
EXTENDING THE CHOCO CONSTRAINT-SOLVER WITH HIGH-LEVEL

CONSISTENCY WITH EVALUATION ON THE NONOGRAM PUZZLE

by

Khang Phan

AN UNDERGRADUATE THESIS

Presented to the Faculty of

The College of Art and Sciences at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Bachelor of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry (advisor) and
Professor Mohammad Rashedul Hasan (co-advisor)

Lincoln, Nebraska

January, 2020

EXTENDING THE CHOCO CONSTRAINT-SOLVER WITH HIGH-LEVEL

CONSISTENCY WITH EVALUATION ON THE NONOGRAM PUZZLE

Khang Phan, B.S.

University of Nebraska, 2020

Adviser: Berthe Y. Choueiry (adviser) and Mohammad Rashedul Hasan (co-adviser)

The Nonogram puzzle can be naturally modeled as a Constraint Satisfaction Problem

(CSP) and advantageously solved by backtrack search coupled with techniques for

enforcing and propagating consistency. Choco is a widely used constraint solver

that consistently wins solver competitions in multiple categories. In this thesis, we

extend the Choco solver with high-level consistency algorithms, namely SAC-1 and

POAC-1. Then, we investigate the performance of three different constraint models of

the Nonogram puzzle with Choco and three consistency algorithms, namely, GAC,

SAC-1, and POAC-1.

Empirical evaluation on a benchmark instances of the Nonogram puzzle uncover

the advantageous of high-level consistency algorithms: They can solve many instances

in a backtrack-free manner and are able to solve the hardest instance, which GAC is

unable to solve. On the easy instances, GAC remains competitive in terms of CPU

time.

3

Table of Contents

List of Figures 5

List of Tables 6

1 Introduction 2

1.1 Motivation . 2

1.2 Contribution . 3

1.3 Thesis Organization . 3

2 Background 4

2.1 Constraint Satisfaction Problem . 4

2.2 Algorithms for Solving CSPs . 5

2.3 Nonogram . 6

2.4 Three Constraint Models for the Nonogram 6

2.4.1 Global-table constraint model 7

2.4.2 Regular constraint model . 7

2.4.3 Ternary-table constraint model 8

3 High-Levels Consistency Algorithms in Choco 10

3.1 The Choco Constraint-Solver . 10

3.2 Singleton Arc Consistency (SAC-1) 11

4

3.3 Partition-One Arc Consistency (POAC-1) 12

4 Experimental Evaluation 14

4.1 Datasets . 14

4.2 Environment . 14

4.3 Summary of Results . 15

4.4 Runtime Distribution . 16

4.5 Case Study of Instance #69 . 18

5 Conclusion and Future Work 22

5.1 Conclusion . 22

5.2 Future Work . 22

Bibliography 24

5

List of Figures

2.1 A simple Nonogram puzzle and its solution 7

2.2 DFA for label L = [2, 1] . 8

2.3 Ternary-table constraints network for the third row 8

4.1 Runtime distribution for the model with global-table constraints 17

4.2 Runtime distribution for the model with regular constraints 17

4.3 Runtime distribution for the model with ternary-table constraints 17

4.4 BpD of GAC on Instance #69: regular constraint (left) and ternary constraint

(right) . 20

4.5 BpD of SAC on Instance #69: regular constraint (left) and ternary constraint

(right) . 20

4.6 BpD of POAC on Instance #69: regular constraint (left) and ternary constraint

(right) . 20

6

List of Tables

2.1 Domain of auxiliary variables in the constraint network for the third row 9

2.2 Definition of the ternary-table constraints for the third row 9

4.1 Performance of the three consistency algorithms on each constraint model . . 15

4.2 Detailed search results for Instance #69 . 18

1

ACKNOWLEDGMENTS

I would like to thank my adviser, Dr. Berthe Y. Choueiry, for her guidance and

advice during my two years at the Constraint Systems Laboratory. I appreciate the

the opportunity of working on several research projects in the lab, the conversations

that we had about research, and her constructive feedback in the revision of this

thesis. I would also like to thank my co-adviser, Dr. Mohammad Rashedul Hasan,

for teaching the foundations of discrete mathematics and machine learning. I feel

honored to have both of them as my advisers

I would like to thank Dr. Charles Prud’homme, Dr. Jean-Guillaume Fages, and

other developers of the Choco constraint solver for providing a wonderful tool to

study Constraint Programming. The insights that Dr. Prud’homme shared with me

as well as his guidance and feedback have allowed me to improve my extension to

Choco.

I wish to acknowledge the help provided by the people in the Constraint Sys-

tems Laboratory, including Mr. Ian Howell and Mr. Trieu Hung Tran. Trieu Hung

conducted a similar research using the Stampede solver, the research solver in de-

velopment at the Constraint Systems Laboratory. Trieu Hung has also provided the

ternary-table constraint model for Nonogram instances and helped me verify my re-

sults. Ian is building the visualizing tool for constraint solvers that I use to produce

many graphics in my research. He also provided generous constructive feedback on

my Choco extension implementation.

This research was supported by a UCARE award from the University of Nebraska-

Lincoln and by NSF grant RI-1619344. Experiments were conducted on the equipment

at the Holland Computing Center at UNL.

2

Chapter 1

Introduction

In this thesis, we study the performance of solving three constraint models of the

Nonogram puzzle with the constraint solver Choco. In this chapter, we present our

motivation and contribution and discuss the organization of the thesis.

1.1 Motivation

Constraint Programming is a flexible and powerful paradigm for modeling and solving

gubernatorial decision and optimization problems. Its practical applications include

resource allocation, scheduling, and radio-frequency assignment.

Puzzles are whimsical problems that can advantageously be used to illustrate the

usefulness and operations of Constraint Programming. They can also be used as the

benchmark for comparing algorithms and as teaching tools in constraint modeling and

algorithm design. Puzzles such as Minesweeper [Bayer et al., 2006], Sudoku [Howell

et al., 2018a; Reeson et al., 2007], and the Game of Set [Swearingn et al., 2011] have

successfully been used to this end. In this thesis, we investigate the performance of the

Choco constraint-solver for solving the Nonogram puzzle. In particular, we enhance

this solver with high-level consistency algorithms and evaluate the performance of

Choco, which is based on two-way branching, in this context (i.e., Nonogram puzzle,

3

search with two-way branching, and high-level consistency).

1.2 Contribution

In this study, we extend Choco solver with high-level consistency algorithms and

evaluate the performance of our extension in different models of the Nonogram puz-

zles. The high-level consistency algorithms we implement for Choco are SAC-1

[Debruyne and Bessière, 1997] and POAC-1 [Balafrej et al., 2014].

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2, we introduce Constraint Satisfaction

Problems (CSPs) and discuss various algorithms for solving them. We also introduce

the Nonogram puzzle. In Chapter 3, we discuss Choco constraint-solver and how we

extend it to include two high-level consistency algorithms, namely SAC-1 and POAC-

1. In Chapter 4, we describe our experimental setup, our experiments, and results.

Finally, in Chapter 5, we conclude this thesis and discuss possible future works.

4

Chapter 2

Background

In this chapter, we define a Constraint Satisfaction Problem and review the methods

for solving it. Then, we introduce the Nonogram puzzle and how we describe the

three constraint models that we use for solving it.

2.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined as follows. Given P = (V, D, C)

where

• V = {v1, · · · , vn} is a set of variables.

• D is the domain set of values such that dom(vi) ⊆ D for all vi ∈ V . dom(vi) is

the domain of vi, that, the set of values that can be assigned to vi.

• C = {c1, · · · , cm} is the set of constraints that restrict the allowed assignments

of values to variables. Each constraint ci is defined by its scope, scp(ci) ⊆ V ,

and a relation rel(ci) ⊆
∏

vj∈scp(ci)
dom(vj).

A solution to the CSP is an assignment of a value to each variable such that all the

constraints are satisfied. The goal is usually to determine whether a solution exists

(satisfaction) or to find a solution to the CSP (exemplification).

5

2.2 Algorithms for Solving CSPs

Determining whether or not a CSP is satisfiable is known to be NP-complete. Back-

track search is the only sound and complete algorithm for finding a solution to the

CSP. To reduce the exponential number of combinations that backtrack search has to

explore, we interleave, with search, the application of consistency algorithms, which

remove values from the domains of the variables and/or tuples from the relations of

the constraints that cannot appear in a solution to the CSP. Such operations reduce

the size of the search space explored by the backtrack search.

Consistency algorithms enforce consistency properties. Below, we review the local

consistency properties that are used in this thesis.

• Generalized arc-consistency (GAC) [Mackworth, 1977]: a CSP is generalized

arc-consistent if, for every constraint, a value in the domain of a variable in the

constraint can be extended to other variables in the same constraint. Various

algorithms for enforcing GAC exist. In this thesis, we use the default GAC

algorithms for the table constraint and the regular constraint that are available

in Choco.

• Singleton arc-consistency (SAC) [Debruyne and Bessière, 1997]: Let a CSP

with the domain of variable vi reduced to value set {xi} be denoted as P |vi=xi
,

then a CSP is singleton arc-consistent [Debruyne and Bessière, 1997] if for every

variable vi ∈ V and value xi ∈ dom(vi), P |vi=xi
is arc consistent. SAC algorithm

is the algorithm that enforces SAC property on the problem. A problem P after

successfully enforced SAC is denoted as SAC(P). In this thesis, we implement

in Choco the SAC-1 algorithm [Debruyne and Bessière, 1997].

• Partition-one arc-consistency (POAC) [Bennaceur and Affane, 2001] : a CSP P

6

is partition-one arc-consistent if it is singleton arc-consistent and for every value

x ∈ dom(vi), then x ∈ dom(vi) of SAC(P |vj=y) for every variable vj 6= vi and

value y ∈ dom(vj). Partition-one arc-consistency algorithm is the algorithm

that enforces POAC property on the problem. In this thesis, we implement in

Choco the POAC-1 algorithm [Balafrej et al., 2014].

GAC is the standard consistency enforced in search. SAC and POAC are said to

be high-level consistency (HLC) because, relatively to GAC, they never delete fewer

values than GAC does. Further, POAC is known to be strictly stronger than SAC

because it never filters out fewer values than SAC does [Balafrej et al., 2014].

2.3 Nonogram

A Nonogram puzzle consists of two parts:

• A board of n×m cells that can either be colored black or left blank. Each row

is numbered from 1 to n and each column is numbered from 1 to m. The cell

at row i and column j is denoted Ci,j

• A set of n labels for the rows and m labels for the columns, where each label

is given by L = [l1, l2, . . . , lk] and ∀1 ≤ i ≤ k, li ∈ N+ denotes the number of

contiguous cells that are colored in black.

A solution to the puzzle is a coloration of the cells that are consistent with the labels

of the rows and the columns.

The Nonogram puzzle is known to be NP-Complete [Ueda and Nagao, 1996].

Figure 2.1 shows a simple instance of the Nonogram puzzle and its solution.

7

Figure 2.1: A simple Nonogram puzzle and its solution

2.4 Three Constraint Models for the Nonogram

In the CSP model of the Nonogram puzzle, each cell is represented by a Boolean

variable, whose domain {0,1} indicates that the cell is blank or colored, respectively.

Constraints are defined over the variables in the same rows or columns. We distinguish

three constraint models for the Nonogram depending on the type of constraints used.

2.4.1 Global-table constraint model

In this model, each global-table constraint represents a label of a row or column. The

constraint lists all support tuples, i.e., colorations that are consistent with the label.

This model is memory consuming because the number of colorations is in factorial

magnitude. In our previous example, the third row with a label of L = [2, 1] can be

expressed as a global-table constraint with the support list:

{(1, 1, 0, 1, 0), (1, 1, 0, 0, 1), (0, 1, 1, 0, 1)}

2.4.2 Regular constraint model

In this model, each regular constraint represents a label of row or column. The

constrain is defined by a regular expression, where its variable sequence is the cells in

8

the row or column and the deterministic finite automaton (DFA) describes the label

[Pesant, 2004]. In our previous Nonogram example, for the constraint for the third

row, the sequence is the cells in that row and the FDA is described in Figure 2.2.

Figure 2.2: DFA for label L = [2, 1]

2.4.3 Ternary-table constraint model

In this model, each regular constraint is reformulated as an equivalent set of ternary-

table constraints [Bessière et al., 2008]. This operation adds a set of auxiliary variables

to the model in each row and column as illustrated in Figure 2.3.

Figure 2.3: Ternary-table constraints network for the third row

In the Nonogram example of Figure 2.1, the regular constraint for the third row is

replaced with the constraint network shown in Figure 2.3. In the network, v1, · · · , v5

are the original variables, r0, · · · , r5 are auxiliary variables, and c1, · · · , c5 are the

constraints. The domain of auxiliary variables and the definition of the constraints

are shown in Table 2.1 and Table 2.2.

9

Table 2.1: Domain of auxiliary variables in the constraint network for the third row

Variable Domain
r0 {q0}
r1 {q0, q1, q2, q3, q4}
r2 {q0, q1, q2, q3, q4}
r3 {q0, q1, q2, q3, q4}
r4 {q0, q1, q2, q3, q4}
r0 {q4}

Table 2.2: Definition of the ternary-table constraints for the third row

Constraint Scope Definition
c1 r0, v1, r1 {(q0, 0, q0), (q0, 1, q1)}
c3 r2, v3, r3 {(q0, 0, q0), (q0, 1, q1), (q1, 1, q2), (q2, 0, q3), (q3, 0, q3), (q3, 1, q4), (q4, 0, q4)}
c3 r2, v3, r3 {(q0, 0, q0), (q0, 1, q1), (q1, 1, q2), (q2, 0, q3), (q3, 0, q3), (q3, 1, q4), (q4, 0, q4)}
c4 r3, v4, r4 {(q0, 0, q0), (q0, 1, q1), (q1, 1, q2), (q2, 0, q3), (q3, 0, q3), (q3, 1, q4), (q4, 0, q4)}
c5 r4, v5, r5 {(q3, 1, q4), (q4, 0, q4)}

Summary

In this chapter, we introduced the definition of a Constraint Satisfaction Problem and

reviewed the three consistency properties that are enforced during search, namely

GAC, SAC-1, and POAC-1. We also introduced the Nonogram puzzle and its three

constraint models that are based on global-table constraints, regular constraints, and

ternary-table constraints, respectively.

10

Chapter 3

High-Levels Consistency Algorithms in Choco

In this chapter, we explain our implementations of the consistency algorithms SAC-1

[Debruyne and Bessière, 1997] and POAC-1 [Balafrej et al., 2014] in Choco [Jussien

et al., 2008].

3.1 The Choco Constraint-Solver

In order to implement the SAC-1 and POAC-1 algorithms, we need to use three main

actions of Choco:

• Extend: this function calculates the next decision, which is a variable-value

pair.

• Propagate: this function applies the decision and then runs the chosen con-

sistency algorithm.

• Repair: this function undoes the effects of the action Propagatex and returns

the search to its state before propagation.

In our implementation, the three actions above are implemented as CHOCO_assign,

CHOCO_propagate, and CHOCO_backtrack, respectively. The detailed implemen-

tation of these three actions in Java is shown in Algorithm 1.

11

Algorithm 1: Calls to Choco
1 Procedure CHOCO_assign(variable, value)
2 decision← solver.getDecisionPath().makeIntDecision(variable,

DecisionOperatorFactory.makeIntEq(), value)
3 solver.getDecisionPath().pushDecision(decision)
4 solver.getEnvironment().worldPush()
5 solver.getDecisionPath().buildNext()
6 solver.getObjectiveManager().postDynamicCut()
7 solver.getDecisionPath().apply()
1 Procedure CHOCO_propagate()
2 solver.getEngine().propagate()
1 Procedure CHOCO_backtrack()
2 solver.getEnvironment().worldPop()
3 solver.getDecisionPath().synchronize()
4 solver.getDecisionPath().buildNext()
5 solver.getDecisionPath().apply()

3.2 Singleton Arc Consistency (SAC-1)

We adapt the SAC-1 algorithm of Debruyne and Bessière[1997] to Choco as shown

in the pseudocode of Algorithm 2.

This pseudocode requires the use of a circular queue, which we implement with

an array whose last position links to the first position.

12

Algorithm 2: Implementation of the SAC-1 algorithm in Choco
1 Add variables to circular queue Q
2 queueHead← random element in Q
3 queueEnd← queueHead
4 repeat
5 currentV ar ← queueHead
6 queueHead move forward
7 for x ∈ dom(currentV ar) do
8 CHOCO_assign(currentV ar, x)
9 CHOCO_propagate()

10 if contradiction occurs then
11 Remove x from dom(currentV ar)
12 queueEnd← currentV ar

13 CHOCO_backtrack()

14 CHOCO_propagate()
15 until queueHead = queueEnd

3.3 Partition-One Arc Consistency (POAC-1)

To implement the POAC-1 algorithm of Balafrej et al. [2013], we define a new class

called VariableValueCounter. This class has the following functions:

• It uses a VariableMonitor (provided by Choco) to get and save the list of

variables whose domains have been updated during the singleton test.

• After each singleton test, if no contradictions occur, the class increases the

counters of all variable-value pairs that have been removed during the singleton

test.

• Finally, it can return the list of variable-value pairs that have been filtered in

all singleton tests without contradiction by repeatedly calling function next.

Our pseudocode is given in Algorithm 3.

13

Algorithm 3: POAC-1 algorithm for Choco
1 Add variables to circular queue Q
2 queueHead← random element in Q
3 queueEnd← queueHead
4 fill(vvpCounter, 0)
5 repeat
6 currentV ar ← queueHead
7 queueHead move forward
8 counter ← 0
9 for x ∈ dom(currentV ar) do

10 CHOCO_assign(currentV ar, x)
11 CHOCO_propagate()
12 if contradiction occurs then
13 Remove x from dom(currentV ar)
14 queueEnd← currentV ar

15 else
16 counter+ = 1
17 for (var, val) ∈ list of variable-value pairs removed do
18 VariableValueCounter.increaseCounter((var, val))

19 CHOCO_backtrack()

20 for (var, val) ∈ VariableValueCounter.next() do
21 Remove val from dom(var)
22 CHOCO_propagate()
23 until queueHead = queueEnd

Summary

In this chapter, we presented our implementation of the SAC-1 and POAC-1 algorithm

in Choco.

14

Chapter 4

Experimental Evaluation

In this chapter, we discuss our experimental set-up and our results.

4.1 Datasets

Our dataset consists of the Nonogram puzzles provided by the XCSP library of

XCSP3.0 benchmark.1 This library provides instances of Nonogram puzzles modeled

with regular and global-table constraints. The ternary-table constraints are computed

and provided by Tran [2019]

Our experiment runs the GAC, SAC-1, and POAC-1 algorithms on the following

datasets:

1. 168 instances with global-table constraints.

2. 174 instances with regular constraints.

3. 174 instances with ternary-table constraint.

4.2 Environment

Our experiment is conducted on the Crane computer cluster provided by Holland
1http://www.xcsp.org/series

http://www.xcsp.org/series

15

Computing Center. Each job is run on a single Intel Xeon E5-2670 2.60GHz CPU

with 64GB RAM and a time limit of 4 hours per instance.

4.3 Summary of Results

For each algorithm and each constraint model, we report in Table 4.1 the following

information:

1. The number of instances solved.

2. The number of instances solved in a backtrack-free manner.

3. The average CPU time per instance counting all instances. The character ‘>’

indicates that at least one instance ran out of time.

Table 4.1: Performance of the three consistency algorithms on each constraint model

Model # of instances GAC SAC-1 POAC-1
Number of instances solved

Global table 168 168 168 168
Regular 174 173 174 174
Ternary table 174 173 174 174

Number of instances solved backtrack free
Global table 168 24 163 163
Regular 174 24 168 168
Ternary table 174 21 172 172

Average CPU time for all instances (msec)
Global table - 237.80 214.33 240.69
Regular - >82,947.09 36,269.25 36,174.29
Ternary table - >83,138.82 4,205.07 5,131.22

Average CPU time for finished instances (msec)
Global table - 237.80 214.33 240.69
Regular - 189.43 172.10 190.47
Ternary table - 382.22 509.10 662.03

From the results shown in Table 4.1, we make the following observations:

16

• While the high-level consistency algorithms (i.e., SAC-1 and POAC-1) can solve

all instances of all models, GAC does not terminate on one instance with the

regular constraints and one instance with the ternary-table constraints.

• Both high-level consistency algorithms (i.e., SAC-1 and POAC-1) solve the most

number of instances in a backtrack-free manner. Interestingly, both have the

same performance.

• In terms of CPU time, the performance of the three algorithms differs. GAC

shows the worst performance overall and fails to solve one instance of the

regular-constraint model and one instance of the ternary-table constraint model.

While SAC-1 is slightly better than POAC-1 on the models with the ternary-

table constraints, their performances on the global-table constraint model and

the regular-constraint model are indistinguishable.

• If we compare the models using average CPU time for finished instances, the

regular-constraint model is the best model across all three algorithms, while

the ternary-table constraint model has the worst running time. This is opposite

what has been proposed by Bessière et al. [2008] that the ternary-table con-

straint model can be solved more efficiently than the regular-constraint model.

4.4 Runtime Distribution

To more closely analyze the CPU time performance of the three algorithms, we look at

the cumulative curve of the runtime distribution, showing, as the time increases, the

number of instances solved by each algorithm. These graphs are shown in Figure 4.1

(global-table constraint), Figure 4.2 (regular constraint), and Figure 4.3 (ternary-

table constraint).

17

Figure 4.1: Runtime distribution for the model with global-table constraints

Figure 4.2: Runtime distribution for the model with regular constraints

Figure 4.3: Runtime distribution for the model with ternary-table constraints

18

These graphs show that:

• GAC solves more instances than either SAC-1 and POAC-1 when the time limit

is small (i.e., on easy instances). Further, SAC-1 slightly outperforms POAC-1.

• When the time limit is large (i.e., the puzzle is harder), all three algorithms

seem to be equivalent.

4.5 Case Study of Instance #69

Instance #69 is the hardest of the 178 instances tested. Table 4.2 shows the detailed

results of backtrack search on this instance for two of the constraint models know-

ing that the model for the global-table constraints is not available for Instance #69

because it is too large to store.

Table 4.2: Detailed search results for Instance #69

MaxBpD
Model Algorithm #BT CPU time Depth Value

Regular
GAC 129,791,519 >14,400.03 58 1,593,321
SAC-1 49,300,593 6,281.08 48 910,197
POAC-1 49,300,593 6,261.37 48 910,197

Ternary
GAC 28,368,524 >14,400.03 41 256,532
SAC-1 1,437,598 643.61 29 43,568
POAC-1 1,437,598 778.30 29 43,568

This experiment on a difficult instance is interesting because it allows us to see

the advantage of HLC. Indeed:

• This instance can be solved by SAC-1 and POAC-1 but not by GAC.

19

• For the ternary-table constraint model, SAC-1 is better than POAC-1, while

for the regular-constraint model, POAC-1 is slightly better. The difference is

very insignificant.

• The model with ternary-table constraints can be solved more efficiently than

the model with the regular constraints as predicted by Bessière et al. [2008].

The charts backtrack per depth (BpD) graph [Howell et al., 2018b] on Instance #69

are shown in Figure 4.4 for GAC, Figure 4.5 for SAC, and Figure 4.6 for POAC with

the regular model on the left and the ternary-table model on the right. We notice that

the higher-consistency algorithms (SAC and POAC versus GAC) can significantly

reduce the backtracking effort (y-axis) and also shift the peak backtrack value to

shallower depth levels.

20

Figure 4.4: BpD of GAC on Instance #69: regular constraint (left) and ternary constraint
(right)

Figure 4.5: BpD of SAC on Instance #69: regular constraint (left) and ternary constraint
(right)

Figure 4.6: BpD of POAC on Instance #69: regular constraint (left) and ternary constraint
(right)

Berthe Choueiry

Berthe Choueiry

Berthe Choueiry

21

Summary

In this chapter, we discussed our experiments and results. From the result, we noticed

that in general, for small instances, GAC is slightly better than SAC-1 and POAC-1

in CPU time. However, as the instances were harder, SAC-1 and POAC-1 were more

efficient in solving them.

22

Chapter 5

Conclusion and Future Work

In this chapter, we will conclude our study and suggest directions for future research

5.1 Conclusion

From our study, with the result we have from empirical evaluation, we conclude that:

• High-level consistency algorithms, namely SAC-1 and POAC-1, are more pow-

erful than GAC because they can solve harder instances that GAC cannot.

• To achieve their efficiency, high-level consistency algorithms spend time for

overhead work and preparation. In simple problems, the time spent for overhead

work overwhelms the efficiency gained, thus increasing the total running time

of the algorithms.

5.2 Future Work

Our experiments open up many directions for future research:

• Beside Nonogram and puzzles, many other CSP problems are available. We

would evaluate our extension of Choco with different them and further improve

our implementation.

23

• It would be very interesting to use alternative improvement of POAC-1, such as

APOAC [Balafrej et al., 2013], or trigger-based strategy, like Prepeak [Wood-

ward, 2018] to activate high-level consistency algorithms.

24

Bibliography

[Balafrej et al., 2013] Amine Balafrej, Christian Bessière, Remi Coletta, and El-

Houssine Bouyakhf. Adaptive Parameterized Consistency. In Proceedings of 19 th

International Conference on Principle and Practice of Constraint Programming

(CP 2013), volume 8124 of LNCS, pages 143–158. Springer, 2013.

[Balafrej et al., 2014] Amine Balafrej, Christian Bessière, El-Houssine Bouyakhf, and

Gilles Trombettoni. Adaptive Singleton-Based Consistencies. In Proceedings of

AAAI-2014, pages 2601–2607, 2014.

[Bayer et al., 2006] Ken Bayer, Josh Snyder, and Berthe Y. Choueiry. An Interactive

Constraint-Based Approach to Minesweeper. In Proceedings of AAAI-2006, pages

1933–1934, Boston, MA, 2006.

[Bennaceur and Affane, 2001] Hachemi Bennaceur and Mohamed-Salah Affane.

Partition-k-AC: An Efficient Filtering Technique Combining Domain Partition and

Arc Consistency. In Proceedings of 7 th International Conference on Principle and

Practice of Constraint Programming (CP’01), volume 2239 of LNCS, pages 560–

564. Springer, 2001.

[Bessière et al., 2008] Christian Bessière, Emmanuel Hebrard, Brahim Hnich, Zeynep

Kiziltan, and Toby Walsh. SLIDE: A useful special case of the CARDPATH

25

constraint. In Proceedings of 18 th European Conference on Artificial Intelligence

(ECAI 2008), pages 475–479, 2008.

[Debruyne and Bessière, 1997] Romuald Debruyne and Christian Bessière. Some

Practicable Filtering Techniques for the Constraint Satisfaction Problem. In Pro-

ceedings of the 15 th International Joint Conference on Artificial Intelligence, pages

412–417, 1997.

[Howell et al., 2018a] Ian Howell, Robert J. Woodward, Berthe Y. Choueiry, and

Christian Bessière. Solving Sudoku with Consistency: A Visual and Interactive

Approach. In Proceedings of the 27 th International Joint Conference on Artificial

Intelligence, pages 5829–5831, Stockholm, Sweden, 2018.

[Howell et al., 2018b] Ian Howell, Robert J. Woodward, Berthe Y. Choueiry, and

Hongfeng Yu. A Qualitative Analysis of Search Behavior: A Visual Approach.

In Proceedings of the 2 nd Workshop on Explainable Artificial Intelligence, pages

65–71, Stockholm, Sweden, 2018.

[Jussien et al., 2008] Narendra Jussien, Guillaume Rochart, and Xavier Lorca.

Choco: an Open Source Java Constraint Programming Library. In CPAIOR’08

Workshop on Open-Source Software for Integer and Contraint Programming (OS-

SICP’08), pages 1–10, Paris, France, France, 2008.

[Mackworth, 1977] Alan K. Mackworth. Consistency in Networks of Relations. Arti-

ficial Intelligence, 8:99–118, 1977.

[Pesant, 2004] Gilles Pesant. A regular language membership constraint for finite se-

quences of variables. In Proceedings of 10 th International Conference on Principles

and Practice of Constraint Programming (CP 2004), volume 3258 of LNCS, pages

482–495. Springer, 2004.

26

[Reeson et al., 2007] Christopher G. Reeson, Kai-Chen Huang, Kenneth M. Bayer,

and Berthe Y. Choueiry. An Interactive Constraint-Based Approach to Sudoku. In

Proceedings of AAAI-2007, pages 1976–1977, Vancouver, British Columbia, 2007.

[Swearingn et al., 2011] Amanda Swearingn, Berthe Y. Choueiry, and Eugene C.

Freuder. A Reformulation Strategy for Multi-Dimensional CSPs: The Case Study

of the Set Game. In Ninth International Symposium on Abstraction, Reformula-

tion and Approximation (SARA 2011), pages 107–116. AAAI Press, 2011.

[Tran, 2019] Trieu Hung Tran. Modeling and Solving the Nonogram Puzzle Using

Constraint Programming, 2019.

[Ueda and Nagao, 1996] Nobuhisa Ueda and Tadaaki Nagao. NP-completeness Re-

sults for NONOGRAM via Parsimonious Reductions. Technical Report TR96-0008,

Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan,

1996.

[Woodward, 2018] Robert J. Woodward. Higher-Level Consistencies: Where, When,

and How Much. PhD thesis, Department of Computer Science and Engineering,

University of Nebraska-Lincoln, 2018.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution
	Thesis Organization

	Background
	Constraint Satisfaction Problem
	Algorithms for Solving CSPs
	Nonogram
	Three Constraint Models for the Nonogram
	Global-table constraint model
	Regular constraint model
	Ternary-table constraint model

	High-Levels Consistency Algorithms in Choco
	The Choco Constraint-Solver
	Singleton Arc Consistency (SAC-1)
	Partition-One Arc Consistency (POAC-1)

	Experimental Evaluation
	Datasets
	Environment
	Summary of Results
	Runtime Distribution
	Case Study of Instance #69

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

