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In this thesis, we explore two iterative improvement tegaes: a heuristic hill-climbing
strategy (denoted LS) and a multi-agent based search @&&®RA). We focus our inves-
tigations on one small but challenging real-world applaatwhich is the assignment of
Graduate Teaching Assistants (GTA) to academic tasks. Wignand implement the
LS and ERA mechanisms to solve this application. We propaodeest various heuristic
improvements. Finally, we compare the performance of thesehanisms and that of the
heuristic backtrack search [laubius and Choueiry, 200P®r solving a set of real-world
data we have been collecting.

Our investigations demonstrate that although LS is abletb'§jood’ solutions quickly,
it suffers from known shortcomings such as monotonic improegnt and quick stabiliza-
tion. We experimentally investigate the integration ofsgostrategies to enable LS to es-
cape from local optima. By introducing the framework of Getieed Local Search (GLS),
we summarize the various directions that can be pursuedrforpence of local search
techniques in general.

We demonstrate that, among the tested strategies, ERA imdisé immune to local
optima because of its extreme decentralization. Indedd,tite only strategy we imple-
mented that is capable of solving some tight problem ingsiticat are thought to be over-
constrained. However, on unsolvable problem instanceg'sHiehavior becomes erratic
and unreliable in terms of stability and the quality of théusons reached. We identify
the source of this shortcoming and characterize it as a delaghenomenon. Further, we

discuss possible approaches for handling and solving delesl|
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Chapter 1

Introduction

Search technigues that operatdtieyative improvemertf the solutions have been found to
be particularly effective in solving large combinatorig@aision or optimization problems.
Indeed, for many large problenmsystematic searctechniques, which operate by exhaus-
tively examining the solution space, may fail to return auioh in an acceptable amount
of time. In contrast, iterative improvement techniquest$tam a random set of decisions,
which may or may not be a consistent solution, and, by apgliosal changestry to
reach better solutions, ideally the optimum. Our resea chativated by a small but chal-
lenging real-world application, which is the assignmentoéduate Teaching Assistants
(GTA) to academic tasks. In practice, this application rgdaand tight, sometimes over-
constrained. Through solving the GTA assignment problemjmwestigate two iterative
improvement techniques: a heuristic hill-climbing stggt¢denoted LS) and a multi-agent
based search (denoted ERA). We also compare the performétioese mechanisms and
that of the heuristic backtrack searifBlaubius and Choueiry, 200Rm solving a set of
real-world data. This approach allows us to identify novel asightful ways of charac-
terizing the behavior of these various mechanisms, whictldvaot have been possible

if we had done our investigations in a more general coritéati and Choueiry, 2003a;
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2003H. Our long-term goal is to provide a robust portfolio of séaadgorithms to solve

complex decision problems.

1.1 Motivations

A great deal of theoretical and empirical research has fxtoa developing and improving
the performance of general algorithms for solving CSPsrcbeia the key to solve CSPs.
Search algorithms for solving CSPs are usually classifiedwo main categories: iterative
improvement and systematic search. The use of iterativelsdes become popular in
recent years for solving large, difficult real-world optration problems where systematic
search algorithms are not powerful enough.

Unlike systematic search algorithms, which explore therersearch space, iterative
search algorithms start with a complete but preliminarygassent that is not necessar-
ily consistent, and improve this assignment in severaaiies steps until some stopping
condition is reached. The iteration performs a search fayagolution; the process can
provide an approximate soluti@mytime This property is useful for practical applications
that require a solution within time limits without demanglian optimal solution. Addi-
tionally, such iterative improvement methods can be easilmbined with a heuristic to
improve performance, such as restart strategy, min-coofitering, and tabu search. This
kind of combination can enhance the ability of iterativersbao cope with large, tight
CSPs.

The research on iterative search can be generalized intéatwities: domain-specific
and general. The former usually encodes domain-specifievletige into the problem
solver. Although this kind of approach increases efficieniog highly sophisticated and
problem-tailored representations make the method morgleonand limited to the prob-

lem for which the method is designed. Thus, general algostare worth studying. We
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illustrate this in Figure 1.1. The algorithms at the left arere independent of the problem
and use less knowledge; those on the right are more compliegpendent on the problem

but more efficient.

Generality, less knowledge, problem independence

General algorithms Tailored algorithm

Complexity, efficiency, problem dependence, cost

Figure 1.1:0Overview of using iterative search.

Most real-world applications are over-constrained CSPsrevmo complete solution
exists. To date, much research has been carried out on seatuhiques for solvable
problems. However, the use of general methods to solve astrained CSPs seems to
have been overlooked. In recent years there has been a growarest in 'soft’ CSPs,
in which some constraints are relaxed in order to obtain atieol where the maximum
number of constraints are satisfied. However, in some ifea&pplications, for example
the GTA problem, no constraint is allowed to be softened taxexl. Partial, consistent
solutions are still useful for practical purposes. In theases, iterative search is worth
studying because of its efficiency and capability of findingaatial, consistent solution
anytime. However, it is impossible to decide if a given CSRassable or unsolvable
before hand. Therefore, an algorithm capable of dealing loth solvable and unsolvable

CSPs is worth studying.

1.2 Related works

While many real-world applications are over-constraimaost research efforts have fo-
cused on developing techniques suited to solvable probl@nky recently has there been

interest in over-constrained problems. We identify thre@mirameworks for modeling



over-constrained problems:

1. MAX-CSPs:Freuder and Wallackreuder and Wallace, 19Pproposed the MAX-
CSP framework to deal with over-constrained problems byirigpgpossibly incon-
sistent) solutions that minimize the number of violatedstoaints. In other words,
the approach seeks a solution that satisfies as many consteas possible. This

simple approach does not work when none of the constraiatkised to be broken.

2. Soft constraints:Another approach consists of recasting the satisfiabilitpver-
constrained problems as the optimization of problems vaifhconstraintgBistarelli
et al, 1994 The problems are often represented as soft constrainfassiis prob-
lems (SCSPs). SCSPs are just like classical CSPs excepabatassignment of
values to variables in the constraints is associated witglement taken from a par-
tially ordered set. These elements can then be interpretéelvals of preference,
costs, levels of certainty, or some other criterion. The glemframework of SCSPs

makes it more difficult to express a real-world applicatiod @rocess and solve it.

3. Maximization of partial solutionsin many practical settings, yet another approach
seems to be more suitable. This approach consists of findagartial, consistent
solution of maximal length. In other words, we maximize thenter of decisions

that can be made without violating any constraint.

All iterative improvement methods must deal with the problef local optima in some
way. Therefore, methods of moving from one current state n@ighborhood state, or
repairing the current state, are a very relevant topic. elgffit repair heuristics comprise
different techniques, such as simulated annedMiidkpatrick et al., 1983, random walk
[Papadimitriou and Yannakakis, 1991abu searclGlover, 1989; 1991) and min-conflict
[Minton et al,, 1994d. Comprehensive studies of these heuristics can be foufiddns

and Stutzle, 1999: Wallace and Freuder, 1995; Wallaceg]198lowever, most of the
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research is based on randomly-generated and binary CSPscdnt years, autonomous
agents have become a vibrant research topic. Liu ¢2607 introduced the multi-agent
system concept, combined with iterative improvement teghes, which gives us a new

perspective from which to understand how to avoid localropti

1.3 Questions addressed

In this thesis, we address the following questions:

1. How should we deal with global constraints in LS?
Answer:To solve non-binary CSPs, the non-binary constraints carebslated into
binary. Even so, the local search strategy might not per@asmwell as it could. The
problem is caused by global constraints. We identify thisugatory move, and we

show that constraint propagation can deal with this protdepropriately.

2. Does LS have the ability to solve both solvable and ungbdv@SPs?
Answer:In our experiments, we observe that LS has qualitativelylairbehaviors

with both solvable and unsolvable problem instances.

3. What kind of strategies could help LS escape from locahug2 Do these strategies
really work?
Answer:Noise strategies, e.g., restart, random walk, and tabelseawuld be effec-
tive. In this thesis, we verify that random walk is partialyehelpful to get out of

local optima.

4. How should the value of the noise probability be chosen?
Answer: We conduct empirical analysis on the settings of noise poitibaover

solvable and unsolvable instances to study the effect ofdinge probability on the
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performance of LS. We find that the value of the noise proligiilight be problem-

dependent. It is difficult to suggest global values for alRSS

5. Is ERA the same as a local search strategy or just an eateofiocal search?
Answer: ERA can be viewed as an extension of local search, but theglitieeent.
In ERA each agent has its own cost value, whereas there isom@ystate cost in
local search; In ERA, the global goal is achieved by the inldigl local goal of each
agent, whereas there is only one goal in local search. Th#eeedces make ERA

more flexible and powerful than local search strategies.

6. Compared with local search and systematic search stateghat is the main ad-
vantage of ERA?
Answer: In ERA, each agent has its own goal. Meanwhile, agents exghtreir
information through communications. This means that egeimtcan explore more
search space, thus exhibiting the best ability to avoidllopaima. As a result, ERA

can solve tight CSPs when local search and systematic sappcbaches fail.

7. How can the behavior of ERA be characterized
Answer: The evolution of ERA across iterations, although not nem@gsmono-
tonic, is stable for solvable instances and gradually mowsard a full solution. For
unsolvable instances, ERA's evolution is unpredictable appears to oscillate sig-
nificantly, which is its main disadvantage. We identify teice of this shortcoming

and characterize it as a deadlock phenomenon.

1.4 Contributions

In this thesis, we focus on two different implementationg@fative search, namely stan-

dard local searcfBartak, 1998 and multi-agent seardh.iu et al, 2004. We study their
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performance in order to characterize and improve their\iehaWe conduct our inves-
tigations in the context of a real-world application, whishthe assignment of Graduate
Teaching Assistants (GTAs) to academic tafRtaubius, 2001; Glaubius and Choueiry,
20024. Most instances of the GTA problem are tight, and some arecmastrained. This
particular application proves to be a good platform to itigete the behavior and perfor-
mance of iterative improvement techniques for solvingtti@BPs. In particular, it allow
us to identify shortcomings of these techniques that weteapparent from testing them
on randomly generated problems.

Our main contributions can be summarized as follows:

Local search

e We implemented a greedy hill-climbing seard®artak, 1998 based on the min-

conflict heuristidMinton et al.,, 1994.

¢ We identified the nugatory-move phenomenon that degra@esetiormance of the

local search strategy and addressed how to deal with thideao

e We demonstrated the performance of the local search agporyaethe GTA problem
and compared it with a systematic search approach in tereff@é&ncy and solution

quality.

¢ We studied noise strategies to deal with local optima andddbat the random-walk
strategy is more helpful than random restart strategy. Uginaetailed analysis we
demonstrated how the values of noise parameters affectettiermance of these
strategies. Further, we found that the setting of noiserparars might be problem-

dependent.

Multi-agent search
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e We implemented ERA, a multi-agent based search method o6 TReassignment

problem.
e \We studied and characterized the behavior of ERA.

¢ We identified the deadlock phenomenon in ERA when solving-oeestrained prob-

lems.

e We compared ERA with a standard local search approach arstensatic backtrack
approach to solve instances of the GTA problem. We learregcbtily ERA can find

a full solution when the instance is solvable.

e We proposed approaches to avoid deadlock and performedimrgues to verify

those that can solve the deadlock problem.

Finally, we identified new directions for future research.

1.5 Outline of the thesis

This thesis is structured as follows. In Chapter 2 we givé&kgemund information on CSPs,
the GTA problem, iterative improvement techniques and Legag algorithms. In Chap-
ter 3, we demonstrate the performance of hill-climbing, duwt an experimental study
on strategies to deal with local optima, and draw compasseith a systematic search
approach. Then we extend our observations in further dssons. In Chapter 4, we intro-
duce the ERA model. After presenting an empirical evaluatibERA, we give detailed
discussions regarding the experimental observations.héfe present approaches to deal
with the deadlock problem on unsolvable instances. We éxtem study on these two
iterative improvement techniques in Chapter 5. Finallyagtler 6 provides a review of our

conclusions and points out future research directions.



Chapter 2

Background

This chapter provides the background for our work. Afteriafantroduction to the Con-
straint Satisfaction Problem (CSP), we review ways to maidgit or over-constrained
problems, which are often challenging to solve. We thenearea real-world application,
the Graduate Teaching Assistants (GTA) problem, which thatfocus of our investiga-
tions. We briefly review how it was modeled by Glaubius and @iy as a CSP and
solved using systematic backtrack seaj2f01; 2002a; 2004b We then introduce the
general mechanism of local search and describe a particyawerful variation of lo-
cal search based on a multi-agent formulation. Finally, haracterize these algorithms

according to their properties as Las Vegas algorithms.

2.1 Constraint satisfaction problem (CSP)

Constraints exist everywhere in everyday life. A constraénsimply a relation among
several variables that specifies the acceptable combnsatiwse variables can have, and
thus restricts the possible values that variables can &k&mples of common constraints
are the requirements for college admission, the speed fonidriving, and the time of

a meeting. Constraint Satisfaction Problems (CSPs) cansbd to model decision or
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optimization problems in many areas, such as schedulimguree allocation, planning

and temporal reasoning,constraint databfBesesz, 2002

2.1.1 Definition of a constraint satisfaction problem

A CSP is defined by? = (V,D,C) whereV is a set of variablesD the set of their re-
spective domains, and is a set of constraints that restricts the acceptable caatibirs
of values for variables. Solving a CSP requires assigninglaevto each variable such
that all constraints are simultaneously satisfied, whicim igeneralNP-complete. CSPs
are used to model a wide range of decision problems, and teush@ortant in practical
settings. The CSP framework provides a common platformgearchers for developing

application-independent solvers and studying the behavidifferent search techniques.

2.1.2 CSP characteristics

Although it is difficult to summarize concisely the charaistcs of a given CSP instance,
there are a number of parameters that can be used to desodbmmpare problem in-

stances. We list these main features below:

Number of variables: This determines the number of individual decisions or assignts

that need to be made.

Domain size: Although the domain size of variables may differ, we usua#ig the size of

the largest domain.

Problem size: The size of a problem can be measured by the number of vasiathie
domain sizes, the number of constraints, or a combinaticalldhree. The most
commonly used measure is the size of the search space, \stgaten byll,c|D,|.

Note that a problem with a large size is not necessarily diffto solve, and a small
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size problem can easily be more challenging. However, itleiarahat as the size of
the problem grows, it becomes exponentially difficult torexae all combinations if

needed.

Constraint arity: A number of CSP solving techniques have been developed fharyi
CSPs. As the arity of a constraint increases, so does theleritypof checking the
consistency of the constraint, which increases the contplex problem solving.
In systematic search, the type of constraint is a factor affatts the efficiency of

constraint propagation.

Number of solutions: Some problems require finding all solutions, which meansttiea
entire search space should be explored. More often, a ssofjiéion is sought. In

our study, we focus on finding one solution.

Tightness of a problem: We define the tightness of a problem as the number of solutions

over the size of search spacBiinimes = Numbgreerps?lutlon_s

For a problem, if
one solution is required, theR iness decides the hardness of the problem. Tighter
problems are harder to solve. In other words, the probglfitinding a solution in

the search space is greatly reduced.

Quality of solutions: Domain specific criteria are usually used to compute and eoenp
the quality of solutions. Sometimes the quality of a soltis measured by the
number of satisfied constraints or the number of variablas ¢an effectively be

instantiated.

2.1.3 Partial solutions

Over-constrained CSPs obviously have no solution. Thersareral possible ways

to deal with these problems:
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1. Remove some constraints to relax the problem.

2. Express preferences between constraints or allocagghtgeio allowed tuples

with a constraint.
3. Maximize the number of satisfied constraints.

4. Accept solutions that do not cover all variables (i.ettipbsolutions).

MAX-CSP is a framework proposed by Freuder and Walld@93; 1992 that aims
at finding the solutions that maximizes the number of satisfenstraints. Alterna-
tive approaches reported in the literature inclfidezy or weighte@ SPd Bistarelliet
al., 1994, partial constraint satisfactiofiFreuder and Wallace, 19Bierarchical
constraint satisfactiofwilson and Borning, 1993andconstrained heuristic search
[Fox et al, 1989. All of these methods involve constraint comparisons angtha
complex structures. They are particularly useful in thetexnof optimization. In
our study, all constraints must be satisfied even when som@les cannot be in-
stantiated (which happens in over-constrained instandaghis sense, our goal is
to find maximal partial solutionghat are consistent with all constraints. We do not
allow any constraint violation. In the remainder of this downt, a partial solution

is considered to necessarily be consistent.

2.2 Graduate Teaching Assistants (GTA) problem

As a real-world CSP, the GTA assignment problem is a gooditst for us to test different

search techniques.



13
2.2.1 Whatis the GTA Assignment Problem?

The GTA assignment problem is a real-world application thamodel as a CSKslaubius
and Choueiry, 2002a; 2002b; Glaubius, 2D0fis a critical problem faced by our depart-
ment and likely other institutions across the world. It cardefined as follows. In a given
academic semester, the department hires a set of gradaateng assistants that are as-
signed to a set of courses while respecting a number of @ntrthat specify allowable
assignments such as availability and proficiency of a gradsident for conducting a
given task. A solution to this problem is a consistent ansfsattory assignment of GTAs
to academic tasks. In the GTA assignment problem, the ceargemodeled as variables
and the GTAs are the values of these variables. In practice ptoblem is often over-

constrainedGlaubius and Choueiry, 2002a; 2002b; Glaubius, 2001

2.2.2 Characteristics of the GTA assignment problem

Problem size: Inour experiments, we used eight instances of this probleamnh instance
comes from real data collected from an academic semesterridgpartment. These in-

stances are listed in Table 2.1. This table shows the maxidamain size, the number of

| DataSet | Mark | Domain Size| # variables| Problem Size]
Spring2001b| B 35 69 3.5 x 10106
(@] 26 69 4.3 x 1077
Fall2001b B 35 65 2.3 x 10100
(e} 34 65 3.5 x 1097
Fall2002 B 33 59 3.9 x 1039
(@] 28 59 2.4 x 10%
Spring2003 B 36 64 4.0 x 1097
(6] 34 64 1.0 x 10%8

Table 2.1:Real-world data sets used in our experiments.

variables, and the problem size of each of the instancegestuhe mark ‘O’ indicates that

the data are original. Since many of these instances arehatide, we boosted the num-
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ber of available GTAs until they were solved by any one of ogpegimental techniques.

The mark ‘B’ indicates those boosted cases.

Types of constraints: There are a number of unary, binary and non-binary consgrain
that dictate the rules governing the assignments. In péaticeach course has a load that
indicates the weight of the course. For example, the valeMmeans this course needs
one-half of a GTA. Theotal load of a semester is the maximum of the cumulative load
of the individual courses. In our setting, some courses ahgaffered during one-half of
the semester; thus the semester has two parts that do ngsahagee equal loads. Further,
each GTA has a capacity factor which is constant throughmusémester and indicates the
maximum course weight he or she can be assigned at any pdimaruring the semester.
The sum of the capacities of all GTAs represents#is®urce capacityWwe summarize the

constraints as follows:

e Unary constraints: English certification, enrollment, iiae and zero preference

constraints.
e Binary constraints: mutex and equality constraints.
e Non-binary constraints: capacity, equality and confineneenstraints.

A detailed description of the problem and the constraintslwa found in[Glaubius and
Choueiry, 2002k Table 2.2 lists the number of constraints and the arity efrtbn-binary
ones. Note that our problem typically has a large number pflsinary constraints and that
their average arity is almost equal to the number of vargbléis observation shows that
the non-binary constraints are almost global, which ctutstthe main difficulty in solving

this problem.

We use ‘b’ at the end of the data set identified to distinguisimt from the ones used iGlaubius and
Choueiry, 2002h Both data sets correspond to the same case studies, bupselingnary errors were fixed
in our data set, which makes them slightly different fromsinoeported ifGlaubius and Choueiry, 200Ra
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| Number of constraints | Spring2001b | Fall2001b | Fall2002 | Spring2003 |

Total 1526 2011 1413 940
Unary 277 267 233 250

Binary 1179 1676 1124 622

Non-binary 70 68 56 68

Average arity 63 58 54 58

Number of variables 69 65 59 64

Table 2.2:Constraints in the data sets.

Difficulty of the problem: In general, the GTA problem is over-constrained. Typically
there are not enough GTAs to cover all tasks, and some coaraghave no GTAs as-
signed. The goal of the GTA problem is to ensure GTA suppodsanany courses as

possible.

Quiality of solutions: We measure the quality of a solution primarily by the numter o
courses that get a consistent assignment. A secondaryiamiie to maximize the arith-
metical or geometric average of the assignments with réspéice GTAS’ preference val-

ues (between 0 and 5) for each course.

Partial solution: Some instances of the GTA problem are over-constrained antbt
have a full solution. For these instances, only a partialtemh can be obtained. Here
we need to note that GTA is not a MAX-CSP. In MAX-CSP, all coastts are soft and
the goal is to maximize the number of satisfied constraintsisTthe solution of a MAX-
CSP problem is not consistent. In the GTA problem, howeves,not permissible for any
constraint to be broken. In other words, there is no softtraimg in this problem. Indeed,
the goal of the GTA problem is to get a consistent partialggsaent where the number of

assigned courses is maximized.
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2.3 Systematic Search (BT)

Glaubius and Choueirf20023 utilize systematic search techniques based on depth-first
backtrack search to solve the GTA problem. In their impletagon (BT), forward check-

ing [Prosser, 1993and branch-and-bound mechanisms are integrated into @inehsstrat-
egy. A full look-ahead strategy would drastically increttse number of constraint checks
while effectively yielding little filtering since the appktion has many mutex and global
constraints (it is a resource allocation problem). As ddjpgt search expands nodes in

a search path, the search checks if the expansion of thehsgeatic can improve on the
current best solution. Once the current best solution dabeomproved, backtrack oc-
curs. In addition, the dynamic variable and value orderiegristics are applied in BT. The

implementation is described in detail[i@laubius and Choueiry, 200Ra

2.4 Local search

Local search is a class of search methods that includesstiesrand nondeterminism in
traversing the search space. A local search algorithm mibees one state to another,
guided by heuristics in a nondeterministic manner. Localde algorithms strongly use
randomized decisions while searching for solutions to amproblem. They play an in-
creasingly important role in practically solving hard candiorial problems from various
domains of artificial intelligence and operations reseafar many problem domains, the

best-known algorithms are based on local search techniques

2.4.1 Algorithms of local search (LS)

The use of local search has become popular in recent yeasslfong complex real-world

optimization problems where systematic search methodstiéireot powerful. Inisolation,
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LS is a simple iterative method for finding good approximatieitsons. Generally speak-
ing, a local search algorithm operates as follows: stafftiogn an initial, not-necessarily
consistent state in the solution space of the problem instahe search iteratively moves
from one state to a neighboring state. The decision on eaddtiin is based on informa-
tion about the local neighborhood only. The local searchhoatlogy uses the following

terms:

e state one possible assignment of all variables; All possibléestdorm the search

space.

e evaluation valuethe number of constraint violations of the state. Somedithés is

also calledstate cost

e neighbor the state that is obtained from the current state by chagnii@ value of

one variable.

¢ local optimum a state that is not a solution, where the evaluation valfied @s

neighbors are larger than or equal to its evaluation value.

Local optima are the main problem with local search. Althotigese solutions may be
of good quality, they are not necessary optimal. Furtheemibthe search gets stuck in a

local optimum, there is no obvious way to go to a state thal$albetter solution.

2.4.2 Guidance heuristics

The means by which search moves from one state to anothelist@ided by heuristics.
Heuristics include greedy, min-conflit¥inton et al,, 1994, simulated annealinfKirk-
patricket al, 1989, tabu searchGlover and Laguna, 1993constraint weighting. Modern

local search algorithms are often a combination of sevénategjies.
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2.5 Multi-agent based approaches

Multi-agent based search techniques give us a new way te &#HPs.

2.5.1 Multi-agent system

A multi-agent system (MAS) is a computational system in watgeveral agents interact and
work together in order to achieve a set of goals. The basictagmcept incorporates pro-
active autonomous units with goal-directed behavior amdraanication capabilities. The
three basic components of MAS are: agents, interaction amdomment. An agent is a
physical or virtual entity that acts, perceives its envinemt and communicates with others,
is autonomous and has skills to achieve goals and tendeseshown in Figure 2.1, the
agent receives sensory input from the environment and pexdactions as output. The

interaction is usually an ongoing, non-terminating one.

Communication

Environmen

Figure 2.1:Interaction with the environment.

2.5.2 A Multi-agent-based search method

Inspired by swarm intelligence, Liu et dLiu et al, 2004 proposed the ERA algorithm
(Environment, Reactive rules, and Agents), which a searethod for solving CSPs. In
ERA, every variable is represented by a single, independgent. A two-dimensional

grid-like environment inhabited by the agents correspdadise domains of variables. The
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final positions of the agents in this environment constitiigesolution to a CSP. Each agent
moves to the position that is most desirable given the caimésrand the positions of the
other agentstegardless of whether this move improves or deterioratesgimlity of the
global solution The search stops when all agents are in positions thafysallispplicable
constraints.

Liu et al.[2007 presented an algorithm, called ERA (i.e., EnvironmentdRearules,
and Agents), which is an alternative, multi-agent formolafor solving a general CSP.
Although ERA can be viewed as an extension to local seardhifférs from local search
in some subtle ways as we try to explain below. In local seambving from one state
to another typically involves changing the assignment af (or two) variables, thus the
name local searciDechter, 200B In ERA, any number of variables can change positions
at each step, each agent choosing its own most convenietioposLocal search uses
an evaluation function to assess the quality of a given statere a state is a global but
possibly inconsistent solution to the problem. This eviadunefunction is aglobal account
of the quality of the state, typically computed as tb&l number of broken constraints for
the whole assignment. In ERA, every agent applies the etratutunctionindividually,
typically computing the number of the broken constraing #pply to the particular agent.
The individual values of the evaluation function for the ®@igearenot combined to give a
global account of the quality of the state. Thus, ERA appeadle-centralize the control for
selecting the new positions of the individual agents. Lsealrch transitions from one state
to the next in an attempt to achievglbal goal Thus, local search is directly applicable
to optimization problems. In ERA every agent strives to aehiits ownlocal goal The
search succeeds and stops when every agent is in a legabpo&iRA is therefore most
suited to model satisfaction problems. The original papethis technique encompasses

an extensive comparison with other known distributed setchniques.
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2.6 Las Vegas algorithms

A Las Vegas algorithm is a randomized algorithm that alwagslpces correct results. The
only variation from one run to another is the run time. Foilgan algorithmA is alLas

Vegasalgorithm if it has the following properties:
e For a given problem of, algorithmA guarantees to return a correct solutionfor
e For each given instaneg the running time ofd is random, denoted &g, ¢ime (A, 7).

Based on[Hoos, 1998 we can classify Las Vegas algorithms into the followingethr

categories:

e complete Las Vegas algorithnfor a solvable problemr and each instance of,
it always returns a solution withif,.,, such thatP (f,umime(A, 7) < tmax) = 1,
wheret,,.. IS an instance-independent constant &hd.,im.(A4,7) < t) denotes

the probability thatd finds a solution for an instance afwithin time .

e approximately complete Las Vegas algorithtalways returns a solution such that

limtﬂoop(truntime(Aa 7T) S t) =1.

e essentially incomplete Las Vegas algorithr always returns a solution such that

limt—»oop<truntime<f47ﬂ-) S t) < L.

For local search algorithms, essential incompletenessually caused by the search get-
ting stuck in local optima. Even if some techniques such atarg random walk, or tabu
search are applied to escape from local optima, the locatlsedgorithms still cannot
achieve completeness. Although these techniques aressficlte used to solve the SAT
problem[Hoos, 1998 and to enforce completeness for local search algorithnesy, dine
only theoretical. The time limits for finding solutions aomtlarge to be practical, and they

may be problem-dependent. From our experiments on the Gdlem, we observed only
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ERA is always able to find a complete solution for a solvab$tance while the other two

approaches, BT and LS, fail. Based on this observation, watualassify BT, LS and ERA

in Table 2.3.
Search method Las Vegas algorithms
BT (with heuristic) complete
ERA approximately complete
LS essentially incomplete
Table 2.3:Las Vegas algorithms.
Summary

CSP provides a framework that allows researchers to studysalve problems by com-
puters. The GTA problem is a real-world application. In piceg this problem is tight,
even over-constrained. Through solving the GTA assignipetilem, we investigate two

iterative improvement techniques: local search (LS) anttiragent based search (ERA).
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Chapter 3

A heuristic hill-climbing search

It is, in general, a challenge for local-search techniquedeal with a large number of
(almost) global constraints because these techniquesmatgrative improvement brought
by ‘local’ change. Our CSP model of the GTA assignment pnobleas a large number
of such constraints (see Table 2.2). In order to allow loeaksh to handle these almost
global constraints, we integrate constraint propagatahnique with local search. The
resulting mechanism can be characterized as greedy anstislassified as a hill-climbing
strategy, which is one type of local search known to be paeity effective in solving
large problems while requiring a modest amount of memorytemead and computation
time. However, it is also known to suffer from getting stucklocal optima when the
constraints are not convex.

In order toavoid local optima, we enhance the performance of our stratedy it
mechanisms: a heuristic (i.e., min-conflict heuristic) atochastic noise (i.e., random
walk). In order torecoverfrom local optima, we use random restarts, which consist of
repeating the search from different random states.

In this chapter, we describe our local search strategyjtteperformance on the GTA

assignment problem, and compare it to the heuristic badksaarch ofGlaubius, 2001;
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Glaubius and Choueiry, 2002a; 20Q2ve show that the former yields much better quality
solutions (in terms of the solution length) than the lattard short response time (i.e., a
few minutes in our case). However, it loses this advantagenwhlsponse time is allowed

to increase.

3.1 Hill-climbing search

A local search strategy navigates the set of possible sthproblem moving from one
state to a neighboring one until it reaches an optimal or-opimal state according to
some optimization criterion, or exceeds a threshold sgeLifi terms of time or number of
iterations. In a CSP, a state is a global solution (i.e., aigament of values to all variables)
that may be inconsistent with the constraints. Local seprobeeds as follows. Starting
from an initial state, usually chosen randomly, it explonegghboring states. These are
states that can be reached by the application of some movatopesuch as changing the
assignment of a variable, thus the name local. A hill-clingstrategy allows only moves
to a state that improves the value of the evaluation criterio

A heuristic is a simple and ‘cheap’ technique used to imprineperformance of a
search process by providing guidance to the search. Tyypitadllows us to compare and
choose between two or more states by estimating their valugh as their proximity to
the goal. Most heuristics are not exact in the sense thattiagysacrifice completeness or
soundness. In general, they rely on domain knowledge.

The general hill-climbing algorithm (se®lgorithm 1) usually start from a randomly
initialized stateS;, all neighbors which are adjacent $p are evaluated by the evaluation
functioneval. Among these neighboring statessSawith a better evaluation value than
S, is randomly chosen as the new state. The algorithms contintilkthe value of current

state is better than the values of all the states adjacertt tAtithis point, the current
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Input: an initial states;
Output: current state
1: neighbor-list— neighbors(S;)

2: while 3 a stateS; € neighbor-list, such thatval(S;) better thareval(S;) do
35«5

4:  neighbor-list— neighbors(.S;)

5. end while

Algorithm 1: Procedure: Hill-climbing

state is either an optimum or a local optimum. Note that tHechmbing algorithms have
to explore all neighbors of the current state before chapie move. A weakness of a

hill-climbing search it is that it may get stuck in some of thbowing states:

e Local optimum:a state where all neighbors are worse than the current sthtke,
the current state is not the optimum. This is analogous tongbelr that starts in the
foothills and spends his time climbing to the hill's sumnaibly to be disappointed

that he is still far from the top of the neighboring mountain.

e Plateaux a state where all neighbors have the same evaluation vadlis.is like
a climber who starts on a flat plain somewhere and wanderesstyl because he

cannot determine the best direction.

global optimu

local optimum

plateau

X

Figure 3.1:Local optimum and plateau with hill-climbing.

There are several techniques to help hill-climbing avoigscape from local optima
and plateaus. In the rest of this chapter we investigate sontptwo heuristics to avoid

local optima, and a restart strategy to escape from them.



25
3.2 Min-conflict heuristic

Itis common to use a value-ordering heuristic to guide $etrchoose the most promising
value for assignment to a variable. One such heuristic lec¢dhemin-conflict heuristic
[Minton et al, 1992, which basically orders the values according to constraiaitions
after each step. The heuristic can be used with a varietyfiefrint search strategies. The

formal definition presented ifMinton et al,, 1997 is as follows:

Definition 1. Min-conflict heuristic:

Given: A set of variables, a set of binary constraints, and an asmghof a value to each
variable, two variables are said to be in conflict if theirues violate a constraint.
Procedure:Select any variable that is in conflict and assign to it a vétaé minimizes the

number of conflicts, breaking ties randomly.

‘course—9 (GTA2, 4)
;"‘ course—2 (GTA®G, 2) 1{‘
' course—6 (GTAS, 5~ (GTAL, 10) (GTA2, 6) (GTA3, 2).....(GTAI5, 9)
:‘12 ‘;" . ~ domain of course—6 - -
-course—8 (GTA7, 2)

variables in conflict set

Figure 3.2:Min-conflict heuristic.

At each iteration the search takes one variable in the coréiicand repairs it according
to the min-conflict heuristic. We illustrate it in Figure 318 a conflict set each variable (a
course) is associated with a pair of values: the first onesisitimain value (a gta), and the
second one is the conflict number. When a variable is repéergd course-6), a new value
will be assigned to it such that the conflict number is redu€eat example, after the local

reparation course-6 will be assigned the value of GTA3. N the heuristic has essen-
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tially been used on binary constraints and that experinhproalems described ifMinton

et al, 1994 are all binary CSPs. However, for non-binary CSPs, a singhstraint may
involve several variables, which are called the scope ofctivestraint. The min-conflict
heuristic originally attempts to minimize the number ofightes that need to be repaired.
This raises the following question: can the heuristic baldsesolve non-binary constraint

CSPs or does it need to be modified? We answer this questiarttios 3.2.1.

3.2.1 Dealing with global constraints

The GTA assignment problem has almost global constraimesc@pacity constraints) whose
scope encompasses most variables (see Table 2.2). Holweatisearch techniques apply
local information to improve the current solution iteraliy; therefore the global constraints
might not be satisfied when a local movement occurs from ate & another. The proba-
bility of finding a consistent assignment for such globalstoaints is extremely low. Thus,
we especially need to deal with this problem specially. Ioti®a 3.4.1, we show that
this problem can be solved by integrating constraint prapag with the mechanism for
generating a neighboring state.

Another issue we need to pay attention to is the definitionoofflct. According to
definition 1, a variable is involved in conflict only if its aent assigned value causes any
violation. For variables restricted by a broken global ¢aist, we need to pick the conflict
variables carefully according to their assigned values. U an example of the GTA
assignment problem to illustrate this issue. In Figure 8lBgourses are restricted by a
capacity constraint that is broken by the current assighntéawever, only courses linked
by solid lines cause violations with their current assigmatlies. Thus only these two

variables need to be put into the conflict set.
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O Variable

CAPACITY [ ] Constraint

~—_ Restricted by a constrait

Figure 3.3:Variables linked by a broken capacity constraint.

3.2.2 Improving min-conflict with random walk

Noise strategies can be used to allow hill-climbing seaochvbid local optima. Random
walk is one such strategy that we have implemented and te®¥edshow that is helpful
to avoid local optima; however, it does not allow us to recduem these deadlocks once
they occur.

The idea of random walk is to allow hill-climbing search, i specified probability,
to disobey the heuristic that selects the neighboring stateove to. With probability s,
search follows the decision made by the heuristic, whichirsconflict here. Clearly, the
value for the probability has an influence on the performance of the algorithm resgultin
from integrating random walk. Preliminary studies on tisistie are presented [iWallace
and Freuder, 1995; Wallace, 1996; Hoos and Stiitzle, 19B8e value ofp suggested in
[Selman and Kautz, 1998 0.35. In Section 3.4.5, we investigate the effect of vagythe

value ofp on the behavior of our local search strategy.

3.2.3 Improving local search with random restart

In order to recover from local optima, it is advisable to usaralom restart strategy, which
consists of starting search from a new randomly selectégl Skais process can be repeated
a given number of times while keeping track of the best sofutbtained so far, thus giving

the resulting algorithm an anytime flavor.
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In Section 3.4.6, we study setting the value of restarts.

3.2.4 Algorithms tested
In summary, we tested the following variations of the hillbing search:
1. MC: This is hill-climbing using the min-conflict heuristic foalue selection.

2. MC+RW: This strategy combines with random walkNMtC in order to enhance its

ability to avoid local optima.

3. MC+RW+RR (LS): This strategy combines with random restartfG+RW in or-
der to enhance all its recovery from local optima. The behkitem found across
the experiment is kept to ensure an ‘anytime’ behavior. Thisur most elaborate

variation on hill-climbing search, which we denote LS in thst of this document.

3.3 Experimental study

In this section, we study local search through LS and compavigh a systematic, back-
track search (BT) with dynamic variable ordering fully déised in[Glaubius and Choueiry,

20024. There are two interesting topics for study:

e The characteristic behavior of local search: How does Iseatch perform on solv-
able and unsolvable problem instances? How do the noisenpsees work? Does it

perform differently with binary constraint and non-binagnstraint CSPs?
e The performance comparisons between local search andrstitesearch.

As mentioned in Section 2.2.2, the GTA problem is hard toesalrd some instances are
over-constrained. Even though a solution does exist fonstance, neither the systematic

search method nor a local search algorithm can find a comgdétéion. In this case, we
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compare solutions according to the number of assignedblasaThe more variables that

can be assigned, the better the solution.

3.3.1 Testcases

We test the eight instances of the GTA problem described cti®@e2.2. These are
data for Spring2001b (B), Spring2001b (O), Fall2001b (BlZ001b (O), Fall2002 (B),
Fall2002 (O), Spring2003 (B) and Spring2003 (O). The nundjerariables for each in-
stance, and the number of constraints are not necessaudy}.gepr these eight instances,
neither the local search algorithm nor the systematic keglgorithm can find a full solu-
tion. However, some instances can be solved by a multi-aggarth algorithm presented
in Chapter 4. Thus we divided all instances into two mainsgas solvable and unsolvable

set. We conducted our experiments using these two catsgafriestances.

3.3.2 Parameters setting

The maximum number of iteration is set to 200. This value seldaon our experiments,
because there is no improvement of the solution beyond thiger of steps. In our initial
studies, we set the probabiligyof random walk to be).02 according tdBartak, 1998

For systematic search, we allow it to run for about 8 minutes

3.3.3 Conditions of experiments

The experiment numbers and the corresponding conditianslawn in Table 3.1. The
number of runs defines how many times we run the procedure akiéethe average value

over these runs for a certain evaluation criterion.

[Guddeti, 2004 shows that the quality of the solution found by the heuribticktrack search fails to
improve after the first few minutes.
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| Experiment No. | Algorithm | Probability p | Runs |
3.1 MC+RW
3.2 MC+RW
3.3 MC+RW p=0.02 100
34 MC+RW
3.5 MC+RW
3.6 MC, MC+RW p=0.02
3.7 MC+RW 10
3.8 MC+RW | p € [0.01,0.50]
3.9 MC+RW+RR p=0.02

Table 3.1:Experiments for local search.

3.4 Results and observations

We tested our implementation on GTA problem instances ofeT2/2. In our initial study

we used noise strategies with default values describedatidde3.3.2. We then conducted
experiments on different noise parameter settings. Belewd@scribe five of the experi-
ments we carried out. We tested the behavior of local seaichdn-binary constraints,
compared the performance between local search and systeseatch, observed the ef-
fects of noise strategies, and studied random walk andrtesdservations follow each

experiment and are numbered accordingly.

3.4.1 Non-binary constraints in local search

Because most studies of local search are based on binasyraioh CSPs, can we apply
local search to solve non-binary CSPs? If yes, what is thferdifice between solving
binary and non-binary constraint CSPs? With these quest@applied the MC+RW to

an instance of GTA.

Experiment 3.1. Solve Fall2001b (O) by MC+RW without translating non-binaon-

straints into binary constraints.

The results were disappointing: none of variables was asdigAll broken constraints
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# broken constraints
Percentage

# constraints

Constraint type
MUTEX-CONSTRAINT 1631 | 109 | 6.69%
CAPACITY-CONSTRAINT| 68 | 16 | 23.5%
EQUALITY-CONSTRAINT| 45 | 28 | 62.2%
TOTAL 1744 | 153 | 8.8%

(o2}

gl g o i i
B2 Gl G| # responsible variables

Table 3.2:Distribution of broken constraints.

were non-binary. It appeared that we could not apply locatdedirectly to solve non-

binary CSPs.

Experiment 3.2. Solve Fall2001b (O) by MC+RW, modeling non-binary constraias

binary ones.

There is an average of only six assigned courses within B@bteourses. The distribu-
tion of broken constraints is shown in Table 3.2. We note®2a2% of equality constraints
are broken and 23.5% for capacity constraints. For eaclaarithe capacity constraint
mostly counts the broken constraints applied on that viri@able 3.3).

Why is the performance of local search so bad here? Aftefudapalysis, we decided
the problem was caused by the capacity constraint and thaiggconstraint. The vari-
ables restricted by these constraints formed a cycle. Tpertymity to get a consistent
assignment for each course located in the cycle is rareubedacal search techniques use
'local’ information to choose the next move and they are e 0 get global information.
This is just like driving a car on ice. No matter how much pugess put on the accelerator,
the car still cannot move forward. An example of this phenoomeis shown in Figure 3.4.

Even though each movement leads to a state which is betterothequal to the current
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Table 3.3:Broken constraints for each variable.
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state, the equality constraint is still broken. In this epéanthe probability of satisfying
the equality constraint i$1%. In general, this probability is equal T‘I“" whereD is

the domain of a variable andis the variables restricted by the global constraint. Fer th

instance Fall2001b (O)D| = 34 and thus the probability isl; = 0.000007.

B

S| 5
. A=1, B=2, C=3 ) En =
- A=1,B=1,c=2% §| 9
- A=2,B=1,C=2 % § e
- A=2, B=2, C=1 - ‘%5

Figure 3.4:Loop cycle in Local Search

We tested all instances of the GTA problem. All instancesthacsame phenomenon.

Thus we identify this phenomenon as a nugatory move and déefisdollows:

Definition 2. For a given CSP, if some variables are restricted by a glafradtcaint such
that these variables form a cycle. When applying a localckestrategy to solve this CSP,
the variables in the cycle have difficulty in getting consigtassignments. We call this

phenomenon a nugatory move.

Experiment 3.3. In order to avoid the nugatory-move phenomenon, we usedrems
propagation to filter the domain of each variable during #ershing, and conducted the

same test on Fall2001b (O).

Observation 3.3.1.There are only four unassigned courses comparéfl vathout apply-
ing constraint propagation arkdwith the systematic approach. This solution is acceptable

in practice.

3.4.2 Local search versus systematic search

Experiment 3.4. Compare the performance of local search (LS) and systerse#icch
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(BT) on a GTA problem instance. We ran both algorithms on tita det of Fall2001b (O),

which is a solvable instance.

Observation 3.4.1.As shown in Figure 3.5, LS is more efficient in finding good f@ert
solutions than BT in short intervals (before time point SBowever over the entire run
time, BT finds a better solution than LS. We can see that battgek quickly after time
point 64. After this time point BT cannot improve any moret b8 can improve gradually
and slowly. The reason is that LS applies randomness to &vadloptima. Thus LS might

be a good choice to get an acceptable partial and consistietios in a short time.

D
o
I

[$2]
o
I

Number of assigned courses

0 20 40 5260 80 100 120 140 160 180 200
Time (unit)

Figure 3.5:Local Search (LS) vs. Systematic Search (BT) on the GTAgmobl

3.4.3 Solvable instances versus unsolvable instances

Experiment 3.5. Does LS perform differently with solvable and unsolvablePS3 To
answer this question, we applied LS to solvable and unst@abA instances by observing

the number of assigned courses withi iterations.

Observation 3.5.1.From Figure 3.6, we observed that for either solvable or wabte

instances, LS quickly gets stuck at some point, beyond wtieke is no improvement.
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We can see that the curves almost parallel each other. TI8ubak qualitatively similar

behaviors on solvable and unsolvable problem instances.

—solvable

————— unsolabl

Number of assigned courses

iteration

T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200

Figure 3.6:Local Search on solvable and unsolvable instances.

3.4.4 Random-walk in the min-conflict heuristics

Experiment 3.6. In order to avoid getting stuck in local optima, we applieddam-walk
strategy to our local search strategy. In this test, we coetpthe performance of pure

min-conflict, MC and the one with random-walk, MC+RW on Faab(0).

Observation 3.6.1.Random-walk strategy is useful (Figure 3.7) to help thedetr avoid
local optima (see Figure 3.7). However, the effect of is mghisicant. The phenomenon

of local optima still exists and is the main obstacle for impng solution quality.

3.4.5 Value of the noise probability in random walk

Experiment 3.7. In this experiment, we observed how the random-walk prdibabifects
the performance of LS. We set different values of the prdiatiiom 1% to 50% with an
increment ofl%. We conducted our experiment with all solvable instancethefGTA

problem. We used three criteria to evaluate the performaheegpercentage of unassigned



36

65

60 —

55 1

50 1

45 A

Number of assigned courses

w0l —MC+RW
—MC

Iteration

0 26 4‘0 éO 8‘0 1 (;O 1 éO 1 4‘10 1 (;O 1 éO 200
Figure 3.7:Noise strategies.

courses to the total number of courses, the number of camstteecks (CC), and the step

where the solution is found. We then calculated the averalyewf each over all instances.

The results are shown in Table 3.4. Unassigned (%) meangtbergage of unassigned
courses over the total number of courses, CC means the nwhbenstraint checks and
step means the iteration where the solution is found. Fg8r&, 3.9 and 3.10 were plot-
ted according to the data of Table 3.4. The dashed line in thees is the mean of the
corresponding values.
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Figure 3.8: Random walk:Percentage of unassigned coursesygfoe [0.01,0.50], solvable in-
stances.
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[RandomWalkp | 001 | 002 | 003 | 004 [ 005 | 006 | 007 [ 008 | 009 | 010 |

Unassigned (%) 10 16 11 11 3 14 17 16 3 14
cc 23374210 | 7608842 | 18552532 | 11542256 | 7777390 | 8976997 | 11725798 | 7318750 | 6596360 | 8309810

Step 20 39 99 77 66 72 72 68 88 76
[RandomWalkp | 011 | 012 | 013 | 014 | 015 | 016 | 017 | 018 | 019 | 020 |

Unassigned (%) 15 2 16 12 13 14 16 15 15 2
cc 5235676 | 4120646 | 4842804 | 4120859 | 5809936 | 2494909 | 3742005 | 3702950 | 7496489 | 3953585

Step 49 67 45 66 67 87 38 70 63 104
[RandomWalkp | 021 | 022 | 023 | 024 [ 025 | 026 | 027 | 028 | 029 | 030 |

Unassigned (%) 1 15 I 15 1 11 2 15 14 3
cc 4103748 | 5355954 | 5712823 | 3720802 | 3370121 | 4418486 | 3834395 | 6651716 | 4136607 | 4141100

Step 67 80 82 83 63 56 84 59 97 70
[RandomWalkp | 031 | 032 | 033 | 034 | 035 ] 036 | 037 ] 038 | 039 | 040 |

Unassigned (%) 3 15 2 8 15 3 I 3 14 3
cc 3424348 | 4503069 | 2912643 | 3047355 | 5504703 | 3423607 | 3734557 | 3427706 | 3929236 | 2937721

Step 79 47 72 48 52 93 71 63 61 68
[RandomWalkp | 041 | 042 | 043 | 044 | 045 | 046 | 047 | 048 | 049 | 050 |

Unassigned (%) 15 8 3 16 17 11 14 14 14 10
cc 1898348 | 3802186 | 3300225 | 2254983 | 4203452 | 2604536 | 2881432 | 4777456 | 4097548 | 3097548

Step 43 32 68 60 43 81 51 54 73 75

Table 3.4:Varying value ofy for random walk on solvable instances.

Observation 3.7.1.From Figure 3.8 and 3.10, it is difficult to determine a spec#iation

between the performance of LS and walk probability.

Observation 3.7.2.From Figure 3.9, we see when the walk probability is too srab %),

the search usually takes more constraint checks to find &@olurhis is probably due to
the fact that when walk probability is small, the search siseiloo much time on a local
searching space that might be hopeless in reaching the gbals, the walk probability

value should not be too small.

Experiment 3.8. We followed the same methodologies applied in Experimeftigit this
time we did our experiment with the unsolvable instanceb®fG TA problem. All the data

we collected are shown in Table 3.5.

Observation 3.8.1.The results, shown in Figures 3.11, 3.12, and 3.13, areaimailthose
for solvable instances. There is no regularity of the pentmice in terms of unassigned

courses and the step to find the best solution.



38

2.50E+07

2.00E+07 |

1.50E+07

1.00E+07

# Constraint check

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

5.00E+06 |

0.00E+00

0 5 10 15 35 40 45 50

20 25 30
Random walk probability (%)
Figure 3.9:Random walkCC for p € [0.01,0.50], on solvable instances.
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Figure 3.10:Random walkNumber of iterations fop € [0.01, 0.50], on solvable instances.

Observation 3.8.2.In Figure 3.11 and Figure 3.12, it is obvious that the perfomoe of
LS behaves poorly with smaller walk probability values §%). This confirms that the
value of walk probability should not be too conservative hé@wise effort and time are
wasted searching a restricted portion of the search spaaghér words, the searching is

too local to expand the space.

3.4.6 The number of restarts

Experiment 3.9. In this experiment, ten different values were tested forribmber of



39

[ RandomWalkp | 001 | 002 | 003 | 004 | 005 | 006 | 007 | 008 | 009 [ 010 ]

Unassigned (%) 32 32 27 28 31 21 30 19 28 25
cc 6206317 | 4896032 | 3764192 | 2541569 | 2879154 | 1888360 | 804056 | 1823968 | 880193 | 2108592

Step 23 28 31 29 22 39 20 37 22 50
[RandomWalkp | 041 | 012 | 013 | 014 | 0156 | 016 | 017 | 018 | 019 | 020 |

Unassigned (%) 28 27 28 30 28 25 33 22 21 27
cc 1739130 | 1306821 | 1684443 | 751304 | 1811776 | 1665100 | 1107752 | 1296435 | 1606401 | 1360145

Step 27 30 30 20 34 34 26 36 37 40
[RandomWalkp | 021 | 022 | 023 | 024 | 025 [ 026 | 027 | 028 | 029 [ 030 ]

Unassigned (%) 27 20 25 35 16 24 27 24 27 32
cc 798014 | 1220468 | 842130 | 820738 | 810243 | 823627 | 1237251 | 775689 | 756775 | 886077

Step 20 29 22 20 33 30 30 25 23 15
[RandomWalkp | 031 | 032 | 033 | 034 | 035 | 036 | 037 | 038 | 039 | o040 |

Unassigned (%) 26 28 32 20 28 3T 23 24 28 28
cc 797759 | 723976 | 916589 | 1310453 | 485070 | 758443 | 1130080 | 888850 | 1280059 | 782013

Step 20 26 26 42 14 24 50 24 31 26
[RandomWalkp | 041 | 042 | 043 | 044 | 045 | 046 | 047 | 048 | 049 | 050 |

Unassigned (%) 25 27 27 21 21 33 28 24 28 28
cc 1099267 | 1206122 | 1153630 | 848985 | 670588 | 1390540 | 1218891 | 1028389 | 1666608 | 899249

Step 28 42 33 27 28 24 30 33 42 22

Table 3.5:Varyingp for random walk on unsolvable instances.

restarts. The values web@, 100, 150, 200, 250, 300, 350, 400, 450 and500. We conducted
the test over all solvable and unsolvable instances of the @dblem. The average per-

centage of unassigned courses is shown in Table 3.6.

[Restarts [50] 100] 150 200] 250 300] 350 400 450 500 |
[ Solvable Problems (%) | 17| 11| 13| 15| 14| 13| 12 | 15 | 11| 13 |
| Unsolvable Problems (%)| 23| 26 | 30 | 21 | 20 | 24 | 23 | 26 | 28 | 29 |

Table 3.6:Average percentage of unassigned courses.

Observation 3.9.1.From the Table 3.6, we see that the effects of the restategirare
not significant. The standard deviation is 1.89% for soleabstances and 3.36% for un-
solvable instances. On average, the value of 300 to 400te#&ayood for both solvable

and unsolvable instances.

3.5 Discussion

We further discuss the performance of LS.
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Figure 3.11:Random walkUnassigned course (%) fpre [0.01,0.50], on unsolvable instances.
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Figure 3.12:Random walkCC forp € [0.01,0.50], on unsolvable instances.

3.5.1 Binary vs. non-binary representation

Any non-binary CSP can be translated into an equivalentrpi@sP. Two translations
are known: the dual graph translatifibechter and Pearl, 1989; Freuder, 1p@8ad the

hidden variable translatidiRossiet al., 1990; Dechter, 1990However, translating a non-
binary CSP into a binary CSP involves some overhead in tleatitmain of the variables
of the binary formulation grows exponentially in the aritf/tbe constraint in the non-
binary formulation. Systematic algorithms can be applieeatly to non-binary CSPs. The

tradeoffs between translation and direct solving are stlidi[Bacchus and Beek, 1908
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Figure 3.13:Random walkNumber of iterations fop € [0.01, 0.50], on unsolvable instances.

In our GTA case, we already see that LS cannot be appliedtljitecsolve the problem.

Even though the non-binary constraints are translatedoimi@ry ones, the performance of
LS is still diminished without applying any constraint peggation techniques. We call this
phenomenon a nugatory move. It occurs due to ’local’ desssigsed by local search. As
the domain size increases, it is difficult to get a consisdasaignment for a set of variables

that is restricted by some global constraint.

3.5.2 Local search (LS) vs. systematic search (BT)

Although systematic search is typically sound and compétater-constrained CSPs do not
usually have a solution. Thus, systematic search alwayssgetk at some point quickly
and cannot get out of it even if the search is allowed to rurafltang time. To avoid this
problem, randomness must be considered in systematichsearcareful observation of
the backtracking showed that the shallowest tree-levehedwas as deep as 70% of the
number of variables (i.e., the maximum depth of the ti&@)ddeti, 200k This situation
did not improve much over time. This can be traced to the ldageain size of the variables
in this application, which systematically prevents a Igpgetion of the search space from

being explored at all. This problem could not be avoided &yeumsing randomized variable
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ordering[Gomeset al, 1998; Guddeti, 2034 Later, we show that while some instances
are indeed solvable, they are hard to solve. For these hardghtrinstances of the GTA
problem, systematic search without randomness still dafind a full solution. Local
search can find a better partial solution than systematicisesithin a short time. That
means that LS explores a much larger search space than BTashathus it seems that LS
has more chance to find a solution than BT within a short tim®geThis property of LS
is useful when solving a large, difficult CSP and when theeetime limit. Hence, LS may
be a good choice to provide a starting point for other searethaus to begin their search.
For example, in a hybrid method we could use LS to generatartirgf point and then
use systematic search to solve the problem based on this pbis also useful in a few
practical problems when, for example, a partial solutiongeded to evaluate the problem

instead of a full solution.

3.5.3 Solvable vs. unsolvable instances

It appears that the behavior of LS does not change quastgtivhen applied to solvable
or unsolvable problems instances. (In Chapter 4, we shawititsadoes not hold for multi-
agent search, which stabilizes on solvable instances atitlatess on over-constrained
ones.) LS quickly gets stuck on local optima with both typemstances. Thus we might
say that LS is a stable search approach because it does restddep the CSP itself. No

matter whether the CSP is loose or tight, LS always behavasimilar manner.

3.5.4 One-time repair

In our LS approach, we divide the variables into two setgoad set and ano-good set.
The search keeps locally improving the solution based aemental extensions of a fully-

consistent partial solution. The variables in tfeod set increase monotonically, and the



43
variables in theno-good set decrease monotonically in terms of the cardinality efdét.
After a certain period, both thgood andno-good set do not change. That means the
current solution cannot be further improved. The problertiné the algorithm attempts
to find a sequence of repairs such that no variables is repai@e than once. Once a
variable becomegood, it is never taken out of thgood set. Thus it reduces the solution
space and quickly gets stuck. We summarize the phenomenaragonic improvement,
quick stabilization and one-time reparation. These drakbaegrade the performance of
local search so that the application of LS is limited. In ordeavoid these phenomena, we
should develop a mechanism to undo the decision, i.e., tovenme variables in thgood
set and repair them again if needed, or to improve an inisisiggmment locally rather than

extend a fully consistent partial solution.

3.5.5 Dealing with local optima

To deal with the problem of local optima and plateaus, whictiarmine the performance
of local search, we apply noise strategies, namely randolk aved random restart. Our
experiments demonstrate that these two strategies areihelpnproving performance of
LS. Local optima can be reduced but not totally overcometheuy it is hard to identify
an appropriate value for the noise probabijityor random walk, and this value depends
on the particular problem class or even problem instancevi®us studies of this issue
suggest different values (e.g., 0.39 8elman and Kautz, 199and 0.02-0.05 in[Bartak,
1999).

Our experiments suggest that the valug should not be too small or too large. A too
small value forp inhibits the effects of random walk. A too large value foinhibits the
effects of the selected heuristic (i.e., min-conflict). E&, our experiments show that
should not be smaller than 5% or larger than> 45%. We recommend settingbetween

15% and 30%. In Section 4.4.1, where we apply the random waticiple to a multi-



44

agent search techniques for solving the GTA problem, oueexyents show thai should

be smaller than 25%.

3.6 Conclusions

In this chapter, we gave a brief introduction to the hilkkdtiing and min-conflict heuris-
tic, which is a typical technique of local search for solvi@$Ps. The original min-
conflict heuristic was defined and tested only on binary CSRE. adapted it to solve
non-binary CSPs. We conducted experiments to study loeatsdocusing on two top-
ics: the performance of local search and noise strategidgen ve presented our ob-
servations and discussion for solving GTA problem with LSe ®tress that our inves-
tigations are motivated by and focus on the GTA assignmeotblem, where we have
collected some real data samples. Consequently, our expets are exploratory in na-
ture. More thorough experiments, using a methodology aimd that of(Hoos, 1998;

Hoos and Stiitzle, 2094still need to be carried out to validate our conclusionstotigh

experiments conducted so far, we make the following comnmhss

e Unlike systematic search, local search techniques cardirbctly used to solve
non-binary CSPs. Even if the non-binary CSPs is translateddinary ones, local
search may still fail to work well because of global consitai We identify the

reason for this drawback and characterize it as a nugatomemhenomenon.

e Constraint propagation can be used to avoid the nugatomembenomenon. The

effect of applying constraint propagation is significant.

e Local search can find a better partial solution than systersaarch within a short
time interval. We propose to exploit this feature of locahred to generate good

quality ‘seed solutions’ for other search techniques. Weexiamine this approach
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in a future study.

e For solvable or unsolvable CSPs, the local search preseatsame behavior. In
other words, local search exhibits a uniform ‘stable’ betiavegardless of whether

the instances being solved are solvable, tight, or ovesicamed.

e Inour approach to LS, the search improves the solution daséncremental exten-
sions of a fully consistent partial solution. This approdeimonstrates some short-
comings: monotonic improvement, quick stabilization and-time reparation. That
is, the assignment of a variable is only repaired by one ti@®wce a variable has a
consistent assignment, this assignment is never changéidAs a result, the search

space is implicitly and greatly reduced.

¢ Noise strategies can be used to address the issue of lo¢alaopt local search.
Indeed, random walk can enhance the ability of the min-cdrifieuristic to avoid
local optima. Random restart strategy allows search tovexcmom local optima.

However, neither strategy guarantees the search will mmagtromising direction.

Summary

The local search approach shows that it is capable of findipgréal solution for a CSP

in a short interval. The main problem of hill-climbing is tendency to get stuck in local
optima quickly; and the one-time repair heuristic elimggthe chance of a variable to
get a new consistent assignment. Thus hill-climbing exsifmonotonic improvement and
quick stabilization. Noise strategies such as random watkrastart are helpful to deal
with local optima. However it is hard to generalize how totbet noise parameters which

greatly depend on a particular CSP.
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Chapter 4

A multi-agent based search

In this chapter, we extend the empirical study of a multiragearch method (ERA) for
solving CSPdLiu et al, 2004. We compare the performance of this method to that of
LS an BT for solving the GTA assignment problem. This reaHdiapplication, tight and
often over-constrained, allows us to discover strengtidsanrtcomings of this multi-agent
search which would not have been possible otherwise. We shatfor solvable, tight
CSPs, ERA clearly outperforms both LS and BT, as it finds at&wlwhen the other two
techniques fail. However, for over-constrained probleths, multi-agent search method
degenerates in terms of stability and the quality of thetsmhs reached. We identify the
source of this shortcoming and characterize it as a deagibekomenon. Further, we
discuss possible approaches for handling and solving delegll The chapter concludes

with a short summary of the main ideas and results.

4.1 Background

A multi-agent system is a computational system in which shagents interact and work
together to achieve a set of goals. Inspired by swarm ig@iice, Liu et all2004 proposed

a search method for solving CSPs based on a multi-agentagpno which every variable
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is represented by a single, independent agent. A two-dimeaisgrid-like environment,
inhabited by the agents, corresponds to the domains ofotasaThus, the positions of the
agents in such an environment constitute the solution toR CS
Liu et al.[2007 presented an algorithm, called ERA (i.e., Environment diearules,

and Agents), that is an alternative, multi-agent formolafior solving a general CSP. Al-
though ERA can be viewed as an extension to local searchiférglifrom local search
in some subtle ways. Moving from one state to another in Iseatch typically involves
changing the assignment of one (or two) variables, thus #meenlocal search. In multi-
agent search, any number of variables can change positioesch move; each agent
chooses its most convenient position (e.g., value). Thaatian function that assesses
the quality of a given state in local search is a global actofithe quality of the state
(typically the total number of broken constraints). In ERlAe value of the state is a com-
bination of the value of the individual agents (typicallg thumber of broken constraints of
an agent). ERA appears to de-centralize the global contttblecselection of the next state

to the individual agents.

4.2 ERA model

In this section, we briefly introduce the ERA model includithg components of ERA
and the algorithms. An ERA system has three components: amoEment ), a set
of Reactive rulesR), and a set of AgentsA). The environment records the number of
constraint violations of the current state for each valu¢hs domains of all variables.
Each variable is an agent, and the position of the agentsjoorels to the value assigned to

this variable. The agent moves according to its reactivestulwo assumptions are made:
¢ All agents have the same reactive rules, and

e An agent can only move to positions in its own domain.
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In our implementation, agents move in sequence, but thenigol can also be asyn-

chronous.

4.2.1 Environment

The environmenk is represented as a two-dimensional array thatt@svs correspond-
ing to the number of courses, ahB,,.| columns whereD,,. is the size of the largest

domain. Figure. 4.1 illustrates the environménof the GTA problem.

course-1 [ (GTAL1,3) [ (GTA2.12) [ (GTA4,12) | (GTAS, 15)] (GTA7.52) |
course-2 : : :
course-3 : : : : ‘

course-n | (GTA2,9) | (GTA5.8) [(GTAI16, 80)| (GTA21,18)|

Figure 4.1:Data structure of environmerit.

An entrye(, j) in E refers to a position at row (representing Ageni) and column
Jj (representing the index in the domain of the variable). The enteyi, j) stores a list
of two values, namelglomain valueand violation value Domain valuee(i, j).value,
points to the data structure (i.e., object) of a GTA of positindex;. Violation value,
e(i, j).violation, is the number of broken constraints of the agent in the ntiassign-
ment. Azero position is a position for the agent that does not break any of the
constraints that apply to it. The current assignment of fenais consistent with the other
agents’ assignments. Obviously, if agents are alteno position , then we have a
full, consistent solution. The information i is updated when an agent changes position.

The goal is to have each agent findZzexo position

4.2.2 Reactive rules

A set of reactive rulesR, governs the interaction between the agents and theiremient.
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How the agents move from one position to another positiadihegto the goal is defined

by least-move, better-move and random-move as follows:

e Least-moveThe agent chooses the position with the minimal value andes\to it,

breaking ties randomly.

least-mové&ugent(i)) = k, such thak(i, k) = min(e(i,j)), 1 < j < Dpyax

If such a position is unique, then agentnoves to that position; if one more such
positions exist, then a random one in the list is chosen. Wehis heuristic in local

search.

e Better-move The agent chooses a position at random. If the chosen posids a
smaller value than the current position value, then the tagewes to it. Otherwise
the agent keeps its current position.

r: e(i,r) <e(i,j), risarandom position

better-moveéagent(i)) =
j: oe(i,r) >e(i,j), jisthe current position

e Random-moveWith a probabilityp, the agent randomly chooses and move to a
position. This rule avoids the possibility of the agentigetstuck in a local optimum.

random-movéugent(i)) = r, wherer is random number ifil, D]

4.2.3 Agent

Each variable responds to an agent. At each state, the agast€hose a position to move
to according to the reactive rules. Each agent does itstastve to itszero position

if possible. The agents keep moving until all agents reach gesition or a certain time
period has elapsed. Each agent can only move in its own dothains, it can only move

within row ¢ for agent;.
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4.2.4 ERA algorithm

The ERA algorithm includes the following five main functions
1. Initialization
2. Evaluation
3. Agent-Move
4. Get-Position

5. ERA

Initialization builds the environmenk, generates a random position for each

agent, and moves the agent to this position.

Input: a problem
Output: a random state
1: Build environmentE’ and initialize its entries
2: for each agendo
3:  move to a random position
4: end for

Algorithm 2: function: Initialization

Evaluation : calculates the violation value of each possible posit@mreach agent.

Input: a state
Output: update position values

1: for each agenido

2. for each positiory in the domain of agentdo

3 Computee(i, j).violation using the assignments of other agents’
4: Store this value

5. end for

6: end for

Algorithm 3: function: Evaluation
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Agent-Move : checks whether an agent isZzero position . If it is not, it tries
to find a new position for the agent and callgaluation  to update the current state.

Otherwise, it does nothing.

Input: a state
Output: a new state

1: for each agenido

if (e(7, j).violation=0) then
3 do nothing

4. else

5: j <« Get-Position

6

7

8:

call Evaluatior(state )
end if
end for

Algorithm 4: function: Agent-Move

Get-Position  : uses the applicable reactive rule to find a new positionficagent.

Input: an agent
Output: a new position

calculate a probability
if (p < P)then

position < least-move
else

position < random-move
end if
returnposition

NoaAsenNR

Algorithm 5: function: Get-Position for the behavior of LR

ERA loops over the agents and keeps moving them until they aeron position
or a specified number of iteratioddAXMOVES reached. When all agents reacheaio
position , the problem is solved and the solution is returned. Otramwihe best ap-
proximate solution encountered to date is returned.

In general, the ERA algorithm works as follows. It builds #®ironmentE, gen-
erates a random position for each agent, and moves the dgethisse positions. Then

ERA considers each agent in sequence. For a given agenmifiutes the violation value
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Input: a problem
Output: a solution
step— 0
Initialization
Evaluation
while not all agents are inero position or step< MAXMOVHIo
Move-Agent
step«— step+1
compare and store solution
end while
output solution

©CcX NN R

Algorithm 6: function: ERA

of each possible position for the agent under consideratibthe agent is already in a
zero position , ho change is made. Otherwise, the agent applies the reaates to
choose a new position and moves to it. Then, ERA moves to tkieagent. The agents
will keep moving according to the reactive rules until théyr@ach azero position
or a certain time period has elapsed. After the last itematbmly the CSP variable corre-
sponding to agents ipero position are effectively instantiated. The remaining ones
remain unassigned (i.e., unbounded). We noticed that ictipea the agents’ ordering and
their concurrency or synchronism do not affect the perfarceaof the technique because
of the agents’ high reactivity. Since the violation valueeath position of an agent under
examination is updated at each run, the agent cannot stes/garrent position unless this
position remains @ero position , that is, the position is unchallenged by the remain-
ing agents.

Each iteration of the ERA algorithm, one move per agent foagénts, has a time

complexity ofO(n? x Dp..). The space complexity i©(n X Dy )-
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4.3 Control strategies in ERA

Liu et al.[2004 demonstrated ERA with two benchmark CSPs:thgueen and coloring
problems. Both problems have only binary constraints aedrtbtances tested were solv-
able. We examine the performance of the ERA in solving theendfficult, non-binary,
over-constrained GTA problem. Before we describe our erpart, we summarize some
possible behaviors of an agent and the rules that goverretievinr. We also review some
observations presented Qiiu et al,, 2004.

Liu et al.[2009 experimented with the following behaviors:

e LRisthe combination of the least-move and random-move riles.agent typically
applies least-move and uses random-move with a probabilityget out of local

optimum.

e BRis the combination of the better-move and random-move rules similar to

LRexcept that it replaces least-move with better-move.

e BLRis the combination of the better-move, least-move, andaanthove rules. The

agent first applies better-move to find its next positiont fdils, it applies LR.

e BLR: First, the agent appliestimes the rule better-move. If it fails to find one, it

applies theLR rule.

e FrBLR: The agent applieBBLR for the firstr iterations and then appliesR, typi-

callyr = 2.
Liu et al.[2009 further reported the following observations.

e The cost of better-move in CPU time is much smaller than thiast-move, which

requires evaluating all positions.
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e The probability of better-move in successfully finding aifios to move to is quite

high.
e Better-move allows most agents to find better positionsefitht step.

e FrBLR outperformgBLR, which in turn outperform&R in terms of runtime.

4.4 Empirical evaluation of ERA

We tested our implementation on known problem instancest, e solved the 100-queen
problem with different agent behaviots Then, usingFrBLR as the default behavior
of agents, we solved eight instances of the GTA problemudinly solvable and over-

constrained cases. We conducted four main experiments:

1. In Section 4.4.1, we test the behavior of ERA on the GTAgmsaent problem to
confirm thatFrBLR is the best behavior of ERA . Then we examine the effect of the

value of probabilityp.

2. In Section 4.4.2, we compare the behavior of ERA to BT $eafGlaubiud2002dand

our LS strategy in Chapter 3.
3. In Section 4.4.3, we observed the behavior of individgaids (Section 4.4.3).

4. Finally, in Section 4.4.4, we identified a shortcoming 8Acthat we characterize as

a deadlock phenomenon (section 4.4.4).

Our observations follow each experiment.

1Then-queen problem is not particularly well-suited for testthg performance of search. However, we
used it only to be on a common level with Liu et 1007. Indeed, they conducted their tests onthgueen
and the coloring problems, and drew their conclusions fioemtqueen problem.
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4.4.1 Testing the behavior of ERA

In the following two experiments we recorded the number eirdgreachingero position

at every iteration.

Experiment 4.1. Solve the GTA problem for the data-set Fall2001b udiy BLR and
FrBLR.

[}
o

[
S
L \

o
a
L

o
S
L

¥, \VARVARVARAV/

I
[

w
a
L

-~ FrBLR
—LR
—BLR

w
o
L

Number of agents in zero position
B
o

N
o
L

[N
o
L

: iteration
15 T |

0 10 20 30 40 50 60 70 80 90 100

Figure 4.2:Agents in zero position for Fall2001b.

We report the following observations:

e The number of agents ipero position does not grow strictly monotonically
with the number of iterations, but may instead exhibit aration’ behavior. This is
contrasted with the ‘monotonic’ behavior of hill-climbingchniques and illustrates

how ERA allows agents to move to n@e+ro position s to avoid local optima.

e Figure. 4.2 shows that the curves BtR andFrBLR ‘vibrate, highlighting an un-
stable number of agents #ero position across iterations, whileR quickly
reaches a stable valu€rBLR, which combined.R andBLR, achieves the largest

number of agents imero position

o After the first few iterations, a large number of agents seemeéach theirzero
position  with LR than withBLR. However, the problem seems to quickly become

‘rigid’ and the total number of agents @ero position becomes constant.
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In the GTA problem, as with the toy problentsBLR seems to yield the best results. We

adopt it as the default behavior for all agents.

Experiment 4.2. In ERA, we use the probability to control random-move behavior. In
this experiment, we observed how the probabititsffects the performance of ERA. We
set different values op from 1% to 50% with an increment ofl%. We conducted our
experiment with all solvable instances of the GTA problene. Wed two criteria to evaluate
the performance: the percentage of assigned courses ta#heamber of courses and the
number of constraint checks (CC). We then calculated theageevalue of each with all

instances.
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P
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Figure 4.3: Random walk: Percentage of Figure 4.4: Random walk: CC for p €
assigned courses for € [0.01, 0.50], solv- [0.01,0.50], on solvable instances.
able instances

From Figures 4.3 and 4.4, we see that the percentage of adsagurses decreases
and the number of CC increases dramatically when the valpesofarger thar25%. The
reason can likely be explained as follows: with high probabithe search often jumps
from the current state (which might be promising in leadiodhe goal) and moves to a
random state. As a result, it wastes a lot of time on uselespijug. Thus the efficiency is
diminished. At this point, the value of probabilityshould be kept in a small range. In the
case of GTA, this value should be bel@d7%. We had the same observation when solving

unsolvable instances.
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4.4.2 Performance comparison: ERA, LS, and BT

In order to gather an understanding of the characteristiE®é\, we compared its perfor-
mance with that of two other search strategies. The firstegjydas a systematic, backtrack
search (BT) with dynamic variable ordering fully descriiad Glaubius and Choueiry,
20024. The second strategy is the local search (LS) described ap@h3. LS is a com-
bination of constraint propagation to handle non-binargstraints and the min-conflict
random-walk algorithm as presented Bartak, 1998.

As stated in Section 2.2, the GTA problem is often over-aams¢d. We try to find the
assignment that covers the most tasks and, for an equaicsolemgth, one that maximizes
the arithmetic or geometric average of the preference saltithe assignments. In all three
searches (i.e., ERA, BT, and LS), we store the best solutiond so far, so that the search

behaves as an anytime algorithm.

Experiment 4.3. Solve the GTA problem for the real-world data of Fall20018lIZ002
and Spring2003 using ERA, BT seal&laubius and Choueiry, 200Rand a hill-climbing,
local search technique (Chapter 3). Since all the problesrs wifficult to solve (and two
of them are unsolvable), we boosted the available resosoceansform these problems
into solvable ones. To accomplish that, we added extra reessst-dlummy GTAs-into the

data set. The results are shown in Table 4.1 and Figures 4.5.6n
We adopted the following working conditions:

e The quality of the solution reached by BT search did not inaprafter the first 20
seconds, even when we let the search run for hours or daysefutabservation of
the backtracking showed that the shallowest tree-levehedwas as deep as 70%
of the number of variables (i.e., the maximum depth of the)trdhis situation did
not improve significantly over time and can be traced to tmgelalomain size of

the variables in this application, which systematicallgy@nts a large portion of the
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search space from being explored. This problem cannot bhidex/@ven by using

randomized variable ordering.

e The maximum iteration number for LS and ERA is 200. This cgponds to a few

minutes of run time for LS and a couple of minutes of ERA.

e We increased the number of dummy GTAS, one at time, until diesosearch tech-
niques found a solution. This solvable instance thus obthmay have more GTAsS

than it are actually needed.

e The ratio oftotal capacity and total load (shown in column 7 in Ta-
ble 4.1) is an indicator of the tightness of the problem. Wtienratio is less than
1, the instance is over-constrained and guaranteed nattdel\Otherwise, it may or

may not have a full solution.
We compared the search techniques according to five criteria

1. Unassigned courseshe number of courses that are not assigned a GTA (col. 8, 13

and 18 in Table 4.1). Our goal is to minimize this value.

2. Solution quality the geometric average of the preferences, with valaef, 5]

(col. 9, 14, and 19 in Table 4.1). A larger value indicatestéebsolution.

3. Unused GTAsthe number of GTAs not assigned to any task (col. 10, 15, @&nd 2
Table 4.1). This value is useful to analyze why certain resesiare not used by the

search mechanism (useful feedback in the hiring process).

4. Available resourceghe cumulative value of the remaining capacity of all GTAsia
assignment (col. 11, 16, and 21 in Table 4.1). This provigesstimate of whether a

search strategy is wasteful of resources.
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5. CC: the number of constraint checks, counted using the comrenf Bacchus and

Van Beek[1999 (col. 12, 17, and 22 in Table 4.1).
We report the following observations:

e Only ERA is able to find a full solution to all solvable problenfcolumn 18 of
Tab. 4.1). Both BT and LS fail for all these instances. In tieispect, ERA clearly
outperforms the other two strategies and avoids gettingkstuuseless portions of

the search space.

¢ When the ratio of total capacity to total load is greater thgthe problem may or
may not be solvable), ERA clearly outperforms BT and LS. @ovsely, when the
ratio is less than 1 (problem is necessarily over-con®BinERAS performance is
the worst, as shown in Figure. 4.5. Indeed, we make the coamgethat ERA is not a

reliable technique for solving over-constrained problems

e On average (see Figure. 4.6), LS performs much fewer constf@ecks than ERA,

which performs fewer constraint checks than BT.

25 - 24
O systematic search
20 1 Olocal search
16 H multi-agent

unassigned courses

spring fall02 spring03 fallO1b  fall01b spring 03  spring fall 02
01b (0.88) (0.88) (1.00) (1.02) (1.06) (1.08) 01b(1.18) (1.27)

data set (ratio)

Figure 4.5:Unassigned courses

This feature of LS is useful when checking constraints (@@n-binary constraints),

but is a costly operation.
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Figure 4.6:Constraint checks

e ERA leaves more GTAs unassigned than BT or LS (col. 10, 152énd Tab. 4.1),

which raises concerns about its ability to effectively exihe available resources.

In particular, for Spring2001b (O), eight GTAs remain urdis@his alarming sit-
uation prompted us to closely examine the solutions geeérathich resulted in
identifying the deadlock phenomenon discussed in Sectibd 4Finally, we com-
pared the behavior of ERA on solvable and unsolvable instit terms of the
number of agents izero position per iteration. The solvable problems are:
Spring2001b (B), Fall2001b (B/O), Fall2002 (B), and Sp#@@3 (B/O) (Figure. 4.7).
The unsolvable ones include Spring2001b (O) and Fall200ZKiQure. 4.8).

e Neither the basic LS nor ERA (i.e., without restart strage@jincludes a mechanism
for improving the quality of the solution in terms of GTA peeénces, which is the
secondary optimization criterion. Indeed, the qualitylef solutions found by BT is
almost consistently higher. However, this length of thaisohs found by ERA on
solvable instances, which is the primary optimizationeeidn, is significantly larger

than both BT and LS.

e Figs. 4.7 and 4.8 show that the performance of ERA is mordestaben solving
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solvable instances than when solving unsolvable instances
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Figure 4.7:ERA performance on solvable instances
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Figure 4.8:ERA performance on unsolvable instances

4.4.3 Observing behavior of individual agents

Tracking the positions of individual agents at variousatems, we observed the three types
of agent movement shown in Figure 4.9. In this figure, we ubedridex of the agent’s

position to indicate its assigned value.

e Variable: the agent changes its position relatively fretlyeand fails to find itzero

position
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Figure 4.9:Three types of agent movement.
e Stable: the agent rarely changes its position.

e Constant: the agent findsz&ro position at the beginning of the search, and

never changes it.

Experiment 4.4. We set the maximum number of iterations to 500 and trackegdise

tions of agents over the entire data set, grouped into slehaatd unsolvable instances.
We observed the following:

¢ In solvable instances, most agents are stable, a few aréacdnand none of the

agents is variable.

¢ In unsolvable instances, most agents are variable, a fewstalée, and none of the

agents is constant.

4.4.4 Deadlock phenomenon

On our two unsolvable instances of Table 4.1 (i.e., Sprind®0(O) and Fall2002 (O)),
ERA left some tasks unassigned (col. 18) and some resounces®d (col. 20), although,
in principle, better solutions could be reached. By calgfahalyzing these situations,
we uncovered the deadlock phenomenon, which is a majorcsimimg of ERA and may

hinder its usefulness in practice. We do not claim that tresltleek phenomenon is unique
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to ERA. It may also show up in other search algorithms. Howetre fact that ERA

exhibits this shortcoming was not noticed earlier.

Experiment 4.5. With Spring2001b (O) data, we examined the positions of esmnt
in the state corresponding to the best approximate solditiond, and we analyzed the

allocation of resources to tasks.

The best approximate solution for this problem was foundeatition 197, with 24
courses unassigned and 8 GTAs unused. The total number igeson this problem is 65.
We observed that the unsatisfied courses can actually bieesgiwy the available, unused
GTAs. ERA was not able to do the assignment for the followiegson. There were
several unsatisfied agents (i.e., courses) that chose te ta@vposition in their respective
rows corresponding to the same available GTA, while this @dAld only be assigned to
as many agents as its capacity would allow. This situatignlted in constraints being
broken and none of the agents reachirageo position . As a consequence, although
agents moved to that position, none could be assigned tkétqrg and the corresponding

GTA remained unassigned. We illustrate this situation guFe. 4.10.

O agent in zero position

B agent in deadlock

# total agents : 65
# agents involved in deadlock: 24
# unused GTAs: 8

Figure 4.10:Deadlock state
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Each circle corresponds to a given GTA. Note that there istxane circle per GTA.
Each square represents an agent. The position of an squéne oincle is irrelevant and
only useful for visualization purposes. There may be zeronore squares on a given
circle. Blank squares indicate that the position meeo position for the agent; these
will yield effective assignments. The filled squares intigcthat although the position is
the best one for the agent, it results in some broken congtrailhus it is not &ero
position , and the actual assignment of the position to the agent tdoenmade. The

circles populated by several filled squares are GTAs thaaremmused.

Definition 3. Deadlock state:When the only positions acceptable to a subset for agents
are mutually exclusive, a deadlock occurs that prevent®éthe agents in the subset from

being allowed to move to the requested position.

None of the variables in a deadlock is instantiated, altha@me could be. Further,
a deadlock causes the behavior of ERA to degrade. When soemésagye in a deadlock
state, one would hope that the independence of the agentd aitaw them to get out of
the deadlock (or remain in it) without affecting the statfiagents inzero position
Our observations show that this is not the case. Indeed, ERAtiable to avoid deadlocks
and yields a degradation of the solution in the sense thaes dot maximize the number of
courses satisfied. Subsequent iterations of ERA, insteatbuing agents out of deadlock
situations, move agents alreadyzaro position out their positions and attempt to
find otherzero position s for them. The current best solution is totally destroyed, a
the behavior of the system degrades.

This problem was not reported in previous implementatidi=sRA, likely because they
were not tested on over-constrained cases. Further, ibsety hinders the applicability of
this technique to unsolvable problentisis important that ERA be modified and enhanced
with a conflict resolution mechanism that allows it to idgnand solve deadlocks. We

discuss this issue in Section 4.6.
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4.5 Discussion

From observing the behavior of ERA on the GTA problem, we aate the following:

e Better-move vs. least-moves key point in iterative-improvement strategies is to
identify a good neighboring state. In ERA, this is achievgdh®e reactive rules. In
Minton et al.[Minton et al., 1993, this is the min-conflict heuristic. We noticed that
better-move provides more opportunities to explore theckespace than least-move
does, and avoids getting stuck in local optima. With least« an agent moves to
its best position where it stays. This increases the difiesibf other agents and the

complexity of the problem, which quickly becomes harderdive.

e Reactive behaviordDifferent behaviors significantly affect the performan¢&RA.
We found that~rBLR results in the best behavior in terms of runtime and solution
quality. At the beginning of the search, better-move carmtkjyiguide more agents
toward theirzero position . Then least-move prevents drastic changes in the
current state while allowing agents to improve their posi$i. Finally random-move

deals effectively with plateau situations and local optima

e Stable vs. unstable evolutiors highlighted in Figure. 4.7 and 4.8, the evolution
of ERA across iterations, although not necessarily monotas stable on solvable
problems and gradually moves toward a full solution. On luvawe problems, its
evolution is unpredictable and appears to oscillate sicamitly. This complements
the results of Liu et al[Liu et al, 2004 by characterizing the behavior of ERA on

over-constrained problems, which they had not studied.

From comparing systematic, local and multi-agent searcthenGTA problem, we

identify three parameters that seem to determine the behaf/search, namely

1. the control schema
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2. the freedom to undo assignments during search
3. the way conflicts are solved and deadlocks broken.

Below, we discuss the behavior of the three strategies wedaslight of these param-
eters. We expect this analysis to be generalizable beyonlihoited considerations. Our

analysis is summarized in Tab. 4.2.

Goal Actions
Control schema Undoing assignments \ Conflict resolution
Local Yes, anytime Non-committal
ERA || + Immune to local optima + Flexible — Deadlock
— May vyield instability + Solves tight CSPs — Shorter solutions
Global No, greedy approach Heuristic
LS + Stable behavior -+ Quickly stabilizes + Longer solutions
— Liable to local optima | — Fails to solve tight CSPs even with
randomness & restart strategies
Systematic Only when backtracking Heuristic
BT + Stable behavior + Quickly stabilizes + Longer solutions
— Thrashes — Fails to solve tight CSPs even with
backtracking & restart strategies

Table 4.2:Comparing the behaviors of search strategies in our impleaten.

45.1 Control schema: Global vs. local.

In ERA, each agent is concerned with, and focuses on, acigets own local goal—
moving to a minimal violation-value position. This increaghe ‘freedom’ of an agent to
explore its search space, which allows search to avoid uaina. As a result, ERA has
an inherent immunity to local optima. The global goal of miiging conflicts of a state
is implicitly controlled by the environmenk, through which the agents ‘communicate’
among each other. This communication medium and local cbathema of ERA are
effective when the problem is solvable, but they fail wheolpems are over-constrained.

Indeed, for unsolvable instances, ERA is unstable and saassz®llations.
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This decentralized control is contrasted with the certealicontrol of local search,
where the neighboring states are evaluated globally by @matered function. Global con-
trol used in LS leads to a stable performance: the movemeatsieccessor state is, in
general, allowed only when the neighboring state reduaegltfbal cost, such as the total
number of broken constraints in the state. However, thid kircontrol overly restricts the
movement of agents and the search easily gets trapped irojait@a, which is unlikely to
be overcome even with random restdki®os and Stitzle, 1999

In backtrack search, alternative solutions are examinadsiystematic way. Generally
speaking, we either expand a partial solution or we chragicédly consider immediate
alternatives to the last decision. Usually, we record th& Belution found so far as an
incumbent and update it only when a better solution is foulwsl.a result, the quality of
solutions improves with time and the search is typicallypktaHowever, thrashing is the
price we pay for the stability and completeness of search.téseed both heuristic and
stochastic backtrack searfBomeset al, 1999 and found that backtracking never goes
beyond the third of the depth of the tree on our problems. Bancestart strategies and

credit-based search can be used to avoid this thrashinghdyusacrifice completeness.

4.5.2 Freedom to undo assignments.

Among the three strategies we tested so far (we are testivegs)t only ERA was able to
solve our hard, solvable instances. This ability can beettdo its ability to undo assign-
ments.

In ERA, an agent can undo its assignment as needed, eves @ itonsistent one. In
fact, no agent may remain in a given position unless thistjposis acceptable to all other
agents; that is, it remainszgro position across iterations. This feature seems to be
the major reason why ERA was able to solve successfully g problems that resisted

the other techniques we tested (i.e., the solvable inssanicéab. 4.1 were only solved by
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ERA).

In contrast, in both systematic and hill-climbing searchialue is assigned to the vari-
able that claims it first, on a first-come, first-served ba$dsir implementation of local
search (a hill-climbing strategy with a combination of doamt propagation and a min-
conflict heuristic for value selection) does not undo cdesisassignments. However, more
generally, in backtrack search and LS, assignments candmnerusing backtracking and
random-restart strategies, respectively. In our exparismydoth backtracking and random-

restarts failed to solve tight instances due to the sheerdfithe search space.

4.5.3 Conflict resolution and deadlock prevention.

We identify two main approaches for search to deal with cotsfli

¢ heuristic, based on some priority such as a ‘first-come;s$ested, least commit-

ment, fail-first principle, or using user-defined preferenc

e non-committal, where conflict sets are merely identifiedlzemded either to the user

or to a conflict resolution proceduf€houeiry and Faltings, 1994

When it is not able to solve a conflict (e.g., a resource cdiaenn the case of a
resource allocation problem), ER#&dopts a cautious approach and leaves the variables
unassignedThis yields the deadlock phenomenon encountered in awestrained cases,
introduced in Section 4.4.4 and discussed in Section 4.6 é&Neve that the non-committal
strategy is more appropriate in practical settings becaudearly delimits the sources of
conflictand makes them the responsibility of a subsequent confiotugon process. We
consider this feature of ERA to be particularly attractiredeed, conflict identification is
a difficult task (perhapslP-hard) and ERA may constitute the first effective and general

strategy to approach this problem.
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Both backtrack search and LS operate in a more resolute Wway:heuristically assign
values to as many variables as possible. As a result, whemmzaxg the solution length,
as inthe GTA problem, they end up finding solutions that areernompetitive (i.e., longer)

than ERA.

4.6 Dealing with the deadlock

While ERA is notcompleteprocedure, we were puzzled by its ability to quickly sohghti
problems. However, in over-constrained problems, somatageay be always prevented
by other agents from reachingzaro position . One can think of the deadlock phe-
nomenon as a powerful feature of ERA since it allows us totileand isolate conflicts.
Conversely, one could think of it as a shortcoming of ERA gjnig over-constrained cases,
it yields shorter solutions than LS or BT. We identify fourgsible avenues for dealing with

deadlocks.

4.6.1 Direct communication and negotiation mechanism

In ERA, agents exchange information indirectly, through ¢émvironment~, and have no

explicit communication mechanism. The information thap@ssed is a summary of the
state of the environment. Agents are not able to recognizke ether’s individual needs
and thus are unable to establish coalition. One could ilyegst how to establish more

effective, informative communications among agents, astialy multi-agent approach.

4.6.2 Hybridization algorithms

When a deadlock occurs in ERA, we could use the solution famd seed for another

search technique such as LS or BT. One could even imaginetilppiof algorithms
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where various solvers, with various features and weaksgss®perate to solve a given

difficult problem. We are working in this direction.

4.6.3 Mixing behaviored rules

As mentioned in Section 4.2, two assumptions are made fdER# model: (1) all agents
have the same reactive rules, and (2) an agent can only m@esitttion in its own domain.
According to the first assumption, each agent must followstrae reactive rules, such as
least-move, better-move and random-move. It seems thisrgeon restricts the behavior
of an agent. Thus, if we allow each agent to follow its own tieaaule so that each agent
is able to get more freedom to decide its behavior. This kindiged-behavior rule might

help ERA to improve its performance.

4.6.4 Adding global control

The decentralized control of ERA enables an agent to putseisdtisfaction of its own
local goal. However, it also undermines the ability of theteyn to cooperatively achieve
a common global goal (when such a goal exists but is not Papimal). In Section 5.2.3
we investigate how to enhance ERA with global control andvera the advantages and

shortcomings of our proposed strategy.

4.6.5 Conflict resolution

An over-constrained problem by definition, has no soluti@onflict resolution is thus
necessarily heuristic and problem-dependdampelet al, 1994. There are two main

approaches to conflict resolution:

¢ Interactive:In an interactive setting, the identified conflicts am@oagood that can

be presented to the user and allow the user to integrate thisraywn judgment in
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the conflict resolution process. For the GTA problem, mosfla resolution is cur-
rently done interactively, which allows the integratiorfwfiquantifiable’ constraints

into the solutions.

e Automatic: Soft constraints, preferences, and rules to relax conssraould be in-
cluded in the model in order to solve conflicts automaticalyice a given conflict
is identified and solved, a new problem is generated basdaeamadification of the
initial one, and the problem solver is run on this new probldiis process repeats
until all conflicts are solved. In Section 5.2.4, we discwgs possible strategies for

deadlocks in the GTA problem.

4.7 Conclusions

In this chapter, we introduced a multi-agent search (ERA)vlich each variable repre-
sents an agent that inhabits in the environment, a two-dineal array structure to record
the information of the current state. Agents communicatglicitly each other through

this environment and take their movements according taimacules. Then we clearly
demonstrated the performance of ERA with a series of exmrisnon the GTA assign-
ment problem focusing on four topics: testing the behavidERA; comparing the per-

formance of ERA, LS and BT; observing behavior of individagents and the deadlock
phenomenon. The experimental results show that for sadydlght CSPs, multi-agent
search clearly outperforms both LS and BT, as it finds a smutihen the other two tech-
niques fail. However, we found ERA degenerated in termsaifibty and the quality of

the solutions when solving over-constrained problems. rmoge detailed study, we iden-
tified the shortcoming and characterized it as deadlock @inenon. We also proposed
possible approaches to solve deadlock problem when sobviegconstrained CSPs. Our

observations and conclusions are summarized below:
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e The multi-agent approach exhibits an amazing ability tacilaxal optima. We trace
this ability to its fine-grain and de-centralized controlahanism in which agents try
to selfishlyrealize their individual goals while communicating inditly through the
environment. As a result, the multi-agent approach canestijnt CSPs when the

other two approaches fail.

e ERA shows two different behaviors: stable and unstableugial. It is stable on
solvable problems and gradually moves towards a full smutHowever its evolu-
tion is unpredictable and appears to oscillate greatlys Timits the application of

ERA on over-constrained CSPs.

e From the point of view of solving CSPs, ERA looks somewhat likcal search. It
is easy but erroneous to conclude that ERA is just an exterditocal search. The
main difference between ERA and local search is that ERAeaelsithe global goal
by satisfying the local goals of each individual agent, vélasrin local search there is
only one global goal. In other words, the transitions betwstates happen in ERA
after an agent achieves its local goal. But in local sealghirainsitions happen only
after the global goal is achieved. Local search can be seamspecial case of ERA,

in which an agent’s local goal and the global goal are ackiet¢he same time.

e The communication mechanism of ERA is not enough for agengs¢hange infor-
mation accurately. An agent interacts with other agentgtbmbugh the environment
E; actually there is no direct communication among agent® drvironment? is
like a blackboard, every agent writes down its informatifteraevery movement.
Thus we call this kind of interaction protocol a blackboaydtem[Weiss, 2000, In
this system, an agent or expert continues to add contrifmitmthe blackboard until

the problem has been solved.

e ERA overcomes the drawback of LS. In LS the assignment is mepyired once,
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but in ERA an agent seeks its better position according tcsituation of the cur-
rent state. After the state changes, an agent can freely toav@ew position that
the agent thinks better. This kind of local reparation makB#\ have an inherent

immunity to local optima.

e The main shortcoming of ERA is deadlock problem when soleimgver-constrained
CSP. Even though there are more resources that can be uskethio @ better solu-
tion, agents compete for some particular resources to leaddadlock. As a result,
none of the agents involved in the dead lock can be grantedsigrament. This

greatly degrades the quality of the solution.

e In ERA, assignments of agents to positions are made only vihese positions
are zero-positions. Consequently, ERA produces only sterdi solutions. ERA
is not the right framework for modeling MAX-CSPs because it doesaillow to
ignore any constraint. Further, the identification of thadleck phenomenon (in
over-constrained cases) proves that it isa@tiori the right framework for finding

maximal consistent partial solutions.

Summary

The multi-agent approach exhibits the best ability to avomhl optima due to its goal-
directed behavior and communication capabilities. As altethe multi-agent approach
can solve tight CSPs when the other two approaches fail. Memveith unsolvable prob-
lems, its behavior becomes erratic and unreliable. We deetaltrace this shortcoming to
the same feature that constitutes the strength of this appra.e. the inter-agent commu-
nication mechanism, which results in a deadlock state im-ogastrained situations. We

identify the source of this shortcoming and characterizs 4 deadlock phenomenon.
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Chapter 5

Further investigations in LS and ERA

In this chapter, we extend our study of local search and ERArdhms a little further,
and propose and test ideas to improve their performancet \W& propose a generalized
local search based on the structure of local search. Thenisges$ how it guides us
to analyze the algorithms of local search. We then presentdpproaches- ERA with
mixed behavior, ERA with hybridization, ERA with global dool and ERA with conflict
resolution and demonstrate how to use them to avoid or resbks deadlock problem in

ERA for unsolvable CSPs.

5.1 Local search

Learning the structure of local search can help us analydeampare local search strate-
gies. Further, this kind of analysis and comparison of waxistrategies can guide us in the

design of design new algorithms for local search.
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5.1.1 Structure of local search

In local search, each state is a full assignment. The seanglgrirom one state to another
state where the violation number is reduced or the full sahus reached. The movement

is conducted according to three main components of locats€ahown in Figure 5.1):

e Evaluation We calculate the cost of the state and provide the criteatefine if
the state gets better or worse. A more complex technique mayplied to evaluate
the constraints, that is, to weight constraints or resdieethem. The main function

of this component is to build knowledge for solving the peohl

e Strategy Based on the information provided by the evaluation coneptrwe choose
a strategy to guide the search (e.g., min-conflict and randalk). This component

has two levels: select a strategy and executing it.

e Actiont In this component, we must do two things: select an actiahtake the
action. Any type of action can be defined here, such as ‘stayhove’, ‘move in’

or ‘move out’ and so on.

Evaluation

Calculate

Strategy

Action

Figure 5.1:Structure of local search.

We can see the hill-climbing with min-conflict is simple: Awaduation function cal-

culates the total number of broken constraints for a sthen the min-conflict heuristic
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guides the search to move. There is only one type of actiod wsthis approach: move
a variable with consistent assignment to tgwod set. This simple approach limits the

performance of LS due to the following reasons:

1. Knowledge built by evaluation function cannot providéisient and accurate infor-

mation for guiding the search;

2. The action that only allows a uni-directional- moving aiable fromnon-good set

into good set, limits the variables igood set to be repaired more than once.

Thus when we design a local search system, we should corbieles three components

carefully.

5.1.2 Generalized local search

In [Schaerf and Meisels, 20Dand[Hoos, 1998, the authors present two generalizations
of local search respectively. Schaerf and Mei$2B0d describe their generalized local
search with an employee timetabling problem. The main idiffee from our hill-climbing
approach addressed in this thesis is that it uses more actioth a more complex cost
function. However, the cost function is problem dependtrapplies a constraint weight-
ing mechanism. 111994, Hoos introduced a novel formal framework for local search—
Generalized Local Search Machine (GLSM). It was used fom#dizing, realizing and
analyzing local search algorithms for SAT. Here we do notu$oour attention on a par-
ticular implementation or algorithm. We try to present agyahframework and necessary

components of the framework. We illustrate this in Figui 5.

5.1.2.1 Components of the generalized local search

e Evaluationcomponent: The key part of the evaluation component is tisé fooic-

tion, specifically how to define an appropriate function e describe the status
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Figure 5.2:Generalized local search.

of the current state accurately. A common approach is to huseotal number of
broken constraints. In general this value is a rough indrcat the closeness to a
solution[Morris, 1993. The value is easy to calculate and it is applied in many al-
gorithms. Another popular approach is to weigh constraifitis method is more
complex; however it can provide more accurate state infaomay indicating which
constraint is most likely to cause the conflict. Other methsdch as the ‘squeaky
wheel’ [Joslin and Clements, 19pand market-based technigi&andholm, 200R

are considered to be more powerful approaches to improat $earch.

e Strategycomponent: How to guide the search to move to next state @sattio local
search. There are many heuristics that can be used in thigarent, such as random
start, random walk, min-conflict, tabu search, steepestetesand so on. They all
have drawbacks and advantages. Some may work well on somg G&Pnot on
others. Because it is difficult to say which is best in a giviénagion, this area is

open to further study.

e Actioncomponent: Taking action is the final step of local searchsigksnent and

un-assignment define two types of movement: move in and mokeSometimes
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‘move in’ is not enough for local search. ‘Move out’ could pitee more solution
space to explore. Another possible action is to switch trsggaments of two or
more variables. This kind of flipping may break the standafised by local optima

and lead the search to a promising state.

5.1.2.2 Transitions

Transitions happen when an action is taken. Determininghlagacteristics of transitions
could help us design algorithms. There are three basic typaansitions: conditional,

probabilistic, and random. ‘Conditional transition’ meahe action is taken according to
a certain set of conditions. For example, in min-conflicg thovement occurs only if a
better state is found. ‘Probabilistic transition’ means #iction is taken with a probability
p. For example, we use a probabilipyto control the random walk strategy. ‘Random
transition’ means that the action is taken randomly, sucthegandom restart strategy.

The combinations of these three types could comprise additiransition types.

5.2 Extensions of ERA

ERA has the best capability to solve solvable CSPs amonghoee experimental search
strategies, such as ERA, LS and BT. Among them, only ERA cahdifull solution with
solvable problem instances. However, the deadlock phenomaegrades the performance
of ERA on unsolvable instances. In this section, we contmuwenvestigation on possible

solutions to handle deadlock.

5.2.1 ERA with mixed-behavior rule

The original ERA forces each agent to follow the same reactile. This approach might

limit the freedom of agents so that all agents have the saima/i®. In our new approach,
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we allow each agent to follow different reactive rules. Ihetwords, the behavior of
agents is different. In this way we hope ERA can achieve a&bp#rformance in dealing
with the deadlock problem. We conducted our experimentserfallowing manner on all

unsolvable instances of the GTA problem.

Experiment 5.1. Each agent was set to take a random reactive rule at the legioithe
search. Then an agent followed its assigned rule duringrtheeesearch processing. This

means that an agent never changes its reactive rule thatssigmed at the beginning.

Experiment 5.2. Each agent was set to get a reactive rule randomly at eaatideduring

the search, meaning that the reactive rule of an agent mgyduaing the search.

We observe in our results that the quality of solutions carm@improved over the
original ERA without use of the mixed-behavior rule. In atherds, the mixed-behavior

rule cannot solve the deadlock problem of ERA.

5.2.2 ERA with hybridization

Each search technique has its own advantages and shorggon@an we use the advan-
tages of one technique to improve the performance of ardthilee combination of differ-
ent search techniques would help to solve a problem whendiwvidoal technique cannot.

This hybrid approach is often applied in solving CSPs.

Experiment 5.3. we conducted our test on Spring2001b (O). We used a soluénargted
by ERA as a seed, then fixed the consistent assignment in¢leasel solved the problem
again by ERA. We repeated this process until the quality@&tilution cannot be improved
further. Then we used BT or LS to solve the problem with thelggnerated by the last
solution from ERA. The result is shown in Figure 5.3. The mdinumbers shown in the
parenthesis: the first one is the number of unassigned cyuihgesecond one is the number

of unused GTAs.
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Figure 5.3:ERA with hybridization.

We see that the solution cannot be improved after applying ERee times, because
ERA reaches the real deadlock situation. We also find that ERWAImprove the solutions
it generates by fixing the consistent assignment. But, wimytlea solutions be improved
the first three times when ERA is applied? At these pointsERA does not get stuck in
a real deadlock. In a state that is close to a deadlock, teare guidance for agents on
which one should move or which one should keep its currentipos Thus some agents
might ‘aimlessly’ move out from their promising positiorss a result, the performance of
ERA gets degraded. By forcing the consistent assignmerd foxéd as a seed, it provides
a kind of guidance to agents so that some agents can keeptbmiising positions. When
a solution cannot be improved by ERA itself, a real deadlamucs. At the point we apply

LS or BT, the deadlock is resolved and a better solution casbba&ined.

5.2.3 ERA with global control

In the original ERA, each agent has one goal—-its own local-godind a better position

to move to. The agents do not care about the global goal; th@rements are driven only

by their local goals. In the case of solvable CSPs, wherewdisnlmust exist, each agent
can find itszero position , and the movements of agents are guaranteed to reach the
global goal. The proof is presented[lriu et al, 2004. However, in the case of unsolvable
CSPs, there is no full solution at all. Each agent reachestark@osition but notzero

position ; the result of the movements might be far away from the glgoal. Thus,
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adding global control in the ERA system may help agents mowerd the global goal.
Inspired by local search, we propose to enhance ERA withaglobntrol in order to
avoid deadlocks. To this end, we add the following reactile to the ERA system. After
selecting a position to move to (which is done accordingéaéactive rules of Section 4.2),
the agent also checks the effect of this move on the globdl goeasured as the total
number of violations of the entire state. Only when the mosetdoes not deteriorate the

global goal does the agent effectively execute the consitierove.

Experiment 5.4. Solve the GTA problem for the data set of Spring2001 (O), a@r-ov
constrained instance, and that of Fall2001 (O), a solvaigtance, using the original and
the modified ERA algorithm. We choo$&BLR as the default behavior and observe the

number of agents imero position
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Figure 5.4:ERA with global control on Spring2001(0).

From the Figure 5.4, we see that the ERA with global contrbblves in a much more
stable way than the ERA without global control. A better siolu (the number of unas-
signed courses is reduced from 24 to 20) is obtained. In tivalsie instance of the GTA
problem (Figure 5.5), the ERA with global control performsieh like our local search

approach. It quickly gets stuck on local optima.
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Figure 5.5:ERA with global control on Fall2001 (O).

For the over-constrained data set, the new rule we addeddbalgcontrol was able to
reduce the deadlock but not eliminate it completely. Indeetobserved that the modified
ERA was able to reach better solutions than the original EfRAvever, the solution was
still not as good as the one reached by local search. For thebde data set, the modified
ERA was quickly trapped in a local optimum, similar to locahsch. Thus, our attempt to
add global control to ERA failed. On one hand, we are not abke#ach as good solution

as local search, and on the other hand, we inherit the shoimgoof local search.

5.2.4 Conflict resolution

Here we discuss two automatic conflict resolution proceslfme ERA. The first one is
based on introducing dummy values in the CSP, and the seaoadises the violation

values obtained by ERA as a priority criterion.

1. Add dummy resources one by one, and attempt to solve th#egomnoagain. (The
agents given the dummy resources remain unassigned ityrediie implemented
this strategy for the data sets Spring2001b (O) and Fall2002Rows (b) and (f) in
Table 4.1), yielding the data sets shown in Rows (a) and (€lihe 4.1. We noticed
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that ERA was able to solve the problem while the two othercesatrategies failed.
Indeed, there were not enough GTAs to solve these data setsstiBg them by
adding ‘dummy’ values, one at a time, allowed ERA to solveséhproblems. After
a complete solution was obtained, we removed the dummy salM¥e noticed that
this technique allowed us to generate partial solutionsiogntly better than those

obtained by LS and BT, which failed to solve even the booststhinces.

. Given a deadlock (described here as a set of conflictingtagad the unique index
of their corresponding positions), we distinguish two sasgther all agents have the
same value for the position or they have different, non-z@taes. The situation is
illustrated in Figure 5.6. A circle represents the indexlad tonflicting positions,
a square represents an agent, and the value within the sguaeeviolation value
for the position. The agents located on a circle cause a deladin the first case,
we are in a situation in which the constraints and preferentéhe problem yielded
positions that havexactlythe same values for the variables in a deadlock. In other
words, ERA does not have enough information to discrimiaateng the variables
involved in the deadlock. Thus, an arbitrary, greedy assigmt of the position to any
of the agents in the deadlock is the only mechanical way teestble deadlock. We

propose to solve Case 2 as follows. We sort the conflictingiigge an increasing

3 2
case case
3 3 3 5

~_ " ~__

Figure 5.6:Two cases of a deadlock.

order according to their violation value. We examine theilalaée position for an

assignment to the first agent in the priority queue, breattesyrandomly, and check
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whether this does not yield any inconsistency on the entwblpm. If any inconsis-
tency is encountered, we remove the agent from the queuset, tfiren we assign the
position to the agent, and we update the violation valueshHieremaining agents.
The process is repeated until all agents in the deadlock e examined. We did

not test this technique because it seemed more complextibgrédvious one.

5.2.5 Improved communication protocols

Another method to avoid deadlock on unsolvable problem<ERRA, is to improve the

communication protocol. However, the more complex thequok, the more sophisticated
and problem-dependent the system becomes. It is difficidefme a protocol such that
each agent has the same right to get a position. In other watdsn a deadlock happens,
itis hard to decide which agent involved in the deadlock &thbave the position or should

give up the position. Thus we do not discuss this topic in ld@pthis thesis.

5.3 Conclusions

Generalized local search provides a platform for us to flim@arealize, and analyze local
search algorithms. To improve the performance of localcteave could concentrate our
attention on three components: evaluation, strategy, eiaha

For the ERA approach, the problem is the deadlock phenomemamsolvable CSPs.
We address several approaches to deal with this problemoughrour experiments we

learned:

e The mixed-behavior rule cannot help ERA deal with the deadjwoblem.

e The hybrid approach can help ERA resolve the deadlock pmable
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e With global control, ERA can effectively avoid the deadlqmioblem. However, it
sacrifices its de-centralized mechanism which helps ERAetalide to avoid local

optima.

e Constraint resolution techniques can help ERA solve thdldek problem.

Summary

There are three basic components in a local search systatnaé&en, strategy, and action.
The GLS establishes a platform to formalize, realize andyaedocal search algorithms.
When solving over-constrained problems, ERA with hybridime and ERA with conflict

resolution can help ERA overcome deadlock phenomenon.
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Chapter 6

Conclusions and future work

In this thesis, we studied two iterative improvement teghes: a heuristic local search
and a multi-agent approach. In the local search approachmpiemented min-conflict

heuristic hill-climbing with random walk and restart segies (LS). We adapted the min-
conflict heuristic to non-binary CSPs, identified the nugatonove phenomenon of LS, and
examined the performance of LS on the GTA assignment pralfemher, we investigated
how the noise strategies help LS deal with local optima. &rthulti-agent approach, we
implemented the ERA algorithm and demonstrated its perdoga on the GTA assignment
problem. Through observing the behavior of individual dgewe identified the deadlock
phenomenon of ERA on over-constrained problems. We cordpie performance of

ERA, LS and BT. Further, we discussed possible approachekafodling and solving

deadlocks. In this chapter, we summarize our researchysiismnclusions about LS and

ERA, and point out directions for future research.

6.1 Summary of the research conducted

Local search approach is a well-known example for applyi@gtive improvement. There

is a large body of research in this area, however most of geareh was conducted using
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puzzles or randomly-generated CSPs. In this study, we dsimaded the performance of
LS on the GTA assignment problem. The main shortcoming ofd®at it gets stuck in

local optima. Once the solution reaches some state in thei@olspace, the quality of
solution cannot be further improved. We examined noisdegjias to help LS to handle
local optima. Further, we presented GLS as a framework ichvta study and design local
search algorithms.

In this thesis, we also study a multi-agent search apprdaRA), which uses the same
iterative improvement mechanism as LS does. However, tpeanement of ERA results
from a set of autonomous agents with local goal-directeéeh and communication ca-
pabilities. We demonstrated that ERA has the best abiligvtad local optima on the GTA
assignment problem. However, on unsolvable instancesehgavior becomes unstable.
We identified it as a deadlock phenomenon.

We conducted the following experiments on eight instandethe® GTA assignment

problem in this thesis: For LS,

e Using constraint propagation to handle global constraints

Comparing LS and BT

Using random walk to avoid local optima

Using random restart to recover from local optima

Identifying behavior for solvable and unsolvable instance

For ERA,
e Testing the behavior of ERA
e Comparing the performance of ERA, LS and BT

e Observing behavior of individual agents
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¢ Identifying the deadlock phenomenon
For improving ERA,

e Mixing behaviors of agents

e Using hybrid search techniques

e Adding global control

e Using conflict resolution strategies for ERA

6.2 Conclusions of LS and ERA

LS is able to find a consistent partial solution within a shionie interval. This property
can be used when the computation time is limited. The mgkirh approach exhibits the
best ability to avoid local optima. A review of the main fesi of these two approaches is

given below:

6.2.1 Local search strategy (LS)

we summarize the features of LS as follows:

Nugatory-move phenomenon: For a CSP with global consgait® shows poor perfor-
mance. The problem is caused by the nugatory-move phenam@uw study shows

that constraint propagation is an effective approach teestblis problem.

Efficiency: LS can find a consistent partial solution withirstzort time interval. This
property can be used for generating a seed solution for cmmich techniques in

hybrid approaches.



90
Monotonic improvement: LS improves the solution quality Heypairing variables in a
conflict set. Once a variable gets a consistent assignniésntéver repaired again.

This approach causes LS to stabilize and quickly get stutdcial optima.

Noise strategies: The effect of random restart and randotk mwadealing with local
optima is insignificant. The value of noise probabilityn random walk is difficult
to identify when solving the GTA assignment problem. We khihe value ofp
depends on a particular CSP. A basic principle of how to cadlois value should be

considered: the value @fshould not be too smalk( 5%) or too big ¢ 45%).

6.2.2 Multi-agent strategy (ERA)

we summarize the features of LS as follows:

Ability to avoid local optima: ERA has an inherent immunity avoiding local optima

due to its de-centralized control schema. As a result, th& & solve tight CSPs.

Local goal-directed behavior: ERA is different from localasch, even though the cost
function looks like the one used in local search. In ERA, esgdnt only cares about
its own cost of movement. Even though the movement of an agend cause the
quality of the entire state to worsen, the agent still issist moving to that position
for its own purpose. This local goal-directed behaviorad=RA to explore more

search space so that the local optima may be overcome.

Simple and poor communication: All agents exchange théarimation through the en-
vironmentE. This simple communication is easy to implement. Howewas, not
enough for over-constrained problems that may requiretiatidi information for

agents to choose their next move.
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Deadlock phenomenon: ERA exhibits two different behavigtable and unstable evo-
lution. It is stable on solvable problems. However its etioluappears to oscillate
greatly on unsolvable problems. We identify this shortaogrand characterize itas a
deadlock phenomenon. This undermines the application &f &Rover-constrained

problems.

6.3 Open questions and future research directions

Our experiments were carried out on the real-world instant¢he GTA assignment prob-
lem. Most contributions of this thesis, including obseiwas and results of empirical and
theoretical investigations, as well as the discussionscandlusions, seem generalizable
beyond the GTA assignment problem. We still need to charaetéhe behavior of LS and
ERA on random and other real-world CSPs. In the followingise¢ we briefly address

some of these issues.

6.3.1 Local search

To characterize the behavior of local search, we need to/shate approaches besides
the hill-climbing method. Most studies on local search amedd on empirical methods,
because the theoretical understanding of the behaviorcaf kearch is still limited. The
conclusions drawn from the experiments depend stronglyherempirical methodology

and problems applied. Thus,

e The empirical methodology ifHoos, 1998; Hoos and Stiitzle, 199%eds to be

studied and followed as the guideline for future experiraent

¢ We need to study more local search approaches: simulatechiamgMetropoliset

al., 1953; S. Hirkpatrick and Vecchi, 1983abu searchGlover and Laguna, 1993
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and genetic algorithm®avis, 1991; Holland, 1915

e We should study noise strategies over random CSPs withrelifféocal search ap-

proaches.

e We should study and implement the breakout methddrris, 1993 for escaping

from local optima.

6.3.2 Multi-agent search

We showed that ERA is particularly effective at handlinghtigsolvable problems that
resisted other search techniques. However, its short@swin over-constrained problems
(i.e., its instability and the degradation of the approxensolutions it finds) significantly
undermine its usefulness in practice. We plan to addresgptblem from the following

perspectives:

e Develop conflict resolution strategies to overcome dedsloNote that the ability of

ERA to isolate the deadlock is a significant advantage intdsk.

e Experiment with search hybridization techniques with L&iak can reach and main-

tain a good quality approximate solution within the first fie@rations.

e Further, we plan to expand our study to include techniqueb as randomized sys-
tematic searchGomeset al,, 1999, the squeaky wheel methfdbslin and Clements,
1999, and market-based techniqu&andholm, 200R in a setting similar to the ‘al-

gorithm portfolios’ of[(Gomes and Selman, 2001

e GTA problem is a resource allocation problem. The deadlsataused by limited
resources such as the capacity of an agent. Is deadlocKispeciesource allocation

problems, and does deadlock occur in general CSPs? If nibiglis a general way



93

to characterize the behavior of ERA on general CSPs? Adiitisg& As something

else? To explore these questions, we need:

1. to prove the deadlock on general resource allocation emob

2. to do experiments with over-constrained random CSPs

¢ Finally, we plan to conduct a more thorough empirical eviaduneof the behavior of
the various algorithms on randomly generated problemevatig the methodology

of [Hoos, 1998; Hoos and Stiitzle, 1999

6.3.3 Backbone

The concept of backbone was introduced on the satisfial§@iyf’) decision problem in
1999[Monassoret al, 1999. Backbone stands for the set of variables that appear con-
strained to the same value in all solutions. In other worgs, assignment of variables in
backbone is frozen in all solutions. As shown experimeyial[Parkes, 1997 the size of
backbone is a crucial index for the cost of local search aqgres. For a problem with large
backbone size, all of its optimal assignments will be lodatea particularly restricted area
of the search space. That means many erroneous assignorahesvariables in backbone
may be made during the search. On the other hand, problerhssmidll backbone size
have optimal assignments widely distributed in search ep&yptimal and near optimal
assignments are expected to include at least a subset afrthelé’s backbone constrained
to appropriate valuddelelis and Stamatopoulos, 2J02ccording to[Slaney and Walsh,

2001], backbone should be studied because:
1. Backbone is an important indicator of hardness of CSPs.

2. Identification of backbone variables could reduce thigcdity of problems.
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Regarding the GTA problem: Does it encounter backbone bi@s& If yes, what are the
reasons that cause backbone ? Is it possible that the bazkbaid improve LS or ERA?
Could we use the backbone to simplify the GTA assignmentlpro®
Building on previous studies of LS and ERA, the goal of thiesis was to enhance
the general understanding of LS and ERA algorithms and befiaviors. Through exper-
iments to evaluate their performance, we identified thetsborings of LS and ERA and

proposed improvements. Finally, we pointed out futureatioms for research.
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Appendix A

Documentation for LS and ERA

From 2001 to 2003, | worked on the study of two search tectesglocal search and multi-
agent based search, in the context of a real-world appicathe assignment of Graduate
Teaching Assistants (GTA) to academic tasks. | implememtedalgorithms: hill-climbing
with min-conflict[Minton et al, 1994 heuristic (MC) and ERALIu et al, 2004. The
detailed research on these two techniques can be foundsithésis.

This document gives a brief introduction of the model of thEAGssignment problem
and data structure of objects used in the model. Furthegesitribes how to install and use

the programs to solve the instances of the GTA assignmehtgo

A.1 Introduction

The Graduate Teaching Assistants (GTA) problem is a realeand hard constraint sat-
isfaction problem. Based on the model built[g§laubius and Choueiry, 200Rave devel-

oped a local search approach - hill climbing with min-conftieuristic and a multi-agent
search algorithm - ERA. In a GTA assignment problem, we averga set of graduate
teaching assistants, a set of courses, and a set of cotstraah specify allowable assign-
ments of GTAs to courses. The goal is to find a consistent atisfasztiory assignment.
In this problem, we model the courses as variables and thes@FBAvalues. Typically,

each semester a pool of 25 to 40 GTAs must be assigned as g@destructors to the
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majority of courses offered during that semester. In the, plais task has been performed
by hand by several members of the staff and faculty. Teatbhedules were iteratively
refined and updated based on feedback from other faculty menamd the GTAs them-
selves, in a tedious and error-prone process dragging otlea-week period. It was
quite common to have the final hand-made assignments cantaimber of conflicts and
inconsistencies, which negatively affected the qualitypof academic program. For ex-
ample, when a course is assigned a GTA who has little knowledghe subject matter,
the course’s instructor has to take over a large portion ®GHA's job and the GTA has
to invest considerable effort in adjusting to the situatidoreover, students in the course
may receive diminished feedback and unfair grading. Owrefiin modeling and solving
this problem using constraint processing techniques hes@lted in a prototype system
under field testing in our department since August 2[lBthubius and Choueiry, 200Ra
This system has effectively reduced the number of obviouadlicts, thus yielding a com-
mensurate increase in course quality. It has also decreaseamount of time and effort
spent on making assignments and has gained the acceptahe@oval of our faculty
and students.

In this chapter, we give a brief review of the data structur¢he GTA assignment

problem. That helps us to understand and use the functi@tsibded in next chapter.
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A.1.1 File structure

The entire GTA package should be installed under gta dingcithe following directory

tree illustrates the file structure:

-- make.lisp
-- my-extensions.lisp

-gta-+
|- BUG-LOG
|-- DATA
[-- ORIGINAL-DATA
[-- LIST-FILE
|-- PROBLEM-DEFINE---+
| |-- basic-files
| |-- consistency-checking
| |-- csp-setup
| |-- csp-utils
| |-- read-data
I
|-- SEARCH-ALGORITHM-+
| |-- search-fc
| |-- local-search
| |-- era-search
I
I

The content of each directory is described as follows:

e BUG-LOG: records the log when a bug is reported and fixed

DATA : stores all GTA data files collected

ORIGINAL-DATA : all backup files from GTA data

LIST-FILE : includes all list files used by make file

PROBLEM-DEFINE : all files under this directory are used to build an instarfce o

the GTA assignment problem.

— basic-files create the GTA package, declare global variables andecosatrse

and gta objects
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consistency-checkingperforms the node consistency checking

csp-setup defines constraints and solution objects, and createg didem

csp-utils here you can find user interface functions and auxiliargfioems for

certain purposes

read-data takes the data text-files into data structure so that thgraro can

use it to build problems and solve them
e SEARCH-ALGORITHM: different search approaches to sohephoblem

— search-fc systematic search with back tracking
— local-search hill-climbing with min-conflict heuristic

— era-search a multi-agent based search
e make.lisp. make file
e my-extensions.lisp useful tools

A.1.2 Data structure

In this section, we review some main classes of the GTA assegu problem including

csp-problem, csp-solution, csp-var, csp-val, csp-cairgircourse and gta.

1. csp-problem: defines the data structure of a GTA probledrhais 13 instance slots

and 39 methods.
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csp-problem
ID the identification number
closed-variables closed or canceled courses
conflict-vars variables in no-good set for local search
constraints all constraints
future-variables used for systematic search
good-vars variables in good set for local search
nil-vars variables get nil assignment for local search
past-variables used for systematic search
solution a solution for the current problem
static-variables pre-assigned variables
total-broken-constraints number of broken constraints for local search
vals all values
variables all variables

2. csp-solution: defines the data structure of a solutiorhasdLO instance slots and 45

methods.
csp-solution
ID the identification number
problem the problem object
assignment the final assignment in the form<{(var >< val >< pref >)...)
conflict-vars variables involving conflict used by local search
nbr-broken-constraints number of broken constraints based on the current assignmen
nob number of backtracks
null-assignment nil assignment used by local search
product-preference quality of the solution
size non-nil assignments
sol-time CPU time to solve the problem

3. csp-var: defines the data structure of the CSP variabléasd 1 instance slots and

37 methods.
csp-var
assigned-val  the assigned value
constraints all constraints on this variable
course the corresponding course of the variable
current-domain current domain
future-fc used by systematic search

initial-domain  the original domain
neighbor-vars variables in the neighbor

problem the problem object
reductions used by systematic search
tentative-val used by local search

conflict-num used by local search
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4. csp-val: defines the data structure of the CSP value an@ iretance slots and 6

methods.

csp-val

ID the identification number
gta-obj the corresponding GTA of the value

5. csp-constraint: defines the data structure of the CSRragmsand has 3 instance

slots and 13 methods.

csp-constraint

ID

the identification number

problem the problem object
variables restricted variables

The subclasses of classp-constraintare illustrated in Fig. A.1

CAPACITY-CONSTRAINT ‘

MUTEX-CONSTRAINT ‘
CONFINEMENT—-CONSTRAINT ‘
INTENSIVE-CONSTRAINT EQUALITY-CONSTRAINT ‘

CONSTRAINT

DIFFTA-CONSTRAINT ‘

DEFICIT-CONSTRAINT ‘

CERTIFICATION-CONSTRAINT ‘

NILPREF-CONSTRAINT ‘

EXTENSIVE-CONSTRAINT % OVERLAP-CONSTRAINT ‘

TAKING—COURSE—CONSTRAINT‘

Figure A.1:The subclasses of constraint.

6. course: defines the data structure of a course object and imstance slots and 19

methods.

Ccsp-course

ID
assigned-ta
course-no
course-time
days
section

title

weight

the identification number

who is assigned to this course

the course no., for example, cse310
the time for the course

days of course

the section number

the name of the course

the load factor of this course
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The subclasses of classurseare illustrated in Fig. A.2

LECTURE-COURSE H SHORT-LECTURE-COURSE ‘
TEACHING-COURSE RECITATION-COURSE H SHORT-RECITATION-COURSE ‘
LAB-COURSE H SHORT-LAB-COURSE ‘

COURSE

GRADING—-COURSE }—{ SHORT-GRADING-COURSE ‘

Figure A.2:The subclasses of course.

7. gta: defines the data structure of a GTA object and has 18nos slots and 40

methods.
csp-GTA
name the GTA's name
advisor the GTA's advisor
program which program the GTA is in
admit semester admitted
grad expected graduation
years-supported years with financial supported by CSE
ugrad-GPA the GPA of undergraduate
grad-GPA the GPA of graduate
assistantship if the GTA is current supported by CSE
assist-val the amount of assistantship
prev-teach last two teaching assignments
deficit deficiencies of courses
GRE the GRE score
talk number of talks attended
speak English speaking test for international student or natinglish speaking
ITA if ITA qualified?
course-list all courses opened in the current semester
current-courses the registered courses by the GTA
capacity full-time or part-time TA

A.l3

More details on data files

Currently we collect the data from the user interface, wialtbws students to input their

personal and relative information for applying for a teachassistantship in the Depart-

ment of Computer Science and Engineering of University difdska-Lincoln. The data

will be stored in the form of a text file. We are working on datsé architecture to achieve

solving the GTA assignment problem without dealing with da¢a files.
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After we get the raw data files from the interface, we need tbtedm by scripts or
hand so that the lisp code can read it. The data files are listbe following table:
DATA files

constraint-data define constraints
exceptions.lisp in case of course cancellation, pre-assignment, or GTA vamo

grading only courses that need graders
gtas information about all gtas

lab only labs

lecture only lectures

recitation only recitations

in case there are some courses only available for half ofaheester
short-grading  only courses that need graders
short-lab only labs
short-lecture only lectures
short-recitation only recitations

Note: These files must exist even if some are empty.

A.1.4 Function calls

In this section we give a brief introduction to some main ftioits. We use figures to
demonstrate how these functions work. The detailed usatieesé functions can be found

in the next chapter.

1. load-data: reads the data files into memory (shown in Eigu8)

LOAD-COURSES |

‘ LOAD-DATA LOAD-GTAS ‘

LOAD-EXCEPTIONS ‘

Figure A.3:Function: load-data.

2. initialize-csp: initializes all constraints and globalriables and creates an instance

of the GTA assignment problem (shown in Figure A.4)
3. process-nc: performs node consistency on the probleow(sin Figure A.5)

4. fc-bound-search solves the problem by systematic ségainclivn in Figure A.6)
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INITIALIZE-HALF-SEMESTER

INITIALIZE-DIFFTA-CONSTRAINTS

INITIALIZE-DEFFICIT-CONSTRAINTS

INITIALIZE-TAKING-COURSE-CONSTRAINTS

INITIALIZE-OVERLAP-CONSTRAINTS

INITIALIZE-CERTIFICATION-CONSTRAINTS

INITIALIZE-NILPREF-CONSTRAINTS

INITIALIZE-CSP INITIALIZE-CONFINEMENT—-CONSTRAINTS

INITIALIZE-MUTEX—-CONSTRAINTS

INITIALIZE-EQULITY—-CONSTRAINTS

INITIALIZE-CAPACITY-CONSTRAINTS

VARIABLES

COMPUTE-NEIGHBOR-VARS

|
|
|
|
|
|
|
|
INITIALIZE-NB-EQUALITY-CONSTRAINTS ‘
|
|
|
|
|
SET-PREASSIGN ‘

Figure A.4:Function: initialize-csp.

NODE-CONSISTENT |

VARIABLES |
PROCESS—-NC

INITIAL-DOMAIN |

CURRENT-DOMAIN |

Figure A.5:Function: process-nc.

. solve: solve the problem by local search (shown in Figui@ A
. mcrw: the hill-climbing with min-conflict heuristic algithm (shown in Figure A.8)
. era-screen: solves the problem by ERA search (shown uré&ig.9)

. evaluate-moving-agent: evaluates the cost of movingantgshown in Figure A.10)
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LEAST-DOMAIN-ORDER ‘

DOM-DEG-ORDER

VARIABLES

STATIC-VARIABLES

ASSIGNED-VAL

ASSIGNMENT

BOUND-LABEL

TEST-AND-SET

FUTURE-VARIABLES

PAST-VARIABLES

BOUND-UNLABEL

USER-HALT

PAST-VARIABLES

ASSIGNMENT

FUTURE-VARIABLES

VARIABLES

SOLUTION

GEOMETRIC-MEAN-P

PREFERENCE

|

|

|

|

|

|

|

|

‘ |
FC-BOUND-SEARCH N UNDO-ASSIGN ‘
| |
|

|

|

|

|

|

|

|

DLD ‘

Figure A.6:Function: fc-bound-search.

INITIALIZATION

MCRW

APPEND-STATIC-VARS

SOLVE

ZH-EVALUATE-SOLUTION

|
|
|
SOLUTION |
|
|

RESET-PROBLEM

Figure A.7:Function: solve.

A.2 Usage of functions

In this section, we introduce the usage of each function.
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START-STATE

EVALUATE-STATE

STORE-SOLUTION

NBR-BROKEN-CONSTRAINTS

|
|
|
|
GET-RANDOM-ITEM ‘
|
|
|
|

AVAILABLE-DOMAIN

GET-MC-VALUE

RE-INITIALIZE-STATE

COMPARE-AND-SET

Figure A.8:Function: mcrw.

INITIALIZATION

VARIABLES

INITIALIZE

UPDATE

STORE-THE-SOLUTION

|
|
|
|
|
AGENTS-IN-ZERO-POSITION ‘
|
|
|
|
|

MOVE-BEST

COMPARE-AND-STORE

APPEND-STATIC-VARS

ZH-EVALUATE-SOLUTION

PRINT-ASSIGN

Figure A.9:Function: era-screen.

ASSIGNED-VAL

INITIAL-DOMAIN

EVALUATE-MOVING-AGENT

|
|
UPDATE-CAPACITY ‘
|

NUMBER-BROKEN-CONSTRAINTS

Figure A.10:Function: evaluate-moving-agent.

A.2.1 Manager script

As the interface to users, these functions help the userrtergte a solution from a GTA
data file.

e solve-gta
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e generate-dummy-GTAs

e create-dummy-GTAs

solve-gta data-file-name-with-directory [FUNCTION

An example to show how to create an instance of GTA assignprefdem,
how to manage it and how to solve it by using different searglalgorithms.

For more information about GTA data management, please tledereadme

file under DATA directory.

generate-dummy-gtas number&optional (capacity 1) [FUNCTION

to generate temporary or dummy GTAs dynamically into thenhable of
*all-gtas* with default capacity of 1. The user can specifg tapacity. Also,
the user can statically add dummy GTAs into the gtas file withwing this
function. In this way, the user can record the data. In udaggyfunction, the

data on dummy GTAs will be lost after the program is shut down.

create-dummy-gtas n &optional (cap 1) [FUNCTION

Precondition: expects a positive integer n. GTA names aig@ad as dummy-
1, dummy-2,... default capacity of a dummy GTA is 1

Postcondition: returns a list of n GTAs with default valuesrelevant features
A.2.2 Global variables

All global variables used by local search or ERA search afieel@ in global-variables.lisp.

e step

e best-sol-at
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e Mmax-move
e max-random-restart
e probability

e run-time

e total-move

e CCN

e MV

e agent-behavior

e val-conf-ht

*step* [VARIABLE

iteration step

*best-sol-at* [VARIABLH

the step where a best solution is found

*max-move* [VARIABLH

this is maximum number of moves of local search

*max-random-restart* [VARIABLE

maximum number of times hill-climbing is restarted from aitial state

*probability* [VARIABLH

this is random walk probability, in percentage



*run-time*

cpu time

*total-move*
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[VARIABLE

[VARIABLE

the number of movement for all agents for reaching zero ositsed by

multi-agent method.

*ccn*

the number of constraint checking

*mv*

a list of all values and each value marked by a number

*agent-behavior*

a list of all variables associated with its specified behavio

initialization

initialize the global parameters

renew-parameters

renew some global parameters

*val-conf-ht*

hash table for the state table of agents

[VARIABLE

[VARIABLH

[VARIABLE

[FUNCTION

[FUNCTION

[VARIABLE
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A.2.3 Local search algorithm
We divide functions into four groups, for example:
1. search functions: used directly or indirectly by the skaigorithm

2. analysis function: used to analyze the performance ob#agch or the quality of
solutions in order to provide some observation for imprgwime code or judging the

search
3. test functions: conduct different experiments for darparposes

4. debug functions: used for debugging the code
A.2.3.1 Search functions

1. Hill-climbing with min-conflict heuristic algorithm
e start-state
e available-domain
e get-mc-value
¢ MCRW
e re-initialize-state
e non-empty-domain
o filter-domain
e is-a-ita
e course-need-ita
e gta-without-ita-first
e append-static-vars
e gta-without-ita-first
e start-solving

e start-and-store
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e random-start

e solve

start-state problem [FUNCTION

begin the local search from any a random state
Precondition : a given problem that is node-consistent.
Postcondition: each variable is assigned a random valueaamatidom

solution for this problem is returned

available-domain var [FUNCTION
for a given variable, check all values in its initial domaat return a list
of values allowed by the maximum capacity. should only béedafter
evaluate-state [and store-solution]

get-mc-value variable [FUNCTION
return a value to a variable. If this course needs an ITA, tie¢émrn an
ITA, otherwise first consider GTAs without ITA.

mcrw  problem stream [FUNCTION

the hill-climbing with min-conflict algorithm

re-initialize-state problem [FUNCTION

release all assigned variables
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non-empty-domain variables [FUNCTION

check if the current domain of a variable is empty or not

filter-domain var [FUNCTION

filter the value of each variable in the conflict-set so thatwhlues that

are inconsistent with the variables in the good set will lerid out.

is-a-ita X [FUNCTION

check if a GTA is ITA qualified

course-need-ita x [FUNCTION

check if a course requires an ITA

gta-without-ita-first vars [FUNCTION
if a GTA is ITA qualified, it will not be considered in the aseigent. First
consider GTAs without ITA

append-static-vars solution problem [FUNCTION

if pre-assignment exists, just put them into the solution

start-solving stream [FUNCTION

take a stream, then generate a problem and begin to solveablem the

final solution will be put into the stream
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start-and-store [FUNCTION

a convenient driver to generate a problem and solve it witldoan-start

strategy ; Save the result into a specified destination

random-restart stream [FUNCTION

called by start-and-store. It can also be used independeniust give a

stream.

solve problem stream [FUNCTION

take a problem and a stream to solve the problem with randarhstrat-

egy

. Evaluation criteria

e num-broken-constraints
e broken-constraints

e nbr-broken-constraints
e evaluate-state

e null-assignment

e product-preferences

e zh-evaluate-solution

e broken-constraints

num-broken-constraints variable [FUNCTION

for a given variable, check all constraints applied on it setdrn the num-
ber of broken constraints in which the variable is consedirDOES NOT

check capacity constraints
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broken-constraints (variable csp-var) [METHOD|

for a given variable, return a list of broken constraintsleggpon that

variable

nbr-broken-constraints (variable csp-var) [METHOD|

a method version of num-broken-constraints

evaluate-state (problem csp-problem) [METHOD|

partitions variables into 2 sets: good and bad; good varsathd not break
*any* constraint and satisfy cap constraint; bad variallesak a con-
straint or do NOT satisfy cap constraint; ASSIGNMENTS ARE WE
AS VARIABLES SATISFY CAP CONSTRAINTS and updates the num-
ber of broken constraints in the problem, which DOES NOT aotdor

capacity constraints

null-assignment (problem csp-problem) [METHOD|

count the number of variables that get a null assignment

product-preferences (problem csp-problem) [METHOD|

calculate the product of preferences for all GTAs

zh-evaluate-solution  (sol csp-solutiongoptional (stream t) [METHOD|

evaluate the quality of a solution based on:
1. number of unassigned courses

2. number of unused GTAs
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broken-constraints (problem csp-problem) [METHOD|
return all broken constraints for a problem

. Optimization functions

In local search, at each time when a solution is generatecsowgare it with the
previous one and store the better one in terms of the qudlgplation. Thus when
the search ends, we have the best solution found so far.

e compare-and-set

e store-solution

e improvement-p

compare-and-set (sol csp-solution) (problem csp-problem) [METHOD|

if there is improvement, move to it; otherwise keep solution
1). the number of broken constraints
2). the number of nil assignments

3). the solution quality - max geometric mean

store-solution sol problem [FUNCTION

in a solution, assignment = '((varl vall prefl) (var2 ni))store the best

current solution

improvement-p  (sol csp-solution) (problem csp-problem) [METHOD|

tests whether assignment in problem constitutes an imprexméaccord-
ing to 3 criteria:

1). the number of broken constraints



2). the number of nil assignments

3). the solution quality - max geometric mean

return true if the solution is improved.

. Utilities

e available-capacity-p
e remaining-capacity
e assign-a-value

e deassign-a-value

e get-random-item

e vvps-of-c

e tentative-vvps-of-c
e sort-list

¢ release-curr-load

e undo-assignment

e deassign-vars-in-conflict
e messlist

e precise2

available-capacity-p var val
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[FUNCTION

for a given variable and its value to check if the capacitystnt allows

granting the value to this variable

remaining-capacity capacity-constraint

[FUNCTION

for a given capacity constraint return the remaining cagdmased on the

current assignment That is, remaining capacity=Max cépacturrent
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load called by function available-capacity-p

assign-a-value var val+pref [FUNCTION

assign a value to a variable. The value has the format (v§l pre

deassign-a-value var [FUNCTION

remove the current assignment for a variable

get-random-item list [FUNCTION

for a list of element, return a random element in the list

vvps-of-c  constr [FUNCTION

take a constraint, return a list of vvps from the scope of ¢bisstraint

tentative-vvps-of-c  constr [FUNCTION

take a constraint, return a list of vvps from the scope of ¢bisstraint

sort-list var-list &key (test #'j) (key # conflict-num) [FUNCTION

sort a list of variables in decreasing order of conflict-num

release-curr-load problem [FUNCTION

for a given problem, to release the load of the current assigalue
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undo-assignment var [FUNCTION

for a variable, undo the previous assignment and set the valbe nil

deassign-vars-in-conflict problem [FUNCTION

unassign all variables in conflict set

mess_list list [FUNCTION

for a given list, mess up the order of elements in the list imdan

precise2 f [FUNCTION

for a given floating number, return the number by keeping twoirdal
digit
A.2.3.2 Analysis functions

These function are divided, according to the different psgs, into three groups: global

analysis, search analysis and constraints analysis .

1. Global analysis
¢ total-capacity
e max-total-load

e courses-differ-in-half-semester

total-capacity problem [FUNCTION

for a given problem, to calculate the sum of capacities oN&BAS.
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max-total-load problem [FUNCTION

for a given problem, to calculate the total load of all cosré® some
cases, there are two parts of one semester. That is, somsesare only
available in the first half or second half of a semester. In tase, the

bigger one among the two loads will be returned.

courses-differ-in-half-semester problem [FUNCTION

for a given problem, to check which courses are differenben the first

half and second half of a semester.

. Search analysis

¢ find-unassigned-gtas

e unassigned-gtas-info

¢ find-unassigned-gtas

¢ find-available-gta

e partial-assigned-gtas

e over-assigned-gtas-info
e get-capacity-constraints
e occurrence-of-vals

e in-domain-p

e Where-val-appears

find-unassigned-gtas (problem csp-problem) [METHOD|

find out all unused resources given a problem for analysis farothe

search
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unassigned-gtas-info  (solution csp-solution) [METHOD|

print out the information about each unused gta for anglysis for the

search

find-unassigned-gtas (solution csp-solution) [METHOD|

find out all unused resources given a solution for analysis,for the

search

find-available-gtas (solution csp-solution) [METHOD|

for a solution, find out all GTAs that still remain capacity malysis, not

for the search

partial-assigned-gtas (solution csp-solution) [METHOD|

find out all resources that remain as unused capacity foysisahot for

the search

partial-assigned-gtas-info  (solution csp-solution) [METHOD|

print out the information about all resources that remainsaa capacity

for analysis, not for the search

over-assigned-gtas-info  (solution csp-solution) [METHOD|

For a given solution, find out all resources that are oveduse
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get-capacity-constraints (problem csp-problem) [METHOD|

for a given problem, return all capacity constraints

get-capacity-constraints (var csp-var) [METHOD|

for variable, return all capacity constraints

occurrence-of-vals problem [FUNCTION

to count the number of occurrence of a value in all variables

in-domain-p val var [FUNCTION

test if val is in the domain of var

where-val-appears val problem [FUNCTION

for a given value and problem, list all variables that camthe given value

in their domain; It is called by occurrence-of-vals.

. Constraint analysis

e get-all-constraints

¢ all-non-unary-constraints

e get-conflict-constraints

e non-unary-broken-constraints
e ca-responsible

e all-ca-responsible

e value-responsible-for-ca

e all-values-responsible-ca
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e all-mutex-responsible

e var-broken-constraint-pair

¢ all-var-broken-constraint-pairs
e types-constraint

e select-specify-constraint

e analysis-constraints

e analyses-broken-constraints

get-all-constraints  problem [FUNCTION

precondition : expect a problem

postcondition: return a list of all constraints in this plex

all-non-unary-constraints  all-constraints [FUNCTION

precondition : a list of constraints

postcondition: return all constraints except for unarystoaints

get-conflict-constraints constraints [FUNCTION

After the problem is solved, it takes all constraints andnret all broken

constraints

non-unary-broken-constraints problem [FUNCTION

for given problem, return all non-unary and broken constgai

ca-responsible ca-const [FUNCTION
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Input: a broken capacity constraint
Output: return all variables that are responsible for theflat. called by

function: all-ca-responsible

all-ca-responsible ca-consts [FUNCTION

Input: a list of broken capacity constraints

Output: return all variables that are responsible for theflozi

value-responsible-for-ca constr [FUNCTION

Input: a broken capacity constraint
Output: return the number of values that are responsibléhf®iconflict

Called by all-values-responsible-ca

all-values-responsible-ca ca-consts [FUNCTION

Input: a list of broken capacity constraints
Output: return a list of numbers, each number corresponmitige num-

ber of a value that causes the conflict.

all-mutex-responsible mutex-consts [FUNCTION

Input: a given list of mutex/equality broken constraints

Output: return all variables that are responsible for theflozi

var-broken-constraint-pair  variable [FUNCTION

Input: a given variable Output: return the pair of this vakaand the

number of broken constraints on it.
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C - Capacity constraint
M - Mutex constraint

E - Equality constraint

all-var-broken-constraint-pairs  variables [FUNCTION

Input: a list of variables
Output: return all pairs of a variable and the number of bnad@nstraints

on this variable.

types-constraint consts [FUNCTION

for a given list of constraints, return the types of thesest@mnts.

select-specify-constraint type consts [FUNCTION

pick up all constraints from consts with the specified type

analysis-constraints problem [FUNCTION

for a given problem, analyze the broken non-unary condsaio find out

the variables that are responsible for the broken.

analyses-broken-constraints pr [FUNCTION

called by analysis-constraints
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A.2.3.3 Test functions

1. Experiment: test the probability p for random walk
e walk-p-result

o walk-p-test

2. Experiment: restart strategy

e restart-test

3. Hybrid method (ERA + LS): After an acceptable solutionemgrated by ERA, take
this solution as a seed to solve the problem again by LS.
e hybrid-with-LS
e hybrid-with-ERA
e start-statel

e MCRW1

walk-p-result  (sol csp-solution) p&optional (stream t) [METHOD|

print out some information after a solution is obtained.
1. the percentage of unassigned courses over all courses
2. the number of CC

3. the best solution was found at which step

walk-p-test problem [FUNCTION

take a GTA assignment problem, and solve it with differetaibility p

value from 0.01 to 0.50. The result will be stored in a spetifiestination.

restart-test problem [FUNCTION
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set the number of tries before restart from 50 to 500 by inergrof 50

hybrid-with-Is  pro sol [FUNCTION

Start from a generated solution and solve the problem agdmlacal

search method.

hybrid-with-era pro sol [FUNCTION

Start from a generated solution and solve the problem agdaim BERA

method.

start-statel problem [FUNCTION

before use, make sure that the assignment is already doeeé bas gen-

erated solution

mcrwl problem stream [FUNCTION

an alternative version of MCRW. In MCRW the start state of ¢glkarch
begins with random assignment. However, in MCRW1 it begiith &

solution point that was generated by other search appreache

A.2.3.4 Debug functions

e ugly-set

print-value-cap-cst
improve-solution
favorite-set

sort-gta-by-highest-pref
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ugly-set problem [FUNCTION

for test purposes, this is not used in the search algorithonre set of vari-
ables that are in nogood-set. There is no connection betthesn and the

variables in good-set

print-value-cap-cst variables [FUNCTION

for test purposes, not used in search; prints out the culwadtfor each vari-

able

favorite-set list [FUNCTION

takes a sorted ((val pref) (val pref)...) in descending oadepreference and
returns all GTAs with the highest preference. called by-gtatby-highest-
pref.

sort-gta-by-highest-pref list [FUNCTION

for a given list of ((val pref) (val pref) ...), pick up all GBWwho like this course

with highest preference

favorite-set val-pref-Is highest-preference [FUNCTION

for a list of ((val pref) (val pref) ...) and the value of a pgegnce picks up all

GTAs who like this course with specified preference

ca-check problem [FUNCTION

checks if all GTAs violate the CAPACITY constraint.
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print-conflict-course conflict-vars [FUNCTION

for a given set of course, print out the corresponding conuseber

print-assign-all-vars variables [FUNCTION

for a list of variables, print out the current assignments.

info  pr [FUNCTION

prints some information

verify-solution (solution csp-solution) [METHOD|

for verifying if all assignments of a solution are consisteif the returned

result is zero , it is a consistent solution

A.2.4 Multi-agent search: ERA algorithm

This algorithm is implemented based on the pdpar et al., 2004. But here we improved
it by changing the evaluation function. The original functievaluates the entire environ-
ment so that it costs a lot of CPU time. However, in our appnoae only evaluate the

agent that is moving.
A.2.4.1 Basic functions

1. ERA basic functions
e build-VC-ht

e number-broken-constraints

num-broken-constraints-problem

initialize

evaluate-Env
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e evaluate-moving-agent
e update
e move-best
e move-best-with-filtering
e get-new-position
e LR
e rBLR
e better-move
e least-move

e random-move

build-vc-ht  problem [FUNCTION

To build the state table:

The hash table stores the position value for each agent isttheture of
(key value) , where

1. each key is course object

2. each value is a list: (((gta-object preference) positialue),...,)

number-broken-constraints variable [FUNCTION

calculate the number of broken constraints involved in &atde

num-broken-constraints-problem problem [FUNCTION

for a given problem, return the number of broken constrdated on the

current assignment.
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initialize problem [FUNCTION

begin the search from any a random state
Precondition : a given problem that is node consistent.
Postcondition: each variable is assigned with a randomevahd a ran-

dom solution for this problem is returned

evaluate-env problem [FUNCTION

calculate the position value for each agent and updatedhetsible. In the
old version the function is called once an agent moves to apasiion.
But in our new version (this version), this function is onblled after we

get the first initialized state.

evaluate-moving-agent agent [FUNCTION

calculate the position value only for the current movingrag&Ve don’t

need to evaluate the entire state table.

update problem [FUNCTION

after an agent moves to a new position, the position valuethefr agents
may change. Thus after an agent changes its position, wetoegxiate

the position information for all other agents.

move-best problem step [FUNCTION

move agents with best effort to get a better solution, thisige without

global control. (decentralized)
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get-new-position variable step [FUNCTION

FrBLR, the default behavior of ERA. Please refer to the papary thesis

for its meaning.

Ir variable [FUNCTION
LR behavior
rblr variable [FUNCTION

rBLR behavior

better-move variable [FUNCTION

better-move rule

least-move variable [FUNCTION

least-move rule

random-move variable [FUNCTION
random-move rule

. Utilities for ERA
e compare-and-store

store-the-solution

improvement?

hide-position

filter-agent-domain
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e put-solution-to-problem
e shared-constraint
e num-conflict-vals
e consistent?
e gents-in-zero-position
e num-zero-position
e sum-broken-constraints
e gent-in-zero-position?
e gent-violation-value
e vars-in-conflict
e print-state-matrix
e mark-values
¢ value-of-value

e gents-domain-value

compare-and-store (sol csp-solution) (problem csp-problem)  [METHOD|

check if the current solution is better than previous ongg# then store

it. otherwise justignore it.

store-the-solution sol problem [FUNCTION

in a solution, assignment = ’((varl vall prefl) (var2 ni)).to store the

best current solution

improvement? (sol csp-solution) (problem csp-problem) [METHOD|
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tests whether assignment in problem constitutes an imprexéaccord-
ing to two criteria:
1. the number of unassigned courses
2. the preference

hide-position problem [FUNCTION
when an agent is not in zero position, set its value as nil; weeocaly
concerned with the agents in zero position.

filter-agent-domain var [FUNCTION

filter the domain of a variable according to the current assignt

put-solution-to-problem sol [FUNCTION

put the current solution into the problem as an assignment

shared-constraint vals [FUNCTION

take a list of variables, and return all constraints shagetthese variables

num-conflict-vals variable problem [FUNCTION
for a given variable and a problem, return the number of Béeminvolved
in conflict with this variable

consistent? consts [FUNCTION

check a list of constraints to see if they are all consistent
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agents-in-zero-position [FUNCTION

return all agents that are in zero position

num-zero-position [FUNCTION

return the number of zero positions existing in currentestat

sum-broken-constraints [FUNCTION

return the sum of broken constraints on each variable foeatistate, if
the assignment of a variables is nil, set the number of brakestraints
on it as nil

agent-in-zero-position? variable [FUNCTION

check if an agent is in zero position

agent-violation-value variable [FUNCTION

return the violation value of an agent

vars-in-conflict problem [FUNCTION

return the variables involving at least a conflict

print-state-matrix [FUNCTION

print the hash table of the state
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mark-values values [FUNCTION

mark values with sequence number and store them into adistih. a&s ((v1,

value-of-value variable [FUNCTION

for a variable, return the marked value of its current assigralue

agents-domain-value variables [FUNCTION

return a list of variables associated with the index of tlaatable.

A.2.4.2 ERA search

1. Drivers for using ERA algorithm
o ERA
e ERA-screen

e ERA-simple

era problem [FUNCTION

The main program of ERA for solving a problem

Input: a CSP problem

Output:a solution into a specified destination, informaiiacludes:

1. state.dat : records the unassigned number of coursesiassowith
each step

2. agent-domain-val.dat: At each iteration, records tlsggagd value for
each agent

3. agent-violation-val.dat: at each iteration, recorasyhbsition value for
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each agent

4. summary.dat: CC, MAX-MOVE, the quality of solution, thedl as-

signment etc.

era-screen problem [FUNCTION

a driver to use ERA and display the result to the screen

era-simple problem [FUNCTION
Solve a problem by ERA without output

. Functions for conducting experiments
e walk-p-test-era
e walk-p-result-info
e batch-test-for-backbone

e ERA-batch

walk-p-test-era problem [FUNCTION

test how the value of probability P affects the performancERA. The
value of P varies from 0.01 to 0.50 by step of 0.01

walk-p-result-info  (sol csp-solution) p&optional (stream t) [METHOD|

record the information

batch-test-for-backbone problem [FUNCTION

solve a problem in 100 times. For observing backbone.
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era-batch problem sequence [FUNCTION

the main program to perform a multi-agent search ; The batchlgm

called by batch-test

A.3 GTA package Installation

This chapter describes how to install the GTA package. Adi€g) 5.0 or above is needed
to run the lisp code. All files are stored in GTA.tar.gz; yoeddo extract this file under
your home directory by

gunzip GTA.tar.gz

tar xvf GTA.tar

After the file is decompressed, you will see the followingediories created and some files
copied under your home directory.

/home/xxx/owninits.lisp
/home/xxx/lisp/lisp-tools/
/home/xxx/lisp/lisp-tools-file-list.list
/home/xxx/gta/

where xxx means your account name. All files and their detstinaare listed below



137

Category File name Where

configuration owninits.lisp ~

lisp tools add-remove-slot.lisp ~llisp/
add-slot.lisp

loop-detecter.lisp
my-extensions.lisp

string.lisp
time.lisp
undefmethod.lisp
make file make.lisp ~lIgta/
list file lisp-tools-file-list.list ~llisp/
Basic-files.list ~Igta/LIST-FILE/

Csp-setup.list
Read-data.list
Consistency-checking.list
Local-search.list

Search.list
tools my-extensions.lisp ~lIgta/
basic files course.lisp ~Igta/PROBLEM-DEFINE/basic-files/

global-var.lisp
gta-package.lisp

gta.lisp

NC checking node-consistency.lisp ~Igta/PROBLEM-DEFINE/consistency-checking/
preprocess.lisp

CSPsetup  constraint-definition.lisp ~Igta/PROBLEM-DEFINE/csp-setup/

initialize-csp.lisp
constraint-primitives.lisp
initialize-generic-constraints.lisp
csp-definitions.lisp
initialize-specific-constraints.lisp
csp-solution.lisp

CSP utilities  evaluation.lisp ~I/gta/PROBLEM-DEFINE/csp-utils/
interface.lisp
interval.lisp
utility.lisp

read data global-var.lisp ~/gtaPROBLEM-DEFINE//read-data/

read-courses.lisp
read-gtas.lisp
read-specific-data.lisp

BT search fc-bound.lisp ~I/gta/SEARCH-ALGORITHM/search-fc/
search-utility.lisp
LS search analysis-functions.lisp ~I/gta/SEARCH-ALGORITHM/local-search/

debug-functions.lisp
evaluation-criteria.lisp
global-variables.lisp
manager-script.lisp
min-conflict-search.lisp
optimization.lisp
test-functions.lisp
utilities.lisp

ERA search common-era.lisp ~I/gta/SEARCH-ALGORITHM/era-search/
era.lisp

Note: ~ means /home/xxx.
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Appendix B

Experimental Data

As a real-world application, the GTA assignment problem aeéirged as follows. In a
semester, given a set of graduate teaching assistants,0é smirses, and a set of con-
straints that specify allowable assignments, find a camsisind satisfactory assignment
of GTAs to course$Glaubius and Choueiry, 2002a; 2002b; Glaubius, 2001 the GTA
assignment problem, the courses are modeled as varialildb@@G TAs are the values. In

practice, this problem is over-constrained.

B.1 Data Sets

We collected four data sets from four academic semestetreddépartment of Computer
Science and Engineering at the University of NebraskadlmcSpring 2001, Fall 2001,
Fall 2002 and Spring 2003. For conducting experiments, \we ateated four data sets

based on the real-world ones. Thus there are total of eigatsas used in our experiments.

B.1.1 Original and Boosted

As mentioned before, the GTA assignment problem may be cwestrained. That means
there is no solution. In order to make the problem solvabteadded extra GTAs into the
original data sets to boost the resource. Table B.1 list$aai#l sets and their corresponding

instances.
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Table B.1:Data set.
B.1.2 How to boost the resource

There is a data file nameagtas Each block in this file contains information about a GTA.
To boost the resource, you can add extra blocks at the endsofiltn  All GTAs with
name ofdummyare the added GTAs. In each data set there argytasfiles: gtas-boosted
(the boosted one) amgtas-O(the original one). Each entry of a block in thgeasfile is

explained as follows:
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Tom GTAs name
Dr. Smith advisor
MST program
(FALL 2000) semester admitted
(SPRING 2002) expected graduation
15 years supported
3.0 GPA of undergraduate
3.7 GPA of graduate
T assistantship
5500.0 amount of assistantship
NIL last two teaching courses
NIL deficiencies
((GENERAL ((VER. 440) (QUAN. 760) (ANAL. 680)))) the GRE sm
((COLLOQUIA 1) (MS 1)) talk attendance
((FALL 2000) 35) TSE
NIL ITA qualified?
(...) list of courses and preference
(...) list of courses registered
1 capacity

B.2 Data Files

In each data set there are eleven individual data files. Hamires and functions are listed

below:

DATA files
constraint-data define constraints
exceptions.lisp in case of course cancellation, pre-assignment, or GTA vamo

grading only courses that need graders
gtas information about all gtas

lab only labs

lecture only lectures

recitation only recitations

in case if there are some courses only available in half ofémeester
short-grading  only courses that need graders
short-lab only labs
short-lecture only lectures
short-recitation only recitations

Note: These files must exist even if some are empty.

B.3 Constraints

There are total 10 types of constraints in the GTA assignmeotilems such as: mutex,

confinement, equality, capacity, diffta, deficit, certifioa, overlap, nilpref and taking-
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course constraints. Among them only equality and confinéroenstraints need to be

defined by hand. The others are defined automatically by thgram.

Equality-constraint: igi-ary constraints between a set of courses, all of which shioal

assigned the same GTA.

Confinement-constraint: allows us to specify that a GTAgssil to one or more courses
in given setS, called the confinement set, cannot be assigned to any coutsdes,
and vice versa. We use this constraint to prevent a GTA fromgbessigned outside

the set of labs or recitations associated with a specificaseof a course.

B.4 Capacity and load

After a problem instance is loaded, we can use the followorgmands to check the total

capacity and the maximum load of an instance of the GTA agségu problem.

(total-load problem)
(max-total-load problem)
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