
AN IMPROVED RESTART STRATEGY FOR RANDOMIZED BACKTRACK

SEARCH

by

Venkata Praveen Reddy Guddeti

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

December, 2004

AN IMPROVED RESTART STRATEGY FOR RANDOMIZED BACKTRACK

SEARCH

Venkata Praveen Reddy Guddeti, M.S.

University of Nebraska, 2004

Advisor: Berthe Y. Choueiry

When solving combinatorial problems with backtrack search, randomizationof the path

explored by search and frequentrestartsof the search mechanism have been proposed as

an effective way to allow the exploration of wider areas of the search space than otherwise

possible. In these strategies, the choice of acutoff value, a point after which the search is

restarted, remains an open issue. Previous restart strategies rely, for computing this cutoff

value, either on the availability of an overall profile of thecost of search[Gomeset al.,

1998], or on a predetermined restart schedule. An example of the latter is the Randomiza-

tion and Geometric Restart (RGR) strategy proposed by Walsh[1999], which computes the

cutoff value as a function of the number of variables in the problem and a constant param-

eter given as input. We propose Randomization and Dynamic Geometric Restart (RDGR),

an improved restart strategy of Walsh’s RGR. Unlike previous strategies, which have fixed

restart schedules, our techniquedynamicallyadapts the value of the cutoff parameter to the

results of the search process.

We evaluate empirically the behavior of our technique and compare its performance

to that of other search techniques. We use the cumulative distribution of the solutions,

and consider different run-time durations, values of the constant parameter used to com-

pute the cutoff value, and problem types (i.e., a real-worldresource allocation problem and

randomly-generated binary constraint satisfaction problems). We show that distinguishing

between solvable and over-constrained problem instances yields new insights on the rela-

tive performance of the search techniques tested. On over-constrained problem instances

and random instances at the phase transition, RDGR statistically outperforms other search

techniques. While on under-constrained problems, RDGR is second to a multi-agent-based

search[Liu et al., 2002; Zou, 2003]. We propose to use this characterization as a basis for

building new strategies of cooperative, hybrid search.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Berthe Y. Choueiry, for her

support, guidance, and advice during my work on this thesis.I am indebted to my

committee members, Dr. F. Choobineh (Department of Industrial & Management Systems

Engineering at UNL), Dr. S. Dunbar (Department of Mathematics at UNL), and Dr. W.

Srisa-an (Department of Computer Science & Engineering at UNL), for their enlightening

suggestions and comments, which helped me improve the content and presentation of this

thesis. I would like to thank Dr. K. Xu (Beijing University ofAeronautics and

Astronautics), and Dr. J.I. van Hemert and Dr. B.G.W. Craenen (Napier University) for

insightful email discussions on generating random CSP instances and for the use of the

RandomCSP software of Dr. J.I. van Hemert. Also, I would liketo thank Mr. B. Danner

(Department of Statistics), Mr. M. Abdoli (Department of Industrial & Management

Systems Engineering at UNL), and Dr. H. Hoos (University of British Columbia) for help

with the statistical analysis. I am very grateful for the opportunity to be a member of the

Constraint Systems Laboratory for the past two years. I enjoyed pursuing my research

interests and obtaining a wealth of invaluable experiencesin many aspects of my academic

life. I also thank the members of the lab, in particular Hui Zou, Anagh Lal, Ryan Lim, and

Daniel Buettner for their support and for our many interesting discussions.

Finally, I gratefully acknowledge the constant support to my family and friends, in

particular my late grandfather G. Subba Reddy and my parentsG. RamaLakshmi and G.

Lokanatha Reddy, who sent me on my way and provided a stable and stimulating

environment for my personal and intellectual development.

This research was supported by NSF grants #EPS-0091900 and CAREER Award #0133568. The

experiments were conducted utilizing the Research Computing Facility of UNL.

5

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Graduate Teaching Assistants Assignment Problem 3
1.3 Related works . 3
1.4 Questions addressed .4
1.5 Contributions . 6
1.6 Outline of the thesis .6

2 Background 8
2.1 Constraint Satisfaction Problem (CSP) 8
2.2 Graduate Teaching Assistants Assignment Problem 11
2.3 Heuristic backtrack search .. . 14

2.3.1 Basic mechanism . 15
2.3.2 Variable ordering heuristics .. 15
2.3.3 Value ordering heuristics .16

2.4 Local search . 17
2.5 Multi-agent-based search .. . 19
2.6 Randomized backtrack search with restarts 20

2.6.1 Restart strategies . 21
2.6.2 Randomization and geometric restarts 22
2.6.3 Dynamic restarts . 22

2.7 Las Vegas algorithms . 23

3 Study of backtrack search 25
3.1 Study of deterministic ordering heuristics 25
3.2 Thrashing . 27
3.3 Randomized backtrack search .. 29

4 Randomization and dynamic geometric restarts 32
4.1 Randomization and dynamic geometric restarts 32
4.2 Experimental methodology .. 34

4.2.1 Main experiments . 34
4.2.2 Evaluation criteria . 34

4.2.3 Data sets . 35
4.3 Effect of the running time on RGR and RDGR 38
4.4 Influence of the ratior . 40
4.5 Relative performance of BT, LS, ERA, RGR, and RDGR 44

4.5.1 Improvement of RDGR over BT 49
4.5.2 Superiority of RDGR over LS . 51
4.5.3 Superiority of RDGR over ERA on over-constrained problems . . . 51
4.5.4 Performance of ERA . 51
4.5.5 RDGR is more stable than RGR 52
4.5.6 Sensitivity of LS to local optima 52
4.5.7 Larger number of restarts in RDGR 52

5 Conclusions and future work 54
5.1 Summary of the research conducted 54
5.2 Conclusions . 55
5.3 Open questions and future research directions 57

A Results from the GTAAP data sets 58
A.1 Best results of the GTAAP data sets 58
A.2 Results obtained from BT using the various deterministic ordering heuristics 61
A.3 SQDs of LS, ERA, RGR, and RDGR . 66
A.4 RGR and RDGR over varying run time .70
A.5 Effect ofr on RGR and RDGR . 74

Bibliography 82

7

List of Figures

2.1 Local optimum and plateau with hill-climbing[Zou, 2003]. 18

3.1 BT search thrashing in large search spaces.. 27

4.1 Moving average for CPU run-times for data set 1.. 36
4.2 Randomly generated problem instances.. 37
4.3 Varying run time: GTAAP, over-constrained.. 39
4.4 Varying run time: GTAAP, solvable.. 39
4.5 Effect of r: RGR on GTAAP. 41
4.6 Effect of r: RDGR on GTAAP. 41
4.7 Effect of r: RGR on random CSPs.. 42
4.8 Effect of r: RDGR on random CSPs.. 42
4.9 Increasing rate of the cutoff value (3 minutes).. 43
4.10 SQDs: GTAAP, over-constrained.. 45
4.11 SQDs: GTAAP, solvable.. 45
4.12 SQDs: under-constrained, random CSPs.. 46
4.13 SQDs: over-constrained, random CSPs.. 46
4.14 SQDs: solvable random CSPs, at phase transition.. 47
4.15 SQDs: unsolvable random CSPs, at phase transition.. 47

A.1 SQDs: GTAAP, data set 1 (unsolvable, 500 runs, 10 minutes each). 66
A.2 SQDs: GTAAP, data set 2 (solvable, 500 runs, 10 minutes each). 66
A.3 SQDs: GTAAP, data set 3 (unsolvable, 500 runs, 10 minutes each). 67
A.4 SQDs: GTAAP, data set 4 (unsolvable, 500 runs, 10 minutes each). 67
A.5 SQDs: GTAAP, data set 5 (solvable, 500 runs, 10 minutes each). 68
A.6 SQDs: GTAAP, data set 6 (solvable, 500 runs, 10 minutes each). 68
A.7 SQDs: GTAAP, data set 7 (solvable, 500 runs, 10 minutes each). 69
A.8 SQDs: GTAAP, data set 8 (solvable, 500 runs, 10 minutes each). 69
A.9 Varying run time: GTAAP, data set 1 (unsolvable, 500 runs).. 70
A.10 Varying run time: GTAAP, data set 2 (solvable, 500 runs).. 70
A.11 Varying run time: GTAAP, data set 3 (unsolvable, 500 runs).. 71
A.12 Varying run time: GTAAP, data set 4 (unsolvable, 500 runs).. 71
A.13 Varying run time: GTAAP, data set 5 (solvable, 500 runs).. 72
A.14 Varying run time: GTAAP, data set 6 (solvable, 500 runs).. 72

A.15 Varying run time: GTAAP, data set 7 (solvable, 500 runs).. 73
A.16 Varying run time: GTAAP, data set 8 (solvable, 500 runs).. 73
A.17 Effect of r: RGR on GTAAP, data set 1 (unsolvable, 500 runs).. 74
A.18 Effect of r: RDGR on GTAAP, data set 1 (unsolvable, 500 runs).. 74
A.19 Effect of r: RGR on GTAAP, data set 2 (solvable, 500 runs).. 75
A.20 Effect of r: RDGR on GTAAP, data set 2 (solvable, 500 runs).. 75
A.21 Effect of r: RGR on GTAAP, data set 3 (unsolvable, 500 runs).. 76
A.22 Effect of r: RDGR on GTAAP, data set 3 (unsolvable, 500 runs).. 76
A.23 Effect of r: RGR on GTAAP, data set 4 (unsolvable, 500 runs).. 77
A.24 Effect of r: RDGR on GTAAP, data set 4 (unsolvable, 500 runs).. 77
A.25 Effect of r: RGR on GTAAP, data set 5 (solvable, 500 runs).. 78
A.26 Effect of r: RDGR on GTAAP, data set 5 (solvable, 500 runs).. 78
A.27 Effect of r: RGR on GTAAP, data set 6 (solvable, 500 runs).. 79
A.28 Effect of r: RDGR on GTAAP, data set 6 (solvable, 500 runs).. 79
A.29 Effect of r: RGR on GTAAP, data set 7 (solvable, 500 runs).. 80
A.30 Effect of r: RDGR on GTAAP, data set 7 (solvable, 500 runs).. 80
A.31 Effect of r: RGR on GTAAP, data set 8 (solvable, 500 runs).. 81
A.32 Effect of r: RDGR on GTAAP, data set 8 (solvable, 500 runs).. 81

List of Tables

2.1 Characteristics of the GTAAP data sets.. 12
2.2 Characteristics of the GTAAP constraints.. 14
2.3 Variable ordering heuristics.. 16
2.4 Las Vegas algorithms.. 24

3.1 Best results of BT using deterministic ordering heuristics: GTAAP (5 minutes).. . 26
3.2 Relative performance of the deterministic ordering heuristics. 27
3.3 BT search thrashing. 28
3.4 Performance of BT for various running times.. 29
3.5 Randomized backtrack search: GTAAP (5 minutes).. 30

4.1 Improvements of RDGR with 95% confidence level, GTAAP data-sets. 48
4.2 Improvements of RDGR with 95% confidence level, randomly generated problems. 48
4.3 Statistics of solution size for data set 1 (500 runs, 10 minutes each).. 49
4.4 Statistics of solution size for data set 5 (500 runs, 10 minutes each).. 49
4.5 Statistics of solution size for randomly generated problems 50
4.6 Standard deviation of RGR and RDGR on GTAAP data sets.. 52
4.7 Average number of restarts by RGR and RDGR on GTAAP data sets.. 53

5.1 Comparing the behavior of search strategies.. 56

A.1 Best results obtained by BT using deterministic various ordering heuristics: GTAAP
(5 minutes).. 59

A.2 Best results of LS and ERA: GTAAP (500 runs, 5 minutes each).. 60
A.3 Best results of RGR and RDGR: GTAAP (500 runs, 5 minutes each). 60
A.4 Deterministic ordering heuristics of BT: GTAAP, data set 1.. 61
A.5 Deterministic ordering heuristics of BT: GTAAP, data set 2.. 62
A.6 Deterministic ordering heuristics of BT: GTAAP, data set 3.. 62
A.7 Deterministic ordering heuristics of BT: GTAAP, data set 4.. 63
A.8 Deterministic ordering heuristics of BT: GTAAP, data set 5.. 63
A.9 Deterministic ordering heuristics of BT: GTAAP, data set 6.. 64
A.10 Deterministic ordering heuristics of BT: GTAAP, data set 7.. 64
A.11 Deterministic ordering heuristics of BT: GTAAP, data set 8.. 65

1

Chapter 1

Introduction

We propose an improved restart strategy for randomized backtrack search. Randomized

backtrack search with restarts borrow the backtracking feature of systematic backtrack

search and the stochastic characteristic of local search. Our research was motivated by

a real-world application, which is the assignment of Graduate Teaching Assistants (GTA)

to academic tasks. In practice, this problem is large, tight, and sometimes over-constrained.

Since 2001, various members of the Constraint Systems Laboratory have designed and im-

plemented a set of interactive and automated search techniques to solve this problem. We

compare the performance of our new strategy to that of the various automated solvers de-

veloped in our group. The long-term goal of this project is toprovide a robust portfolio of

search algorithms to solve complex decision-making problems. This chapter presents the

motivations for our work, related works, the questions addressed, and our contributions.

1.1 Motivations

A great deal of theoretical and empirical research has focused on developing and improv-

ing the performance of algorithms for solving Constraint Satisfaction Problems (CSP). Be-

cause CSPs are in generalNP-complete, search remains a key mechanism for solving them.

2

Search algorithms for solving CSPs are usually classified into two main categories: system-

atic backtrack search and iterative-improvement search. Generally, systematic search tech-

niques have been almost always deterministic in nature and iterative improvement search

techniques are stochastic. Systematic search, as the name suggests, operates by exhaus-

tively examining the solution space, which makes it complete and sound. In contrast,

iterative-improvement search starts from a random solution, which may or may not be

consistent, and tries to reach better solutions by visitingneighboring solutions (thus, the

name local search). This makes it incomplete.

On large problems the performance of systematic search degrades with the size of the

problem (thrashing), while the performance of iterative-improvement search is impaired

by local optima and livelocks. Variable and value ordering heuristics and techniques like

backjumping and backmarking are employed to improve the performance of systematic

search, but cannot totally eliminate thrashing. Moreover,the memory requirements for the

data structures necessary for backjumping and backmarkingmay be a cause of concern with

increasing problem size. Iterative-improvement search can be improved with heuristics

(min-conflict[Mintonet al., 1992]), random restarts, and random walk to avoid and recover

from local optima. However, its inherent incompleteness remains a major concern. This

situation motivated us to explore randomized backtrack search with restarts as designed by

Gomes et al.[1998]. One important feature of this search is the restart strategy. In this

thesis we propose a restart strategy that improves on the oneproposed by Walsh[1999]

and compare the performance of the resulting search with that of Walsh another and other

search techniques implemented in the Constraint Systems Laboratory.

3

1.2 Graduate Teaching Assistants Assignment Problem

The Graduate Teaching Assistants Assignment Problem (GTAAP) is a critical and arduous

task that our department’s, Computer Science and Engineering (CSE), administration has to

drudge through every semester. Given a set of courses, a set of graduate teaching assistants

(GTAs), and a set of constraints, the goal is to find a consistent and satisfactory assignment

of GTAs to courses. Glaubius and Choueiry modeled the GTAAP as a Constraint Satisfac-

tion Problem (CSP)[2001; 2002a; 2002b]. The constraints specify allowable assignments

such as the availability and proficiency of a graduate student for being a teaching assistant.

In a consistent solution there are no broken constraints. And, satisfactory solution attempts

to optimize the quality of a solution in terms of the preferences expressed by the GTAs.

In the CSP model of the GTAAP, the courses are modeled as variables and the GTAs

as the domain values of these variables. By focusing our investigations on this particu-

lar real-world application, we have been able to identify and compare the advantages and

shortcomings of the various search strategies that have implemented to solve this problem.

Such an insight is unlikely to be gained from testing toy problems, and surely difficult from

testing randomly generated problems. We show that the identified behaviors apply beyond

our application, and hold on randomly generated binary CSPs.

1.3 Related works

There are three main works on randomized backtrack search with restarts:

1. Randomization and rapid restarts(RRR): Gomes et al. proposed the RRR restart

strategy[1998]. RRR employs a fixed optimal cutoff value. Search is restarted on

reaching the cutoff value. The estimation of the optimal cutoff value requires a priori

knowledge of the cost distribution of the problem instance,which is not known in

4

most settings and must be determined by trial-and-error. This is clearly not practical

in general.

2. Randomization and geometric restarts(RGR): In the absence of an optimal cutoff

value, the RGR restart strategy of Walsh can be used[1999]. Unlike RRR, the cutoff

value in RGR is not fixed, but is geometrically increasing. Onreaching the cutoff

value, search is restarted and the cutoff value for the next restart is geometrically

increased by a constant factorr regardless of the progress of search. Like RRR,

RGR is static in the sense that it does not take into account the outcome of the search

during a run to compute the cutoff value for the following run. Note that the cutoff

value in RGR is strictly monotonically increasing and, in theory, the resulting search

mechanism is complete1.

3. Bayesian approach: Kautz et al. introduced an optimal policy for dynamic restarts

[2002]. They employ Bayesian methods to build predictive models ofthe run-time

distribution. Utilizing this model, their restart strategy considers the predictions

about run time to choose the cutoff value for restarts. This approach is based on

the use of machine learning techniques, and, unlike the restart strategies, increases

the complexity of the implementation and deployment.

1.4 Questions addressed

In this thesis, we address the following questions:

1. How effective are variable and value orderings in backtrack search for solving the

GTAAP?

Answer: Research has shown that variable and value orderings are effective tech-

niques for improving the performance of backtrack search. We show that on GTAAP,
1Probabilistically approximately complete Las Vegas algorithm.

5

while dynamic selection of variables consistently outperforms static selection, vari-

able orderings that utilize the least domain (LD) and domain-to-degree (DD) ratio

heuristics result in similar performances. Further, the various value-ordering heuris-

tics we tested do not result in qualitative improvements.

2. How serious is thrashing on large problem instances?

Answer:We show in Section 3.2 that thrashing is serious enough to warrant the study

of restart strategies.

3. What are the best values for the ratio used to increase the cutoff value in geometric-

restart strategies?

Answer: We confirm that for RGR, a value ofr=1.1, as devised by Walsh, is the

best value of the ratio, and show that this holds for both the GTAAP data and for

randomly generated problems. For RDGR,r=1.1 yields best results, however on

randomly generate problems, a higher value (i.e.,r=2.0) is a better choice. This

discrepancy of the value ofr on random problems can be explained by the fact that

the cutoff value increases more quickly in RGR than in RDGR.

4. What are the characteristics of the different search techniques implemented with re-

spect to the different problem types?

Answer: We show that distinguishing between solvable and over-constrained prob-

lem instances yields new insights on the relative performance of the search tech-

niques tested. On over-constrained problem instances and problem instances at the

phase transition, RDGR statistically outperforms other search techniques. While on

under-constrained problems, RDGR is second to the multi-agent-based search known

as ERA[Liu et al., 2002; Zou, 2003].

6

1.5 Contributions

In this thesis, we propose an improved restart strategy for randomized backtrack search,

which we denote RDGR. We compare its performance to four other search mechanisms

(denoted BT, LS, ERA, and RGR) in order to study and characterize their behavior. We

conduct our investigations in the context of a real-world application, which is the assign-

ment of Graduate Teaching Assistants (GTA) to academic tasks. We also conduct tests on

randomly generated binary CSPs. Our main contributions canbe summarized as follows:

1. Testing of various ordering heuristics in BT for solving GTAAP.

2. Proposition of a new improved restart strategy (RDGR) forrandomized backtrack

search.

3. Empirical evaluation of RDGR by comparing its performance with that of BT, LS,

ERA, and RGR, both on GTAAP data and randomly generated instances.

Finally, we identify two directions for future research, namely the development of progress-

aware restart strategy and cooperative, hybrid search techniques.

1.6 Outline of the thesis

This thesis is structured as follows. Chapter 2 briefly reviews the Constraint Satisfaction

Problem, the Graduate Teaching Assistants Assignment Problem, and the various search

techniques developed for solving GTAAP. Chapter 3 explainsthe empirical evaluation of

the ordering heuristics in backtrack search in the context of GTAAP. Chapter 4 presents

RDGR, our proposed dynamic restart strategy for randomizedbacktrack search, and its

empirical evaluation. Finally, Chapter 5 concludes the thesis and provides directions for

future research.

7

Appendix A lists the results of running all the currently available search techniques on

the collected GTAAP data.

8

Chapter 2

Background

This chapter draws the background of our work. After a brief introduction to the Constraint

Satisfaction Problem (CSP), we introduce a real-world application, the Graduate Teaching

Assistants assignment problem (GTAAP), which is at the motivation for our investigations.

We briefly review how it was modeled by Glaubius and Choueiry as a CSP and solved

using systematic backtrack search[2001; 2002a; 2002b]. Finally, we review the search

techniques developed for solving GTAAP.

2.1 Constraint Satisfaction Problem (CSP)

Constraints are ubiquitous in everyday life. A constraint is a relation that restricts the set

of allowable combinations of values among a set of variables. Some examples of everyday

constraints are qualifications and requirements for a job orfor college admission, speed

limits for driving, and monetary constraints for buying a new car. Such problems can be

modeled as Constraint Satisfaction Problems (CSPs), wherea set of decisions, each with a

set of options, must be made under a set of constraints restricting the allowable combina-

tions of options for decisions. Constraint Processing, a sub-area of Artificial Intelligence, is

a set of set of representation and processing techniques concerned with solving such prob-

9

lems. CSPs can be decision or optimization problems (in which case an objective function

must be specified). They are useful for modeling and solving many complex problems such

as scheduling, resource allocation, planning, temporal reasoning[Dechteret al., 1991], and

constraint databases[Revesz, 2002]. More formally, a CSP is often defined as follows:

A Constraint Satisfaction Problem (CSP) is defined byP = (V,D, C) where

V is a set of variables,D the set of their respective domains, andC is a set of

constraints that restricts the acceptable combinations ofvalues for variables.

Solving a CSP requires assigning a value to each variable such that all con-

straints are simultaneously satisfied, which is in generalNP-complete.

The CSP framework provides a common platform to researchersfor developing application-

independent solvers and study the behavior of different search techniques, which have

yielded important industrial benefits A CSP can be characterized by a number of parame-

ters used to describe and compare problem instances. Below we list the main features:

1. Number of variables: number of assignments to be made.

2. Domain size: size of the largest domain.

3. Tightness of a given constraint: is defined as the ratio of number of tuples disal-

lowed by the constraint over that of all possible tuples, which is the size of the cross

Cartesian product of the domains of the variables in the scope of the constraint.

4. Proportion of constraints: is the ratio of number of constraints in the CSP to the total

number of possible constraints.

5. Problem size: number of all possible combinations, calculated asΠv∈V |Dv|. As the

number of the variables increases, the number of possible combinations increases

exponentially.

10

6. Constraint arity: the number of variables in the scope of a constraint. Increasing

the constraint arity increases the complexity of checking the consistency of the con-

straint.

7. Number of solutions sought: depending on the application, we may need to find

one solution, all solutions (entire search space needs to beexplored), or an optimal

solution.

Many real-life applications are over-constrained. Over-constrained problems have no com-

plete assignment of values to variables such as all constraints are satisfied. The following

ways are used to handle over-constrained problems[Zou, 2003]:

1. Relax the problem by removing some constraints. Finding the smallest set of con-

straints that need to be removed is thought to beNP-hard.

2. Express preferences between constraints or allocate weights to allowed tuples of a

constraint (e.g., preference-based CSP[Junker, 2002] and soft constraints[Bistarelli

et al., 1995]).

3. Maximize the number of satisfied constraints (e.g., the MAX-CSP framework of

[Freuder, 1989; Freuder and Wallace, 1992]).

4. Accept partial, consistent solutions (i.e., do not coverall variables) that maximize the

number of assigned variables.

In GTAAP, the objective is to provide support to as many courses as possible while satis-

fying all the constraints. Thus, we are interested in findingthemaximal consistent partial

solutions. For the rest of this thesis, a solution may be partial, but must always be consis-

tent.

11

2.2 Graduate Teaching Assistants Assignment Problem

Glaubius and Choueiry define GTAAP as follows: “Given a set ofgraduate teaching assis-

tants (GTAs), a set of courses, and a set of constraints that specify allowable assignments

of GTAs to courses, the goal is to find a consistent and satisfactory assignment”[2001;

2002a; 2002b]. In a consistent solution there are no broken constraints. And, in a satisfac-

tory solution maximizes the preferences expressed by the GTAs. Hard constraints (e.g., a

GTA’s competence, availability, and employment capacity)must be met, and GTA’s prefer-

ences for courses (expressed on a scale from 1 to 5) must be maximized. It is a critical and

time-consuming process to be done by our department and likely other institutions across

the world. Typically, every semester, the department has about 70 different academic tasks

and can hire between 25 and 40 GTAs. Instances of this problem, collected since Spring

2001, are consistently tight and often over-constrained. However, this is not known a pri-

ori. The objective is to ensure GTA support to as many coursesas possible by finding a

maximal consistent partial-assignment. Because the hard constraints cannot be violated,

the problem cannot be modeled as a MAX-CSP[Freuder and Wallace, 1992].

Glaubius and Choueiry proposed a constraint-based model for this problem where the

courses are represented by variables, the GTAs by domain values, and the assignment rules

by a number of unary, binary, and non-binary constraints[2001; 2002a; 2002b]. They

define the problem as the task of finding the longest assignment, as a primary criterion, and

maximizing GTAs’ preferences, as a secondary criterion. (We model the latter as the value

of the geometric mean of GTAs’ preferences in an assignment.)

In the Constraint Systems Laboratory, we have implemented anumber of search strate-

gies for solving this problem, which we summarize below. These are a heuristic backtrack

search (BT) with various ordering heuristics, a greedy local search (LS), a multi-agent-

based search (ERA), and a randomized backtrack search with two restart strategies (RGR

12

and RDGR). The latter are the topic of this dissertation. Allstrategies implement the above

two optimization criteria, except ERA, which models the GTAAP as a satisfaction problem.

Below we list the characteristics of the GTAAP data sets.

Problem size: There are 14 data sets of GTAAP: eight original (these are real data, col-

lected from academic semesters in our department) and six boosted data sets (there are

over constrained sets to which we have added dummy resourcesto make them solvable).

We used the eight original data sets in our experiments. Table 2.1 lists the characteristics

of these eight instances in terms of original or boosted datasets, solvable or unsolvable,

number of courses (i.e., number of variables), number of GTAs (i.e. domain size), total

capacity of the GTAs, total load of the courses, and number ofconstraints. Each GTA has

Table 2.1:Characteristics of the GTAAP data sets.

Constraints

Data Sets D
at

a
S

et
s

re
fe

re
nc

e

O
rig

in
al

/B
oo

st
ed

S
ol

va
bl

e?

#H
al

fs
em

es
te

r
co

ur
se

s

#C
ou

rs
es

/#
va

ria
bl

es

#G
TA

s/
D

om
ai

n
si

ze

To
ta

lc
ap

ac
ity

To
ta

ll
oa

d

R
at

io
=

T
o
ta

l
C

a
p
a
ci

ty
T
o
ta

l
L
o
a
d

#U
na

ry

#B
in

ar
y

#N
on

-B
in

ar
y

Spring2001b(O) 1 O × 12 69 26 26 29.6 0.88 277 1179 52
Fall2001b(O) 2 O

√
14 65 34 30 29.3 1.02 267 1676 68

Fall2002(O) 3 O × 10 31 28 11.5 13 0.88 233 1124 56
Fall2002(O)-NP 4 O × 10 59 28 27 29.5 0.91 233 1124 56
Spring2003(O) 5 O

√
10 54 34 27.5 27.4 1.00 250 622 68

Spring2003(O)-NP 6 O
√

12 64 34 31 30.2 1.02 250 622 68
Fall2003(O) 7 O

√
0 25 27 22 12.8 1.71 235 45 27

Spring2004(O) 8 O
√

0 41 35 26.5 19.3 1.37 208 32 35

a capacity factor corresponding to the number of hours he/she is hired for and restricting

the maximum course weight he/she can be assigned during the semester. The sum of the

13

capacities of all GTAs represents thetotal capacity. Each course has a load that indicates

the weight of the course. For example, a value of 0.5 means thecourse requires half the

capacity of a GTA. Some courses may be only offered during one-half of the semester. The

total loadof a semester is the cumulative load of the individual courses. A ratio of the total

capacity to the total load that is strictly less than one indicates that the problem instance is

necessarily not solvable.

Types of constraints: In GTAAP, a number of unary, binary, and non-binary constraints

specify the allowable assignments. The capacity of each GTAis modeled as a non-binary

constraint, called the capacity constraint. We summarize the constraints as follows:

• Unary constraints: English certification, enrollment, overlap, and zero preference

constraints.

• Binary constraints: mutex and equality constraints.

• Non-binary constraints: capacity, equality, and confinement constraints.

A detailed description of the problem and the constraints can be found in[Glaubius and

Choueiry, 2002a]. Table 2.2 lists the number of unary constraints, number andtype of

binary constraints, and number of non-binary (capacity) constraints. For the non-binary

constraints, we list the maximum, minimum, and mean values of the arity. Also, we list

the average and standard deviation of the degree of the variables. Note that our problem

typically has a large number of non-binary constraints and their average arity is almost

equal to the number of variables. This observation shows that the non-binary constraints

are almost global. This fact constitutes the main difficultyin solving this problem.

Quality of solutions: The primary criterion is the number of assigned courses. And,

maximizing GTAs’ preferences is the secondary criterion. This is calculated as the geo-

metric mean of GTAs’s preferences (between 1 and 5 for each course) in an assignment.

14

Table 2.2:Characteristics of the GTAAP constraints.

Data set Number of constraints Degree of variables

Unary Binary Non-Binary Mean Standard
Arity deviation

Mutex Equality Capacity M
ax

im
um

M
ea

n

M
in

im
um

1 277 1146 33 52 63 63 63 85.66 24.77
2 267 1631 45 68 59 58 57 116.35 14.36
3 233 1098 26 56 55 54 53 96.74 14.28
4 233 1098 26 56 55 54 53 93.30 13.37
5 250 575 47 68 58 58 58 85.20 23.73
6 250 575 47 68 58 58 58 84.96 23.26
7 235 6 39 27 61 61 61 31.96 2.04
8 208 5 27 35 52 52 52 40.12 2.23

Partial solution: Some instances of GTAAP are over-constrained and do not havea com-

plete solution. For such instances, only a partial solutioncan be obtained. Here we need to

note that, strictly speaking, GTAAP is not a MAX-CSP. In MAX-CSP, all constraints are

soft and the goal is to maximize the number of satisfied constraints. Thus, in the solution

of a MAX-CSP problem all variables are assigned, but the solution is not necessarily con-

sistent. In GTAAP, however, it is not permissible for any constraint to be broken, but some

variables may remain unassigned.

2.3 Heuristic backtrack search

A deterministic backtrack (BT) search, implemented as a depth-first search, was the first

search technique implemented to solve GTAAP by Glaubius andChoueiry[2002a]. Their

implementation integrated forward checking[Haralick and Elliott, 1980] and a branch-and-

bound mechanism to seek the optimal solutions.

15

2.3.1 Basic mechanism

A backtrack search instantiates the variables of a CSP incrementally from values present

in its current domain. When a variable is instantiated, the search looks ahead towards the

future variables, and removes incompatible values from their current domain. When the

next variable is instantiated, we can be sure that it is compatible with the past variables. A

full look-ahead strategy would drastically increase the number of constraint checks while

effectively yielding little filtering since the GTA application has many mutex and global

constraints (it is a resource allocation problem). As depth-first search expands nodes along

a search path, the search checks if the expansion of the search path can improve on the

current best solution. Once the current best solution cannot be improved, backtrack oc-

curs. Because the problem may be over-constrained, Glaubius and Choueiry modified the

backtrack mechanism to allow null assignments and proceed toward the longest solution in

a branch-and-bound manner (i.e., backtracking is not performed when a domain is wiped-

out as long as there are future variables with no empty domains). The implementation is

described in detail in[Glaubius and Choueiry, 2002a].

2.3.2 Variable ordering heuristics

Glaubius and Choueiry implemented two variable-ordering heuristics for choosing the most

constrained variable first:least domain(LD) anddomain degree(DD) ratio. In LD, we

choose as current variable the one with the smallest currentdomain-size. InDD, we choose

as current variable the one with the minimum ratio of domain size to the degree. This is

based on the intuition that the most constrained variable (i.e., the smallest domain and the

largest degree) would reduce the branching factor and implement the well-known fail-first

principle. Ties are broken lexicographically.

The two variable-ordering heuristics,LDandDD, are applied both statically and dynam-

16

ically. In a static ordering, the order is specified before the search begins and is not changed

thereafter. In a dynamic ordering, the order changes after each instantiation. Extensive pre-

vious experiments and analysis done by the research community, have demonstrated that

dynamic ordering substantially reduces the cost of any search. Table 2.3 shows the four

variable-ordering heuristics available for GTAAP.

Table 2.3:Variable ordering heuristics.

Variable ordering
Least Domain Domain Degree ratio

Static SLD SDD
Strategy

Dynamic DLD DDD

2.3.3 Value ordering heuristics

In general, the choice of the value to be assigned to the current variable is orthogonal to

the choice of the variable to be instantiated. The intuitionis that we should assign first the

value most likely to yield a solution. This is true and worthwhile when we are looking for

the first solution only. If all the solutions are required, orwhen there are no solutions, then

the order in which the values are considered makes no difference. Three value-ordering

heuristics are available for GTAAP.

1. First in line (FIL): FIL is an arbitrary method, which depends on how the domains

are stored. The first value that is present in the domain of thecurrent variable is

assigned to the current variable.

2. Highest preference (PREFERENCE): This heuristic considers only the current vari-

able. The value (GTA) assigned to the current variable (course) is the one having the

17

highest preference for that course. If there are more than one value available then the

choice is made by the order of appearance.

3. Least occurring (OCCURRENCE): This heuristic considers the current domain of all

the future variables. The value that appears least frequently in the domain of future

variables is assigned to the current variable. This is basedon the assumption that

selecting the value that occurs the least number of times in the future variables will

increase the number of options for instantiating future variables, and thus is the least

likely to lead to a conflict. If there are more than one value available then the choice

is made by the order of appearance.

Glaubius and Choueiry implementedFIL andPREFERENCEwhile we implemented

OCCURRENCE. The four variable-ordering heuristics of Table 2.3 and thethree value-

ordering heuristics listed above result in 12 combinations, which we evaluate in Chapter 3.

2.4 Local search

Zou and Choueiry designed and implemented a greedy, local search (LS) technique for

solving GTAAP[2003a; 2003; 2003b]. LS is a hill-climbing search using the min-conflict

heuristic for value selection[Minton et al., 1992]. In a CSP, a state is an assignment

of values to all variables. This may be inconsistent with theconstraints. Local search

starts from an initial state, usually chosen randomly, and explores neighboring states until

it reaches an optimal state. The neighboring states are those that can be reached by the

changing the assignment of one variable. The name local comes from the fact that it only

moves from a state to its neighboring state. The evaluation value of a state is its number of

constraint violations. A hill-climbing strategy allows only moves that reduce the evaluation

value. For value selection, the min-conflict heuristic orders the values according to the

number of constraints violations after each move. A variable is said to be in conflict if it

18

violates any constraint. At each iteration any variable that is in conflict is assigned a value

that minimizes the number of conflicts, breaking ties randomly.

LS continues until the value of current state is better than the values of all the states

adjacent to it. At this point, the current state is either an optimum or a local optimum. A

weakness of a hill-climbing search is that it may stagnate either on alocal optimumor on

a plateau(Figure 2.1). A local optimum is a state that is the best amongst its neighbor

global optimum

X

Y

Z

plateau

local optimum

Figure 2.1:Local optimum and plateau with hill-climbing[Zou, 2003].

states but is not the optimum. A plateau is a state whose evaluation value is equal to all

the neighboring states. Since the neighboring states are not better than the states of local

optimum and plateau, local search stagnates.

Random walk is a strategy utilized to avoid local optima. In random walk, the value

of a variable chosen using the min-conflict heuristic is witha probability1 − p, and with

probabilityp this value is chosen randomly. Preliminary studies on the influence of random

walk is presented in[Wallace and Freuder, 1995; Wallace, 1996]. Following the indications

of [Barták, 1998] and after testing, Zou and Choueiry use a value ofp = 0.02. Finally, they

use random restarts to break out of local optima. In random restarts, search is started from

a new randomly selected state while keeping track of the bestsolution obtained so far, thus

giving the resulting algorithm an anytime flavor.

19

2.5 Multi-agent-based search

Inspired by swarm intelligence, Liu et al.[2002] proposed a multi-agent-based search,

called ERA (i.e., Environment, Reactive rules, and Agents)for solving CSPs. Zou and

Choueiry adapted and implemented ERA algorithm to solve GTAAP [2003a; 2003b; 2003].

An ERA system has three components: an Environment (E), a set of Reactive rules (R),

and a set of Agents (A). The environment records the number of constraint violations of

the current state for each value in the domains of all variables. Each variable is an agent,

and the position of the agent corresponds to the value assigned to this variable. Each

agent moves according to its reactive rules. First, ERA places the agents randomly in their

allowed positions in the environment, then it considers each agent in sequence. For a given

agent, it computes the constraint violations of each agent’s position. Each agent moves

to occupy a position (zero position) that does not break any of the constraints that

apply to it. If the agent is already in azero position , no change is made. Otherwise,

the agent chooses a position to move to, the choice being determined stochastically by the

reactive rules. The agents keep moving until they all reach azero position (i.e., a

full, consistent solution) or a certain time period has elapsed. After the last iteration, only

the CSP variable corresponding to agents inzero position are effectively instantiated.

The remaining ones remain unassigned (i.e., unbounded).

This algorithm acts as an ‘extremely’ decentralized local search, where any agent can

move to any position, likelyforcing other agents to seek other positions. This extreme mo-

bility of agents in the environment is the reason for ERA’s unique immunity to local optima,

as uncovered by the experiments by Zou and Choueiry[2003a; 2003; 2003b]. It is indeed

the only search technique to solve instances that remain unsolved by any other technique

we tested. Zou and Choueiry also uncovered the weakness of ERA on over-constrained

problems, where a livelock1 phenomenon undermines its stability resulting in particularly

1Although they called it a ‘deadlock,’ livelock is a more appropriate term because search is not halted.

20

short solutions. However, they show that this phenomenon can be advantageously used

to isolate, identify, and represent conflicts in a compact manner. In their implementation,

agents move in sequence, but the technique can also be asynchronous.

Although ERA can be viewed as an extension to LS, it differs from LS in some subtle

ways. LS moves from one state to another by changing the assignment of one (or two)

variables, while in ERA any number of variables can change positions at each move; each

agent chooses its most convenient position (i.e., value). The evaluation function to assess

the quality of a given state in LS is a global account of the quality of the state (typically the

total number of broken constraints). In ERA, no such global evaluation function is used.

ERA appears as an extremely decentralized version of LS and where the selection of the

next state is determined, locally, by the individual agents.

2.6 Randomized backtrack search with restarts

Unlike ERA and local search, general backtrack (BT) search is, in principle, complete

and sound. However, the performance of heuristic BT heavilydepends on the accuracy

of the ordering heuristic, which at shallow levels in the search tree is often myopic. This

results in BT being unpredictable in practice over a set of problem instances, even within

the same problem type. The performance of BT also depends on the branching factor of

the problem. Greater the branching factor of a problem, greater is the effort required to

undo incorrect heuristic choices made early in the search process. This results in BT being

seriously undermined by thrashing (i.e., searching unpromising parts of the search space).

As the problem size increases, the effects of thrashing become more serious.

Gomes et al. demonstrated that randomization of heuristic choices combined with restart

mechanisms is effective in overcoming the effects of thrashing and in reducing the total ex-

ecution time of BT[1998]. Thrashing in BT indicates that search is stuck exploring an

21

unpromising part of the search space, and thus incapable of improving the quality of the

current solution. It becomes apparent that there is a need tointerrupt search and to explore

other areas of the search space. The restarted search must begin from a different portion

of the search space; otherwise it will end up traversing the same paths. Randomization of

branching during search is used to this end. Randomness can be introduced in the variable

and/or value ordering heuristics, either for tie-breakingor for variable and/or value selec-

tion. After choosing a randomization method, the algorithmdesigner must decide on the

type of restart mechanism. This restart mechanism determines when to abandon a particu-

lar run and restart the search. Here the tradeoff is that reducing the cutoff time reduces the

probability of reaching a solution at a particular run.

2.6.1 Restart strategies

Several restart strategies have been proposed with different cutoff schedules. Some of the

better known ones are the fixed-cutoff strategy and Luby et al.’s universal strategy[1993],

the randomization and rapid restart (RRR) of Gomes et al.[1998], and the randomization

and geometric restarts (RGR) of Walsh[1999]. Among the above listed restart strategies,

RRR and RGR have been studied and empirically tested in the context of CSPs. All of these

restart strategies are static in nature, i.e. the cutoff value for each restart is independent of

the progress made during search. Some restart strategies (e.g., fixed-cutoff strategy of

[Luby et al., 1993] and RRR[Gomeset al., 1998]) employ an optimal cutoff value that

is fixed forall the restarts of a particular problem instance. The estimation of the optimal

cutoff value requires a priori knowledge of the cost distribution of that problem instance,

which is not known in most settings and must be determined by trial-and-error. This is

clearly not practical for real-world applications. There are other restart strategies that do

not need any a priori knowledge (e.g., Luby et al.’s universal strategy[1993] and Walsh’s

RGR [1999]). They utilize the idea of an increasing cutoff value in order to ensure the

22

completeness of search. However, if these restart strategies do not find a solution after the

initial few restarts, then the increasing cutoff value leads to fewer restarts, which may yield

thrashing and diminishes the benefits of the restart.

2.6.2 Randomization and geometric restarts

Walsh proposed the Randomization and Geometric Restarts (RGR) strategy to automate

the choice of the cutoff value[1999]. According to RGR, search proceeds until it reaches a

cutoff value for the number of nodes visited. The cutoff value for each restart is a constant

factor,r, larger than the previous run. The initial cutoff is equal tothe number of variables

n. This fixes the cutoff value of theith restart atn.ri nodes. The geometrically increasing

cutoff value ensures completeness with the hope of solving the problem before the cutoff

value increases to a large value. We implemented RGR, studied various values ofr, and

compared it with our proposed restart strategy (RDGR). In our implementation, RGR was

combined with BT of Section 2.3 and the randomized selectionof variable-value pairs of

Section 3.3.

2.6.3 Dynamic restarts

Unlike the static restart strategies of Section 2.6.1, Kautz et al. introduced an optimal policy

for dynamic restarts[2002]. They employ Bayesian methods to build predictive models for

run-time distribution. Utilizing this model, their restart strategy considers the predictions

about the running time to choose the cutoff value for restarts. This approach is based on the

use of machine learning techniques. Machine learning techniques require large collections

of problem instances to train the predictive models. This isclearly not practical for real-

world applications. And, unlike other restart strategies,Bayesian methods increase the

complexity of the implementation and deployment.

23

Given these drawbacks, we propose a restart strategy that dynamically adapts the cutoff

value for each restart based on the performance of previous restarts and does not require

any complex computations. We do this at the expense of completeness, which, anyway, is

not achievable on large problems.

2.7 Las Vegas algorithms

BT is deterministic and the other three search techniques (i.e., LS, ERA, and RGR) are

stochastic. These stochastic search techniques can be further classified in terms of Las

Vegas algorithms. A Las Vegas algorithm always yields correct solutions and its run-time

is a random variable. According to Hoos, an algorithmA for a problem classΠ is a Las

Vegas Algorithm(LVA) if it has the following properties[1998]:

• If for a given problem instanceπ ∈ Π, algorithmA returns a solutions, s is guaran-

teed to be a correct solution ofπ.

• For each given instanceπ ∈ Π, the run-time ofA applied toπ is a random variable

RTA,π.

The solutions returned by Las Vegas algorithms are guaranteed to be correct. However,

Las Vegas algorithms are not guaranteed to be complete. Based on the property of com-

pleteness, Hoos classifies Las Vegas algorithms into the following three categories[1998].

Consider a Las Vegas algorithmA for a problem classΠ, and letPs(RTA,π ≤ t) denote the

probability thatA finds a solution for a soluble instanceπ ∈ Π in time less than or equal to

t. A is said to be:

1. Complete, if and only if for each soluble instanceπ ∈ Π there exists sometmax such

thatPs(RTA,π ≤ tmax) = 1;

24

2. Probabilistically approximately complete (PAC), if and only if for each soluble in-

stanceπ ∈ Π, limt→∞Ps(RTA,π ≤ t) = 1;

3. Essentially incomplete, if it is not PAC, i.e. if there exists a soluble instanceπ ∈ Π,

for which limt→∞Ps(RTA,π ≤ t) < 1.

Table 2.4 shows the classification of LS, ERA, and RGR as Las Vegas algorithms. The

Table 2.4:Las Vegas algorithms.

Search method Las Vegas algorithms
RGR Probabilistically approximately complete
RDGR Essentially incomplete
ERA Essentially incomplete
LS Essentially incomplete

increasing cutoff parameter in RGR ensures that it will traverse, in theory, the whole search

space. This makes RGR a probabilistically approximately complete algorithm. In our pro-

posed restart strategy, RDGR, completeness is not guaranteed because the cutoff parameter

may remain constant. Local search algorithms are essentialincomplete due to search get-

ting stuck in local optima. Even if some techniques such as random restarts, random walk,

or tabu search are applied to escape from local optima, the local search algorithms cannot

be guaranteed to achieve completeness. ERA also does not guarantee completeness.

Summary

CSP provides a framework that allows researchers to study and solve problems. GTAAP is

a real-world resource allocation problem that offers an opportunity to develop and test new

search techniques. In practice, this problem is tight, evenover-constrained. Various search

techniques (i.e., BT, LS, ERA, and randomized backtrack search with restarts) have been

implemented and developed for solving GTAAP.

25

Chapter 3

Study of backtrack search

Deterministic backtrack (BT) search was the first search technique implemented to solve

GTAAP. Although BT is theoretically sound and complete, thelarge size of the search

space and thrashingmake such guarantees meaningless in practice. This chapter addresses

the influence of variable/value selection on the performance of backtrack search. First,

we study the effect of various heuristics for this selection, then we study the effect of

randomization.

3.1 Study of deterministic ordering heuristics

In Section 2.3 we summarized the four variable-ordering heuristics and the three value-

ordering heuristics implemented for BT. We tested these 12 combinations on the GTAAP

data sets of Table 2.1. The parameters for the experiments were the GTAAP data set,

variable-ordering heuristic, and value-ordering heuristic. Given the large size of the prob-

lem instances, we had to limit the time of each experiment to 5minutes. The detailed

results for each heuristic can be found in Appendix A.2. Table 3.1 summarizes the best

results obtained by using all the variable-value ordering heuristics on all the GTAAP data

sets. Table 3.1 shows the number of unassigned courses, the solution quality in terms of

26

Table 3.1:Best results of BT using deterministic ordering heuristics: GTAAP (5 minutes).

Data Sets U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

A
va

ila
bl

e
R

es
ou

rc
e

T
im

e
[s

ec
]

C
C

(×
1
0
8
)

Ordering Heuristic

1 12 2.31 0 4.5 94 1.39 DDD-OCCURRENCE
2 2 2.65 0 2.7 22 0.92 DLD-OCCURRENCE
3 3 3.73 0 1.5 2 0.04 DLD-PREFERENCE
4 7 2.86 0 3.5 162 2.27 DDD-FIL
5 0 3.22 0 1.5 25 0.75 DLD-OCCURRENCE
6 2 4.15 0 2.3 25 1.07 DLD-PREFERENCE
7 6 2.88 0 4.2 253 0.92 DDD-FIL
8 1 3.89 3 4.6 102 0.50 DLD-FIL

the geometric mean of the assigned GTAs preferences, the number of unused GTAs, avail-

able resources, time taken for finding the best solution, thenumber of constraint checks

needed to find the best solution, and the combination of variable-value ordering heuristics

that obtained the best solution for each GTAAP data-set.

Observation 3.0.1.Dynamic variable-ordering heuristics outperform static variable-ordering

heuristics.

Table 3.1 shows that for all the data sets of the GTAAP, eitherDLDor DDDvariable-

ordering heuristic yields the best solution. None of the static variable-ordering heuristics

find better solutions than dynamic variable-ordering heuristics.

Observation 3.0.2.DDandLD show similar performances.

Table 3.1 shows thatLDyields the best result for five instances of the GTAAP (i.e., data

sets 2, 3, 5, 6, and 8), whileDDyields the best result for the remaining 3 instances. Clearly,

neitherDDnorLD outperforms the other.

27

Observation 3.0.3.All value-ordering heuristics show similar performances.

Table 3.1 shows that theFIL yields the best solution for data sets 4, 7, and 8.PREFERENCE

yields the best solution for data sets 3 and 6. And,OCCURRENCEyields the best solution

for data sets 1, 2, and 5. Clearly, no value-ordering heuristic is the winner. Table 3.2

summarizes the relative performance of the various deterministic ordering heuristics.

Table 3.2:Relative performance of the deterministic ordering heuristics.

Dynamic selection strategy� Static selection strategy
DD≈ LD

OCCURRENCE≈ PREFERENCE≈ FIL

3.2 Thrashing

Thrashing is the phenomenon of BT searching unpromising parts of the search space. It is

severe in problems of large size, such as the GTAAP. Due to thehigh branching factor of

the problem, BT is unable to backtrack to the place of bad heuristic choice. Figure 3.1 illus-

trates thrashing for data set 1 with 69 variables and 26 values. In this figure, the percentage

24 hr: 51 (26%)
Shallowest level
reached by BT after..

Number of variables: 69
Max depth: 57

1 min: 55 (20%)

Figure 3.1:BT search thrashing in large search spaces.

28

denotes:

number of variables − shallowest level reached by backtracking

number of variables
. (3.1)

Indeed, the shallowest level of backtrack achieved after 24hours (26%) is not significantly

better than that reached after 1 minute (20%) of search, never revising the initial assignment

of 74% of the variables. Table 3.3 shows that this phenomenonis also present in other

data sets. Table 3.3 shows, for each data set, the number of variables, the longest solution

Table 3.3:BT search thrashing.

Data set # Vars BT running for..
5 min 6 hours

Max depth Shallowest Max depth Shallowest
level % level %

1 69 57 53 23% 57 51 26 %
2 65 63 55 15% 63 54 16 %
3 31 28 13 58% 28 3 90 %
4 59 49 48 18% 50 45 23 %
5 54 52 44 18% 54 41 24 %
6 64 62 54 15% 62 47 26 %
7 25 19 7 72% 21 0 100 %
8 41 40 19 53% 40 17 58%

(maximum depth), and the shallowest BT level (and the corresponding percentage) attained

by backtracking after 5 minutes and 6 hours.

To confirm that this phenomenon is not solely due to the short run-time of search, we

conducted further experiments by allowing search to run forlonger time periods. Table 3.4

shows the performance of BT on data set 1 for various running times, up to 24 hours.

We notice that increasing the running time of BT does not yield significant improvements

in terms of the length of the solution found or its quality. Indeed, the number of unas-

signed variables does not decrease, the quality of the solution measured by its geometric

mean does not significantly increase, and the shallowest level of backtracking is not sig-

29

Table 3.4:Performance of BT for various running times.
Data set 1(69 variables, over-constrained)

CPU run-time 30 sec 5 min 30 min 1 hour 6 hours 24 hours

Shallowest BT level 54 53 52 52 51 51
Longest solution 57 57 57 57 57 57
Geometric mean of 2.15 2.17 2.17 2.21 2.27 2.27
preference values
Backtracks 1835 47951 261536 532787 3274767 13070031
Nodes visited 3526 89788 486462 989136 6059638 24146133
Constraint checks 8.50E+07 3.17E+08 1.81E+09 3.58E+09 2.16E+10 8.70E+10

nificantly reduced (first 51 variables in the ordering is never undone). Further, the cost of

search, in terms of number of backtracks, nodes visited, andconstraint checks is signifi-

cantly increased. Clearly, BT is being undermined by severethrashing. We conclude that

the backtrack mechanism is operating on the deeper levels ofthe search tree and seems to

be unable to undo early choices and there is no benefit from letting BT run over longer

period of time.

3.3 Randomized backtrack search

We implemented two random-ordering heuristics:

1. Random variable-ordering heuristic (Rvar) and

2. Random value-ordering heuristic (Rval).

Rvar randomly selects the current variable from the set of futurevariables. And,Rval

instantiates the current variable with a randomly chosen value from its current domain.

Both these heuristics are applied at every instantiation (i.e., dynamically). The resulting

randomized backtrack search can be characterized as acomplete Las Vegas algorithm. We

test the randomized backtrack search on the GTAAP data sets of Table 2.1 and show the

results in Table 3.5. Given the stochastic nature of the randomized backtrack search,

30

Table 3.5:Randomized backtrack search: GTAAP (5 minutes).

Data-sets U
na

ss
ig

ne
d

va
ria

bl
es

T
im

e
se

c

C
C

(X
1
0
8
)

be
st

so
lu

tio
n

C
C

(X
1
0
8
)

5
m

in
s

N
V

(X
1
0
3
)

be
st

so
lu

tio
n

N
V

(X
1
0
3
)

5
m

in
s

D
ep

th
of

se
ar

ch
tr

ee

S
ha

llo
w

es
tB

T
le

ve
l

B
T

(X
1
0
3
)

to
be

st
so

lu
tio

n

B
T

(X
1
0
3
)

in
5

m
in

s

7 181 12.78 14.43 155.40 172.17 69 54 19.42 33.03
Data set 1 13 19 13.78 18.19 202.22 219.51 69 45 0.52 13.36

10 17 21.82 25.87 226.08 262.92 69 51 0.97 30.71
1 207 3.96 5.33 15.68 21.51 65 54 10.73 14.59

Data set 2 5 19 0.70 4.84 1.03 22.09 65 56 0.74 17.03
3 20 0.70 4.85 1.03 22.13 65 56 0.74 17.07
8 5 0.07 4.62 0.81 30.92 31 8 0.65 23.96

Data set 3 2 5 0.07 4.63 0.81 30.88 31 8 0.65 23.93
5 5 0.07 4.63 0.81 30.82 31 10 0.65 23.88
7 160 2.25 3.05 27.00 50.05 59 47 12.03 30.37

Data set 4 8 150 1.75 3.08 40.15 98.07 59 48 13.07 35.80
10 16 0.52 3.39 2.07 74.62 59 48 1.13 41.06
11 262 4.40 5.01 12.16 13.59 54 35 9.29 10.31

Data set 5 1 264 4.40 4.97 12.16 13.52 54 39 9.29 10.25
0 264 4.40 4.98 12.16 13.53 54 43 9.29 10.26

13 113 2.25 5.42 6.11 14.11 64 43 2.89 6.80
Data set 6 15 80 1.97 5.34 5.75 20.07 64 49 2.70 13.03

2 25 1.07 4.64 0.08 13.92 64 55 0.05 5.28
7 30 0.35 0.52 78.35 301.20 25 6 20.02 190.03

Data set 7 8 158 0.28 0.54 168.73 316.88 25 7 97.51 183.67
8 150 0.30 0.55 165.66 315.45 25 7 95.55 184.43

13 198 0.78 1.24 83.82 122.45 41 24 21.22 34.56
Data set 8 6 217 0.32 0.43 88.02 164.36 41 27 30.20 35.04

1 102 0.50 1.64 33.17 78.88 41 19 10.00 28.55

Time: CPU run-time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.

31

we conducted three experiments for each GTAAP data set, eachexperiment running for 5

minutes. Table 3.5 shows the number of unassigned variables, time taken to find the best

solution, number of constraint checks for finding the best solution and during 5 minutes,

number of nodes visited for finding the best solution and during 5 minutes, depth of the

search tree, shallowest level reached by backtracking, andnumber of backtracks to finding

the best solution and during in 5 minutes.

Observation 3.0.4.Random-ordering heuristics may or may not yield better solutions than

deterministic-ordering heuristics.

The best result for data set 1 using random-ordering heuristics is 7 unassigned vari-

ables (Table 3.5), while it is 12 for deterministic-ordering heuristics (Table 3.1). However,

random-ordering heuristics can also yield worse results (13 unassigned variables for data

set 1) than deterministic-ordering heuristics. This is dueto the stochastic nature of random-

ized backtrack search. This variation in the results can be mitigated by the use of restart

strategies, as discussed in Section 2.6.

Summary

In this chapter we study the performance of the various ordering heuristics implemented for

BT. As expected, our experiments show that dynamic selections are consistently superior

to static selections. However, none of the variable-ordering heuristics is dominant. Simi-

larly, none of the value-ordering heuristics outperforms any of the others. We highlight the

severe thrashing in BT. We investigate randomized backtrack search as an alternative to de-

terministic backtrack search and show that it needs to be augmented with restart strategies.

32

Chapter 4

Randomization and dynamic geometric

restarts

In this chapter we first introduce the design and implementation of our proposed restart

strategy. Next, we present the empirical evaluation of the performance of our restart strat-

egy by comparing it against all the search techniques (i.e.,BT, LS, ERA, and RGR) devel-

oped to solve GTAAP, both on GTAAP data-sets and on randomly generated problems. We

describe the evaluation methodology and present the results.

4.1 Randomization and dynamic geometric restarts

In Section 2.6, we described the various static restart-strategies and their drawbacks. RGR

employs a geometrically increasing cutoff value. This ensures completeness of the search,

but results in fewer restarts, thus increasing the likelihood of thrashing and diminishing

the probability of finding a solution. Our proposed strategy, Randomization andDynamic

Geometric Restarts (RDGR), aims to attenuate this effect. It operates by not increasing

the cutoff value for the following restart whenever the quality of the current best solution

33

is not improved upon. When the current restart improves on the current best solution,

then the cutoff value is increased geometrically, similar to RGR. Because the cutoff value

may stay constant, completeness is no longer guaranteed (i.e., essentially incomplete Las

Vegas algorithm). This situation is acceptable in application domains (like ours) with large

problem size where completeness is, anyway, infeasible in practice. LetCi be cutoff value

for the ith restart andr be the ratio used to increase the cutoff value. In RGR the cutoff

value is updated according to the equation:Ci+1 = r.Ci. We use the following equation in

RDGR:

Ci+1 =











r.Ci when the solution has improved at theith restart

Ci otherwise
(4.1)

In RGR, the cutoff value for each restart is determinedindependentlyof how search per-

formed at the previous step. However, this is not the case forRDGR. RGR and RDGR

follow the same cutoff schedules for search paths that improve solutions.

As search proceeds, the cutoff values in RGR keep on increasing. This results in RGR

becoming more of a randomized backtrack search than a randomized backtrack search with

restarts. In contrast, the cutoff values in RDGR remain at a smaller value compared to that

of RGR. This results in more restarts taking place in RDGR than RGR. However, forr = 1

the cutoff values for both RGR and RDGR are similar, resulting in similar performance.

The dynamic nature of RDGR arises due to the fact that the cutoff schedule of RDGR is

different for each search process, and is not fixed as RRR or static as RGR.

We implemented RDGR with the BT of Section 2.3 and the randomized selection of

variable-value pairs of Section 3.3.

34

4.2 Experimental methodology

We tested and compared the 5 search strategies, namely: BT (Section 2.3), LS (Section 2.4),

ERA (Section 2.5), RGR (Section 2.6.2), and RDGR. BT is deterministic and the other 4

search techniques (i.e., LS, ERA, RGR, and RDGR) are stochastic.

4.2.1 Main experiments

We conducted the following three sets of experiments:

1. Effect of running time on RGR and RDGR.

2. The influence of the choice of the ratior used in RGR and RDGR.

3. Relative performance of BT, LS, ERA, RGR, and RDGR.

4.2.2 Evaluation criteria

We compare the performance of the algorithms using the following criteria:

1. Solution quality distributions(SQD) taking as reference the longest known solution

for each data set, as recommended by Hoos and Stützle in[2004]. SQD’s are cu-

mulative distributions of the solution quality, similar tothe cumulative distributions

of run-time in run-time distributions. The horizontal axesrepresents in percent the

relative deviation of the solution sizes from the longest known solutionsopt, com-

puted as(sopt−s)100
sopt

. Thus, the point 0% on thex-axis denotes a solution as long as

the longest known solution, the point 20% denotes a solutionthat is 20% shorter than

the longest known solution. They-axis shows the percentage of test runs that obtain

a solution in terms of deviation from the best known solution.

35

2. Descriptive statisticsof all the solutions found, for all search techniques. This in-

cludes the measures: mean, median, mode, standard deviation, minimum, and maxi-

mum length of the solution.

3. 95% confidence intervalto assess the performance differences of RDGR over RGR

and ERA. For single problem instance (i.e., GTAAP data sets), we use the Mann-

Whitney U-test for the computation of confidence intervals.For ensembles of in-

stances (i.e., randomly generated problems), we use the Wilcoxon matched pairs

signed-rank test.

4.2.3 Data sets

We tested these search techniques on the 8 GTAAP data-sets ofTable 2.1 and 4 sets of

randomly generated binary CSPs. For the GTAAP data sets, we repeated our experiments

500 times for all stochastic search techniques. Naturally,a single run is sufficient for BT

because it is deterministic.

4.2.3.1 GTAAP data sets

Figure 4.1 shows the moving averages for the running times ofRGR and RDGR. Moving

averages is an indicator that shows the average running-time over various sample sizes. We

found that the average run-time for all stochastic algorithms stabilizes after 300 runs on all

the GTAAP data sets, as shown in Figure 4.1 for data set 1, which justifies our decision of

repeating the experiments 500 times. We report the results for the following data sets:

1. Data set 1 as a representative of an over-constrained problem.

2. Data set 5 as a representative of a tight but solvable problem.

The results for all data sets are qualitatively equivalent and can be found in Appendices A.3,

A.4, and A.5.

36

50 100 150 200 250 300 350 400 450 500

80

100

120

140

160

180

200

C
u

m
u

la
ti

ve
 A

ve
ra

g
es

 [
se

c]

Sample Number

Data set 1: Moving averages for CPU Time

RGR
RDGR

Figure 4.1:Moving average for CPU run-times for data set 1.

4.2.3.2 Randomly generated problems

We also evaluated all the search techniques on randomly generated binary CSPs. Before

we started our work, all the search techniques (except RGR and RDGR) were customized

for GTAAP data. We adapted all the search techniques to solverandomly generated prob-

lems. All the randomly generated binary CSPs, used for testing, are of the model B type,

generated using the random generator of[van Hemert, 2004]. We generated three types

of random problems as shown in Figure 4.2, where〈n, a, p1, t〉 denote the number of vari-

ables, the (uniform) domain size, the proportion of constraints and the (uniform) constraint

tightness:

1. Under-constrained instances. The first type of randomly generated problems are

under-constrained binary CSPs with 40 variables, uniform domain size of 20 val-

ues, 0.5 proportion of constraints, and 0.2 constraint tightness. We generated 100

instances and ran each instance for 3 minutes.

2. Over-constrained instances. The second type of randomly generated problems are

over-constrained binary CSPs with 40 variables, uniform domain size of 20 values,

37

Critical value

C
os

t o
f s

ol
vi

ng
 th

e
pr

ob
le

m

of order parameter
Order parameter

Solvable<25,15,0.5,0.36>
<25,15,0.5,0.36>Unsolvable

(Constraint tightness t)

<40,20,0.5,0.5>

<40,20,0.5,0.2>

Figure 4.2:Randomly generated problem instances.

0.5 proportion of constraints, and 0.5 constraint tightness. We generated 100 in-

stances and ran each instance for 3 minutes.

3. Instances at the phase transition. The third type of randomly generated problems

are from thephase transitionarea. In binary CSPs, as the tightness is varied from

small to larger values, a transition occurs from a region containing problems hav-

ing many solutions to a region in which almost all problems have no solutions. The

values of tightness where this transition occurs is known asthe phase transition and

acknowledged to contain the hardest problem instances for agiven number of vari-

ables, domain size, and proportion of constraints. At the phase transition, we gener-

ated random binary CSPs with 25 variables, uniform domain size of 15 values, 0.5

proportion of constraints, and 0.36 constraint tightness.These problems were split

into two sets. The first set contains 87 solvable instances, and the second set con-

tains 111 unsolvable instances. All the solvable and unsolvable instances are from

the random generator of[van Hemert, 2004]. We ran each instance for 3 minutes.

38

4.3 Effect of the running time on RGR and RDGR

To compare the performance of RGR and RDGR, we tested them on various running times

for the GTAAP data sets. Figures 4.3 and 4.4 show the results in terms of SQDs.

Thex-axis shows the deviation from the best known solution for RGR and RDGR with

varying run-times. And, they-axis shows the percentage of test runs that obtain a solution

in terms of deviation from the best known solution. The distributions for greater run-

times lie to the right of the smaller run-times. This is because, with increasing run-times,

better solutions are found. In both the figures, the distribution of RDGR for 20 minutes

running time is to the right of the corresponding distribution of RGR. This means that the

probability of RDGR finding a particular solution quality ismore than RGR. This is true

for all the run-times. Thus, RDGR consistently outperformsRGR over different run-times.

Clearly, increasing the running time has no affect on the relative dominance of the two

algorithms.

39

Data set 1

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR-20min

RDGR-10min

RDGR-5min

RGR-20min

RGR-10min

RGR-5min

Figure 4.3:Varying run time: GTAAP, over-constrained.

Data set 5

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR-20min

RGR-20min

RDGR-10min

RGR-10min

RDGR-5min

RGR-5min

Figure 4.4:Varying run time: GTAAP, solvable.

40

4.4 Influence of the ratior

We tested RGR and RDGR with different ratios, with 5 minutes running time. For the

GTAAP problem we tested the values: 1, 1.1,2
1

4 , 2
1

2 , 2, and 4. For the random CSPs

we tested the values: 1, 1.1,2
1

4 , 2
1

2 , 2, 3, and 4. Figures 4.5, 4.6, 4.7, and 4.8 show the

percentage of test runs that obtain solutions for the different values of the ratior used to

increase the cutoff value in RGR and RDGR.

For example, in Figure 4.5, for data set 1 using a value ofr=1.1, nearly 90% of the runs

obtain solutions that are 6% deviant from the best known solution. While other values of

r yield poorer results. Thus, in accordance with[Walsh, 1999], Figures 4.5 and 4.7 show

that a value ofr=1.1 is the best among the values tested for RGR. While this optimal ratio

does not change with the problem type (i.e., GTAAP vs. randomproblem) for RGR, it does

for RDGR. For the GTAAP, it isr=1.1 (Figure 4.6). For randomly generated problems,

it is r=2 (Figure 4.8). We conducted further tests on larger randomly generated binary

CSPs having 60 variables, uniform domain size of 30 values, 0.5 proportion of constraints,

and 0.5 constraint tightness. Figure 4.8 shows that even with a larger problem size, the

best value for RDGR isr=2. This ensures that the best value ofr is not dependent on the

problem size.

41

RGR on data sets 1 & 5

0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3 3.5 4
Ratio

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

Data set 1 at 6%

Data set 5 at 6%

Figure 4.5:Effect of r: RGR on GTAAP.

RDGR on data sets 1 & 5

0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3 3.5 4
Ratio

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

Data set 1 at 6%

Data set 5 at 6%

Figure 4.6:Effect of r: RDGR on GTAAP.

42

RGR on Random CSPs

0

10

20

30

40

50

60

70

80

90

1 1.5 2 2.5 3 3.5 4

Ratio

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

Under-constrained

Over-constrained

Phase transition, solvable

Phase transition, unsolvable

<60, 30, 0.5, 0.2>

Figure 4.7:Effect of r: RGR on random CSPs.

RDGR on Random CSPs

0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3 3.5 4

Ratio

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

Under-constrained

Over-constrained

Phase transition, solvable

Phase transition, unsolvable

<60, 30, 0.5, 0.2>

Figure 4.8:Effect of r: RDGR on random CSPs.

43

This discrepancy in the value ofr for RDGR on random problems can be explained by

the fact that the cutoff value increases more quickly in RGR than in RDGR, as shown in

Figure 4.9.

Random binary CSP

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

Number of restarts

C
u

to
ff

 v
a

lu
e

RGR, r = 2

RGR, r = 1.1

RDGR, r = 2

RDGR, r = 1.1

Figure 4.9:Increasing rate of the cutoff value (3 minutes).

44

4.5 Relative performance of BT, LS, ERA, RGR, and RDGR

In this section we compare the relative performance of all the search techniques. Each

stochastic algorithm was run 500 times of 10 minutes each on the GTAAP data-set and

on ensembles of instances of randomly generated problems with each instance run for 3

minutes. Figures 4.10 and 4.11 show the distributions of LS,ERA, RGR, and RDGR on

data set 1 and data set 5.

In both the figures, the percentage of test runs finding solutions in the range of 0%-10%

deviation from best known solution is more for RDGR than RGR.In Figure 4.10, ERA is

unable to find a solution better than 25% deviation from best known solution. While in

Figure 4.11, ERA finds complete solutions for all the test runs.

Figures 4.12, 4.13, 4.14, and 4.15 show the relative performance on the random prob-

lems. We do not show LS and ERA in Figure 4.13 because they go off the scale.

45

Data set 1

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR

RGR

LS

ERA

Figure 4.10:SQDs: GTAAP, over-constrained.

Data set 5

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

ERA

RDGR

RGR

LS

Figure 4.11:SQDs: GTAAP, solvable.

46

Under-constrained

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s
ERA

RDGR

RGR

BT

LS

Figure 4.12:SQDs: under-constrained, random CSPs.

Over-constrained

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR

RGR

BT

Figure 4.13:SQDs: over-constrained, random CSPs.

47

Phase transition, solvable

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR

RGR

BT

ERA

LS

Figure 4.14:SQDs: solvable random CSPs, at phase transition.

Phase transition, unsolvable

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR

RGR

BT

ERA

LS

Figure 4.15:SQDs: unsolvable random CSPs, at phase transition.

48

Tables 4.1 and 4.2 show the lower limit and the upper limit of the confidence intervals

of the performance differences of RDGR over RGR and ERA.

Table 4.1:Improvements of RDGR with 95% confidence level, GTAAP data-sets.

Solvable data sets

Data set Improvements over RGR Improvements over ERA
Lower limit Upper limit Lower limit Upper limit

2 1.53 1.61 -6.15 -6.15
5 0 1.85 -3.7 -3.7
6 1.56 1.56 -6.25 -6.25
7 4.00 4.00 -3.99 -3.99
8 2.44 4.87 0 0

Over-constrained data sets

Data set Improvements over RGR Improvements over ERA
Lower limit Upper limit Lower limit Upper limit

1 1.61 1.61 45.16 46.77
3 3.43 3.44 27.58 31.03
4 1.84 1.85 24.08 27.77

Table 4.2:Improvements of RDGR with 95% confidence level, randomly generated problems.

Data set Improvements over RGR Improvements over ERA
Lower limit Upper limit Lower limit Upper limit

Under-constrained 0 2.49 -4.99 -3.75
Over-constrained 0 3.99 83.99 86.00

Phase transition, unsolvable 0 4.00 14.00 19.99
Phase transition, solvable, 0 4.00 -4.00 -4.00

lower solution quality deviations
Phase transition, solvable, 0 4.00 17.99 22.00

higher solution quality deviations

Comparing the improvement of RDGR over RGR, we see that the limits of the confi-

dence intervals are positive, indicating that RDGR does improve over RGR. As for ERA,

RDGR is superior to ERA for over-constrained problems (i.e., confidence intervals have

positive values), and the opposite holds for under-constrained problems (i.e., confidence

49

intervals have negative values). These results hold for both GTAAP data sets and randomly

generated problems. Note that this holds across the phase transition, where ERA remains

the only technique capable of solving more of the instances as it is given more time.

4.5.1 Improvement of RDGR over BT

Tables 4.3, 4.4, and 4.5 show that the mean and maximum valuesof the solution sizes

produced by RDGR are clearly greater than those of the solution sizes produced by BT.

Table 4.3:Statistics of solution size for data set 1 (500 runs, 10 minutes each).

Data set 1(69 variables, over-constrained)

Search Mean Median Mode Standard dev. Minimum Maximum

BT 57 57 57 0 57 57
LS 47.12 48 49 4.44 30 55
ERA 30.99 31 32 4.37 18 45
RGR 58.27 58 58 2.83 23 62
RDGR 59.66 60 60 0.77 58 62

Table 4.4:Statistics of solution size for data set 5 (500 runs, 10 minutes each).

Data set 5(54 variables, tight but solvable)

Search Mean Median Mode Standard dev. Minimum Maximum

BT 52 52 52 0 52 52
LS 42.88 44 46 3.94 29 50
ERA 53.99 54 54 0.04 53 54
RGR 51.70 52 52 1.04 49 54
RDGR 52.17 52 52 0.78 50 54

However, due to its stochastic nature, RDGR suffers from high instability (non-zero

standard deviation) in its solution quality. Even on randomproblems (Table 4.5 and Fig-

ures 4.12, 4.13, 4.14, and 4.15) RDGR dominates BT. Also, on ensembles of problem

instances, RDGR is more stable (lower standard deviation) than BT.

50

Table 4.5:Statistics of solution size for randomly generated problems

Under-constrained(40 variables)

Search Mean Median Mode Standard dev. Minimum Maximum

BT 37.5 38 38 1.12 35 40
LS 35.2 35 35 0.80 34 38
ERA 40 40 40 0 40 40
RGR 38.0 38 38 0.61 37 40
RDGR 38.2 38 38 0.49 37 40

Over-constrained (40 variables)

Search Mean Median Mode Standard dev. Minimum Maximum

BT 21.3 21 21 0.77 20 23
LS 19.6 20 20 0.61 19 21
ERA 0.7 1 0 0.89 0 4
RGR 21.6 22 22 0.60 21 24
RDGR 21.8 22 22 0.45 21 24

Phase transition, solvable(25 variables)

Search Mean Median Mode Standard dev. Minimum Maximum

BT 22.4 22 23 0.71 21 24
LS 20.8 21 21 0.66 20 23
ERA 19.0 19 21 3.83 6 25
RGR 22.7 23 23 0.55 22 24
RDGR 22.8 23 23 0.43 22 24

Phase transition, unsolvable(25 variables)

Search Mean Median Mode Standard dev. Minimum Maximum

BT 22.2 22 22 0.63 20 24
LS 20.4 20 20 0.50 20 22
ERA 18.2 19 21 3.48 7 23
RGR 22.4 22 22 0.53 21 24
RDGR 22.5 23 23 0.53 22 24

51

4.5.2 Superiority of RDGR over LS

Tables 4.3, 4.4, and 4.5 show that the mean and maximum lengthof the solution yielded by

LS is smaller than RDGR. Clearly, the performance of RDGR is superior to that of LS (see

also Figures 4.10, 4.11, 4.12, 4.14, and 4.15). Although thesolution quality is variable for

both RDGR (standard deviation of 0.77 in Table 4.3) and LS (standard deviation of 4.44 in

Table 4.3), the low mean value of the solution quality of LS ensures that RDGR remains

superior to LS.

4.5.3 Superiority of RDGR over ERA on over-constrained problems

In Figure 4.10, RDGR yields solutions that are within a rangeof 0-10% deviation from

the best solution. While the best solution that ERA gives is more than 25% deviated from

the best solution. Clearly, on over-constrained problems (Figure 4.10 and Tables 4.1 and

4.2), the livelock phenomenon prevents ERA from finding solutions of quality comparable

to those found by the other techniques. BT, LS, RDGR, and RGR do not exhibit such a

dichotomy of behavior between over-constrained cases and solvable instances.

4.5.4 Performance of ERA

As we just stated, on over-constrained problem (both GTAAP data and randomly gener-

ated problems), RDGR, RGR, BT, and LS are superior to ERA. On unsolvable problem

instances around the phase transition (Figure 4.15), RDGR,RGR, and BT are still superior

to ERA, but ERA outperforms LS.

On solvable GTAAP instances (Figure 4.11) and randomly generated under-constrained

problem instances (Figure 4.12), ERA completely dominatesall the other search techniques

for all values of the deviation from the best known solution.However, on solvable problem

instances around the phase transition (Figure 4.14), two cases must be distinguished. On

52

lower values of deviation from the best known solution, ERA dominates all the other search

techniques. Thus, confirming that ERA is our best technique for solving solvable problems

and the only one that can solve tight instances. However, forlarger values of deviation

from the best known solution, ERA performs only better than LS, while RDGR, RGR, and

BT perform better than ERA. More tests are needed to understand this phenomenon.

4.5.5 RDGR is more stable than RGR

Table 4.6 shows the standard deviation of RGR and RDGR on the GTAAP data sets. Due to

Table 4.6:Standard deviation of RGR and RDGR on GTAAP data sets.

Data set 1 2 3 4 5 6 7 8

RGR 2.8 1.1 0.7 1.0 1.0 1.2 0.59 0.73
RDGR 0.7 0.8 0.6 0.9 0.7 1.1 0.43 0.47

their stochastic nature, RDGR and RGR techniques show variation in their solution quality.

However, the smaller standard deviations of RDGR compared to RGR in Table 4.6 show

that RDGR is relatively more stable than RGR.

4.5.6 Sensitivity of LS to local optima

The inability of LS to yield any good solutions shows that LS sensitivity to local optima

makes it particularly unattractive. Even BT outperforms LS.

4.5.7 Larger number of restarts in RDGR

Table 4.7 shows the average number of restarts occurring in RGR and RDGR. This confirms

our expectations stated in Section 4.1 that RDGR performs more restarts than RGR.

53

Table 4.7:Average number of restarts by RGR and RDGR on GTAAP data sets.

Data set 1 2 3 4 5 6 7 8

RGR 16.7 17.4 22.5 14.7 22.4 19.5 27.8 30.4
RDGR 74.5 59.9 167.4 39.1 39.1 46.2 826.2 272.0

Summary

We tested the 5 search strategies, namely: BT, LS, ERA, RGR, and RDGR on two types

of problems. The first is a real-world resource allocation problem, GTAAP, which was the

initial motivation for all our investigations. To validatethe observations made on GTAAP

data-sets, we conducted tests on randomly generated problems. All these experiments sup-

port that our proposed RDGR restart strategy improves upon RGR.

54

Chapter 5

Conclusions and future work

In this thesis we proposed an improved dynamic restart strategy (RDGR). We compared its

performance with other search techniques, namely: BT, LS, ERA, and RGR. We showed in

RDGR that making the restart strategy dependent on the search progress enhances the per-

formance of randomized backtrack search compared to the static restart strategy of RGR.

We studied these search techniques on a real-world application, GTAAP, and also on ran-

domly generated binary CSPs. In this chapter we summarize our research and results, and

propose directions for future investigations .

5.1 Summary of the research conducted

The basic backtrack search is deterministic, complete, andsound. However, on large prob-

lems its performance is seriously undermined by thrashing and large variance in its run-time

on various instances of the same problem. Variable/value ordering heuristics and methods

such as look-ahead and backjumping can improve the performance of search, but cannot

eliminate thrashing completely. Zou and Choueiry[2003a; 2003; 2003b] showed the draw-

backs of LS and ERA on GTAAP instances. Our tests showed that these drawbacks also

seem to be present on randomly generated problems.

55

Given the disadvantages of BT, LS, and ERA, we studied randomized BT search with

restarts. Gomes et al. demonstrated that randomization of heuristic choices combined with

restart mechanisms is effective in overcoming the effects of thrashing and in reducing the

total execution time of systematic BT search[1998]. RGR and RDGR are such algorithms

that use randomized BT search with restarts. We proposed RDGR, an improvement over

RGR of Walsh[1999].

5.2 Conclusions

By addressing a real-world application, we are able to identify, characterize, and compare

the behavior of various search techniques. We tested various deterministic-ordering heuris-

tics for BT. As expected, dynamic selection of variables wasfound to be superior to static

selection of variables. However, there was no difference inperformance among variable-

ordering and value-ordering heuristics. Also, while BT is complete and sound, it suffers

from thrashing. LS is vulnerable to local optima. ERA has an amazing ability to solve

tight solvable problems (some of which we thought were unsolvable). However, ERA’s

performance degrades on over-constrained problems due to the livelock phenomenon. Ran-

domization of backtrack search with restart strategies areeffective in preventing thrashing.

RGR operates by increasing the cutoff values at every restart, which makes it more increas-

ingly vulnerable to thrashing. RDGR attenuates this effectby making the cutoff value de-

pend upon the result obtained at the previous restart, thus increasing the number of restarts

in comparison to RGR. Consequently, RDGR exhibits a more stable behavior than RGR

while yielding at least as good solutions.

The following five statements, where� denotes dominance of an algorithm over an-

other, summarize the behavior of the 5 search strategies, also briefly explained in Table 5.1:

• On unsolvable instances:

56

– Beyond the phase transition: RDGR� RGR� BT � LS� ERA.

– Around the phase transition: RDGR� RGR� BT � ERA � LS.

• On solvable instances:

– Beyond the phase transition: ERA� RDGR� RGR� BT � LS.

– Around the phase transition: two cases must be distinguished (see Figure 4.14).

If we focus on the percentage of problems solved (i.e., lowervalues of SQDs),

ERA remains the dominant technique: ERA� RDGR� RGR� BT � LS.

However, if we accept larger values of the deviation from thebest solution, then

RDGR statistically dominates: RDGR� RGR� BT � ERA � LS.

Table 5.1:Comparing the behavior of search strategies.

Characteristics

General: Stochastic and incomplete
ERA Tight but solvable problems: Immune to local optima and solves tight CSPs

Over-constrained problems:Livelock causes instability and yields shorter solutions

General: Stochastic, incomplete, and quickly stabilizes
LS Tight but solvable problems: Liable to local optima, and fails to solve tight

CSPs even with random-walk and restart strategies
Over-constrained problems:Finds longer solutions than ERA

General: Stochastic, incomplete, immune to thrashing,
produces longer solutions than BT, immune to livelock,

RDGR reliable on unknown instances, and
immune to local optima, but less than ERA

General: Stochastic, approximately complete,
RGR less immune to thrashing than RDGR, and

yields shorter solutions than RDGR in general.

General: Systematic, complete (theoretically, rarely in practice),
BT liable to thrashing, yields shorter solutions than RDGR andRGR,

stable behavior, and more stable solutions than stochasticmethods in general

57

5.3 Open questions and future research directions

Our research was motivated and enabled by the GTA assignmentproject. However, we

extended our results beyond this particular application torandomly generated problems.

Below we describe the future research directions:

1. Enhance RDGR with tabu behavior across restarts.

2. Validate our findings on other real-world case-studies.

3. Design ‘progress-aware’ restart strategies, that is, strategies that can decide,duringa

given restart, whether to continue or abandon this particular execution.

4. Design new search hybrids where a solution from a given technique such as ERA is

fed as a seed to another one such as heuristic backtrack search.

58

Appendix A

Results from the GTAAP data sets

This chapter presents results of all the experiments done onthe data sets of GTAAP. Sec-

tion A.1 contains the best solutions obtained by the five search techniques (i.e., BT, LS,

ERA, RGR, and RDGR). Section A.2 presents the results of testing the various determin-

istic ordering heuristics of BT. Section A.3 presents the SQD graphs of comparing the four

stochastic search techniques (i.e., LS, ERA, RGR, and RDGR). Section A.4 presents the

SQD graphs of the effect of running time on RGR and RDGR. Finally, Section A.5 presents

the SQD graphs for the different values of the ratio used to increase the cutoff value for both

RGR and RDGR.

A.1 Best results of the GTAAP data sets

This section contains the best solutions obtained for the GTAAP data sets. All the exper-

iments were carried out for 5 minutes. Table A.1 shows the best results obtained by BT

using the 12 different deterministic ordering heuristics.We note the number of unassigned

courses (i.e. unassigned variables), the solution qualityin terms of the geometric mean of

the assigned GTAs preferences, the number of unused GTAs, the available resources, time

taken for finding the best solution, the number of constraintchecks needed to find the best

solution, and the combination of variable-value ordering heuristic that obtained the best

solution for each GTAAP data-set.

59

Table A.1:Best results obtained by BT using deterministic various ordering heuristics: GTAAP (5
minutes).

Data Sets U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

A
va

ila
bl

e
R

es
ou

rc
e

T
im

e
[s

ec
]

C
C

(×
1
0
8
)

Ordering Heuristic

1 12 2.31 0 4.5 94 1.39 DDD-OCCURRENCE
2 2 2.65 0 2.7 22 0.92 DLD-OCCURRENCE
3 3 3.73 0 1.5 2 0.04 DLD-PREFERENCE
4 7 2.86 0 3.5 162 2.27 DDD-FIL
5 0 3.22 0 1.5 25 0.75 DLD-OCCURRENCE
6 2 4.15 0 2.3 25 1.07 DLD-PREFERENCE
7 6 2.88 0 4.2 253 0.92 DDD-FIL
8 1 3.89 3 4.6 102 0.50 DLD-FIL

Tables A.2 and A.3 show the best solutions obtained by LS, ERA, RGR, and RDGR.

Each experiment was run 500 times, with each run for 5 minutes. We note the number of

unassigned courses (i.e. unassigned variables), the solution quality in terms of the geomet-

ric mean of the assigned GTAs preferences, the number of unused GTAs, and the available

resources.

60

Table A.2:Best results of LS and ERA: GTAAP (500 runs, 5 minutes each).

Data Set LS ERA

U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

A
va

ila
bl

e
R

es
ou

rc
e

U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

A
va

ila
bl

e
R

es
ou

rc
e

1 14 3.22 0 3.7 23 2.84 7 14.4
2 4 2.98 1 5.5 0 2.99 0 1.6
3 4 3.61 0 2.0 8 3.22 1 2.0
4 7 3.74 0 4.3 9 3.01 2 4.5
5 3 3.64 2 11.5 0 2.82 2 7.8
6 9 3.64 0 7.2 0 3.28 0 1.5
7 3 2.70 4 4.66 0 3.47 0 1.7
8 7 4.02 12 14.5 0 4.41 5 4.2

Table A.3:Best results of RGR and RDGR: GTAAP (500 runs, 5 minutes each).

Data Set RGR RDGR

U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

A
va

ila
bl

e
R

es
ou

rc
e

U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

A
va

ila
bl

e
R

es
ou

rc
e

1 7 2.68 0 0 8 2.10 0 0.6
2 1 2.81 0 2.6 2 2.96 1 3.6
3 2 3.62 0 0 2 3.40 0 0
4 5 2.85 0 1.0 4 3.05 0 1.0
5 0 3.30 1 1.5 0 2.72 0 1.5
6 1 2.70 1 3.5 1 2.52 0 3.5
7 0 2.94 2 2.5 0 2.75 0 1.7
8 0 2.99 5 3.6 0 3.01 7 3.68

61

A.2 Results obtained from BT using the various determin-
istic ordering heuristics

This section presents the results of testing the various deterministic ordering heuristics of

BT on all the data sets (i.e. 12 experiments for each data set,96 experiments all together).

Each experiment was run for 5 minutes. And, for each experiment we note the number

of unassigned courses, the solution quality in terms of the geometric mean of the assigned

GTAs preferences, the number of unused GTAs, the available resources, time taken for

finding the best solution, the number of constrains checks needed to find the best solution

and during 5 minutes, the number of nodes visited to find the best solution and during 5

minutes, the depth of the search tree (i.e., number of variables), the shallowest level reached

by backtracking, and the number of backtracks for the best solution and in 5 minutes.

Table A.4:Deterministic ordering heuristics of BT: GTAAP, data set 1.

Ordering heuristics U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

Av
ai

la
bl

e
R

es
ou

rc
es

T
im

e
[s

ec
]

C
C

(
×

1
0
8

)
be

st
so

lu
tio

n

C
C

(
×

1
0
8

)
5

m
in

s

N
V

(
×

1
0
3

)
be

st
so

lu
tio

n

N
V

(
×

1
0
3

)
5

m
in

s

D
ep

th
of

se
ar

ch
tr

ee

S
ha

llo
w

es
tB

T
le

ve
l

B
T

(×
1
0
3

)
be

st
so

lu
tio

n

B
T

(×
1
0
3

)
5

m
in

s
SLD-FIL 17 2.84 0 2.5 291 3.98 4.08 67.36 69.37 69 52 44.95 46.28
SLD-PREFERENCE 16 4.28 0 3.6 136 2.02 3.93 33.19 74.71 69 51 21.35 47.78
SLD-OCCURRENCE 17 2.46 0 2.5 40 0.92 3.82 8.16 73.27 69 53 4.74 44.44
SDD-FIL 17 2.84 0 2.5 293 3.98 4.05 67.36 68.88 69 52 44.95 45.94
SDD-PREFERENCE 16 4.28 0 3.6 137 2.02 3.93 33.19 74.78 69 51 21.35 47.82
SDD-OCCURRENCE 17 2.46 0 2.5 41 0.90 3.58 8.16 71.14 69 53 4.74 43.10
DLD-FIL 15 2.46 0 4.3 230 2.59 3.19 65.57 87.14 69 55 34.79 46.34
DLD-PREFERENCE 16 3.90 0 5.0 205 2.44 3.34 55.14 81.92 69 55 29.36 43.62
DLD-OCCURRENCE 18 2.44 0 4.6 16 0.73 3.25 0.40 88.61 69 56 0.17 47.22
DDD-FIL 16 2.31 0 5.3 39 0.90 3.76 7.67 81.64 69 51 3.89 51.00
DDD-PREFERENCE 13 3.64 0 4.7 24 0.76 3.31 2.95 79.50 69 54 1.52 42.39
DDD-OCCURRENCE 12 2.31 0 4.5 94 1.39 3.22 21.19 79.85 69 53 11.12 42.32

Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.

62

Table A.5:Deterministic ordering heuristics of BT: GTAAP, data set 2.

Ordering heuristics U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

Av
ai

la
bl

e
R

es
ou

rc
es

T
im

e
[s

ec
]

C
C

(
×

1
0
8

)
be

st
so

lu
tio

n

C
C

(
×

1
0
8

)
5

m
in

s

N
V

(
×

1
0
3

)
be

st
so

lu
tio

n

N
V

(
×

1
0
3

)
5

m
in

s

D
ep

th
of

se
ar

ch
tr

ee

S
ha

llo
w

es
tB

T
le

ve
l

B
T

(×
1
0
3

)
be

st
so

lu
tio

n

B
T

(×
1
0
3

)
5

m
in

s

SLD-FIL 8 2.91 1 6.2 35 0.95 4.26 3.83 40.93 65 48 2.31 24.29
SLD-PREFERENCE 10 3.55 3 9.1 13 0.65 3.46 0.06 84.81 65 51 0 48.92
SLD-OCCURRENCE 10 2.76 0 7.5 15 0.74 3.70 0.06 56.98 65 54 0 29.69
SDD-FIL 8 2.91 1 6.2 36 0.95 4.22 3.83 40.98 65 48 2.31 24.32
SDD-PREFERENCE 10 3.55 3 9.1 13 0.65 3.45 0.06 84.65 65 51 0 48.83
SDD-OCCURRENCE 10 2.76 0 7.5 15 0.74 3.69 0.06 56.87 65 54 0 29.63
DLD-FIL 7 2.96 1 4.1 20 0.86 3.52 0.06 42.49 65 58 0 12.16
DLD-PREFERENCE 5 3.11 0 5.7 21 0.90 3.41 0.06 53.85 65 56 0 26.05
DLD-OCCURRENCE 2 2.65 0 2.7 22 0.92 3.63 0.12 43.25 65 56 0.02 18.90
DDD-FIL 6 3.08 0 3.9 52 1.18 3.87 6.59 41.08 65 56 2.84 18.54
DDD-PREFERENCE 7 3.41 0 4.9 20 0.87 3.66 0.06 46.16 65 57 0 20.78
DDD-OCCURRENCE 6 2.99 0 6.7 273 3.13 3.37 47.22 52.58 65 55 22.23 24.93

Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.

Table A.6:Deterministic ordering heuristics of BT: GTAAP, data set 3.

Ordering heuristics U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

Av
ai

la
bl

e
R

es
ou

rc
es

T
im

e
[s

ec
]

C
C

(
×

1
0
8

)
be

st
so

lu
tio

n

C
C

(
×

1
0
8

)5
m

in
s

N
V

(
×

1
0
3

)
be

st
so

lu
tio

n

N
V

(
×

1
0
3

)
5

m
in

s

D
ep

th
of

se
ar

ch
tr

ee

S
ha

llo
w

es
tB

T
le

ve
l

B
T

(×
1
0
3

)
be

st
so

lu
tio

n

B
T

(×
1
0
3

)
5

m
in

s

SLD-FIL 7 3.32 0 4.5 244 3.34 4.10 36.37 43.77 31 9 22.37 26.76
SLD-PREFERENCE 6 4.10 0 2.3 45 0.64 4.47 4.70 26.47 31 8 2.74 14.98
SLD-OCCURRENCE 6 3.56 0 4.0 94 1.38 4.47 8.73 26.32 31 9 4.89 14.56
SDD-FIL 7 3.32 0 4.5 235 3.18 4.07 36.37 44.92 31 9 22.37 27.41
SDD-PREFERENCE 6 4.10 0 2.3 45 0.64 4.47 4.70 26.45 31 8 2.74 14.97
SDD-OCCURRENCE 6 3.56 0 4.0 93 1.38 4.50 8.73 26.45 31 9 4.89 14.63
DLD-FIL 5 3.37 0 2.5 11 0.14 3.99 1.82 38.66 31 13 0.99 21.70
DLD-PREFERENCE 3 3.73 0 1.5 2 0.04 4.04 0.12 35.77 31 11 0.05 20.85
DLD-OCCURRENCE 6 3.68 0 4.0 88 1.20 4.24 10.33 33.61 31 11 5.83 19.21
DDD-FIL 5 3.37 0 2.5 136 1.73 3.92 22.38 44.55 31 13 12.70 25.41
DDD-PREFERENCE 3 3.73 0 1.5 45 0.57 4.01 7.55 36.05 31 12 4.24 20.63
DDD-OCCURRENCE 6 3.75 0 4 90 0.79 2.63 8.38 28.45 31 13 4.68 16.15

Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.

63

Table A.7:Deterministic ordering heuristics of BT: GTAAP, data set 4.

Ordering heuristics U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

Av
ai

la
bl

e
R

es
ou

rc
es

T
im

e
[s

ec
]

C
C

(×
1
0
8

)
be

st
so

lu
tio

n

C
C

(×
1
0
8

)
5

m
in

s

N
V

(
×

1
0
3

)b
es

ts
ol

ut
io

n

N
V

(
×

1
0
3

)5
m

in
s

D
ep

th
of

se
ar

ch
tr

ee

S
ha

llo
w

es
tB

T
le

ve
l

B
T

(×
1
0
3

)
be

st
so

lu
tio

n

B
T

(×
1
0
3

)5
m

in
s

SLD-FIL 11 2.61 1 6.5 191 3.06 4.73 30.96 44.93 59 41 17.86 25.68
SLD-PREFERENCE 11 4.15 0 3.3 6 0.34 4.24 0.05 62.24 59 42 0 36.42
SLD-OCCURRENCE 11 2.90 0 5.3 8 0.38 4.18 0.12 57.31 59 43 0.03 32.18
SDD-FIL 11 2.61 1 6.5 198 3.06 4.59 30.96 43.85 59 41 17.86 25.08
SDD-PREFERENCE 11 4.15 0 3.3 6 0.34 4.14 0.05 60.18 59 42 0 35.21
SDD-OCCURRENCE 11 2.90 0 5.3 8 0.38 4.03 0.12 55.01 59 43 0.03 30.91
DLD-FIL 8 2.91 0 6.0 271 2.82 3.08 70.92 78.48 59 47 37.32 41.28
DLD-PREFERENCE 8 3.7 0 5.0 98 1.11 2.61 30.16 99.72 59 48 12.58 40.80
DLD-OCCURRENCE 9 3.20 0 4.7 32 0.65 3.17 6.94 73.50 59 48 3.23 38.10
DDD-FIL 7 2.86 0 3.5 162 2.27 3.73 26.29 53.98 59 47 13.92 28.26
DDD-PREFERENCE 11 3.78 0 7.7 56 0.82 3.18 14.41 80.32 59 47 7.09 40.53
DDD-OCCURRENCE 10 2.73 0 6.75 16 0.52 3.39 2.07 74.62 59 48 1.13 41.06

Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.

Table A.8:Deterministic ordering heuristics of BT: GTAAP, data set 5.

Ordering heuristics U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

Av
ai

la
bl

e
R

es
ou

rc
es

T
im

e
[s

ec
]

C
C

(×
1
0
8

)
be

st
so

lu
tio

n

C
C

(×
1
0
8

)
5

m
in

s

N
V

(
×

1
0
3

)b
es

ts
ol

ut
io

n

N
V

(
×

1
0
3

)5
m

in
s

D
ep

th
of

se
ar

ch
tr

ee

S
ha

llo
w

es
tB

T
le

ve
l

B
T

(×
1
0
3

)
be

st
so

lu
tio

n

B
T

(×
1
0
3

)
5

m
in

s

SLD-FIL 13 2.85 3 9.2 230 2.56 3.26 6.42 8.14 54 39 2.44 3.19
SLD-PREFERENCE 14 4.04 2 8.5 17 0.51 4.29 0.96 32.12 54 41 0.47 14.63
SLD-OCCURRENCE 10 3.49 1 8.2 270 4.38 4.85 13.08 14.00 54 38 5.56 5.98
SDD-FIL 13 2.85 3 9.2 146 2.53 5.02 6.42 12.54 54 38 2.44 5.08
SDD-PREFERENCE 14 4.04 2 8.5 17 0.51 4.26 0.96 32.44 54 41 0.47 14.76
SDD-OCCURRENCE 10 3.49 1 8.2 271 4.41 4.87 13.08 13.96 54 38 5.56 5.96
DLD-FIL 3 3.22 0 3.5 278 3.54 3.82 15.18 16.38 54 44 6.29 6.81
DLD-PREFERENCE 4 3.82 2 4.2 23 0.70 4.46 0.30 10.73 54 46 0.08 3.49
DLD-OCCURRENCE 0 3.22 0 1.5 25 0.75 4.39 0.29 8.96 54 43 0.11 3.32
DDD-FIL 5 2.86 0 4.8 290 4.33 4.45 16.10 16.90 54 44 5.60 5.93
DDD-PREFERENCE 1 3.62 0 2.5 87 1.56 4.40 2.98 10.67 54 42 1.17 4.21
DDD-OCCURRENCE 2 3.33 0 3.5 42 0.95 3.70 1.64 34.91 54 44 0.68 18.89

Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.

64

Table A.9:Deterministic ordering heuristics of BT: GTAAP, data set 6.

Ordering heuristics U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

Av
ai

la
bl

e
R

es
ou

rc
es

T
im

e
[s

ec
]

C
C

(
×

1
0
8

)b
es

ts
ol

ut
io

n

C
C

(
×

1
0
8

)
5

m
in

s

N
V

(
×

1
0
3

)
be

st
so

lu
tio

n

N
V

(
×

1
0
3

)
5

m
in

s

D
ep

th
of

se
ar

ch
tr

ee

S
ha

llo
w

es
tB

T
le

ve
l

B
T

(×
1
0
3

)
be

st
so

lu
tio

n

B
T

(×
1
0
3

)
5

m
in

s

SLD-FIL 15 2.55 3 10.5 75 1.77 5.42 5.30 21.79 64 49 2.54 10.73
SLD-PREFERENCE 13 4.36 2 8.1 92 1.67 3.98 15.43 61.64 64 49 7.98 31.84
SLD-OCCURRENCE 18 3.24 3 12.1 189 3.99 6.02 5.20 8.08 64 46 2.05 3.22
SDD-FIL 15 2.55 3 10.5 76 1.79 5.44 5.30 21.44 64 49 2.54 10.57
SDD-PREFERENCE 13 4.36 2 8.13 93 1.70 4.01 15.43 60.93 64 49 7.98 31.46
SDD-OCCURRENCE 18 3.24 3 12.1 192 4.00 5.97 5.20 8.00 64 46 2.05 3.18
DLD-FIL 6 3.08 0 4.17 296 5.10 5.14 8.07 8.23 64 53 2.84 2.90
DLD-PREFERENCE 2 4.15 0 2.7 25 1.07 4.64 0.08 13.92 64 55 0.00 5.28
DLD-OCCURRENCE 10 3.21 0 5.5 117 2.39 5.13 3.94 9.39 64 54 1.43 3.29
DDD-FIL 6 2.92 0 4.2 191 3.44 4.93 10.24 17.97 64 50 4.67 8.45
DDD-PREFERENCE 6 3.78 0 4.2 24 1.09 5.13 0.13 8.76 64 55 0.03 3.42
DDD-OCCURRENCE 5 2.81 0 3.9 294 4.86 4.93 11.35 11.68 64 54 3.60 3.73

Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.

Table A.10:Deterministic ordering heuristics of BT: GTAAP, data set 7.

Ordering heuristics U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

Av
ai

la
bl

e
R

es
ou

rc
es

T
im

e
[s

ec
]

C
C

(
×

1
0
8

)b
es

ts
ol

ut
io

n

C
C

(
×

1
0
8

)5
m

in
s

N
V

(
×

1
0
3

)
be

st
so

lu
tio

n

N
V

(
×

1
0
3

)5
m

in
s

D
ep

th
of

se
ar

ch
tr

ee

S
ha

llo
w

es
tB

T
le

ve
l

B
T

(×
1
0
3

)
be

st
so

lu
tio

n

B
T

(×
1
0
3

)5
m

in
s

SLD-FIL 8 2.87 1 2.76 95 0.36 1.29 79.19 225.05 25 4 42.94 126.14
SLD-PREFERENCE 7 2.92 1 3.26 67 0.26 1.37 52.06 207.56 25 4 28.26 117.09
SLD-OCCURRENCE 7 2.93 0 3.26 215 0.86 1.24 181.30 241.60 25 5 107.47 142.26
SDD-FIL 8 2.87 1 2.76 94 0.36 1.31 79.19 227.22 25 4 42.94 127.46
SDD-PREFERENCE 7 2.92 1 3.26 65 0.26 1.38 52.06 209.04 25 4 28.26 117.93
SDD-OCCURRENCE 7 2.93 0 3.26 216 0.86 1.24 181.30 241.11 25 5 107.47 141.98
DLD-FIL 6 2.88 0 4.2 281 1.01 1.05 258.10 278.54 25 7 151.53 162.80
DLD-PREFERENCE 6 2.91 0 4.2 284 1.00 1.04 261.42 277.86 25 7 153.27 162.30
DLD-OCCURRENCE 6 2.93 0 4.2 1 0.00 0.98 0.00 265.72 25 9 0 142.94
DDD-FIL 6 2.88 0 4.2 253 0.92 1.08 214.52 251.65 25 7 125.32 144.80
DDD-PREFERENCE 6 2.91 0 4.2 255 0.92 1.07 217.65 253.10 25 7 126.98 145.58
DDD-OCCURRENCE 6 2.93 0 4.2 1 0.00 1.08 0.47 229.53 25 9 0.21 121.03

Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.

65

Table A.11:Deterministic ordering heuristics of BT: GTAAP, data set 8.

Ordering heuristics U
na

ss
ig

ne
d

C
ou

rs
es

S
ol

ut
io

n
Q

ua
lit

y

U
nu

se
d

G
TA

s

Av
ai

la
bl

e
R

es
ou

rc
es

T
im

e
[s

ec
]

C
C

(
×

1
0
8

)
be

st
so

lu
tio

n

C
C

(
×

1
0
8

)
5

m
in

s

N
V

(
×

1
0
3

)
be

st
so

lu
tio

n

N
V

(
×

1
0
3

)
5

m
in

s

D
ep

th
of

se
ar

ch
tr

ee

S
ha

llo
w

es
tB

T
le

ve
l

B
T

(×
1
0
3

)
be

st
so

lu
tio

n

B
T

(×
1
0
3

)
5

m
in

s

SLD-FIL 13 3.58 8 10.6 215 0.96 1.44 89.40 116.51 41 21 25.76 34.56
SLD-PREFERENCE 9 4.15 6 8.17 67 0.15 0.89 40.93 163.44 41 22 11.55 49.83
SLD-OCCURRENCE 13 3.26 6 10.68 198 0.78 1.24 83.82 122.45 41 24 21.22 32.08
SDD-FIL 13 3.58 8 10.67 218 0.96 1.41 89.40 114.82 41 21 25.76 34.02
SDD-PREFERENCE 9 4.15 6 8.17 69 0.15 0.88 40.93 160.39 41 22 11.55 48.95
SDD-OCCURRENCE 13 3.26 6 10.68 199 0.78 1.23 83.82 121.85 41 24 21.22 31.90
DLD-FIL 1 3.89 3 4.68 102 0.50 1.64 33.17 78.88 41 19 10.00 28.55
DLD-PREFERENCE 3 4.14 5 5.68 128 0.54 1.46 47.47 94.78 41 21 13.06 29.60
DLD-OCCURRENCE 5 3.11 4 6.68 280 1.12 1.20 112.22 119.31 41 30 31.59 33.70
DDD-FIL 5 3.44 5 7.18 296 1.36 1.38 95.96 97.17 41 25 22.70 23.02
DDD-PREFERENCE 4 4.17 5 5.68 260 1.24 1.40 82.05 96.39 41 25 21.94 25.99
DDD-OCCURRENCE 5 3.30 4 6.68 288 1.18 1.22 109.43 114.09 41 30 29.59 30.75

Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.

66

A.3 SQDs of LS, ERA, RGR, and RDGR

This section presents the SQDs of the four stochastic searchtechniques (i.e., LS, ERA,

RGR, and RDGR) for all the data sets of GTAAP.

Data set 1

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR

RGR

LS

ERA

Figure A.1:SQDs: GTAAP, data set 1 (unsolvable, 500 runs, 10 minutes each).

Data set 2

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

ERA

RDGR

RGR

LS

Figure A.2:SQDs: GTAAP, data set 2 (solvable, 500 runs, 10 minutes each).

67

Data set 3

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR

RGR

LS

ERA

Figure A.3:SQDs: GTAAP, data set 3 (unsolvable, 500 runs, 10 minutes each).

Data set 4

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR

RGR

LS

ERA

Figure A.4:SQDs: GTAAP, data set 4 (unsolvable, 500 runs, 10 minutes each).

68

Data set 5

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

ERA

RDGR

RGR

LS

Figure A.5:SQDs: GTAAP, data set 5 (solvable, 500 runs, 10 minutes each).

Data set 6

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

ERA

RDGR

RGR

LS

Figure A.6:SQDs: GTAAP, data set 6 (solvable, 500 runs, 10 minutes each).

69

Data set 7

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

ERA

RDGR

RGR

LS

Figure A.7:SQDs: GTAAP, data set 7 (solvable, 500 runs, 10 minutes each).

Data set 8

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

ERA

RDGR

RGR

LS

Figure A.8:SQDs: GTAAP, data set 8 (solvable, 500 runs, 10 minutes each).

70

A.4 RGR and RDGR over varying run time

This section presents the SQDs of comparing RGR and RDGR overdifferent periods of

times for all the data sets of GTAAP.

Data set 1

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR-20min

RDGR-10min

RDGR-5min

RGR-20min

RGR-10min

RGR-5min

Figure A.9:Varying run time: GTAAP, data set 1 (unsolvable, 500 runs).

Data set 2

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR-20min

RGR-20min

RDGR-10min

RGR-10min

RDGR-5min

RGR-5min

Figure A.10:Varying run time: GTAAP, data set 2 (solvable, 500 runs).

71

Data set 3

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR-20min

RDGR-10min

RDGR-5min

RGR-20min

RGR-10min

RGR-5min

Figure A.11:Varying run time: GTAAP, data set 3 (unsolvable, 500 runs).

Data set 4

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR-20min

RDGR-10min

RGR-20min

RDGR-5min

RGR-10min

RGR-5min

Figure A.12:Varying run time: GTAAP, data set 4 (unsolvable, 500 runs).

72

Data set 5

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR-20min

RGR-20min

RDGR-10min

RGR-10min

RDGR-5min

RGR-5min

Figure A.13:Varying run time: GTAAP, data set 5 (solvable, 500 runs).

Data set 6

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR-20min

RGR-20min

RDGR-10min

RGR-10min

RDGR-5min

RGR-5min

Figure A.14:Varying run time: GTAAP, data set 6 (solvable, 500 runs).

73

Data set 7

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR-20min

RDGR-10min

RDGR-5min

RGR-20min

RGR-10min

RGR-5min

Figure A.15:Varying run time: GTAAP, data set 7 (solvable, 500 runs).

Data set 8

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

RDGR-20min

RDGR-10min

RDGR-5min

RGR-20min

RGR-10min

RGR-5min

Figure A.16:Varying run time: GTAAP, data set 8 (solvable, 500 runs).

74

A.5 Effect of r on RGR and RDGR

This section presents the SQDs of comparing different values of the ratio used to increase

the cutoff value for all the data sets of GTAAP.

Data set 1

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1.1

r = 1.19

r = 1.41

r = 2

r = 4

r = 1

Figure A.17:Effect of r: RGR on GTAAP, data set 1 (unsolvable, 500 runs).

Data set 1

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1.1

r = 1.41

r = 1.19

r = 2

r = 4

r = 1

Figure A.18:Effect of r: RDGR on GTAAP, data set 1 (unsolvable, 500 runs).

75

Data set 2

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1.1

r = 1.19

r = 1.41

r = 2

r = 4

r = 1

Figure A.19:Effect of r: RGR on GTAAP, data set 2 (solvable, 500 runs).

Data set 2

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1.1

r = 1.41

r = 1.19

r = 2

r = 4

r = 1

Figure A.20:Effect of r: RDGR on GTAAP, data set 2 (solvable, 500 runs).

76

Data set 3

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1

r = 1.1

r = 1.19

r = 1.41

r = 2

r = 4

Figure A.21:Effect of r: RGR on GTAAP, data set 3 (unsolvable, 500 runs).

Data set 3

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1.1

r = 1.19

r = 1.41

r = 1

r = 2

r = 4

Figure A.22:Effect of r: RDGR on GTAAP, data set 3 (unsolvable, 500 runs).

77

Data set 4

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1.1

r = 1.19

r = 1.41

r = 2

r = 4

r = 1

Figure A.23:Effect of r: RGR on GTAAP, data set 4 (unsolvable, 500 runs).

Data set 4

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1.1

r = 1.41

r = 1.19

r = 2

r = 4

r = 1

Figure A.24:Effect of r: RDGR on GTAAP, data set 4 (unsolvable, 500 runs).

78

Data set 5

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1.1

r = 1.19

r = 1.41

r = 2

r = 4

r = 1

Figure A.25:Effect of r: RGR on GTAAP, data set 5 (solvable, 500 runs).

Data set 5

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1.1

r = 1.19

r = 1.41

r = 2

r = 4

r = 1

Figure A.26:Effect of r: RDGR on GTAAP, data set 5 (solvable, 500 runs).

79

Data set 6

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1.1

r = 1.19

r = 1.41

r = 2

r = 4

r = 1

Figure A.27:Effect of r: RGR on GTAAP, data set 6 (solvable, 500 runs).

Data set 6

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1.1

r = 1.41

r = 1.19

r = 2

r = 4

r = 1

Figure A.28:Effect of r: RDGR on GTAAP, data set 6 (solvable, 500 runs).

80

Data set 7

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1

r = 1.1

r = 1.19

r = 1.41

r = 2

r = 4

Figure A.29:Effect of r: RGR on GTAAP, data set 7 (solvable, 500 runs).

Data set 7

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1

r = 1.1

r = 1.19

r = 1.41

r = 2

r = 4

Figure A.30:Effect of r: RDGR on GTAAP, data set 7 (solvable, 500 runs).

81

Data set 8

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1

r = 1.1

r = 1.19

r = 1.41

r = 2

r = 4

Figure A.31:Effect of r: RGR on GTAAP, data set 8 (solvable, 500 runs).

Data set 8

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

P
e
rc

e
n

ta
g

e
 o

f
te

s
t

ru
n

s

r = 1.1

r = 1

r = 1.19

r = 1.41

r = 2

r = 4

Figure A.32:Effect of r: RDGR on GTAAP, data set 8 (solvable, 500 runs).

82

Bibliography

[Barták, 1998] R. Barták. On-Line Guide to Constraint Programming.

kti.ms.mff.cuni.cz/̃ bartak/constraints, 1998.

[Bistarelliet al., 1995] S. Bistarelli, U. Montanari, and F. Rossi. Constraint solving over

semirings. InProc. of the 14th IJCAI, pages 624–630, 1995.

[Dechteret al., 1991] R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks.

Artificial Intelligence, 49:61–95, 1991.

[Freuder and Wallace, 1992] E.C. Freuder and R.J. Wallace. Partial Constraint Satisfac-

tion. Artificial Intelligence, 58:21–70, 1992.

[Freuder, 1989] E.C. Freuder. Partial Constraint Satisfaction. InProc. of the 11th IJCAI,

pages 278–283, Detroit, MI, 1989.

[Glaubius and Choueiry, 2002a] R. Glaubius and B.Y. Choueiry. Constraint Constraint

Modeling and Reformulation in the Context of Academic Task Assignment. InWorking

Notes of the Workshop Modelling and Solving Problems with Constraints, ECAI 2002,

Lyon, France, 2002.

[Glaubius and Choueiry, 2002b] R. Glaubius and B.Y. Choueiry. Constraint Modeling in

the Context of Academic Task Assignment. In Pascal Van Hentenryck, editor,8th In-

ternational Conference on Principle and Practice of Constraint Programming (CP 02),

volume 2470 ofLNCS, page 789. Springer, 2002.

83

[Glaubius, 2001] R. Glaubius. A Constraint Processing Approach to AssigningGraduate

Teaching Assistants to Courses. Undergraduate Honors Thesis. Department of Com-

puter Science & Engineering, University of Nebraska-Lincoln, 2001.

[Gomeset al., 1998] C.P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial

search through randomization. InProceedings of the Fifteenth National Conference

on Artificial Intelligence (AAAI 98), pages 431–437, Madison, Wisconsin, 1998.

[Haralick and Elliott, 1980] R.M. Haralick and G.L. Elliott. Increasing Tree Search Effi-

ciency for Constraint Satisfaction Problems.Artificial Intelligence, 14:263–313, 1980.

[Hoos and Stützle, 2004] H.H. Hoos and T. Stützle.Stochastic Local Search Foundations

and Applications. Morgan Kaufmann, 2004.

[Hoos, 1998] H.H. Hoos.Stochastic Local Search—Methods, Models, Applications. PhD

thesis, Technische Universität Darmstadt, Germany, 1998.

[Junker, 2002] U. Junker. Preference-Based Search and Multi-Criteria Optimization. In

Rina Dechter, Michael Kearns, and Richard S Sutton, editors, Proceedings of the Eigh-

teenth National Conference on Artificial Intelligence (AAAI 02), pages 34–40, Menlo

Park, California, 2002. American Association for Artificial Intelligence, AAAI Press.

[Kautzet al., 2002] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic

Restart Policies. InAAAI, 2002.

[Liu et al., 2002] J. Liu, H. Jing, and Y.Y. Tang. Multi-agent oriented constraint satisfac-

tion. Artificial Intelligence, 136:101–144, 2002.

[Luby et al., 1993] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of las vegas

algorithms. InIsrael Symposium on Theory of Computing Systems, pages 128–133,

1993.

84

[Minton et al., 1992] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing

Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Prob-

lems.Artificial Intelligence, 58:161–205, 1992.

[Revesz, 2002] P. Revesz.Introduction to Constraint Databases. Springer-Verlag, New

York, 2002.

[van Hemert, 2004] J.I. van Hemert. RandomCSP: generating constraint satisfaction prob-

lems randomly. homepages.cwi.nl/ jvhemert/randomcsp.html, 2004.

[Wallace and Freuder, 1995] R. Wallace and E. Freuder. Heuristic methods for over-

constrained constraint satisfaction problems. In M. Jampel, E. Freuder, and M. Maher,

editors,OCS 95: Workshop on Over-Constrained Systems at CP 95, Cassis, Marseilles,

1995.

[Wallace, 1996] R.J. Wallace. Analysis of heuristic methods for partial constraint satisfac-

tion problems. InPrinciples and Practice of Constraint Programming, pages 482–496,

1996.

[Walsh, 1999] T. Walsh. Search in a small world. InProc. of the 16th IJCAI, pages 1172–

1177, 1999.

[Zou and Choueiry, 2003a] H. Zou and B.Y. Choueiry. Characterizing the Behavior of a

Multi-Agent Search by Using it to Solve a Tight, Real-World Resource Allocation Prob-

lem. InWorkshop on Applications of Constraint Programming, pages 81–101, Kinsale,

County Cork, Ireland, 2003.

[Zou and Choueiry, 2003b] H. Zou and B.Y. Choueiry. Multi-agent Based Search versus

Local Search and Backtrack Search for Solving Tight CSPs: A Practical Case Study.

In Working Notes of the Workshop on Stochastic Search Algorithms (IJCAI 03), pages

17–24, Acapulco, Mexico, 2003.

85

[Zou, 2003] H. Zou. Iterative Improvement Techniques for Solving TightConstraint Sat-

isfaction Problems. Master’s thesis, Department of Computer Science & Engineering,

University of Nebraska-Lincoln, December 2003.

