7.2.2 View maintenance and bundling

Below, we study whether there exists a speed up or an additomst in querying a bun-
dled materialized view and in maintaining such view. From @élbove discussion on view
maintenance, we note that incremental maintenance of \dews not depend on the stor-
age format of the tuples (i.e., bundled or otherwise). Farrtthe process of determining
the tuples to insert or delete from the view does not depentth@storage format of the

materialized view. We now address two issues:

1. Isit more difficult to search or query a bundled materediziew than a conventional

one?

90

2. Is it more expensive to refresh a bundled view than to sefeeconventional view?

The remainder of the section addresses these questions.

5.7.2.3 Searching bundled materialized views

Searches or queries on materialized views are often oty generating indexes on
one ore more attributes of the view. Tree-based indexindgnoust, such as B+ trees, are
popular indexing strategies. Such strategies can be eadiynded to create indexes for
bundled materialized views. The basic structure of an ingl@dist of value-pointer pairs.

Figure 5.5 shows one such simple tree-based index on abuaétiof a view. The pointer

A |B |C
A | rid 6 12|22
L2 |12 22
1
5 > 3| 12|21
ST >3 |15 | 21 —— A | B c
3|17 | 24 ri
p - ; 26,2 | 12 | 22
5 il el M /:3 12,15 21
N |12 | 26 2
6 >3 | 17 | 24
N1l 12 | 23 3| -
5 | 11 |27,26
N4 |11] 25 4 <
2 [11] 25 5 | <4 L (12) 2
. Na2 [11| 25
5|19 | 21 6 ~
X 5 | 19 |21,23
5|19 | 23
_ Figure 5.6:lllustration of an index on a bundled
Figure 5.5:lllustration of an index. materialized view.

shown in the index is the row identifiefid) of the tuple. Anrid typically stores the page

location of the tuple and the offset into the page. The presefnnested values in the view
does not interfere in the generation of these value-popdgs. Figure 5.6 shows an index
on a bundled materialized view. The differences betweemvtbendexing schemes are as

follows:

91

¢ In a bundled materialized-view, two different values mayéhthe sameid whereas

in a conventional view, &d is associated with only one value.

e The number of rows, and hence the numberid$ and the size of the index, in a
bundled materialized view may be less than the correspgratias in a conventional

view.

These differences do not hamper in any way searching theusevg an index.

Another approach to speeding up searches on materialieag s by sorting materi-
alized view on an attribute. Although this approach is not¢féective as using indices, it
is however used when view updates are so frequent that nrangaan index causes an
expensive overhead. Bundled materialized views cannobtiedsusing an ordering that

will be useful to searching, which constitutes a limitatafroundled materialized views.

5.7.2.4 Refreshing bundled materialized views

Refreshing bundled materialized views is a straightfoda@peration. In order to reflect
the changes made in the base tables, we can use either oreetafatlabove-listed com-
mon approaches (i.e., immediate or deferred). As for a atimeal view, a new tuple is
appended to the end of the bundled view. Deleting a row regsiearching for the tuple to
delete. Searching can be optimized by the use of indicebelfuple to be deleted is part
of a bundled tuple, only the values representing the tuptketete are removed, otherwise

the entire tuple is deleted.

5.8 Related work

Below, we discuss works related to compacting databasésramadeling database prob-

lems as a CSP.

92

The idea of data compression is not new and is used in congoresgabase systems
[Roth and Horn, 1993 In these systems, data is stored in a compressed formaskniti
is decompressed either while loading it into memory or wpitecessing a query. The com-
pression algorithms are applied at the attribute level aatypically dictionary-based tech-
niques, which are less CPU-intensive than other classarapeession techniquéVest-
mannet al, 2004. Although most of the work in compressed databases appieela-
tions with numerical attributedRoth and Horn, 1993 investigations on string attributes
also were carried out by Chen et 2001]. Another feature of compressed databases that
differs from our approach is that the query results passédetmext operator are uncom-
pressed and thus are likely to be large. Our work differs ftbenabove in that we reduce
some of the redundancy present between tuples of a givetiorelaOur techniques are
independent of the data type of an attribute. Further, thelt® of our queries are com-
pacted, thereby assisting the next operator and reducingttinage of materialized views
on disk. When these compacted results are loaded into mefmogyery processing, the
de-compaction operation is effectively cost-free. Theyausts associated with our tech-
niques are those for performing the compaction. Finallg, ¢dbmpaction is carried out
while the query is being evaluated, and is not a distincttiongerformed in separation.

Mamoulis and Papadias present a spatial-join algorithmgusiechanisms of search
with forward checkind1994, which are fundamental mechanisms in Constraint Process-
ing. They store the relations representing spatial data-ire® structures, and use the
structures to avoid unnecessary operations when compatjoig. The constraints under
consideration are binary. The key idea is to reduce the ctatipnal cost by propagating
the effects of search, thereby detecting failure early. ®cinnique is not restricted to bi-
nary constraints, and is applicable to constraints of arty. afurther, it differs from the
approach of Mamoulis and Papadias in that it reduces I/Oatipeis and compacts join

results in addition to reducing computational operations.

93

Bernstein and Chili1981], Wallace et al[1995, Bayardo[199d, Miranker et al.
[1997 exploit the standard consistency-checking techniquesanfs@€aint Processing to
reduce the number of the intermediate tuples of a sequenjossf While Wallace et al.
consider Datalog queries, Bayardo and Miranker et al. staldyional and object-oriented
databases. Our CSP model of join query differs from theikworthat the constraints in
our model include both relational and join-condition coastts, whereas Bayardo and Mi-
ranker et al. model the relational constraints as CSP asand only the join-condition
constraints as CSP constraints. Thus, our model is fineranitlallows a more flexible
ordering of the variables of the CSP, which increases thiepeance of bundling.

Finally, Rich et al[1993 propose to group the tuples with the same value of the join at-
tribute (redundant value). Their approach does not bungtaeivalues of the join attribute

or exploit redundancies that may be present in the groupededations.

Summary

In this chapter, we discussed the use of dynamic bundlingtalthses. We focused our
investigations on the join operator, which we modeled as B. @% presented a space-
efficient sort-based bundling algorithm and a dynamic-tingebased join-algorithm, which
uses the framework of the Progressive Merge Join algorifDar. preliminary implemen-

tation established that the savings due to bundling arehwdiite even in the worst-case

scenario. Finally, we discussed the use of our approach ierrabized views.

94

Chapter 6

Future Work and Conclusions

In this chapter, we suggest some directions for future rekesnd draw the conclusions of

the thesis.

6.1 Future work

We first discuss how sorting the definitions of the constginthich is a popular opera-
tion in databases but not in CSPs, can improve the time coiyplef the bundling al-
gorithm on CSPs. Then we envision some possibilities fongibiundling in databases
beyond query join computation, such as in Constraint Daed)&evesz, 200R sampling
methods, main-memory databases, and automatic categmmipé query results. We also

present an alternative approach for computing joins bygusimdled relations.

6.1.1 Sorting constraints to improve bundling

In order to reduce the complexity of our bundling algorithme can sort the definitions
of the constraints. By sorting a constraint, we introducacstire to the constraint that can

be exploited for quickly comparing tuples when building aadimination tree to compute

95
interchangeability. We suspect that sorting would imprihestime and space complexity,
as well as the practical performance, of the algorithms weegmted in this thesis. One pos-
sible impediment to this strategy would be its combinatiatidynamic variable ordering.
The use of dynamic variable ordering during search sigmiflgamproves the performance
of search in practice. Sorting constraint definitions wheing dynamic variable ordering
would require frequent re-sorting of the constraints, Whsould be prohibitively expen-
sive.

Consequently, there is a trade-off that remains to be imetstd between the benefits
of sorting the constraint definitions to improve the perfanoe of bundling and the cost of

frequent resorting under dynamic ordering of variablesgresh.

6.1.2 Continuous CSPs and constraint databases

Our techniques are designed for finite domains. It would berésting to apply the con-
cepts and extend our techniques to infinite domain CSPs|lysaded continuous CSPs.
Such an extension is particularly useful in the context afstm@int databases, such as in

spatial databases, where the value of an attribute is aneamts intervalRevesz, 200R

6.1.3 Sampling methods

We speculate here that the materialized views produced asinamic bundling can help
the sampling operator to sample more accurately. Exploratoalysis of data does not
require exact answers to the queries. Results based on éirsguofilata often prove satis-
factory in exploratory analysis. To answer queries use@xptoratory analysis, the query
processor uses the sampling operator, which produces atsaftibe relation it acts upon.
In general, the query processor can improve the effectseaad accuracy of the sam-

pling operator by pushing it down in the query tree closehtliase relatiorl$ryz et al,

96

2004. IBM's DB2 implements sampling using two operators, RANRIAFABLESAM-
PLE. The TABLESAMPLE operator is more effective than RANDwrever it can only
be applied to base tables or materialized views. Gryz ¢280D4 proposed two methods
that enable pushing the sampling operator closer to the taaées and consequently al-
low the query planner to choose the TABLESAMPLE operator®&&ND. The authors
suggest materializing results of intermediate queriesnaodthe approaches.

We believe that the materialized views produced using dynaomdling can improve
the accuracy of TABLESAMPLE. Our claim is based on the faeit th bundled tuple
is more representative of the content of the table and canivas gnore weight while
sampling, thus making the sampled query-results a betmoajnation of the results of
the whole relations. This improvement will be in additiontbe space saved, thanks to

dynamic bundling, by the compaction of the materializedwie

6.1.4 Main-memory databases

In his keynote address in SIGMOD 2004, Jim G204 mentioned main-memory databases
as a promising research area given that large sized maimemeup-to tera bytes, have be-
come common. In the context of such large memory, the fattémalom access is consid-
erably slower than sequential access becomes criticalrforpgance. In such a scenario,
algorithms producing related results clustered togethienilar to the bundled results of
dynamic bundling) are valuable to the query processor.hegrivith such large memory,
the query processor will give priority to optimizing the nben of comparisons over the
amount of memory needed to process the queries. This griodtches that of most algo-
rithms in Constraint Processing. Therefore, we identifymmaemory databases as an area
where algorithms from Constraint processing can improwryjavaluation. Interestingly,
no contributions on main-memory databases were presen®@GMOD 2004, and, hence,

this research direction may be a particularly promising remearding one.

97

6.1.5 Automatic categorization of query results

In this section, we discuss how modeling query executiomastaractive and incremental
search algorithm can possibly minimize the amount of queoggssing when computing
query results that are categorized using the algorithmshak@barti et al[2004.

The authors address the problem of information overloadsefaudue to large query
results by automatically categorizing the results. Theyetip a categorization technique
that identifies attributes to use for creating categoriad,the technique also suggests an
ordering of the categorizing attributes. Let us considerekample of a user searching for
a home to purchase. The categorization algorithm identNeesghbor hood, Pri ce,
and #Bedr oons as the attributes to use for effective categorization. doaives an or-
dering of attributes ag§Nei ghbor hood, Pri ce, #Bedr oons }. For every attribute, the
categorization algorithm generates categories (i.egag)for the results. For example, the
algorithm may choose three categories of price ranges gQK-225K, 225K-250K, and
250K-300K), and three categories for number of bedroongs, (-2, 3—4, and 5-9).

The results are presented to the user as a hierarchicallireeuser is initially shown
the root, which is used only as a structural element and gigesss to the complete result
of the query. The categories of the first attribute, Hdee ghbor hood, are children of
the root node. The categorieskrfi ce are the children nodes ofNei ghbor hood node
and so on. The leaf nodes of the tree are the query resultsugdrecan process the root

and all non-leaf nodes in two ways:
1. Viewthe results at that level.
2. Expandthe node to see more categories (nodes).

In their paper, Chakrabarti et al. define and study the costeinimr measuring the
user’s effort spent in browsing through the data. They faougueries that do not involve

any aggregations and are simple Select-Project-Join (ffdes.

98

The current work does not address the issue of optimizingygesaluation knowing
that results will be categorized. An interesting, but yetapative, direction can be lazy
evaluation of the query results responding to the exparsgguence of the user. Note that
the user is expanding one attribute at a time, which is a i CSP terminology. The
expansion of a tree node can be interpreted as instant@atagiable. We can model the
guery execution as solving a CSP using search and compug@dng result incrementally
as the user expands nodes of the tree. If a user does not expaajdrity of the tree, then
the approach described above can save a significant amocomgiutation. The issues to

be addressed in this approach:

¢ When implementing such a strategy, the relational comgganay be challenging to
implement. A mechanism to maintain the coupling betweenegbf attributes from

the same tuple will have to be enforced.

e The lazy evaluation method also has the risk of presentihgegdo the user that will
need to be backtracked upon later as more variables araniilagéal. One solution
could be to show the path leads to an empty set. Using stréogieiahead strategies
than simple forward checking (e.g., maintaining arc-cstesicy{ Sabin and Freuder,
1997) in dynamic bundling may reduce the severity of this problétowever, user

frustration with empty results may remain an issue.

6.1.6 Computing joins using bundled relations

The bundling-based join algorithm presented in Chapterrpedes the join of normal
(i.e., ‘non-bundled’) relations to produce a bundled res@ne interesting alternative to
investigate consists in storing the input relations in adbed form, and using these bundled
relations, instead of the normal relations, for query pssogg[Revesz, 20065 Figure 6.1

shows the process explored in Chapter 5, and Figure 6.2Z#dhes the alternative.

99

R1 R2
— T~ — T~
| Bundling :
Y Y
R1 R2 R1(bundled R2 (bundled)
R1R2 R1<aR2
differentl
(bundled) (ifferen d%/
/\/ /\/
Figure 6.1:Bundling-based join algo- Figure 6.2: An alternative approach:
rithm of Chapter 5. joining bundled relations.

The advantage of this alternative approach is that bunéletions use less disk space
than a normal relation. Further, when the query processatsiohe bundled relations into
the main-memory, the bundled relations occupy less maimang than the original ones,
thereby reducing the number of 1/0O operations. It is inteémgsto investigate whether or
not the join algorithm presented in Chapter 5 can take thelledrrelations as input. One
of the challenges is the handling of bundles that are brokgoih-condition constraints.
Note that the detection of new symmetries may also ariseheesoare broken.

We re-state this idea using CSP terminology. Each attribligerelation is a variable,
and the relation itself is a constraint on the variable. Teaiis to compute the NI sets for
all variables given their respective relational constaimNext, we re-create the relational
constraints by using bundles instead of singletons in tmestcaint tuples. We use these
bundled constraints when joining two relations while actog for any join-condition
constraints.

Once we have determined that the new approach is feasildestidimeeds to compare

both approaches, their cost, and advantages.

100

6.2 Conclusions

We presented an efficient method of computing Neighborhatet¢hangeability (NI) in
non-binary CSPs. We used the NI computation dynamicallgarch to solve non-binary
CSPs and produce robust solutions. We showed that dynaméttibg is guaranteed never
to perform worse than non-bundling when finding all solusiolVe conducted extensive
experiments to compare DynBndl and FC when finding one swlwnd to study the ef-
fect on performance of DynBndl with varying CSP parametérs.established empirically
that in the phase transition region, DynBndl produces plgtsolutions and also performs
significantly better than FC in terms of CPU tinldy and CC. We also designed and im-
plemented a better implementation strategy for non-bif@ward checking. We showed
how the DT for binary CSPs can be extended to detect someitsiibiste values and also
presented a technique for non-binary CSPs.

We reviewed the database literature and analyzed the coomebetween the fields
of Constraint Satisfaction and Databases. We presentesvapproach to modeling a
join query as a CSP. We developed a sort-based bundlingit@ligothat is more suited to
database requirements. We then used the new bundlingtaigaio develop a bundling-
based join algorithm. We showed, with a proof of concept anmntation, that such a join
algorithm is feasible and advantageous. We showed thabthalgorithm can be used as
a view materialization algorithm and can lead to savingsisk dpace and main memory.

Finally, we identified future directions for research.

101

Appendix A

Results of Experiments

This appendix presents the results of experiments ovenall & datasets. The tables show
the percentage improvement, the upper (UL) and lower (LIofidence levels of the im-
provement at 95% confidence level for CPU tifdé andCC. The tables also list the FBS
due to dynamic bundling at every tightness value. The confidéntervals are computed
using the t-distribution. The F-value is the test statisti@NOVA. A higher F-value indi-
cates more confidence in there being a difference in betwedte itwo means. An F-value
greater than 9.4 indicates a difference (poisitive or negat The mean value indicates
whether the difference was an improvement or otherwise.leTAbl is a guide to the
datasets and the tables showing their results.

The appendix also lists the graphs comparing CPU t@@:NV and FBS performance
of DynBndl and FC for a subset of the datasets(15). Figures A.1, A.2, A.3, and A.4

show these results.

Table A.1:Index of results.

Dataset#{ Table
1,2 Table A.2
3,4 Table A.3
5,6 Table A.4
7,8 Table A.5

9,10 | Table A.6
11,12 | Table A.7
13,14 | Table A.8
15,16 | Table A.9

102

Dataset #1, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean | LL UL | Mean| LL UL | Mean| LL
0.4000|| -25.86| -42.59 | -61.53 | 63.86 || 23.01| 12.91| 1.49 | 11.94 | 22.13| 11.83| 0.18 | 8.13 263.4
0.4500| 6.21 -6.26 | -20.37 | 1.87 || 25.91| 16.19| 5.2 18.21 || 24.48| 14.49| 3.19 | 12.57 | 80.53
0.4750| 19.41| 8.70 -3.43 420 | 28.83| 19.50| 8.94 | 26.44 || 27.14| 17.51| 6.60 | 18.98 | 48.46
0.5000| 30.20| 20.93 | 10.42 | 27.97 | 33.40| 24.67| 14.78| 43.70 || 31.95| 22.96| 12.78| 34.87 || 25.00
0.5250|| 37.65| 29.37 | 19.98 | 61.32 || 36.1 | 27.71| 18.23| 56.74 | 34.84| 26.23| 16.48| 47.43 7.89
0.5500|| 44.12| 3193 | 17.09 | 30.03 || 43.27| 31.07| 16.23| 30.77 || 42.06| 29.49| 14.2 | 25.03 1.07
0.5750|| 34.70 | 26.03 | 16.20 | 46.10 || 34.27| 25.65| 15.89| 47.65 || 33.64| 24.87| 14.94| 41.89 0.30
0.6000| 37.14 | 28.78 | 19.32 | 58.46 || 35.63| 27.19| 17.64| 54.34 | 35.50| 26.98| 17.33| 50.66 0.06
0.6500| 34.22 | 25.47 | 1557 | 43.86 || 31.18| 22.16| 11.95| 34.61 | 31.29| 22.21| 11.93| 32.32 0.00
0.7000| 34.88| 26.23 | 16.43 | 46.95 || 28.14| 18.72| 8.05 | 24.32 | 29.55| 20.24| 9.70 | 26.22 0.00
Dataset #2, Improvement measurements
t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean | LL UL | Mean| LL UL | Mean| LL

0.2750|| -12.21| -30.04 | -50.70 | 25.05 || 37.41| 25.00| 10.14| 22.00 || 31.42| 20.24| 7.23 | 17.68 | 43.05
0.3000|| -86.44| -114.28| -146.27| 236.82 || 23.88| 9.15 | -8.43 | 4.32 | 21.57| 9.19 | -5.14| 3.42 || 173.05
0.3500| -67.6 | -92.62 | -121.38| 175.23 | 24.84| 10.29| -7.06 | 4.98 | 22.39| 10.15| -4.03| 4.21 | 111.35
0.4000|| -42.29| -63.54 | -87.96 | 98.65 | 25.8 | 11.44| -5.69 | 5.73 | 22.59| 10.37| -3.77 | 4.41 30.03
0.4625| 13.56| 0.65 -14.18 | 0.02 | 29.35| 15.68| 0.01 9.34 || 26.04| 14.37| 0.86 | 8.85 9.71
0.4875|| 27.85| 17.08 4.70 14.3 31.3 | 18.01| 2.14 | 11.95 || 28.34| 17.04| 3.94 | 12.83 4.57
0.5000|| 35.24 | 25.57 14.46 35.57 33.5 | 20.63| 5.28 15.48 || 30.86| 19.95| 7.32 18.21 2.44
0.5125|| 35.95| 26.38 | 15.39 | 38.25 || 34.31| 21.60| 6.43 | 16.95 || 31.67| 20.89| 8.41 | 20.20 1.84
0.5250| 38.51| 26.41 11.92 23 37.08| 20.94| 0.67 10.36 || 34.13| 20.42| 3.85 | 11.51 0.68
0.5375|| 34.4 | 2461 | 13.36 | 32.58 || 33.94| 21.17| 5.92 | 16.29 || 31.45| 20.64| 8.12 | 19.67 0.13
0.5500|| 43.23| 36.14 28.17 | 114.84 | 40.95| 31.43| 20.37| 52.31 || 38.39| 30.27| 21.07| 66.92 0.11
0.6000| 36.53| 28.61 | 19.69 | 64.81 | 37.38| 27.28| 15.55| 37.86 | 34.67| 26.06| 16.31| 46.93 0.00

"Z PUB T# S19seleq 10} Synsay:z'y a|qel

€0t

Dataset #3, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean| LL UL | Mean| LL UL | Mean| LL
0.3250|| 25.6 | 13.77 | 0.07 797 | 41.84| 30.31| 16.5 | 33.51 | 37.42| 27.21| 15.34| 34.88 | 15.59
0.3625| 34.21 | 23.31| 10.61 | 23.67 | 39.09| 26.49| 11.29 | 23.18 || 35.61| 24.65| 11.84| 25.64 | 10.12
0.3750| 32.36 | 19.36| 3.86 | 11.83 || 34.22| 18.4 | -1.22 9.03 | 31.21| 17.63| 1.37 9.16 4.60
0.3875| 41.16 | 22.85| -1.16 7.24 42.7 | 20.13| -11.34| 5.62 | 39.04| 19.54| -6.21 | 4.84 3.55
0.4000|| 38.94 | 27.2 | 13.21 | 25.75 || 36.53| 21.27| 2.33 | 11.72 || 33.9 | 20.85| 5.23 13.3 2.16
0.4125| 37.33| 25.28 | 10.92 | 21.7 || 36.39| 21.09| 2.11 | 11.54 | 34.31| 21.35| 5.82 | 14.03 || 0.82
0.4250| 42.95| 28.83| 11.21 | 18.66 || 41.25| 22.95| 0.1 9.5 38.31| 22.61| 2.92 10.1 0.19
0.4750|| 34.89 | 22.38| 7.46 | 16.39 || 35.82| 20.39| 1.24 | 10.84 | 33.15| 19.96| 4.16 | 12.06 || 0.00
0.5500| 32.77 | 19.85| 4.45 | 1251 | 34.14| 18.3 | -1.35 8.94 | 31.77| 18.3 | 2.17 9.94 0.00
0.6500|| 38.27 | 26.4 | 12.26| 24.01 || 31.21| 14.66| -5.87 6.27 | 28.83| 14.79| -2.03 | 6.23 0.00
Dataset #4, Improvement measurements
t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean| LL UL | Mean| LL UL | Mean| LL

0.3000 || -32.25| -48.52| -66.81| 91.7 | 21.04| 10.41| -1.64 7.99 19.7 | 961 | -1.75| 5.75 | 12.46
0.3250| 0.48 | -11.77| -25.53| 7.26 | 22.52| 12.09| 0.26 | 10.22 || 21.23| 11.33| 0.19 8.15 7.10
0.3500|| 17.47 | 7.31 -4.1 3.38 | 2357|13.28| 1.61 | 12.06 || 22.61| 12.89| 1.94 | 10.73 || 5.01
0.3625| 24.06 | 14.71 | 4.22 | 14.84 || 24.87| 14.76| 3.29 | 14.63 || 23.78| 14.2 | 3.42 | 13.22 || 3.81
0.3750|| 33.97 | 25.84 | 16.71 | 52.37 || 26.29| 16.37| 5.11 | 17.82 || 25.36| 15.98| 5.42 | 17.09 | 1.93
0.3875| 36.66 | 28.87 | 20.11 | 67.99 || 28.11| 18.44| 7.46 | 22.58 || 27.13| 17.97| 7.66 | 22.12 | 0.82
0.4000| 37.49| 29.79 | 21.15| 73.32 || 28.29| 18.63| 7.68 | 23.06 || 27.39| 18.27| 8 22.94 || 0.47
0.4250|| 34.15| 26.04 | 16.94 | 53.32 || 27.41| 17.64| 6.56 | 20.66 || 26.88| 17.69| 7.35 | 21.37 || 0.01
0.5000| 29.81 | 21.17 | 11.47| 33.16 || 27.71| 17.98| 6.94 | 21.46 | 27.3 | 18.17| 7.88 | 22.65 || 0.00

‘v pue g# s1aseleq 10} SINsay:S'y a|qel

01

Dataset #5, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean | LL UL | Mean| LL UL | Mean| LL
0.4500| -89.63 | -112.82| -138.84| 338.55| 21.68| 10.25| -2.86 | 6.97 | 19.59| 9.49 | -1.88 5.6 531.28
0.5000| -37.49 | -59.06 | -84.01 | 80.1 || 26.45| 12.63| -3.78 | 6.86 | 23.47| 11.12| -3.21| 4.91 | 425.49
0.5500| 7.07 -751 | -2438 | 195 | 31.53|18.66| 3.38 | 13.37 || 28.17| 16.59| 3.13 | 11.62 || 46.26
0.5750| 25.94 | 14.32 0.88 8.89 | 34.79| 2254| 799 | 19.39 || 31.8 | 20.8 | 8.02 19.2 27.49
0.5875|| 37.16 24.15 8.45 17.05 || 40.42| 25.59| 7.07 | 15.97 || 37.22| 23.85| 7.63 | 15.73 13.55
0.6000| 39.33 | 29.81 18.8 46.6 || 39.28| 27.87| 14.32| 30.43 || 36.79| 26.6 | 14.76| 33.76 5.86
0.6125(41.76 | 32.62 | 22.05 | 57.97 | 41.38| 30.37| 17.29| 36.92 || 39.13| 29.31| 17.91| 42.49 1.64
0.6250| 40.49 | 31.15 | 20.35 | 51.81 | 39.99| 28.72| 15.33| 32.55 || 37.71| 27.66| 15.99| 37.01 0.47
0.6500| 41.38 | 32.65 | 22.62 | 63.97 || 42.59| 32.35| 20.29| 46.82 || 40.37| 31.23| 20.7 | 54.51 0.05
0.7000| 39.17 31.2 22.18 72.8 || 43.52| 34.67| 24.44| 69.62 || 40.89| 32.92| 23.89| 78.83 0.00
Dataset #6, Improvement measurements
t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean | LL UL | Mean| LL UL | Mean| LL

0.4500| -118.28| -145.36| -175.8 | 465.18 | 21.25| 10.73| -1.2 8.46 20.2 | 9.87 | -1.79| 5.76 34.66
0.5000| -40.65| -58.1 | -77.72 | 121.16| 22.36| 11.99| 0.22 | 10.18 || 21.16| 10.96| -0.57 | 7.18 15.90
0.5500| 20.15 | 10.25 | -0.89 6.75 | 24.66| 1459| 3.18 | 14.48 || 23.7 | 13.82| 2.67 11.8 6.77
0.5750(34.32 | 26.18 | 17.02 | 53.18 || 29.93| 20.56| 9.94 | 28.59 || 29.05| 19.87| 9.5 26.17 2.01
0.5875(| 35.53 | 27.54 | 18.55 59.9 | 30.17| 20.84| 10.26| 29.41 || 29.36| 20.22| 9.89 | 27.2 0.95
0.6000| 36.07 | 28.14 | 19.23 | 63.07 || 30.99| 21.76| 11.31| 32.23 || 30.18| 21.14| 10.94| 30.09 0.19
0.6125| 33.36 25.1 15.8 48.21 || 29.68| 20.29| 9.63 | 27.79 || 29.08| 19.9 | 9.53 | 26.25 0.03
0.6250| 30.73 | 22.14 | 12.48 | 36.17 || 29.36| 19.92| 9.22 | 26.76 || 28.68| 19.46| 9.03 | 24.96 0.00
0.6500| 24.99 | 15.68 5.22 16.8 || 27.67| 18 7.04 | 21.76 || 27.07| 17.63| 6.98 | 20.07 0.00
0.6750| 19.16 9.13 -2.14 5.29 | 26.97| 17.21| 6.14 | 19.89 | 26.5 | 16.99| 6.25 | 18.49 0.00
0.7500| 11.04 0 -12.4 0 23.58| 13.36| 1.78 | 12.32 || 23.76| 139 | 2.76 | 11.94 0.00

‘g pue G# s1aseleq I0} S)NSaY 'Y a|geL

G0T

Dataset #7, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean | LL UL | Mean| LL UL | Mean| LL
0.3500| -83.12 | -107.16| -134.34| 275.46| 20.81| 10.24| -1.74| 7.87 | 20.14| 953 | -2.5 5.08 || 33.44
0.4000| -20.91 | -36.78 | -54.73 | 50.95 | 22.06| 11.65| -0.14| 9.01 | 20.97| 10.47| -1.43 6.2 10.91
0.4250| 11.18 | -0.47 | -13.66 | 0.01 | 22.39| 12.03| 0.28 | 10.26 || 21.99| 11.62| -0.12| 7.74 7.13
0.4375| 18.52 7.83 -4.27 3.45 || 23.45| 13.23| 1.65 | 12.13 23 | 12.77| 1.18 | 9.48 6.36
0.4500| 31.21 | 19.33 5.41 14.38 || 27.65| 14.95| 0.02 | 9.91 27 | 14.24| -0.75| 7.18 5.62
0.4625| 35.15 | 26.64 | 17.01 | 49.84 | 28.11| 18.51| 7.64 | 23.08 || 27.72| 18.11| 7.23 | 20.25 || 2.36
0.4750|| 39.19 31.2 22.18 | 72.65 || 30.82| 21.59| 11.12| 31.74 || 30.38| 21.13| 10.64| 28.57 || 0.66
0.5000|| 38.24 | 30.14 | 20.97 | 66.79 | 31.32| 22.15| 11.76| 33.52 | 30.65| 21.44| 11 29.54 || 0.03
0.5500| 31.75 22.8 12.67 | 34.76 || 29.24| 19.79| 9.09 | 26.47 || 29.12| 19.7 | 9.03 | 24.42 || 0.00
0.6000| 27.73 | 18.24 7.52 21.07 || 27.02| 17.28| 6.23 | 20.09 | 26.47| 16.7 | 5.63 | 16.94 | 0.00
Dataset #8, Improvement measurements
t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean | LL UL | Mean| LL UL | Mean| LL

0.3500|| -111.68| -128.55| -146.78| 916.85| 16.97| 9.92 | 2.27 | 14.96 | 16.05| 9.35 | 2.12 | 1291 || 8.57
0.4000| -12.39 | -23.07 | -34.76 | 41.3 | 18.93| 10.71| 1.67 | 12.89 | 18.15| 10.37| 1.84 | 11.46 || 4.77
0.4500| 34.15 27.9 21.05 | 102.53 || 24.84| 17.23| 8.84 | 32.32 || 24.11| 16.89| 8.98 | 32.73 || 0.93
0.4750| 35.4 29.26 | 22.54 | 114.88| 26 185 | 10.24| 37.48 || 25.37| 18.28| 10.5 | 38.96 || 0.04
0.4875| 33.33 | 26.99 | 20.06 | 94.89 | 25.46| 17.91| 9.59 | 35.03 | 24.86| 17.71| 9.89 | 36.35 || 0.01
0.5000| 30.98 | 24.43 | 17.25 | 75.18 25 174 | 9.04 | 33.01 || 24.29| 17.09| 9.2 33.6 0.00
0.5125| 30.26 | 23.63 | 16.37 | 69.65 25 | 17.41| 9.04 | 33.02 || 24.35| 17.15| 9.27 | 33.86 || 0.00
0.5250| 27.61 | 20.73 13.2 51.73 || 24.63| 16.99| 8.58 | 31.41 | 23.94| 16.71| 8.79 | 31.97 || 0.00
0.5500| 22.05 | 14.65 6.54 24.04 || 23.3 | 15.53| 6.97 | 26.14 | 22.83| 15.49| 7.45 | 27.09 | 0.00
0.6000| 14.2 6.04 -2.88 3.72 || 22.19| 14.31| 5.62 | 22.21 || 21.78| 14.34| 6.2 22.93 || 0.00

"8 pue /# S1a9seleq 0} SINsay G’y a|qel

90T

Dataset #9, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean| LL UL | Mean| LL UL | Mean| LL
0.2500|| -37.25| -59.57| -85.51| 75.97 | 22.42| 9.17 | -6.34| 4.94 224 | 9.26 | -6.12| 3.04 | 19574.08
0.3000| -8.86 | -26.56| -47.14| 19.3 || 25.87| 13.21| -1.61| 8.37 | 24.78| 12.03| -2.88 | 5.29 | 11906.16
0.3500| 19.26 | 6.13 | -9.13 1.39 | 31.31| 19.58| 5.85 | 17.09 || 29.1 | 17.09| 3.04 | 11.32 286.97
0.3750| 36.32 | 25.97 | 13.93 | 31.46 | 33.78| 22.47| 9.23 | 22.58 | 32.22| 20.74| 7.31 | 174 93.63
0.3875| 42.22 | 32.83| 21.91| 55.1 || 37.59| 26.93| 14.45| 33.26 || 36.29| 25.49| 12.87| 27.9 35.15
0.4000| 44.13 | 35.05| 24.49 | 64.79 || 37.49| 26.82| 14.32| 32.97 || 36.35| 25.57| 12.95| 28.09 21.37
0.4125| 4155| 32.05| 21 51.94 | 38.28| 27.74| 15.4 | 35.53 | 37.48| 26.89| 145 | 31.62 5.13
0.4250| 46.42 | 37.71 | 27.58 | 77.95 | 40.52| 30.36| 18.47| 43.6 | 39.92| 29.74| 17.84| 40.16 0.96
0.4500| 43.02 | 33.75| 22.98 | 58.98 | 38.06| 27.48| 15.1 | 34.81 | 37.73| 27.17| 14.83| 32.4 0.28
0.5000| 38.23 | 28.18 | 16.51 | 38.13 || 38.18| 27.62| 15.26| 35.19 | 37.67| 27.11| 14.76| 32.22 0.00
0.6000| 34.72 | 24.11 | 11.77 | 26.47 | 31.57| 19.88| 6.2 17.61 || 31.75| 20.18| 6.66 | 16.38 0.00
Dataset #10, Improvement measurements
t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean| LL UL | Mean| LL UL | Mean| LL

0.3000| -33.05| -52.69| -75.23| 74.63 || 24.02| 11.64| -2.75| 7.31 || 22.73| 10.57| -3.49 | 4.62 296.19
0.3500| 19.32| 7.41 | -6.25 | 2.47 | 29.86| 18.44| 516 | 16.42 || 28.33| 17.05| 4.01 | 12.94 59.57
0.3750| 35.94 | 26.49 | 15.64 | 39.45 || 30.89| 19.64| 6.55 | 18.58 || 29.69| 18.63| 5.84 | 15.74 18.22
0.4000| 42.85| 34.42 | 24.74 | 74.13 | 34.87| 24.27| 11.93| 28.8 | 34.05| 23.68| 11.68| 27.04 4.8
0.4125| 35.09 | 25,51 | 1451 | 36.12 || 33.47| 22.63| 10.03| 24.84 | 33.02| 22.49| 10.29| 24.01 1.83
0.4250| 41.65| 33.03 | 23.15| 66.97 || 35.66| 25.18| 12.99| 31.18 | 35.04| 24.83| 13.01| 30.15 0.21
0.4500| 37.4 | 28.15| 17.55| 45.54 | 33.64| 22.83| 10.27| 25.31 | 32.93| 22.38| 10.18| 23.76 0.01
0.5000| 31.84 | 21.78 | 10.23 | 25.13 || 33.35| 22,5 | 9.88 | 24.54 | 32.82| 22.26| 10.03| 23.47 0.00
0.5500| 26.45| 15.6 | 3.14 | 11.98 || 29.77| 18.34| 5.04 | 16.23 || 29.49| 18.4 | 5,56 | 15.3 0.00
0.6000| 30.55| 20.3 | 854 | 21.45 || 28.49| 16.85| 3.31 | 13.81 || 28.61| 17.39| 4.4 135 0.00

'0T pue 6# S1asere(1o} syNsay: 9"y a|qel

L0T

Dataset #11, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean| LL UL |Mean| LL |F-value|| UL | Mean| LL
0.2000| -13.29| -34.9 | -60.62| 23.22 || 26.76| 12.19| -5.28| 6.05 | 25.56| 10.81| -6.86 | 3.16 | 388.07
0.2250| 2.3 |-15.29| -36.06| 5.83 || 26.33| 12.49| -3.95| 6.74 | 25.23|11.24| -5.36 | 3.82 79.81
0.2500| 20.61| 6.32 | -10.55| 1.23 || 27.34| 13.69| -2.52| 7.78 26.3 | 12.51| -3.86| 4.79 33.41
0.2750|| 38.25| 27.12 14 28.83 || 30.48| 17.42| 191 | 11.76 || 30.04| 16.95| 1.41 | 9.26 104
0.2875|| 35.69 | 24.11 | 10.45| 21.92 || 31.47| 18.6 | 3.31 | 13.28 || 31.72| 18.94| 3.78 | 11.84 5.27
0.3000| 44.77 | 34.82 | 23.08 | 52.74 || 36.05| 24.04| 9.77 | 22.14 || 35.76| 23.74| 9.48 | 19.72 1.44
0.3125| 43.98 | 33.89 | 21.99 | 49.33 || 36.46| 24.52| 10.34| 23.08 || 36.25| 24.32| 10.17| 20.86 0.65
0.3250| 39.98 | 29.17 | 16.42 | 34.26 || 35.72| 23.64| 9.3 21.38 || 35.49| 23.43| 9.1 19.13 0.01
0.3500| 36.81 | 25.43 12 248 | 33.97| 21.56| 6.83 | 17.72 | 34.04| 21.7 | 7.06 | 16.07 0.00
0.4000| 32.41| 20.24| 5.87 | 14.72 || 32.89| 20.28| 5.31 | 15.69 || 33.09| 20.57| 5.71 | 14.24 0.00
Dataset #12, Improvement measurements
t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean| LL UL | Mean| LL UL | Mean| LL

0.2000| -33 | -55.06| -80.76| 64.54 | 25.05| 11.32| -4.91| 6.03 | 23.91| 10.42| -5.45 3.6 69
0.2500| 17.56 | 3.89 | -12.04| 0.53 || 25.71| 12.1 | -3.99| 6.65 | 24.75|11.41| -4.28| 4.36 17.79
0.2625| 27.48 | 1546 | 1.44 9.46 || 26.58| 13.14| -2.77| 7.54 | 25.62|12.44| -3.08| 5.23 11.43
0.2750|| 39.59 | 29.57 | 17.89 | 41.22 || 31.14| 1853| 3.61 | 13.73 || 30.47| 18.15| 3.64 | 11.9 4.54
0.2875|| 29.42 | 17.72| 4.08 | 12.76 || 29.9 | 17.06| 1.88 | 11.78 || 29.53| 17.04| 2.35 | 10.36 1.15
0.3000|| 43.08 | 33.64 | 22.64 | 56.43 || 33.66| 21.52| 7.15 | 184 | 33.06| 21.2 | 7.24 | 16.84 0.39
0.3125| 42.47 | 3293 | 21.81 | 53.52 || 34.38| 22.37| 8.15 | 19.91 | 33.87| 22.15| 8.36 | 18.61 0.05
0.3250|| 38.58 | 28.4 | 16.53 | 37.44 || 33.19| 20.95| 6.48 | 17.45 || 32.72| 20.79| 6.76 | 16.12 0.00
0.3500| 34.48 | 23.62| 10.95| 24.35 || 31.36| 18.79| 3.92 | 14.1 | 31.14|18.94| 458 | 13.08 0.00
0.4000| 28.8 | 16.99 | 3.23 | 11.64 | 29.84| 16.99| 1.79 | 11.69 || 29.8 | 17.37| 2.72 | 10.8 0.00
0.4500| 27.07 | 14.98 | 0.88 8.84 | 30.08| 17.28| 2.14 | 12.06 || 29.6 | 17.13| 2.45 | 10.48 0.00

"ZT pue TT# slosere(Joj synsay:/ 'V a|qel

80T

Dataset #13, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean | LL UL | Mean| LL UL | Mean| LL
0.3500| -76.6 | -101.86| -130.74| 217.96 | 21.88| 10.31| -2.98 6.9 21.17| 954 | -3.81 | 4.19 | 2254.77
0.4000| -4.22 | -19.13 | -36.17 | 13.53 || 27.04| 16.23| 3.82 | 14.98 || 25.13| 14.07| 1.39 | 9.58 240.46
0.4500| 30.97 | 21.09 9.81 24.79 || 28.84| 183 | 6.2 18.91 || 27.58| 16.89| 4.62 | 14.26 47.62
0.4750| 45.1 37.24 | 28.27 95.9 || 36.23| 26.78| 15.94 | 42.23 || 35.33| 25.79| 14.84| 37.06 10.75
0.4875| 45.79 | 38.04 | 29.17 | 101.21| 37.4 | 28.13| 17.48| 47.16 || 36.92| 27.61| 16.92| 43.48 1.21
0.5000(44.02 | 36.01 | 26.86 | 88.07 || 37.32| 28.04| 17.38 | 46.83 || 36.59| 27.23| 16.49| 42.09 0.06
0.5250(4151 | 33.14 | 2358 | 71.61 || 35.95| 26.46| 15.57| 41.1 | 3552 26 | 15.08| 37.78 0.02
0.5500(36.28 | 27.17 | 16.75 | 44.41 | 33.88| 24.09| 12.85| 33.45 || 33.53| 23.72| 12.46| 30.55 0.00
0.6000| 27.81 | 17.49 5.69 16.32 || 31.54| 214 | 9.76 | 26.01 || 31.39| 21.26| 9.64 | 23.8 0.00
Dataset #14, Improvement measurements
t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean | LL UL | Mean| LL UL | Mean| LL

0.3500|| -105.78| -135.24| -168.92| 322.75| 22.33| 11.4 | -1.06 | 8.69 | 21.04| 10.28| -1.94 5.7 297.88
0.4000| -13.23 | -29.44 | -47.97 | 29.37 | 24.13| 13.46| 1.29 | 1153 || 22.8 | 12.29| 0.34 | 8.33 51.95
0.4500| 35.86 | 26.68 | 16.18 | 42.48 || 27.94| 17.8 | 6.24 | 19.52 | 26.94| 16.99| 5.69 | 16.8 17.28
0.4650|| 44.07 35.6 25.84 | 76.85 || 32.4 | 22.34| 10.79| 28.24 | 31.7 | 21.86| 10.6 | 26.52 3.30
0.4750(44.77 | 35.86 | 25,51 | 69.57 || 33.76| 23.26| 11.09 | 27.56 || 33.1 | 22.83| 10.99| 26.02 1.18
0.4850(43.92 | 35.89 | 26.71 | 87.16 | 33.48| 24.12| 13.45| 36.75 || 32.9 | 23.77| 13.38| 35.66 0.31
0.5000(40.71 | 32.23 | 2252 | 66.74 || 32.51| 23.02| 12.19| 33.21 || 31.95| 22.69| 12.16| 32.06 0.01
0.5250(34.84 | 25,51 | 14.84 | 38.24 | 30.99| 21.29| 10.22 | 28.12 || 30.39| 20.91| 10.14| 26.65 0.00
0.5750| 34.72 | 1195 | -18.76 | 1.43 | 38.89| 17.98| -10.08| 5.58 | 38.04| 17.57| -9.67 | 3.62 0.00
0.6500| 3.78 -9.99 | -25.74 4 25.97| 15.56| 3.68 | 15.04 | 25.78| 15.67| 4.19 | 14.08 0.00
0.7000 -5 -20.03 | -37.21 | 14.7 |[23.95| 13.26| 1.06 | 11.23 || 24.29| 13.98| 2.27 | 10.99 0.00

"vT pue £T# slosereq 10} SYNSay: g’V a|gel

60T

Dataset #15, Improvement measurements

t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean | LL UL | Mean| LL UL | Mean| LL
0.2500| -73.36 | -100.19| -131.17| 183.73| 21.8 | 10.34| -2.8 7.03 || 21.41| 9.76 | -3.61| 4.36 | 79.40
0.3000| 11.74 | -1.92 | -17.69 | 0.14 | 23.22|11.97| -0.93| 8.86 | 22.87| 11.44| -1.68| 6.11 | 14.53
0.3250(| 31.4 20.79 8.53 20.71 || 24.11| 12.99| 0.24 | 10.18 || 23.87| 12.59| -0.36 | 7.49 7.71
0.3350|| 36.46 | 26.63 | 15.27 | 36.56 26 |15.15| 2.72 | 134 | 25.72|14.71| 2.07 | 10.47 || 6.09
0.3500(| 45.85 | 37.47 | 27.79 | 84.05 || 32.4 | 22.49| 11.13| 29.39 || 32.35| 22.32| 10.81| 26.38 || 1.22
0.3650(|| 45.1 36.6 26.79 | 79.22 || 32,59 22.71| 11.39| 30.02 || 32.39| 22.37| 10.86| 26.5 0.16
0.3750(| 45.27 36.8 27.02 | 80.29 || 33.36| 23.6 | 124 | 3258 || 33.2 | 23.3 | 11.93| 29.08 || 0.01
0.4250| 37.81 | 28.19 | 17.08 | 41.82 | 31.36| 21.3 | 9.77 | 26.23 || 31.15| 20.95| 9.24 | 22.86 || 0.00
0.5000| 27.27 | 16.02 3.02 11.62 || 28.96| 18.55| 6.61 | 19.77 || 28.72| 18.16| 6.03 | 16.6 0.00
0.5500| 61.28 | 55.28 | 48.36 | 246.9 || 26.94| 16.23| 3.95 | 15.23 || 26.91| 16.08| 3.64 | 12.7 0.00
Dataset #16, Improvement measurements
t Time #NV #CC FBS
t-distribution F-value t-distribution F-value t-distribution F-value
UL | Mean | LL UL | Mean| LL UL | Mean| LL

0.2500|| -112.67| -139.44| -169.57| 428.21| 20.53| 10.72| -0.3 9.5 19.45| 991 | -0.77| 6.85 | 34.12
0.3000| 16.87 5.51 -7.39 155 | 22.11| 11.69| -0.13| 9.73 | 21.48| 11.39| 0.01 | 7.91 8.75
0.3250(| 32.87 | 24.42 | 1491 | 44.04 || 22.29| 12.7 | 1.93 | 12.76 || 21.68| 124 | 2.03 | 11.05 | 5.10
0.3350(|| 40.55 | 28.75 14.6 27.65 || 26.58| 12.3 | -4.76 6.3 25.86| 12.03| -4.38 | 4.43 3.03
0.3500(| 45.51 | 34.76 | 21.87 | 44.34 | 32.37| 19.28| 3.67 | 13.58 || 31.76| 19.1 | 4.09 | 12.25 | 0.44
0.3650|| 42.63 35.4 27.27 | 107.28 || 29.15| 20.41| 10.59| 32.39 | 28.67| 20.22| 10.77| 32.14 || 0.01
0.3750|| 42.18 34.9 26.71 | 103.53 || 29.27| 20.54| 10.73| 32.81 || 28.67| 20.22| 10.76| 32.13 || 0.00
0.4000| 38.83 | 31.13 | 22.46 | 78.11 || 28.7 | 19.9 | 10.02| 30.72 | 28.13| 19.62| 10.1 | 30.05 || 0.00
0.4500| 30.67 | 21.95 | 12.12 | 34.48 | 26.34| 17.25| 7.04 | 22.91 | 25.83| 17.04| 7.21 | 21.98 || 0.00

‘9T pue GT# slosere(o} SYNsay: 6’V 9|qel

OTT

5
.s/CPU time [sec]
) /‘\
IN=20,a=15, Fa
I \\
CR1 ¥ :
35 / \
)
o, 3
]
E25
£
>
o 2
S
15
4
0.5
0
045 05 055 06 0.65 07
Tightness
3.0E+07
2.5E+07
2.0E+07
[
O 156407
*
108407
5.0E+06
0.0E+00
045 05 0.55 06 065 07
Tightness
»{CPU time [sec] r-.
F
= = \
n=20,a=15,/
CR2 |
1 /
o'
3
&,
]
£
=1
=]
o
o
045 05 055 06 0.65 07 075
Tightness
1.4E+08
#CC DynBndl
1.2E+08 FC
n=20,a=15, r—
FA
1.0E+08 CR2 / \
8.0E+07
Q
3]
*
6.0E+07
4.0E+07
2.0E+07
0.0E+00 . . .
045 05 055 06 065 07 075
Tightness

111

1200

#NV
n=20,a=15, !
CR1 A

1000 4

800 1

400 +

200

0.55 0.6 0.65 0.7

Tightness

600.0

FBS
n =20, a= 15,
CR1

500.0
400.0
g 300.0
w

200.0

100.0

0.0 T T T T T T T T T
0.45 047 0.49 0.51 0.53 0.55 0.57 0.59 0.61 0.63 0.65

Tightness
DynBndl
FC

2500

#NV
n=20,a=15,
CR2 /™

2000

1500

#NV

1000

500

0.6 0.65

Tightness

0.55

0.0 T T T T T T T T T
0.45 0.47 0.49 0.51 0.53 0.55 0.57 0.59 0.61 0.63

Tightness

0.65

Figure A.1:CPU time,CC, NV, FBS results fon = 20,a = 15, CR1 and CR2.

10{CPU time [sec] .-~
SN
n=20,a=15 ;,
/ \
s CR3 ' :
= |
3
o 6
£
=
2
S 4
2
0
0.35 0.4 0.45 05 0.55 0.6
Tightness
7.0E+07
#CC
s in=20,a=15, ,
A
5.0E+07 CR3 /I \\
4.0E+07
Q
(%)
F*
3.0E+07
2.0E+07
1.0E+07
0.0E+00
035 04 045 05 055 06
Tightness
45

CPU time [sec] »
n=20,a= 15,,,/
* CR4

CPU Time [sec]
srigimefeecd

0.35 0.4 0.45 0.5 0.55 0.6

2.5E+08

2.0E+08

1.5E+08

#CC

1.0E+08

5.0E+07

0.0E+00
0.35 0.4 0.45 0.5 0.55 0.6

Tightness

112

2500

2000

1500

#NV

1000

500

Tightness

FBS
n=20,a=15,
30,0 1 CR3

25.0 4

35.0

[}
00200
w
15.0 §
10.0 §

5.0 q

00
035 037 039 0.41 043 045 047 0.49
Tightness

3500

ANV
"in=20,a=15, "
2500 CR4 / N

2000

NV

**
1500

1000

0.35 0.4 0.45 05 0.55 06
Tightness

9.0

80 | FBS
n=20,a=15,
CR4

7.04

6.0 q

FBS

0.35 04 0.45 05 0.55 0.6 0.65 07
Tightness

Figure A.2:CPU time,CC, NV, FBS results fon = 20,a = 15, CR3 and CRA4.

CPU time [sec]
n=30,a=15,
CR1

CPU Time [sec]

.45 0.5

2.5E+08

2.0E+08

1.5E+08

#CC

1.0E+08

5.0E+07

0.0E+00

0.35 0.4

180

3
8

CPU Time [sec]
=
3

2
3

CPU time [sec]
\ n=30,a=15,
CR2

05 0.55 0.6
Tightness

1.0E+09
9.0E+08 ’
8.0E+08 i
7.0E+08 |
6.0E+08 |

(S}

O5.0E+08 !

F*
4.0E+08
3.0E+08 /
2.0E+08 ,

1.0E+08 Y

" DynBndlI
FC

' #cC
| n=20,a=15,
\ CR2

0.0E+00

0.35 04 0.45

Figure A.3:CPU time,CC, NV, FBS results fon = 30,a = 15, CR1 and CR2.

05 055 06
Tightness

113

12000

10000

8000

4000

2000

#NV
n=30,a=15,
CR1

2500.0

Tightness

2000.0

1500.0

FBS

1000.0

500.0

FBS
n=30,a=15,
CR1

0.0
035

18000

05 055
Tightness

16000

14000

12000

10000

NV

3* 8000

6000

4000

2000

#NV
n =30, a=15,
\ CR2

05 0.55 0.6 0.65

Tightness

0.7

350.0

300.0

250.0

200.0

BS

w
150.0

100.0

0.0

FBS
n=30,a=15,
CR2

0.35 04

0.45

0.5 0.55 0.6 0.65

Tightness

114

40000
]
160 i
" 35000
I L
140 4 [I
[30000 H
|
120 ’1 \ :
—_ \
5 Y 25000 h
8,100 [I\
££,100 7 h . I \
2 AR CPU time [sec] 0000 7\ #NV
1 L]
£ o] \ — _ ES - -
F ! | n=30,a=15, n=30,a=15,
2 ! 15000
G 601
10000
40 1
20 5000
0 - - - ’ 0
0.25 03 035 04 045 05 055 025 03 035 04 0.45 05 0.55
Tightness Tightness
1.0E+09 900
9.0E+08
800 4 FBS
8.0E+08 = =
100 n=30,a=15,
7.0E+08 CR3
60.0 -
6.0E+08
1%} 500 -
O 5.0E+08 a
3* e
400 1
4.0E+08
3.0E+08 3007
2.0E+08 20.0 4
1.0E+08 100
0.0E+00 0.0
025 03 0.35 04 045 0.5 0.55 0.25 03 0.35 04 045 05 055
Tightness Tightness
40000
.
400 : [
CPU time [sec] | ™ w5000 #NV .
| -— -— I L]
— — 1 \ — — 1
‘04 N = 3, a= 15, / \ n 30; a 15, I \
\ 30000
| \ | \
300 CR4 ! \ CR4 i Y
| \
3 ! \ 25000 i \
9 \ | \
,250 !] | \
° ! \ > ! \
2 / \ Z 20000 i .
i 200 i \ ®] \
2 ! Y 15000 f 5
& 150 ¥ N N
Y \ . "
/ N 10000 . N
100 / N / N
// \\ // S
‘ N, 7 N
o y . 5000 y S
/ —Ttee ==all
o 0 - : : : : :
025 027 029 031 033 035 037 039 041 043 045 025 027 029 031 08 03 037 039 041 043 045
Tightness Tightness
25E+09 400
#CC FBS
-— -— - - -—
20e00] N=30,2a=15,] \ n=30,a=15,
I \ 300
CR4 1\ CR4
\
! \
|
1.5E+09 i \ 0
3} i \
(5]] b gzo 0
F* f \ L
1.0E+09 i N\
[/ L] 15.0
| N
7 ™
/ N
y " 100
5.0E+08 P .
y, ~
Y N
// - 50
0.0E+00 00
025 027 029 031 033 035 037 039 041 043 045 025 027 020 031 033 035 037 039 041 043 045
Tightness Tightness

Figure A.4:CPU time,CC, NV, FBS results fon = 30,a = 15, CR3 and CR4.

115

Appendix B

Alternative Approaches to Computing

NI Sets

Despite the theoretical guarantees and empirical evigaheee is always room for im-
provement in the implementation of any mechanism. In thpeagix, we discuss two al-
ternative approaches to implementing the mechanism fopatmg NI sets. We describe

these approaches, discuss their performance, and justifgasons for not adopting them.

B.1 Using the DT and nb-DT jointly to compute inter-
changeability

In this section, we discuss whether it is worth building aquei DT for all the binary
constraints that apply to a variable, and one nb-DT for edi¢heonon-binary constraints,
in order to partition the domain of a variable The possible advantage of using a unique
DT for all the binary constraints is avoiding the operatidnmtersecting the annotations
for binary constraints.

Figure B.1 shows a CSP varialiteand its neighborhood. Neighboring variables can be

116

Binary Common Non-binary

————— Variables with binary constraints
--------- Variables with non-binary constraints

Figure B.1:The neighborhood of variablé.

in the scope of either binary constraints (i¥., V5, V3, andV}) or non-binary constraints
(i.e., V3, V4, V5, andVg) or both (i.e.,V3 andV}). In this approach, we treat the variables
common to both binary and non-binary constraints in a spa@g. The bundles oDy,

in the presence of only non-binary constraints are compusatg nb-DTs and those for
binary are computed using one DT. We then intersect the lpsridim the DT and nb-DTs
to obtain the final partition of the domain.

The problem with this approach lies in computing the coesistalues in the domains
of the future variables with the partitions bfs domain. The updated domain of a variable
that lies in the scope of both binary and non-binary constsas derived from the nb-DTs
and DT by collecting and then intersecting the consisteliegfrom both these trees. To
enable computing the updated domains of the common vasialle add additional steps
for classifying variables and intersecting paths in thelengentation. Our preliminary
experiments show that the the gains from savings in intécseof annotations are lost in
these additional steps and on an average this approachspmi»e more time consuming

than the implementation that builds one nb-DT per constdefined onl/.

117
B.2 Using a single nb-DT for all constraints to compute

domain partitions

The rationale behind this approach is that by using a unigoaefined) nb-DT for all

the constraints defined on a variable, we may be able to satteecadditional data struc-
tures and the management of separate nb-DTs. Consider theofC5gure B.2, where
NEIGHBORYV)={V4, Vs, V5, Vi, V5}, SCOPHC,) N ScoPHC,) ={V, V1 }, and SOPH(C,)

N ScopHC3) ={V, V3}. For every value in the domain df, the combined nb-DT processes
) G A
% C

&

7 G Vg

Figure B.2:Non-binary CSP.

consistent tuples with the domain value from each of thetcaims as follows. Initially, the
nb-DT is empty and for the first value (say we iteratively collect the consistent tuples
from each constraint. Figure B.3 shows such a branch of tidoed nb-DT fora € Dy, .
When processing the subsequent domain values, the corigistestraint-tuples are added

Root

(V) b><V, a>,<y o)
<V, o> ©)

(V3 d><V, d>)

(< a)

(<% b>)

{a}

Figure B.3:Branch of a combined nb-DT.

118

to the tree as follows. We check if any children of the curreade of the nb-DT are from
the same constraint as the tuple, if there is one then we c@npa two tuples. If the
two tuples match, the tree building algorithm moves to tloaten Otherwise, the algorithm
creates a new node.

We now discuss the issues that indicate that a combined nbebDion-binary con-

straints is not a feasible option.

1. To accomodate tuples from constraints with differenpgsaand arities in a single nb-
DT we additionally check for every node in the nb-DT whethés comparable with
a tuple from the current constraint. This additional preg&s can prove expensive
given that the number of tuples in non-binary constraingsgaificantly greater than

in binary constraints.

Using the length of the tuples to detect un-comparable sugpléckly is a good heuris-
tic. However it is ineffective when some constraints hawe shme arity. For our
example, the heuristic will not work for tuples froffy andC's. Therefore, we often

check for the variables present in the tuples of a combined b

2. Once search instantiatés the nb-DT is used to determine the domain of the fu-
ture neighborhood o¥ consistent with the instantiation &f (see Section 3.1.2.2).
Determing the consistent domain of a neighbor using a coeabi-DT is cumber-
some and expensive. Given a future variallec NEIGHBOR(V), we first identify
all constraintsC' such that{V’, V;} C ScopHC). Next, we collect the consistent
values ofl’; due to each constraidt. To do so, for every node along a path of the
nb-DT, we determine the constraint the node belongs to atrdatxhe value for
V. The intersection of these consistent values results idah@ain ofl; consistent
with the current instantiation df. This operation involves a minimum of one addi-

tional comparison at every node in the path to an annotatinch can be long for

119

non-binary constraints) thereby, making the whole propeskibitively expensive.

3. The combined nb-DT does not indicate the constraint frdmntkwvthe tuple in each
node comes and this can lead to errors. Consider the scemagiol, andV,; have
been instantiated. Figures B.4 and B.5 show partially tHimitiens! of C, andC;
used by the combined nb-DT. In search, the nb-DT is creatédfon the future
neighborhood oi/. From the definition of NI and by looking at Figures B.4 and,B.5

Root

(<% 255
(<V3 b>)

=
E
E

Z | x| a

Mk ¥ 20y
z|y|a (Vs P)(y.Cy)
Z|y|b Z|x|d

Z|y|c Z|x|e (<5 &)
Z]y|d Z|y|e

Figure B.6:A combined DT branch that

Figure B.4:Partial con- Figure B.5:Partial con- incorrectly detects interchangeable val-
straintCs. straintCs. ues.

we know thatz, y are not interchangeable valuesiiy.. However, in the combined

nb-DT, the paths to annotations containingndy respectively will have the same

set of tuples as shown in Figure B.6. This figure also showddith values: andy,

the constraint used at every step in building the path to tespective annotations.

Observing the source of the tuples in Figure B.6, we canlgieentify the source of

the error. The nodé&/ d) in the path to the annotation oforiginates from constraint

(3, and that fory is from C,. Hence, the two should not be compared. However, in

a combined nb-DT, there is no mechanism to detect the so@isteh tuples.

Thus, we need a mechanism to efficiently record and utilieeotiigin of each tuple.

Even if we record the originating constraint of each tughe, algorithm will still perform

The definitions were updated using Equation (2.1).

120

an additional check at each node and the computation ofdfatoimains will remain cum-

bersome. In conclusion, this approach too is unlikely torimap performance in practice.

121

Appendix C

Documentation of the Implementation of

DynBndl & FC

This chapter documents the code to implement DynBndl andWeJirst present the direc-
tory structure of the source code, and then give detailedmeatation of important parts

of the code. The code we present here has been initially oleedlby Davis and Choueiry
and has been used in the following publicatiofBeckwith et al, 2001; Davis, 2002;
Choueiry and Davis, 2002 We have reused a substantial amount of the previously gen-
erated code and have made modifications and additions t@imapit the contributions of

this document.

C.1 Directory structure

The directory structure of the source code is as shown below:

122

--src--+

| -- make-nb.lisp

| -- definitions----+
| -- csp-problemlisp
|-- csp-var.lisp
| -- csp-value.lisp
| -- constraint.lisp
| -- package. lisp
| -- search--------- +
|-~ dnpi-fc.lisp
|-- nb-fc.lisp
| -- driver.lisp
| --interchange----- +
|-- nd-dt3.1isp
| -- nb-dt-definitions.lisp
| -- utils
|-- files-list
| -- problens------- +

| -- nb-random i sp

The filermake- nb. | i sp files is the root file to build the complete source tree. The
list of files to compile and load are read from the files storethefi | es-|i st direc-
tory. Theut i | s directory has code for various utility functions used in toele. The file
probl ens/ nb-random | i sp defines the methodb- r andomfor creating a CSP in-
stance by reading a CSP definition file generated by our ramggorarator. In the following

sections we discuss the code to solve a CSP instance usirigndiyand FC.

123
C.2 Detailed documentation

This section first gives an introduction to the code definimgdata-structures. It then goes
on to describe how the basic search mechanism is implemantéthen details the code

for DynBndl and FC.

C.2.1 Basic data-structures

The CSP instance generated by the methimdr andomis an object of classsp- pr obl em
defined indefinitions/csp-problem|isp. Thecsp-probl emobject uses
many of the data structures and methods defined in the faitpflles of thedef i ni t i ons/

folder:
e csp-var.lisp,
e csp-val ue. lisp, and
e constraint.!lisp.

The fileconst r ai nt . | i sp defines a hierarchy of constraint types. For our experiments
using randomly generated CSPs we used the constraintraéhsst i on which is a sub-
class ofexpl i cit-constraint. explicit-constraint inturnis derived from

generic-constraint.

C.2.2 Basic framework for search

We now present a high-level view of the code to show how a gesearch is implemented
in our code. The methasbl ve definedinsear ch/ dri ver. | i sp iswhere the process

of solving a CSP begins.ol ve is characterized as follows:

Input: The arguments given ®ol ve are:

124

e probl em a CSP instance of the typesp- pr obl em The CSP to solve.

e orderi ng, a string indicating the type of variable ordering to usesolving
the CSP. The possible values for it alied for Dynamic Least Domairs| d

for Static Least Domain, and others. All our experimentsiuied.

e bundl i ng, an optional argument specifying the type of bundling to, ifsat
all. Some of the correct inputs an@ne for no bundling,dnpi for dynamic

bundling. No bundling is the default value.

e find-sol utions, an optional argument and it specifies the number of so-
lutions to find. There are two valid inpuft andal | for finding one and all

solutions, respectively. The default value is to find onesoh.

Output: The output of the method is a reference to the CSP instanee s#aarch has

finished processing it.

Processing: The methodsol ve initializes thepr obl emobject and search by clearing
all the solutions, resetting all metrics to their initialwas and by performing other
data-structure management. The metkodl ve also implements the basic search
mechanism using label and unlabel methods. Depending adhehieput parameters
such asbundl i ng andor deri ng it invokes the appropriate label and unlabel
methods. For example, Bundl i ng is passed the valugnpi the label-method
invoked isdnpi - f c- | abel . The label and unlabel methods for all types of search
are defined in files placed under thear ch directory. It also binds theext - var

function based oor der i ng.
A typical label method is characterized as follows:

Input: probl emandl evel . Thel evel or depth at the which the search process is

currently in.

125

Output: The new evel of search.

Processing: It takes a variable (returned Imext - var), and iterates through it's domain,
assigning a value and forward checking for that value, ont is found to be consis-
tenti.e. no future domain is annihilated by that assignmiénb such value is found,
it setsconsi st ent to false, and returns the currdrnével . It makes sure to undo
any effects that this assignment would have had. If an aabépwalue is found,
then that assignment is carried out, the problem set to staméj and thé evel

incremented.

C.2.3 Implementation of DynBndl

We set thébundl| i ng parameter ool ve to dnpi to perform search using DynBndl.
As mentioned before, we set der i ng to bedl d in our experimentssol ve binds the
methodsdnpi - f c- | abel anddnpi -f c-unl abel as the label and unlabel methods,
respectively. Both these methods are defined in thes@lar ch/ dnpi -fc.|isp. Let

us look atdnpi - f c- | abel in more detail:

Input: probl emandl evel . Thel evel or depth at the which the search process is

currently in.
Output: The newl evel of search.

Processing: In addition to the typical processing of a label method ititians the domain
of the current variable unless it has not already partitiorighe method invoked to
partition the domain of the current variablegoiar t i t i on- domai n+f ¢ defined in

i nt erchange/ nb-dt 3. 1i sp.

We now discuss the methghr ti t i oned- domai n+f ¢ because this method is central

to the implementation of DynBndl:

126

Input: The variable whose domain is to be partitioned.

Output: An internal data-structure callgaat h+annot at i on representing the parti-
tioned domain and the values in the input variable’s neighdod that each partition

is consistent with,

Processing:parti ti on- domai n+f ¢ is the method that implements Process 1 and
Process 2 of DynBndl described in Section 3.1.2. It impleiméme algorithm for
building an nb-DT using the methoth- dt (see Algorithm 2) defined in the same
file. It also controls the switching on and off domain paotiing as described in
section 3.1.2.3. And finally it implements the algorithm méerrsect all the nb-DTs

using the methodnt er sect - part (see Algorithm 3) defined in the same file.

C.2.4 Implementation of FC

We set thébundl i ng parameter ool ve to none to perform search using DynBndl.
As mentioned before, we set deri ng to bedl d in our experiments.sol ve binds
the methodsib- f c- | abel andnb-fc-unl abel as the label and unlabel methods,
respectively. Both these methods are defined in thesBlar ch/ nb-fc. | i sp. Letus

look atnb- f c- 1 abel in more detail:

Input: probl emandl evel . Thel evel or depth at the which the search process is

currently in.
Output: The new evel of search.

Processing: This method implements our improved selection-projedbiased method for
non-binary FC described in Section 2.5.3. The main helpahous used by it
isbui | d-constraint-defs-from past which computes and stores partial

definitions constraints for future use.

127

Appendix D

Documentation of the Implementation of

the Join Algorithm

This chapter documents the code to implement the dynamidlimgrbased join algorithm.
We first present a brief introduction to the XXL library, folted by a listing of the source

code files. We then document the main data-structures amtidnalities of the code.

D.1 XXL library

XXL is a Java library that contains a rich infrastructure iimplementing advanced query
processing functionalitjden Berckeret al., 2001]. XXL provides a demand-driven cursor
algebra, a framework for indexing and a powerful packagsdigporting aggregation. The
library is publicly available under GNU LGPL and comes witfulh documentation. The

documentation is available at

http://dbs. mat hemati k. uni - mar bur g. de/ Hone/ Resear ch

/ Proj ect s/ XXL/ Docunent at i on.

We used version 1.0 of the library in our implementation.

128

Cursors are one of the basic components of the XXL library. us& the concept of
cursors extensively in our code. A cursor is an abstract ar@sn to access objects within
a stream. Cursors in XXL are independent from the specifie tfthe underlying objects.

The interface of a cursor is given by

interface Cursor extends java.util.lterator {
oj ect peek();
voi d updat e(Qbj ect 0);
void reset();

voi d close();

A cursor extends the functionality of the iterator providedhe package java.util. The
peek method reports the next object of the iteration witlobxainging the state of the iter-
ation. A call of reset sets the cursor to the beginning of teeation. The method close
stops the iteration and releases resources like file hariihesmethod update modifies the
current object of the iteration. XXL offers an algebra foopessing cursors, i. e. there are

a set of operations that require cursors as input and retounsar as output.

D.2 Source code documentation

In this section, we list the layout of the source tree and glietiled documentation of

important segments of the code.

D.2.1 Source files

The source files are listed below:

129

| -- MyJoin.java

| -- SortJoin.java

| -- Mergedoin.java
| -- MyJoin.java

|-- Inter.java

| -- PipeCursor.java
| -- Bundl e.java

| -- Context.java

The file MyJoi n. j ava defines the class representing the new bundling-based join
algorithm. The classeSort Joi n andMer geJoi n represent the two steps of the join
algorithm (see algorithm in ChapteBi peCur sor is a class defining an extended Cursor.
| nt er implements the algorithm to generate the next bundle of tineent variable. The

filesBundl e. j ava andCont ext . j ava define the data-structures used in the code.

D.2.2 Data structures and bundle computation

The data-structures used in the implementation are assllo

1. PartitionVal uePair is a data-structure that represents a partition of a con-
straint. It stores the partition identifier and the valueoasgted with the partition. It

is defined inBundl e. j ava.

2. Bundl e represents a bundle assigned to a variable during join ctatipa. It stores
the identifier of the bundle’s variable, a linked listldir t i t i onVal uePai r ob-
jects and a boolean flag indicating whether the bundle hasdeerked. It is defined

in Bundl e. j ava.

130

3. Sol uti on represents a solution bundle to the CSP or one tuple of theyjeery. It
stores a list oBundl e objects and also maintains the number of solutions actually

present in the solution bundle. It is definedBandl e. j ava.

4. Cont ext is a data-structure that maintains the state of the join. dintains the
Processed-Valugpast instantiations and the last solution of the join. deéined in

Cont ext . j ava.

The clasd nt er defines methods to compute the next bundle for the varigbfeom a
constraint.l nt er maintains theCurrent-Constraintiata-structure and implements Algo-
rithm 7 to compute the next bundle. It also provides methquetform backtracking when

an instantiation fails.

D.2.3 Implementation of sorting phase

The sorting phase is implemented by the classt Joi n coded inthe fil&Sor t Joi n. j ava.
An object of this class is used by Joi n to initiate processing the join quergor t Joi n
implements the in-memory join algorithm described in Aigon 8 in a private method of
the classget _.one_sol uti on(i nt no_of .vars). The methodhext () computes
the next query-result tuple (solution) when invoked. lurasnul | when no more solu-
tions are possible from the sorting phase of the j&or t Joi n usesl nt er to compute
interchangeable values. The data-structures defined i2 &r2 also heavily used by this
class. FurtherSor t Joi n stores the sorted runs in temporary files, which are latedt use

by the merging phase.

D.2.4 Implementation of merging phase

The merging phase is implemented by the cMssgeJoi n coded inthe fildver geJoi n. j ava.

An object of this class is used by Joi n after no further results are possible from

131
Sor t Joi n. This class implements the merging phase described indpestb.2.2. The
methodnext () computes the next query-result tuple (solution) when ieeb&nd when

next () has no solutions to return it signals the end of join procegsi

132

Bibliography

[Achlioptaset al,, 1997 Achlioptas, Dimitris; Kirousis, Lefteris M.; Kranakis, Bngelos;
Krizanc, Danny; Molloy, Michael S.O.; and Stamatiou, YargqnC. 1997. Random Con-
straint Satisfaction: A More Accurate Picture. Pninciples and Practice of Constraint
Programming, CP'97. Lecture Notes in Artificial Intelliges 1330 Springer Verlag.
107-120.

[Bacchus and van Beek, 1998acchus, Fahiem and Beek, Petervan 1998. On the Con-
version between Non-Binary and Binary Constraint SattgfacProblems Using the
Hidden Variable Method. IfProc. of AAAI-98 Madison, Wisconsin. 311-318.

[Bayardo, 1995 Bayardo, Roberto J. 199€rocessing Multi-Join Querieh.D. Disser-
tation, University of Texas, Austin.

[Beckwithet al,, 2001 Beckwith, Amy M.; Choueiry, Berthe Y.; and Zou, Hui 2001. How
the Level of Interchangeability Embedded in a Finite CaxistrSatisfaction Problem
Affects the Performance of Search.Ah2001: Advances in Atrtificial Intelligence, /4
Australian Joint Conference on Atrtificial Intelligengceolume 2256 o NAI, Adelaide,
Australia. Springer. 50-61.

[Benson and Freuder, 199Benson, Brent W. and Freuder, Eugene C. 1992. Interchange-
ability Preprocessing Can Improve Forward Checking SearchProc. of the 10"
ECAI, Vienna, Austria. 28-30.

[Bernstein and Chiu, 1981Bernstein, Philip A. and Chiu, Dah-Ming W. 1981. Using
semi-joins to solve relational queries. ACM28(1):25-40.

[Bessiereet al, 2004 Bessiere, Christian; Meseguer, Pedro; Freuder, Eugeran@ Lar-
rosa, Javier 2002. On Forward Checking for Non-binary Qairdt Satisfaction Artifi-
cial Intelligencel4l (1-2):205-224.

[Ceri and Widom, 19911 Ceri, Stefano and Widom, Jennifer 1991. Deriving productio
rules for incremental view maintenance.Rroceedings of the 17th International Con-
ference on Very Large Data Base@dorgan Kaufmann Publishers Inc. 577-589.

[Chakrabartet al,, 2004 Chakrabarti, Kaushik; Chaudhuri, Surajit; and Hwang, $eun
won 2004. Automatic categorization of query resultsPtoceedings of the 2004 ACM
SIGMOD international conference on Management of dAtaM Press. 755—-766.

133

[Cheesemast al, 1991 Cheeseman, Peter; Kanefsky, Bob; and Taylor, William M1199
Where the Really Hard Problems Are. Rioc. of the 12" IJCAI, Sidney, Australia.
331-337.

[Chenet al, 2001 Chen, Zhiyuan; Gehrke, Johannes; and Korn, Flip 2001. Qaoigtiy
mization in compressed database systems200i1 ACM International Conference on
Management of Data (SIGMOD271-282.

[Choueiry and Davis, 2002Choueiry, Berthe Y. and Davis, Amy M. 2002. Dynamic
Bundling: Less Effort for More Solutions. In Koenig, Svendarolte, Robert, editors
2002,5th International Symposium on Abstraction, Reformutatiad Approximation
(SARA 2002)volume 2371 ot.ecture Notes in Atrtificial Intelligencépringer Verlag.
64-82.

[Choueiry and Noubir, 1998Choueiry, Berthe Y. and Noubir, Guevara 1998. On the
Computation of Local Interchangeability in Discrete Coastt Satisfaction Problems.
In Proc. of AAAI-98 Madison, Wisconsin. 326-333. Revised version KSL-98-24,
ksl -web. st anf or d. edu/ KSL_Abst ract s/ KSL-98-24. ht i .

[Davis, 2002 Davis, Amy 2002. Dynamically Detecting and Exploiting Syetny in Fi-
nite Constraint Satisfaction Problems. Master’s thesepddtment of Computer Science
and Engineering, University of Nebraska-Lincoln, Lincd\E.

[Dechter and Pearl, 198Dechter, Rina and Pearl, Judea 1989. Tree Clustering for Con
straint Networks Artificial Intelligence38:353-366.

[Dechter, 199D Dechter, Rina 1990. Enhancement Schemes for Constraine&sing:
Backjumping, Learning, and Cutset Decompositidrtificial Intelligence41:273-312.

[Dechter, 200B Dechter, Rina 2003Constraint ProcessingMorgan Kaufmann.

[den Berckeret al,, 2001 Bercken, Jochen Vanden; Blohsfeld, Bjorn; Dittrich, Jens
Peter; Kramer, Jurgen; Schafer, Tobias; SchneidertiMand Seeger, Bernhard 2001.
XxI - a library approach to supporting efficient implemerdats of advanced database
gueries. IPProceedings of the 27th International Conference on Vergé®ata Bases
Morgan Kaufmann Publishers Inc. 39-48.

[Dittrich et al,, 2003 Dittrich, Jens-Peter; Seeger, Bernhard; Taylor, David;Soad Wid-
mayer, Peter 2003. On producing join results earlfioceedings of the twenty-second
ACM SIGMOD-SIGACT-SIGART symposium on Principles of Cegalsystemé&CM
Press. 134-142.

[Freuder, 199]1 Freuder, Eugene C. 1991. Eliminating Interchangeableééaln Con-
straint Satisfaction Problems. Rroc. of AAAI-91 Anaheim, CA. 227-233.

[Glaisher, 187} Glaisher, J.W.L. 1874. On the Problem of the Eight Que@hsglosophi-
cal Magazine, series 48:457-467.

134

[Gray, 2004 Gray, Jim 2004. The next database revolution Ptoceedings of the 2004
ACM SIGMOD international conference on Management of da@M Press. 1-4.

[Gryzet al, 2004 Gryz, Jarek; Guo, Junijie; Liu, Lingi; and Zuzarte, Calis@®2. Query
sampling in db2 universal database. Rroceedings of the 2004 ACM SIGMOD inter-
national conference on Management of da&#€M Press. 839-843.

[Gupta and Mumick, 1995Gupta, Ashish and Mumick, Inderpal Singh 1995. Mainte-
nance of materialized views: Problems, techniques andcgpioins. IEEE Quarterly
Bulletin on Data Engineering; Special Issue on Materiadixéews and Data Warehous-
ing 18(2):3-18.

[Haralick and Elliott, 198D Haralick, Robert M. and Elliott, Gordon L. 1980. Increas-
ing Tree Search Efficiency for Constraint Satisfaction Ryots. Artificial Intelligence
14:263-313.

[Haselbock, 1998 Haselbock, Alois 1993. Exploiting InterchangeabilitissConstraint
Satisfaction Problems. IRroc. of the 13" IJCAI, Chambéry, France. 282-287.

[Hubbe and Freuder, 19B#Hubbe, Paul D. and Freuder, Eugene C. 1989. An Efficient
Cross Product Representation of the Constraint Satisfaétroblem Search Space. In
Proc. of AAAI-92 San Jose, CA. 421-427.

[Kondrak and van Beek, 199%ondrak, Grzegorz and Beek, Petervan 1995. A Theo-
retical Evaluation of Selected Backtracking Algorithms Aroc. of the 14" IJCAI,
Montréal, Québec, Canada. 541-547.

[Lal and Choueiry, 2003Lal, Anagh and Choueiry, Berthe Y. 2003. Dynamic Detection
and Exploitation of Value Symmetries for Non-Binary FinG&Ps. InThird Interna-
tional Workshop on Symmetry in Constraint Satisfactiorbms (SymCon’03Kin-
sale, County Cork, Ireland. 112-126.

[Lal and Choueiry, 2004 Lal, Anagh and Choueiry, Berthe Y. 2004. Constraint Prdogss
Techniques for Improving Join Computation: A Proof of Cqgpiceln Proceedings of
the ' International Symposium on Constraint Databases (CDB 0dlume 3074 of
LNCS Springer. 149-167.

[Lal et al, 2009 Lal, Anagh; Choueiry, Berthe Y.; and Zou, Hui 2003. A Generat
for Solvable Random Non-Binary Finite Constraint Satigtat Problems. consyst-
lab.unl.edu.

[Lal et al, 2004 Lal, Anagh; Choueiry, Berthe Y.; and Freuder, Eugene C. 200zigh-
borhood Interchangeability and Dynamic Bundling for Nomdy Finite CSPs. Idoint
Annual Workshop of ERCIM/CoLogNet on Constraint Solving @onstraint Logic
Programming (CSCLP 04).ausanne, Switzerland. 114-130.

135

[Lesaint, 1994 Lesaint, David 1994. Maximal Sets of Solutions for Consir&atisfac-
tion Problems. IrProc. of the 11" ECAI, Amsterdam, The Netherlands. 110-114.

[Lim et al, 2004 Lim, Ryan; Guddeti, Venkata Praveen; and Choueiry, Berth2004.
An Interactive System for Hiring and Managing Graduate haag Assistants. IfCon-
ference on Prestigious Applications of Intelligent Syst¢ECAI 04) Valencia, Spain.
730-734.

[Mamoulis and Papadias, 1998lamoulis, Nikos and Papadias, Dimitris 1998.
Constraint-based algorithms for computing clique intetis@ joins. In Proceed-
ings of the sixth ACM international symposium on Advancggographic information
systemsACM Press. 118-123.

[Mirankeret al,, 1997 Miranker, Daniel P.; Bayardo, Roberto J.; and Samoladasiji¥a
1997. Query evaluation as constraint search; an overviegady results. In Gaede,
\Volker; Brodsky, Alexander; Gunther, Oliver; Srivastawivesh; Vianu, Victor; and
Wallace, Mark, editors 199%econd International Workshop on Constraint Database
Systems (CDB '97yolume 1191 of. NCS Springer. 53—-63.

[Neagu and Faltings, 200INeagu, Nicoleta and Faltings, Boi 2001. Exploiting Inter-
changeabilities for Case Adaptation. Iternational Conference on Case-Based Rea-
soning (ICCBR 01)volume 2080 ofLNCS Vancouver, British Columbia, Canada.
Springer. 422-436.

[Rees, 200lL Rees, D.G 2001Essential StatisticsChapman and Hall.

[Revesz, 200P Revesz, Peter 2002ntroduction to Constraint DatabaseSpringer Ver-
lag.

[Revesz, 200b Revesz, Peter 2005. Personal communication.

[Richet al, 1993 Rich, Christian; Rosenthal, Arnon; and Scholl, Marc H. 19B&duc-
ing duplicate work in relational join(s): A unified approadh International Conference
on Information Systems and Management of D&#&-102.

[Rossiet al, 1994 Rossi, Francesca; Petrie, Charles; and Dhar, Vasant 1990th®©
Equivalence of Constraint Satisfaction ProblemsPiac. of the 9" ECAI, Stockholm,
Sweden. 550-556.

[Roth and Horn, 1993Roth, Mark A. and Horn, Scott J. Van 1993. Database commessi
SIGMOD Recor®2(3):31-39.

[Sabin and Freuder, 19p4&abin, Daniel and Freuder, Eugene C. 1994. Contradicting
Conventional Wisdom in Constraint Satisfaction. Proc. of the 11" ECAI, Ams-
terdam, The Netherlands. 125-129.

136

[Sabin and Freuder, 19pBabin, Daniel and Freuder, Eugene C. 1997. Understandihg an
Improving the MAC Algorithm. InPrinciples and Practice of Constraint Programming,
CP’97. Lecture Notes in Atrtificial Intelligence 1338pringer Verlag. 167-181.

[SymCon, 200B SymCon, 2003. The 3rd International Workshop on SymmetdyGon-
straint Satisfaction Problems. http://scom.hud.acagigms/SymCon03/.

[SymCon, 2004 SymCon, 2004. The 4th International Workshop on SymmetdyGon-
straint Satisfaction Problems. http://www.dis.uu.sei€pn04/.

[Wallaceet al, 1999 Wallace, Mark; Bressan, Stéphane; and Provost, Thierrg935.
Magic checking: Constraint checking for database querymopation. InCDB 1995
148-166.

[Weil and Heus, 1998 Weil, Georges and Heus, Kamel 1998. Eliminating Intercleang
able Values in the Nurse Scheduling Problem Formulated asnst€aint Satisfaction
Problem. InWorkshop on Constraint-based reasoning in conjunctioh WlitAIRS'95
Indianlantic, FL. Available from www.sci.tamucc.edu/straint95/kamel.ps.

[Westmanret al,, 200§ Westmann, Till; Kossmann, Donald; Helmer, Sven; and Mo-
erkotte, Guido 2000. The implementation and performanceoaipressed databases.
SIGMOD Recor®9(3):55-67.

[Yang, 2003 Yang, Zheying (Jane) 2003. An Empirical Study of the Perfamoe of Pre-
processing and Lookahead Techniques for Solving Binarys@aimt Satisfaction Prob-
lems. Master’s thesis, Department of Computer Science aghEering, University of
Nebraska-Lincoln, Lincoln, NE.

