AN IMPROVED RESTART STRATEGY FOR RANDOMIZED BACKTRACK
SEARCH

by

Venkata Praveen Reddy Guddeti

A THESIS

Presented to the Faculty of
The Graduate College at the University of Nebraska
In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

December, 2004

AN IMPROVED RESTART STRATEGY FOR RANDOMIZED BACKTRACK
SEARCH

Venkata Praveen Reddy Guddeti, M.S.
University of Nebraska, 2004

Advisor: Berthe Y. Choueiry

When solving combinatorial problems with backtrack seamhdomizatiorof the path
explored by search and frequesstartsof the search mechanism have been proposed as
an effective way to allow the exploration of wider areas @ slearch space than otherwise
possible. In these strategies, the choice ofitoff value a point after which the search is
restarted, remains an open issue. Previous restart sasredy, for computing this cutoff
value, either on the availability of an overall profile of tbest of searchGomeset al,
1999, or on a predetermined restart schedule. An example of ttex la the Randomiza-
tion and Geometric Restart (RGR) strategy proposed by WaB®d, which computes the
cutoff value as a function of the number of variables in thabpgm and a constant param-
eter given as input. We propose Randomization and Dynamicr@#ic Restart (RDGR),
an improved restart strategy of Walsh’s RGR. Unlike presistiategies, which have fixed
restart schedules, our technigiyamicallyadapts the value of the cutoff parameter to the
results of the search process.

We evaluate empirically the behavior of our technique anmmare its performance
to that of other search techniques. We use the cumulatitehdigson of the solutions,
and consider different run-time durations, values of thestant parameter used to com-
pute the cutoff value, and problem types (i.e., a real-wataburce allocation problem and
randomly-generated binary constraint satisfaction goisl). We show that distinguishing

between solvable and over-constrained problem instariesynew insights on the rela-

tive performance of the search techniques tested. On @rest@ined problem instances
and random instances at the phase transition, RDGR statigtoutperforms other search
techniques. While on under-constrained problems, RDGRdsrd to a multi-agent-based
searchLiu et al, 2002; Zou, 200B We propose to use this characterization as a basis for

building new strategies of cooperative, hybrid search.

ACKNOWLEDGEMENTS

First and foremost, | would like to thank my advisor, Dr. Berty. Choueiry, for her
support, guidance, and advice during my work on this thésis1 indebted to my
committee members, Dr. F. Choobineh (Department of IntisirManagement Systems
Engineering at UNL), Dr. S. Dunbar (Department of Mathegsaéit UNL), and Dr. W.
Srisa-an (Department of Computer Science & Engineering\dt)Ufor their enlightening
suggestions and comments, which helped me improve therdanrd presentation of this
thesis. | would like to thank Dr. K. Xu (Beijing University &eronautics and
Astronautics), and Dr. J.I. van Hemert and Dr. B.G.W. CragiiNapier University) for
insightful email discussions on generating random CSRunt&s and for the use of the
RandomCSP software of Dr. J.I. van Hemert. Also, | would tix¢hank Mr. B. Danner
(Department of Statistics), Mr. M. Abdoli (Department otilrstrial & Management
Systems Engineering at UNL), and Dr. H. Hoos (University atiBh Columbia) for help
with the statistical analysis. | am very grateful for the ogpnity to be a member of the
Constraint Systems Laboratory for the past two years. lyagjgursuing my research
interests and obtaining a wealth of invaluable experieircasany aspects of my academic
life. I also thank the members of the lab, in particular HuuZAnagh Lal, Ryan Lim, and

Daniel Buettner for their support and for our many interggtiliscussions.

Finally, | gratefully acknowledge the constant support family and friends, in
particular my late grandfather G. Subba Reddy and my paf@namalakshmi and G.
Lokanatha Reddy, who sent me on my way and provided a statilstamulating

environment for my personal and intellectual development.

This research was supported by NSF grants #EPS-0091900 AREER Award #0133568. The

experiments were conducted utilizing the Research Comp##cility of UNL.

Contents

1 Introduction

11
1.2
1.3
1.4
15
1.6

Motivations e
Graduate Teaching Assistants Assignment Problem
Relatedworks
Questionsaddressed L.
Contributions
Outline ofthethesis

2 Background

2.1
2.2
2.3

2.4
2.5
2.6

2.7

Constraint Satisfaction Problem (CSP) .

Graduate Teaching Assistants ASS|gnment Problem e
Heuristic backtrack search
2.3.1 Basicmechanism
2.3.2 \Variable ordering heuristics
2.3.3 Value ordering heuristics
Localsearch
Multi-agent-basedsearch
Randomized backtrack search withrestarts
2.6.1 Restartstrategies
2.6.2 Randomization and geometricrestarts
2.6.3 Dynamicrestarts
Las Vegas algorithms

3 Study of backtrack search

3.1
3.2

Study of deterministic ordering heuristics

Thrashing
3.3 Randomized backtrack search

4 Randomization and dynamic geometric restarts

4.1 Randomization and dynamic geometric restarts
4.2 Experimental methodology
4.2.1 Mainexperiments.
4.2.2 Evaluationcriteria

...... 4.

423 Datasets e e e e 35

4.3 Effect of the runningtimeonRGRandRDGR 38
4.4 Influenceoftheratio, 40
4.5 Relative performance of BT, LS, ERA,RGR,andRDGR 44
45.1 Improvementof RDGRoverBT 49
4.5.2 Superiority of RDGRoverLS 51
4.5.3 Superiority of RDGR over ERA on over-constrained peois . . . 51
45.4 Performanceof ERA oo 51
455 RDGRismorestablethanRGR 52
4.5.6 Sensitivityof LStolocaloptima 52
4.5.7 Larger number ofrestartsinRDGR 25
Conclusions and future work 54
5.1 Summary of the researchconducted 54
5.2 Conclusions 55
5.3 Open questions and future research directions 57
Results from the GTAAP data sets 58
A.1 Bestresults ofthe GTAAP datasets 58
A.2 Results obtained from BT using the various determioistdering heuristics 61
A.3 SQDsofLS,ERA,RGR,andRDGR 66
A.4 RGRand RDGR overvaryingruntime. 70
A5 EffectofronRGRandRDGR 74

Bibliography 82

List of Figures

2.1 Local optimum and plateau with hill-climbingZou, 2003. 18
3.1 BT search thrashing in large searchspaces.. 27
4.1 Moving average for CPU run-times fordataset1.. 36
4.2 Randomly generated problem instances. 37
4.3 Varying run time: GTAAP, over-constrained.. 39
4.4 Varying runtime: GTAAP,solvable. 39
4.5 Effectofr: RGRon GTAAP. e e e e 41
4.6 Effectofr: RDGRoOnGTAAP. e 41
4.7 Effectofr: RGRonrandomCSPs.. 42
4.8 Effectofr: RDGRonrandomCSPs.. 42
4.9 Increasing rate of the cutoff value (3 minutes).. 43
4.10 SQDs: GTAAP,over-constrained. 45
4,11 SQDs: GTAAP,solvable.. e 45
4.12 SQDs: under-constrained, random CSPs.. 46
4.13 SQDs: over-constrained, randomCSPs.. 46
4.14 SQDs: solvable random CSPs, at phase transition.. 47
4.15 SQDs: unsolvable random CSPs, at phase transition.. 47
A.1 SQDs: GTAAP, data set 1 (unsolvable, 500 runs, 10 minutdg)eac. 66
A.2 SQDs: GTAAP, data set 2 (solvable, 500 runs, 10 minutes each). 66
A.3 SQDs: GTAAP, data set 3 (unsolvable, 500 runs, 10 minutds)eac. 67
A.4 SQDs: GTAAP, data set 4 (unsolvable, 500 runs, 10 minutds)eac. 67
A.5 SQDs: GTAAP, data set 5 (solvable, 500 runs, 10 minutes each). 68
A.6 SQDs: GTAAP, data set 6 (solvable, 500 runs, 10 minutes each). 68
A.7 SQDs: GTAAP, data set 7 (solvable, 500 runs, 10 minutes each). 69
A.8 SQDs: GTAAP, data set 8 (solvable, 500 runs, 10 minutes each). 69
A.9 Varying run time: GTAAP, data set 1 (unsolvable, 500 runs). 70
A.10 Varying run time: GTAAP, data set 2 (solvable, 500 runs).. 70
A.11 Varying run time: GTAAP, data set 3 (unsolvable, 500 runs). 71
A.12 Varying run time: GTAAP, data set 4 (unsolvable, 500 runs). 71
A.13 Varying run time: GTAAP, data set 5 (solvable, 500 runs).. 72

A.14 Varying run time: GTAAP, data set 6 (solvable, 500 runs).. 72

A.15 Varying run time: GTAAP, data set 7 (solvable, 500 runs)..

A.16 Varying run time: GTAAP, data set 8 (solvable, 500 runs).. 73
A.17 Effect ofr: RGR on GTAAP, data set 1 (unsolvable, 500 runs). 74
A.18 Effect of r: RDGR on GTAAP, data set 1 (unsolvable, 500 runs). 74
A.19 Effect of r: RGR on GTAAP, data set 2 (solvable, 500 runs).. 75
A.20 Effect of r: RDGR on GTAAP, data set 2 (solvable, 500 runs).. 75
A.21 Effect of r: RGR on GTAAP, data set 3 (unsolvable, 500 runs). 76
A.22 Effect of r: RDGR on GTAAP, data set 3 (unsolvable, 500 runs). 76
A.23 Effect of r: RGR on GTAAP, data set 4 (unsolvable, 500 runs). 77
A.24 Effect of r: RDGR on GTAAP, data set 4 (unsolvable, 500 runs). 77
A.25 Effect of r: RGR on GTAAP, data set 5 (solvable, 500 runs).. 78
A.26 Effect of r: RDGR on GTAAP, data set 5 (solvable, 500 runs).. 78
A.27 Effect of r: RGR on GTAAP, data set 6 (solvable, 500 runs). 79
A.28 Effect of r: RDGR on GTAAP, data set 6 (solvable, 500 runs).. 79
A.29 Effect of r: RGR on GTAAP, data set 7 (solvable, 500 runs).. 80
A.30 Effect of r: RDGR on GTAAP, data set 7 (solvable, 500 runs).. 80
A.31 Effect of r: RGR on GTAAP, data set 8 (solvable, 500 runs). 81
A.32 Effect of r: RDGR on GTAAP, data set 8 (solvable, 500 runs).. 81

List of Tables

2.1 Characteristics of the GTAAP datasets.. 12
2.2 Characteristics of the GTAAP constraints.. 14
2.3 \Variable ordering heuristics. o 16
2.4 LasVegasalgorithms. e 24
3.1 Bestresults of BT using deterministic ordering heurist@3AAP (5 minutes).. . 26
3.2 Relative performance of the deterministic ordering heigss. 27
3.3 BTsearchthrashing.. 28
3.4 Performance of BT for various running times. 29
3.5 Randomized backtrack search: GTAAP (5 minutes). 30
4.1 Improvements of RDGR with 95% confidence level, GTAAP da&tss. 48
4.2 Improvements of RDGR with 95% confidence level, randomlyegated problems. 48
4.3 Statistics of solution size for data set 1 (500 runs, 10 neimeach). 49
4.4 Statistics of solution size for data set 5 (500 runs, 10 neseach). 49
4.5 Statistics of solution size for randomly generated prolslem 50
4.6 Standard deviation of RGR and RDGR on GTAAP datasets.. 52
4.7 Average number of restarts by RGR and RDGR on GTAAP data sets. 53
5.1 Comparing the behavior of search strategies. 56
A.1 Bestresults obtained by BT using deterministic variougond) heuristics: GTAAP
(Bminutes).. e e 59
A.2 Bestresults of LS and ERA: GTAAP (500 runs, 5 minuteseach).. 60
A.3 Bestresults of RGR and RDGR: GTAAP (500 runs, 5 minutes each). 60
A.4 Deterministic ordering heuristics of BT: GTAAP,dataset1.. 61
A.5 Deterministic ordering heuristics of BT: GTAAP, dataset2.. 62
A.6 Deterministic ordering heuristics of BT: GTAAP,dataset3.. 62
A.7 Deterministic ordering heuristics of BT: GTAAP, dataset4.. 63
A.8 Deterministic ordering heuristics of BT: GTAAP, dataset5.. 63
A.9 Deterministic ordering heuristics of BT: GTAAP, dataset6.. 64
A.10 Deterministic ordering heuristics of BT: GTAAP,dataset7.. 64

A.11 Deterministic ordering heuristics of BT: GTAAP, dataset8.. 65

Chapter 1

Introduction

We propose an improved restart strategy for randomizedtizntksearch. Randomized
backtrack search with restarts borrow the backtrackingufeaof systematic backtrack
search and the stochastic characteristic of local searalr. ré3earch was motivated by
a real-world application, which is the assignment of Graeld@aching Assistants (GTA)
to academic tasks. In practice, this problem is large, tigyid sometimes over-constrained.
Since 2001, various members of the Constraint Systems htirgrhave designed and im-
plemented a set of interactive and automated search tegwsitq solve this problem. We
compare the performance of our new strategy to that of thewsuautomated solvers de-
veloped in our group. The long-term goal of this project iptovide a robust portfolio of
search algorithms to solve complex decision-making probleThis chapter presents the

motivations for our work, related works, the questions added, and our contributions.

1.1 Motivations

A great deal of theoretical and empirical research has tmtos developing and improv-
ing the performance of algorithms for solving Constraintis$action Problems (CSP). Be-

cause CSPs are in genelR#P-complete, search remains a key mechanism for solving them.

2

Search algorithms for solving CSPs are usually classifiedtwo main categories: system-
atic backtrack search and iterative-improvement seareneglly, systematic search tech-
niques have been almost always deterministic in naturetenative improvement search
techniques are stochastic. Systematic search, as the neygesss, operates by exhaus-
tively examining the solution space, which makes it congl@id sound. In contrast,
iterative-improvement search starts from a random saiutighich may or may not be
consistent, and tries to reach better solutions by visitieighboring solutions (thus, the
name local search). This makes it incomplete.

On large problems the performance of systematic searcladegmwith the size of the
problem (thrashing), while the performance of iteratinggrovement search is impaired
by local optima and livelocks. Variable and value orderimgifistics and techniques like
backjumping and backmarking are employed to improve théopaance of systematic
search, but cannot totally eliminate thrashing. Moreaver,memory requirements for the
data structures necessary for backjumping and backmanmhka@ygoe a cause of concern with
increasing problem size. Iterative-improvement search b improved with heuristics
(min-conflict[Minton et al., 1994), random restarts, and random walk to avoid and recover
from local optima. However, its inherent incompletenessaims a major concern. This
situation motivated us to explore randomized backtrackcbeaith restarts as designed by
Gomes et al[1999. One important feature of this search is the restart styatbythis
thesis we propose a restart strategy that improves on th@rmpesed by Walsh1999
and compare the performance of the resulting search witlofh&alsh another and other

search techniques implemented in the Constraint Systebratory.

3
1.2 Graduate Teaching Assistants Assignment Problem

The Graduate Teaching Assistants Assignment Problem (&P)Ag\a critical and arduous
task that our department’s, Computer Science and Engime@ZiSE), administration has to
drudge through every semester. Given a set of courses, agranate teaching assistants
(GTAs), and a set of constraints, the goal is to find a condisted satisfactory assignment
of GTAs to courses. Glaubius and Choueiry modeled the GTA2\® @onstraint Satisfac-
tion Problem (CSP)2001; 2002a; 2004b The constraints specify allowable assignments
such as the availability and proficiency of a graduate stuidertbeing a teaching assistant.
In a consistent solution there are no broken constraintd, satisfactory solution attempts
to optimize the quality of a solution in terms of the preferem expressed by the GTAs.

In the CSP model of the GTAAP, the courses are modeled asblesiand the GTAs
as the domain values of these variables. By focusing ousstigations on this particu-
lar real-world application, we have been able to identifg anmpare the advantages and
shortcomings of the various search strategies that havieimgmted to solve this problem.
Such an insight is unlikely to be gained from testing toy peats, and surely difficult from
testing randomly generated problems. We show that theifaehbehaviors apply beyond

our application, and hold on randomly generated binary CSPs

1.3 Related works

There are three main works on randomized backtrack seatbhregtarts:

1. Randomization and rapid restar{fRRR): Gomes et al. proposed the RRR restart
strategy[1999. RRR employs a fixed optimal cutoff value. Search is restoote
reaching the cutoff value. The estimation of the optimabffitalue requires a priori

knowledge of the cost distribution of the problem instangkich is not known in

4

most settings and must be determined by trial-and-errds i§ktlearly not practical

in general.

2. Randomization and geometric resta(BGR): In the absence of an optimal cutoff
value, the RGR restart strategy of Walsh can be ($889. Unlike RRR, the cutoff
value in RGR is not fixed, but is geometrically increasing. ®aching the cutoff
value, search is restarted and the cutoff value for the restart is geometrically
increased by a constant factoregardless of the progress of search. Like RRR,
RGR is static in the sense that it does not take into accoerdutcome of the search
during a run to compute the cutoff value for the following rivote that the cutoff
value in RGR is strictly monotonically increasing and, iedhy, the resulting search

mechanism is complete

3. Bayesian approachKautz et al. introduced an optimal policy for dynamic retsta
[200. They employ Bayesian methods to build predictive modelhefrun-time
distribution. Utilizing this model, their restart strategonsiders the predictions
about run time to choose the cutoff value for restarts. Th@ach is based on
the use of machine learning techniques, and, unlike thanestrategies, increases

the complexity of the implementation and deployment.

1.4 Questions addressed

In this thesis, we address the following questions:

1. How effective are variable and value orderings in backtisearch for solving the
GTAAP?
Answer: Research has shown that variable and value orderings aetied tech-

niques for improving the performance of backtrack search siw that on GTAAP,

Probabilistically approximately complete Las Vegas athon.

5

while dynamic selection of variables consistently outperfs static selection, vari-
able orderings that utilize the least domain (LD) and dontaidegree (DD) ratio
heuristics result in similar performances. Further, thaéoues value-ordering heuris-

tics we tested do not result in qualitative improvements.

. How serious is thrashing on large problem instances?
Answer:We show in Section 3.2 that thrashing is serious enough tcawgihe study

of restart strategies.

. What are the best values for the ratio used to increaseutb# galue in geometric-
restart strategies?

Answer: We confirm that for RGR, a value of1.1, as devised by Walsh, is the
best value of the ratio, and show that this holds for both tid&P data and for
randomly generated problems. For RDGR/.1 yields best results, however on
randomly generate problems, a higher value (i-€2.0) is a better choice. This
discrepancy of the value efon random problems can be explained by the fact that

the cutoff value increases more quickly in RGR than in RDGR.

. What are the characteristics of the different searchnigcies implemented with re-
spect to the different problem types?

Answer: We show that distinguishing between solvable and overicangd prob-
lem instances yields new insights on the relative perfoceaanf the search tech-
niques tested. On over-constrained problem instances radem instances at the
phase transition, RDGR statistically outperforms otharde techniques. While on
under-constrained problems, RDGR is second to the mudiagased search known

as ERA[Liu et al,, 2002; Zou, 200B

1.5 Contributions

In this thesis, we propose an improved restart strategydiodomized backtrack search,
which we denote RDGR. We compare its performance to fourrabarch mechanisms
(denoted BT, LS, ERA, and RGR) in order to study and charaeteheir behavior. We

conduct our investigations in the context of a real-worl@lagation, which is the assign-
ment of Graduate Teaching Assistants (GTA) to academictasle also conduct tests on

randomly generated binary CSPs. Our main contributiondbeasummarized as follows:
1. Testing of various ordering heuristics in BT for solvingAAP.

2. Proposition of a new improved restart strategy (RDGR)r&mdomized backtrack

search.

3. Empirical evaluation of RDGR by comparing its performamnath that of BT, LS,
ERA, and RGR, both on GTAAP data and randomly generatedriosta

Finally, we identify two directions for future researchymely the development of progress-

aware restart strategy and cooperative, hybrid searchicpobs.

1.6 Outline of the thesis

This thesis is structured as follows. Chapter 2 briefly negi¢he Constraint Satisfaction
Problem, the Graduate Teaching Assistants AssignmenidPnoland the various search
techniques developed for solving GTAAP. Chapter 3 expl#iesempirical evaluation of
the ordering heuristics in backtrack search in the conteGTAAP. Chapter 4 presents
RDGR, our proposed dynamic restart strategy for randomizeexktrack search, and its
empirical evaluation. Finally, Chapter 5 concludes thesith@nd provides directions for

future research.

7

Appendix A lists the results of running all the currently dable search techniques on

the collected GTAAP data.

Chapter 2

Background

This chapter draws the background of our work. After a bnéfaduction to the Constraint
Satisfaction Problem (CSP), we introduce a real-world igppbn, the Graduate Teaching
Assistants assignment problem (GTAAP), which is at the vatithn for our investigations.

We briefly review how it was modeled by Glaubius and ChouegyaaCSP and solved
using systematic backtrack seaf@901; 2002a; 2004b Finally, we review the search

techniques developed for solving GTAAP.

2.1 Constraint Satisfaction Problem (CSP)

Constraints are ubiquitous in everyday life. A constragnéirelation that restricts the set
of allowable combinations of values among a set of varial®esne examples of everyday
constraints are qualifications and requirements for a jofmiocollege admission, speed
limits for driving, and monetary constraints for buying amear. Such problems can be
modeled as Constraint Satisfaction Problems (CSPs), véheeeof decisions, each with a
set of options, must be made under a set of constraintsatasiythe allowable combina-

tions of options for decisions. Constraint Processingaaea of Artificial Intelligence, is

a set of set of representation and processing techniquescad with solving such prob-

9

lems. CSPs can be decision or optimization problems (in kvbése an objective function
must be specified). They are useful for modeling and solviagyntomplex problems such
as scheduling, resource allocation, planning, tempoaaiaeing Dechteret al., 1991, and

constraint databas¢Revesz, 200R More formally, a CSP is often defined as follows:

A Constraint Satisfaction Problem (CSP) is definedmby= (V, D,C) where
V is a set of variables) the set of their respective domains, ahé a set of
constraints that restricts the acceptable combinationslofes for variables.
Solving a CSP requires assigning a value to each variable thiat all con-

straints are simultaneously satisfied, which is in gengRacomplete.

The CSP framework provides a common platform to researdétedgveloping application-
independent solvers and study the behavior of differentchetechniques, which have
yielded important industrial benefits A CSP can be charaeéroy a number of parame-

ters used to describe and compare problem instances. Beddistthe main features:
1. Number of variablesnumber of assignments to be made.
2. Domain sizesize of the largest domain.

3. Tightness of a given constraints defined as the ratio of number of tuples disal-
lowed by the constraint over that of all possible tuples,olihs the size of the cross

Cartesian product of the domains of the variables in theesobghe constraint.

4. Proportion of constraintsis the ratio of number of constraints in the CSP to the total

number of possible constraints.

5. Problem sizenumber of all possible combinations, calculatedlas,|D,|. As the
number of the variables increases, the number of possibidbic@tions increases

exponentially.

10
6. Constraint arity the number of variables in the scope of a constraint. Irsinga
the constraint arity increases the complexity of checkirgdonsistency of the con-

straint.

7. Number of solutions soughtlepending on the application, we may need to find
one solution, all solutions (entire search space needs &xjered), or an optimal

solution.

Many real-life applications are over-constrained. Ovamnstrained problems have no com-
plete assignment of values to variables such as all conttrare satisfied. The following

ways are used to handle over-constrained probl&ms, 2003:

1. Relax the problem by removing some constraints. Findiegsimallest set of con-

straints that need to be removed is thought tiNBehard.

2. Express preferences between constraints or allocatghtgetio allowed tuples of a
constraint (e.g., preference-based G3hker, 200Pand soft constraintBistarelli

et al, 1993).

3. Maximize the number of satisfied constraints (e.g., theXM2SP framework of

[Freuder, 1989; Freuder and Wallace, 1992

4. Accept partial, consistent solutions (i.e., do not calerariables) that maximize the

number of assigned variables.

In GTAAP, the objective is to provide support to as many cesiras possible while satis-
fying all the constraints. Thus, we are interested in findhmgmaximal consistent partial
solutions For the rest of this thesis, a solution may be partial, bustralways be consis-

tent.

11
2.2 Graduate Teaching Assistants Assignment Problem

Glaubius and Choueiry define GTAAP as follows: “Given a sajrafduate teaching assis-
tants (GTAS), a set of courses, and a set of constraints pleaifg allowable assignments
of GTAs to courses, the goal is to find a consistent and sat@fa assignmentf2001;
2002a; 2002 In a consistent solution there are no broken constraintsl, A a satisfac-
tory solution maximizes the preferences expressed by thesGHard constraints (e.g., a
GTA's competence, availability, and employment capacityst be met, and GTA's prefer-
ences for courses (expressed on a scale from 1 to 5) must benined. It is a critical and
time-consuming process to be done by our department ang bkieer institutions across
the world. Typically, every semester, the department hasital0 different academic tasks
and can hire between 25 and 40 GTAs. Instances of this proldelected since Spring
2001, are consistently tight and often over-constrainealvéver, this is not known a pri-
ori. The objective is to ensure GTA support to as many couasgsossible by finding a
maximal consistent partial-assignmer@ecause the hard constraints cannot be violated,
the problem cannot be modeled as a MAX-JEReuder and Wallace, 19P2

Glaubius and Choueiry proposed a constraint-based mod#lifoproblem where the
courses are represented by variables, the GTAs by domaiasjand the assignment rules
by a number of unary, binary, and non-binary constraj@801; 2002a; 2004b They
define the problem as the task of finding the longest assignm@ea primary criterion, and
maximizing GTAs’ preferences, as a secondary criteriore (Nédel the latter as the value
of the geometric mean of GTAS’ preferences in an assignient.

In the Constraint Systems Laboratory, we have implementedvber of search strate-
gies for solving this problem, which we summarize below. Séhare a heuristic backtrack
search (BT) with various ordering heuristics, a greedy llsearch (LS), a multi-agent-

based search (ERA), and a randomized backtrack searchwathestart strategies (RGR

12

and RDGR). The latter are the topic of this dissertation si&thtegies implement the above
two optimization criteria, except ERA, which models the GlAas a satisfaction problem.

Below we list the characteristics of the GTAAP data sets.

Problem size: There are 14 data sets of GTAAP: eight original (these aledada, col-
lected from academic semesters in our department) and sistéx data sets (there are
over constrained sets to which we have added dummy resotareeake them solvable).
We used the eight original data sets in our experiments.eTal! lists the characteristics
of these eight instances in terms of original or boosted dats, solvable or unsolvable,
number of courses (i.e., number of variables), number of &{i&. domain size), total

capacity of the GTAs, total load of the courses, and numbepn$traints. Each GTA has

Table 2.1:Characteristics of the GTAAP data sets.

" Constraints
3
3 2| 28 =n
3|3 ol g| 2 Ak
RO 7 & S S > 87@
o 8 S| £| E| T £l S
ala| gl Ell8 & 8| -l & £
e A =S - © > > | o
DIE|8| 2| 512 S| 2| 5|l §] &<
B2z E|8|el 8| Bl 5| 35| 8|2
Data Sets QOO0 |wn| ®|| | & = [4 * * | B
Spring2001b(0) 1| O x |12 69|26| 26| 29.6|0.88| 277 | 1179 52
Fall2001b(0) 21 0|+ |14] 65|34 30|29.3|1.02| 267 | 1676| 68
Fall2002(0) 3| O] x|10}31|28|115| 13| 0.88] 233| 1124 | 56
Fall2002(O)-NP 4| O| x |10 59|28| 27|295|0.91| 233| 1124 | 56
Spring2003(0) 511 0|+ |10]| 54|34|275|27.4|1.00| 250 622 | 68
Spring2003(0)-NP 6 || O | /| 12| 64 | 34| 31| 30.2|1.02| 250| 622| 68
Fall2003(0) 71 0|+ | 0} 25|27 22|128|1.71| 235 45 | 27
Spring2004(0) 81 O|+| 0]41|35|265]|19.3|1.37| 208 32|35

a capacity factor corresponding to the number of hours kéashired for and restricting

the maximum course weight he/she can be assigned duringthesser. The sum of the

13
capacities of all GTAs represents ttwgal capacity Each course has a load that indicates
the weight of the course. For example, a value of 0.5 meansduese requires half the
capacity of a GTA. Some courses may be only offered duringraiieof the semester. The
total loadof a semester is the cumulative load of the individual caargeratio of the total
capacity to the total load that is strictly less than onedatis that the problem instance is

necessarily not solvable.

Types of constraints: In GTAAP, a number of unary, binary, and non-binary constsai
specify the allowable assignments. The capacity of each i Modeled as a non-binary

constraint, called the capacity constraint. We summahieebnstraints as follows:

e Unary constraints: English certification, enroliment, dap, and zero preference

constraints.
e Binary constraints: mutex and equality constraints.

e Non-binary constraints: capacity, equality, and confingihgenstraints.

A detailed description of the problem and the constraints lwa found in[Glaubius and
Choueiry, 2002k Table 2.2 lists the number of unary constraints, numbertgpe of
binary constraints, and number of non-binary (capacityjst@ints. For the non-binary
constraints, we list the maximum, minimum, and mean valddbearity. Also, we list
the average and standard deviation of the degree of theblesiaNote that our problem
typically has a large number of non-binary constraints dredrtaverage arity is almost
equal to the number of variables. This observation showtstliganon-binary constraints

are almost global. This fact constitutes the main difficuitgolving this problem.

Quality of solutions: The primary criterion is the number of assigned courses. , And
maximizing GTAs’ preferences is the secondary criteriohisTs calculated as the geo-

metric mean of GTAs’s preferences (between 1 and 5 for eagtsepin an assignment.

14

Table 2.2:Characteristics of the GTAAP constraints.

| Data set || Number of constraints | Degree of variables|
Unary Binary Non-Binary Mean | Standard
Arity deviation
I
E| | E
)) c| 0| £
Mutex | Equality | Capacity| = | = | =
1 277 1146 33 52| 63| 63| 63 85.66 24.77
2 267 1631 45 68| 59| 58| 57| 116.35 14.36
3 233 1098 26 56 | 55| 54| 53 96.74 14.28
4 233 1098 26 56| 55| 54| 53 93.30 13.37
5 250 575 47 68 | 58 | 58 | 58 85.20 23.73
6 250 575 47 68 | 58 | 58 | 58 84.96 23.26
7 235 6 39 271 61| 61|61 31.96 2.04
8 208 5 27 35|52| 52|52 40.12 2.23

Partial solution: Some instances of GTAAP are over-constrained and do notehews-
plete solution. For such instances, only a partial solutermbe obtained. Here we need to
note that, strictly speaking, GTAAP is not a MAX-CSP. In MAXSP, all constraints are
soft and the goal is to maximize the number of satisfied caims. Thus, in the solution
of a MAX-CSP problem all variables are assigned, but thetswius not necessarily con-
sistent. In GTAAP, however, it is not permissible for any straint to be broken, but some

variables may remain unassigned.

2.3 Heuristic backtrack search

A deterministic backtrack (BT) search, implemented as aldégst search, was the first
search technigue implemented to solve GTAAP by GlaubiusGimalieiry[20024d. Their
implementation integrated forward checkipralick and Elliott, 198Dand a branch-and-

bound mechanism to seek the optimal solutions.

15

2.3.1 Basic mechanism

A backtrack search instantiates the variables of a CSPrmam&ally from values present
in its current domain. When a variable is instantiated, #erch looks ahead towards the
future variables, and removes incompatible values fronr therent domain. When the
next variable is instantiated, we can be sure that it is cdimpawith the past variables. A
full look-ahead strategy would drastically increase thenhar of constraint checks while
effectively yielding little filtering since the GTA applitan has many mutex and global
constraints (it is a resource allocation problem). As ddjp#t search expands nodes along
a search path, the search checks if the expansion of thehseatic can improve on the
current best solution. Once the current best solution dabeomproved, backtrack oc-
curs. Because the problem may be over-constrained, Gisabidi Choueiry modified the
backtrack mechanism to allow null assignments and proaeealt the longest solution in
a branch-and-bound manner (i.e., backtracking is not padd when a domain is wiped-
out as long as there are future variables with no empty deshairhe implementation is

described in detail ifGlaubius and Choueiry, 200Ra

2.3.2 Variable ordering heuristics

Glaubius and Choueiry implemented two variable-orderiegytstics for choosing the most
constrained variable firsteast domain(LD) anddomain degree(DD ratio. InLD, we
choose as current variable the one with the smallest culenain-size. I'DQ we choose
as current variable the one with the minimum ratio of doméae $0 the degree. This is
based on the intuition that the most constrained varialde (he smallest domain and the
largest degree) would reduce the branching factor and imghé the well-known fail-first
principle. Ties are broken lexicographically.

The two variable-ordering heuristidd) andDD are applied both statically and dynam-

16

ically. In a static ordering, the order is specified befordbarch begins and is not changed
thereafter. In a dynamic ordering, the order changes aditdr mstantiation. Extensive pre-
vious experiments and analysis done by the research cortynbave demonstrated that
dynamic ordering substantially reduces the cost of anychearfable 2.3 shows the four

variable-ordering heuristics available for GTAAP.

Table 2.3:Variable ordering heuristics.

Variable ordering
Least Domain\ Domain Degree ratio

Static SLD SDD

Strategy

Dynamic DLD DDD

2.3.3 Value ordering heuristics

In general, the choice of the value to be assigned to themuvegiable is orthogonal to
the choice of the variable to be instantiated. The intuitsothat we should assign first the
value most likely to yield a solution. This is true and wortile when we are looking for
the first solution only. If all the solutions are requiredwdren there are no solutions, then
the order in which the values are considered makes no diiere Three value-ordering

heuristics are available for GTAAP.

1. Firstinline EIL): FIL is an arbitrary method, which depends on how the domains
are stored. The first value that is present in the domain ottimeent variable is

assigned to the current variable.

2. Highest preferencREFERENCE This heuristic considers only the current vari-

able. The value (GTA) assigned to the current variable @®us the one having the

17

highest preference for that course. If there are more tharvalue available then the

choice is made by the order of appearance.

3. Least occurring@CCURRENGEThis heuristic considers the current domain of all
the future variables. The value that appears least frebyuienthe domain of future
variables is assigned to the current variable. This is basethe assumption that
selecting the value that occurs the least number of timdsariuture variables will
increase the number of options for instantiating futurealdes, and thus is the least
likely to lead to a conflict. If there are more than one valuailable then the choice

is made by the order of appearance.

Glaubius and Choueiry implementédl. and PREFERENCHRhile we implemented
OCCURRENCHNhe four variable-ordering heuristics of Table 2.3 and titvee value-

ordering heuristics listed above result in 12 combinatiertsch we evaluate in Chapter 3.

2.4 Local search

Zou and Choueiry designed and implemented a greedy, loeatis€LS) technique for
solving GTAAP[2003a; 2003; 2003b LS is a hill-climbing search using the min-conflict
heuristic for value selectioftMinton et al, 1994. In a CSP, a state is an assignment
of values to all variables. This may be inconsistent with ¢bastraints. Local search
starts from an initial state, usually chosen randomly, atplages neighboring states until
it reaches an optimal state. The neighboring states are tihas can be reached by the
changing the assignment of one variable. The name local €fmom the fact that it only
moves from a state to its neighboring state. The evalua@tuevof a state is its number of
constraint violations. A hill-climbing strategy allowslgmmoves that reduce the evaluation
value. For value selection, the min-conflict heuristic osdihe values according to the

number of constraints violations after each move. A vadablsaid to be in conflict if it

18
violates any constraint. At each iteration any variablé ihén conflict is assigned a value
that minimizes the number of conflicts, breaking ties ranigom

LS continues until the value of current state is better thenvalues of all the states
adjacent to it. At this point, the current state is either ptimum or a local optimum. A
weakness of a hill-climbing search is that it may stagnateeeion aocal optimumor on
a plateau(Figure 2.1). A local optimum is a state that is the best amsbiig neighbor

z

Y

/ global optimu

plateau

X

Figure 2.1:Local optimum and plateau with hill-climbingou, 2003.

states but is not the optimum. A plateau is a state whose avatuvalue is equal to all
the neighboring states. Since the neighboring states areetter than the states of local
optimum and plateau, local search stagnates.

Random walk is a strategy utilized to avoid local optima. dandom walk, the value
of a variable chosen using the min-conflict heuristic is vatprobabilityl — p, and with
probabilityp this value is chosen randomly. Preliminary studies on tfieence of random
walk is presented if\Wallace and Freuder, 1995; Wallace, 1p9%ollowing the indications
of [Bartak, 1998and after testing, Zou and Choueiry use a valug f0.02. Finally, they
use random restarts to break out of local optima. In rand@tares, search is started from
a new randomly selected state while keeping track of thedmstion obtained so far, thus

giving the resulting algorithm an anytime flavor.

19
2.5 Multi-agent-based search

Inspired by swarm intelligence, Liu et 42004 proposed a multi-agent-based search,
called ERA (i.e., Environment, Reactive rules, and Agefis)solving CSPs. Zou and
Choueiry adapted and implemented ERA algorithm to solve &A2003a; 2003b; 2043

An ERA system has three components: an Environméhtg set of Reactive rulegi),
and a set of Agents4). The environment records the number of constraint vioketiof
the current state for each value in the domains of all vaembEach variable is an agent,
and the position of the agent corresponds to the value assignthis variable. Each
agent moves according to its reactive rules. First, ERAgddbe agents randomly in their
allowed positions in the environment, then it considerdhiegent in sequence. For a given
agent, it computes the constraint violations of each ageusition. Each agent moves
to occupy a positionzero position) that does not break any of the constraints that
apply to it. If the agent is already inzero position , No change is made. Otherwise,
the agent chooses a position to move to, the choice beinguieed stochastically by the
reactive rules. The agents keep moving until they all reazkra position (i.e., a
full, consistent solution) or a certain time period has séap After the last iteration, only
the CSP variable corresponding to agentzgdro position are effectively instantiated.
The remaining ones remain unassigned (i.e., unbounded).

This algorithm acts as an ‘extremely’ decentralized loearsh, where any agent can
move to any position, likelyorcing other agents to seek other positiom&is extreme mo-
bility of agents in the environment is the reason for ERAgue immunity to local optima,
as uncovered by the experiments by Zou and Chodébd@3a; 2003; 2003b It is indeed
the only search technique to solve instances that remawiwetsby any other technique
we tested. Zou and Choueiry also uncovered the weakness AfdBRover-constrained

problems, where a liveloékpphenomenon undermines its stability resulting in partidyl

1Although they called it a ‘deadlock,’ livelock is a more appriate term because search is not halted.

20

short solutions. However, they show that this phenomenanbeaadvantageously used
to isolate, identify, and represent conflicts in a compaatmea In their implementation,
agents move in sequence, but the technique can also be asyauahk.

Although ERA can be viewed as an extension to LS, it diffeosfiLS in some subtle
ways. LS moves from one state to another by changing theramsigt of one (or two)
variables, while in ERA any number of variables can changsitioms at each move; each
agent chooses its most convenient position (i.e., valukg évaluation function to assess
the quality of a given state in LS is a global account of thdiguaf the state (typically the
total number of broken constraints). In ERA, no such globalwation function is used.
ERA appears as an extremely decentralized version of LS #dredenthe selection of the

next state is determined, locally, by the individual agents

2.6 Randomized backtrack search with restarts

Unlike ERA and local search, general backtrack (BT) seaschni principle, complete
and sound. However, the performance of heuristic BT healélyends on the accuracy
of the ordering heuristic, which at shallow levels in thershadree is often myopic. This
results in BT being unpredictable in practice over a set obf@m instances, even within
the same problem type. The performance of BT also dependseobranching factor of
the problem. Greater the branching factor of a problem,tgraa the effort required to
undo incorrect heuristic choices made early in the searmtgss. This results in BT being
seriously undermined by thrashing (i.e., searching unpsioi parts of the search space).
As the problem size increases, the effects of thrashingrbegnore serious.

Gomes et al. demonstrated that randomization of heuristices combined with restart
mechanisms is effective in overcoming the effects of thraghnd in reducing the total ex-

ecution time of BT[1999. Thrashing in BT indicates that search is stuck exploring an

21

unpromising part of the search space, and thus incapabhlagbving the quality of the

current solution. It becomes apparent that there is a neitiioupt search and to explore
other areas of the search space. The restarted search rgusfroen a different portion

of the search space; otherwise it will end up traversing #mespaths. Randomization of
branching during search is used to this end. Randomnessedatrdduced in the variable
and/or value ordering heuristics, either for tie-breakindor variable and/or value selec-
tion. After choosing a randomization method, the algoritthesigner must decide on the
type of restart mechanism. This restart mechanism detesmien to abandon a particu-
lar run and restart the search. Here the tradeoff is thatieduhe cutoff time reduces the

probability of reaching a solution at a particular run.

2.6.1 Restart strategies

Several restart strategies have been proposed with diffetgoff schedules. Some of the
better known ones are the fixed-cutoff strategy and Luby.stualiversal strategj1999,
the randomization and rapid restart (RRR) of Gomes dt180g, and the randomization
and geometric restarts (RGR) of Wall999. Among the above listed restart strategies,
RRR and RGR have been studied and empirically tested in titextof CSPs. All of these
restart strategies are static in nature, i.e. the cutotfesédr each restart is independent of
the progress made during search. Some restart strategies fieed-cutoff strategy of
[Luby et al, 1993 and RRR[Gomeset al, 1999) employ an optimal cutoff value that
is fixed forall the restarts of a particular problem instance. The estonatf the optimal
cutoff value requires a priori knowledge of the cost disttibn of that problem instance,
which is not known in most settings and must be determinedibitand-error. This is
clearly not practical for real-world applications. There ather restart strategies that do
not need any a priori knowledge (e.g., Luby et al.'s univessategy[1993 and Walsh’s

RGR[1999). They utilize the idea of an increasing cutoff value in artteensure the

22

completeness of search. However, if these restart stegteigi not find a solution after the
initial few restarts, then the increasing cutoff value tafewer restarts, which may yield

thrashing and diminishes the benefits of the restart.

2.6.2 Randomization and geometric restarts

Walsh proposed the Randomization and Geometric Resta@®)Rtrategy to automate
the choice of the cutoff valug 999. According to RGR, search proceeds until it reaches a
cutoff value for the number of nodes visited. The cutoff ealar each restart is a constant
factor,r, larger than the previous run. The initial cutoff is equalite number of variables

n. This fixes the cutoff value of th&" restart at..r’ nodes. The geometrically increasing
cutoff value ensures completeness with the hope of solViagptoblem before the cutoff
value increases to a large value. We implemented RGR, stwdigous values of, and
compared it with our proposed restart strategy (RDGR). inimplementation, RGR was
combined with BT of Section 2.3 and the randomized seleaiforariable-value pairs of

Section 3.3.

2.6.3 Dynamic restarts

Unlike the static restart strategies of Section 2.6.1, Katal. introduced an optimal policy
for dynamic restartf2004. They employ Bayesian methods to build predictive models fo
run-time distribution. Utilizing this model, their restatrategy considers the predictions
about the running time to choose the cutoff value for restarhis approach is based on the
use of machine learning techniques. Machine learning iqals require large collections
of problem instances to train the predictive models. Thidesrly not practical for real-
world applications. And, unlike other restart strategiBayesian methods increase the

complexity of the implementation and deployment.

23

Given these drawbacks, we propose a restart strategy thatrdgally adapts the cutoff
value for each restart based on the performance of prevesiarts and does not require
any complex computations. We do this at the expense of cder@ss, which, anyway, is

not achievable on large problems.

2.7 Las Vegas algorithms

BT is deterministic and the other three search techniques (S, ERA, and RGR) are
stochastic. These stochastic search techniques can berfatassified in terms of Las
Vegas algorithms. A Las Vegas algorithm always yields atrselutions and its run-time
is a random variable. According to Hoos, an algoritdAnfior a problem clas$l is aLas

Vegas AlgorithnfLVA) if it has the following propertie$1994:

¢ If for a given problem instance < 11, algorithmA returns a solutios, s is guaran-

teed to be a correct solution of

e For each given instance € II, the run-time ofA applied tor is a random variable

RTyn.

The solutions returned by Las Vegas algorithms are guagdrite be correct. However,
Las Vegas algorithms are not guaranteed to be complete.dRasthe property of com-
pleteness, Hoos classifies Las Vegas algorithms into tk@afislg three categorield994.
Consider a Las Vegas algorithimfor a problem classl, and letP,(RT4 » < t) denote the
probability thatA finds a solution for a soluble instangec 11 in time less than or equal to

t. Ais said to be:

1. Completeif and only if for each soluble instaneec I1 there exists somg, . such

that Py (RT4 = < tmaz) = 1;

24

2. Probabilistically approximately complete (PAG) and only if for each soluble in-

stancer € I1, lim;_, o Ps(RTs » < t) = 1;

3. Essentially incompletef it is not PAC, i.e. if there exists a soluble instances 11,

for which lim,_, o Ps(RT4» < t) < 1.
Table 2.4 shows the classification of LS, ERA, and RGR as Lam¥algorithms. The

Table 2.4:Las Vegas algorithms.

Search method Las Vegas algorithms

RGR Probabilistically approximately complete
RDGR Essentially incomplete
ERA Essentially incomplete
LS Essentially incomplete

increasing cutoff parameter in RGR ensures that it willérae, in theory, the whole search
space. This makes RGR a probabilistically approximatetgy@ete algorithm. In our pro-
posed restart strategy, RDGR, completeness is not guathbézause the cutoff parameter
may remain constant. Local search algorithms are essemt@inplete due to search get-
ting stuck in local optima. Even if some techniques such adom restarts, random walk,
or tabu search are applied to escape from local optima, ta $earch algorithms cannot

be guaranteed to achieve completeness. ERA also does mahtgmcompleteness.

Summary

CSP provides a framework that allows researchers to studig@lne problems. GTAAP is

a real-world resource allocation problem that offers anoopymity to develop and test new
search techniques. In practice, this problem is tight, @xem-constrained. Various search
techniques (i.e., BT, LS, ERA, and randomized backtrackckeaith restarts) have been

implemented and developed for solving GTAAP.

25

Chapter 3

Study of backtrack search

Deterministic backtrack (BT) search was the first searchrtigie implemented to solve
GTAAP. Although BT is theoretically sound and complete, tage size of the search
space and thrashingake such guarantees meaningless in pracfi¢es chapter addresses
the influence of variable/value selection on the performeamicbacktrack search. First,
we study the effect of various heuristics for this selectittren we study the effect of

randomization.

3.1 Study of deterministic ordering heuristics

In Section 2.3 we summarized the four variable-orderingrisgos and the three value-
ordering heuristics implemented for BT. We tested thesedl2hinations on the GTAAP
data sets of Table 2.1. The parameters for the experiments tve GTAAP data set,
variable-ordering heuristic, and value-ordering heigigbiven the large size of the prob-
lem instances, we had to limit the time of each experiment toitutes. The detailed
results for each heuristic can be found in Appendix A.2. &ghll summarizes the best
results obtained by using all the variable-value orderiegristics on all the GTAAP data

sets. Table 3.1 shows the number of unassigned courseglthm®is quality in terms of

26

Table 3.1:Best results of BT using deterministic ordering heurist@3AAP (5 minutes).

gz

4 S

3| 2 3

= | o

g| S| 8

S| 219 | T 2

n| S|@| 8| &| <

s| 2|3 ®| & 3

c oc|lg| S| E O

DataSets| @ | @ |2 <| | © Ordering Heuristic

112|231 0| 45| 94| 1.39| DDD-OCCURRENCE
2 21265 0|27| 22|0.92| DLD-OCCURRENCE
3 31373015 21 0.04| DLD-PREFERENCE
4 71286| 035|162 2.27 DDD-FIL
5 01322 0(15| 25| 0.75| DLD-OCCURRENCE
6 214.15| 0| 23| 25(1.07| DLD-PREFERENCE
7 6288 0| 4.2| 253|0.92 DDD-FIL
8 1|13.89| 3|4.6|102]|0.50 DLD-FIL

the geometric mean of the assigned GTAs preferences, thbenwhunused GTAs, avail-
able resources, time taken for finding the best solutionntiraber of constraint checks
needed to find the best solution, and the combination of bkd@alue ordering heuristics

that obtained the best solution for each GTAAP data-set.

Observation 3.0.1.Dynamic variable-ordering heuristics outperform stateziable-ordering

heuristics.

Table 3.1 shows that for all the data sets of the GTAAP, eiidd or DDDvariable-
ordering heuristic yields the best solution. None of théistariable-ordering heuristics

find better solutions than dynamic variable-ordering hstias.
Observation 3.0.2.DDandLD show similar performances.

Table 3.1 shows thatD yields the best result for five instances of the GTAAP (i.atad
sets 2, 3, 5, 6, and 8), whil@Dyields the best result for the remaining 3 instances. Glearl

neitherDDnor LD outperforms the other.

27

Observation 3.0.3.All value-ordering heuristics show similar performances.

Table 3.1 shows that tidL yields the best solution for data sets 4, 7, anBREFERENCE
yields the best solution for data sets 3 and 6. ADGCURRENGEelds the best solution
for data sets 1, 2, and 5. Clearly, no value-ordering hearistthe winner. Table 3.2

summarizes the relative performance of the various detestid ordering heuristics.

Table 3.2:Relative performance of the deterministic ordering heigss

Dynamic selection strategy Static selection strategy
DD~ LD
OCCURRENCEPREFERENCE: FIL

3.2 Thrashing

Thrashing is the phenomenon of BT searching unpromisinig péthe search space. Itis
severe in problems of large size, such as the GTAAP. Due tbitftebranching factor of
the problem, BT is unable to backtrack to the place of badisgtichoice. Figure 3.1 illus-

trates thrashing for data set 1 with 69 variables and 26 salnehis figure, the percentage

Shallowest level

reached by BT after.24 hr: 51 (26%)—
1 min: 55 (20%
Max depth: 5

Number of variables:; 69
> ==

Figure 3.1:BT search thrashing in large search spaces.

28

denotes:

number of variables — shallowest level reached by backtracking (3.1)

number of variables

Indeed, the shallowest level of backtrack achieved aftdrd#s (26%) is not significantly
better than that reached after 1 minute (20%) of searchynewvising the initial assignment
of 74% of the variables. Table 3.3 shows that this phenoménaiso present in other

data sets. Table 3.3 shows, for each data set, the numbenalbies, the longest solution

Table 3.3:BT search thrashing.

Data set | # Vars BT running for..
5 min 6 hours
Max depth| Shallowest| Max depth| Shallowest
level % level %

1 69 57 53 23% 57 51 26%
2 65 63 55 15% 63 54 16 %
3 31 28 13 58% 28 3 90 %
4 59 49 48 18% 50 45 23%
5 54 52 44 18% 54 41 24%
6 64 62 54 15% 62 47 26%
7 25 19 7 72% 21 0 100%
8 41 40 19 53% 40 17 58%

(maximum depth), and the shallowest BT level (and the cpoeding percentage) attained
by backtracking after 5 minutes and 6 hours.

To confirm that this phenomenon is not solely due to the shwrtime of search, we
conducted further experiments by allowing search to rundioger time periods. Table 3.4
shows the performance of BT on data set 1 for various runnmgs, up to 24 hours.
We notice that increasing the running time of BT does notdyfjnificant improvements
in terms of the length of the solution found or its quality.déed, the number of unas-
signed variables does not decrease, the quality of theieolateasured by its geometric

mean does not significantly increase, and the shallowest &f\backtracking is not sig-

29

Table 3.4:Performance of BT for various running times.

Data set 1(69 variables, over-constrained)

CPU run-time | 30sec] 5min| 30min| 1hour| 6hours| 24 hours
Shallowest BT level 54 53 52 52 51 51
Longest solution 57 57 57 57 57 57
Geometric mean of 2.15 2.17 2.17 2.21 2.27 2.27
preference values

Backtracks 1835 47951 261536 532787 3274767 13070031
Nodes visited 3526 89788| 486462 989136| 6059638| 24146133
Constraint checks | 8.50E+07| 3.17E+08| 1.81E+09| 3.58E+09| 2.16E+10| 8.70E+10

nificantly reduced (first 51 variables in the ordering is maugdone). Further, the cost of
search, in terms of number of backtracks, nodes visited,candtraint checks is signifi-
cantly increased. Clearly, BT is being undermined by setra@shing. We conclude that
the backtrack mechanism is operating on the deeper levéthedearch tree and seems to

be unable to undo early choices and there is no benefit fraimdeBT run over longer

period of time.

3.3 Randomized backtrack search

We implemented two random-ordering heuristics:
1. Random variable-ordering heuristR\ar) and

2. Random value-ordering heuristie\al).

Rvar randomly selects the current variable from the set of futamgables. AndRval
instantiates the current variable with a randomly chosdaev&om its current domain.
Both these heuristics are applied at every instantiati@n, (dynamically). The resulting
randomized backtrack search can be characterized¢@asplete Las Vegas algorithriive
test the randomized backtrack search on the GTAAP data s&tbte 2.1 and show the

results in Table 3.5. Given the stochastic nature of theammzked backtrack search,

Table 3.5:Randomized backtrack search: GTAAP (5 minutes).

5 5 £
8 5 5 9| 5| 3| o
g 3 2| 8| 2|58 g| =
S % € % E|S || 2 10
S 2 L0 Q w || g @ e =
el o | 2 = 2128 £ &
% % — — — — o % — —
al ol 2| 2| k| Elgl& E| &
c £ Q Q > > || 0| < — —
Data-sets| O [) &) zZ Z|ao| wn m m
71181 | 12.78| 14.43| 155.40| 172.17| 69 | 54 | 19.42| 33.03
Dataset 1| 13| 19| 13.78| 18.19|| 202.22| 219.51| 69| 45| 0.52| 13.36
10| 17| 21.82| 25.87 || 226.08| 262.92|| 69 | 51| 0.97| 30.71
1(207| 3.96| 5.33| 15.68| 21.51| 65| 54| 10.73| 14.59
Dataset2| 5| 19| 0.70| 4.84 1.03| 22.09|65|56| 0.74| 17.03
3| 20| 0.70| 4.85 1.03| 22.13| 65|56 | 0.74| 17.07
8 5| 0.07| 4.62 0.81| 30.92(|31| 8| 0.65| 23.96
Dataset3| 2 5| 0.07| 4.63 0.81| 30.88|| 31| 8| 0.65| 23.93
5 5| 0.07| 4.63 0.81| 30.82| 31|10| 0.65| 23.88
71160 2.25| 3.05| 27.00| 50.05| 59| 47| 12.03| 30.37
Dataset4| 8| 150| 1.75| 3.08| 40.15| 98.07| 59| 48 | 13.07| 35.80
10| 16| 0.52| 3.39 2.07| 74.62||59|48| 1.13| 41.06
11| 262| 4.40| 5.01| 12.16| 13.59| 54| 35| 9.29| 10.31
Dataset5| 1| 264 440 4.97 12.16| 13.52| 54| 39| 9.29| 10.25
0| 264| 4.40| 498| 12.16| 13.53| 54| 43| 9.29| 10.26
13| 113} 2.25| 5.42 6.11| 14.11|| 64| 43| 2.89 6.80
Dataset6| 15| 80| 1.97| 5.34 5.75| 20.07| 64| 49| 2.70| 13.03
2| 25| 1.07| 4.64 0.08| 13.92| 64| 55| 0.05 5.28
7| 30| 0.35| 0.52| 78.35|301.20(| 25| 6| 20.02| 190.03
Dataset7/| 8| 158| 0.28| 0.54| 168.73| 316.88| 25| 7 | 97.51| 183.67
8| 150 0.30| 0.55| 165.66| 315.45| 25| 7 | 95.55| 184.43
13| 198 | 0.78| 1.24| 83.82| 122.45|| 41| 24| 21.22| 34.56
Dataset8| 6| 217| 0.32| 0.43| 88.02| 164.36| 41| 27 | 30.20| 35.04
1(102| 050| 1.64| 33.17| 78.88| 41| 19| 10.00| 28.55

Time: CPU run-time needed to reach best solution.

CC: Number of constraint checks.

NV: Number of nodes visited.

BT: Number of backtracks.

31

we conducted three experiments for each GTAAP data set,equriment running for 5
minutes. Table 3.5 shows the number of unassigned variabiges taken to find the best
solution, number of constraint checks for finding the besitgm and during 5 minutes,
number of nodes visited for finding the best solution andraub minutes, depth of the
search tree, shallowest level reached by backtrackingnantber of backtracks to finding

the best solution and during in 5 minutes.

Observation 3.0.4.Random-ordering heuristics may or may not yield bettertsamhs than

deterministic-ordering heuristics.

The best result for data set 1 using random-ordering hagis 7 unassigned vari-
ables (Table 3.5), while it is 12 for deterministic-orderimeuristics (Table 3.1). However,
random-ordering heuristics can also yield worse resullsufiassigned variables for data
set 1) than deterministic-ordering heuristics. This istduie stochastic nature of random-
ized backtrack search. This variation in the results can ibgated by the use of restart

strategies, as discussed in Section 2.6.

Summary

In this chapter we study the performance of the various arddreuristics implemented for
BT. As expected, our experiments show that dynamic selestwe consistently superior
to static selections. However, none of the variable-orgdeheuristics is dominant. Simi-
larly, none of the value-ordering heuristics outperformyg af the others. We highlight the
severe thrashing in BT. We investigate randomized badkiaarch as an alternative to de-

terministic backtrack search and show that it needs to bmantgd with restart strategies.

32

Chapter 4

Randomization and dynamic geometric

restarts

In this chapter we first introduce the design and implementatf our proposed restart
strategy. Next, we present the empirical evaluation of #régomance of our restart strat-
egy by comparing it against all the search techniques BEE.LS, ERA, and RGR) devel-
oped to solve GTAAP, both on GTAAP data-sets and on randoeterated problems. We

describe the evaluation methodology and present the sesult

4.1 Randomization and dynamic geometric restarts

In Section 2.6, we described the various static restaategires and their drawbacks. RGR
employs a geometrically increasing cutoff value. This eeswcompleteness of the search,
but results in fewer restarts, thus increasing the likethof thrashing and diminishing
the probability of finding a solution. Our proposed stratdggndomization an®ynamic
Geometric Restarts (RDGR), aims to attenuate this effdcbpérates by not increasing

the cutoff value for the following restart whenever the gyabdf the current best solution

33

is not improved upon. When the current restart improves enctirrent best solution,
then the cutoff value is increased geometrically, simtaRGR. Because the cutoff value
may stay constant, completeness is no longer guaranteede@sentially incomplete Las
Vegas algorithm). This situation is acceptable in appiicatiomains (like ours) with large
problem size where completeness is, anyway, infeasiblesictise. LetC; be cutoff value
for thei’” restart and- be the ratio used to increase the cutoff value. In RGR theffcuto
value is updated according to the equatioh;; = r.C;. We use the following equation in

RDGR:

r.C; when the solution has improved at the restart
Ciy1 = 4.1)
C; otherwise
In RGR, the cutoff value for each restart is determimetependentlyf how search per-
formed at the previous step. However, this is not the casRIER. RGR and RDGR
follow the same cutoff schedules for search paths that ingsolutions.

As search proceeds, the cutoff values in RGR keep on inorgasghis results in RGR
becoming more of a randomized backtrack search than a randdimacktrack search with
restarts. In contrast, the cutoff values in RDGR remain amaller value compared to that
of RGR. This results in more restarts taking place in RDGR fR&R. However, for = 1
the cutoff values for both RGR and RDGR are similar, resglimsimilar performance.
The dynamic nature of RDGR arises due to the fact that thefcstbedule of RDGR is
different for each search process, and is not fixed as RRRatic ss RGR.

We implemented RDGR with the BT of Section 2.3 and the randethselection of

variable-value pairs of Section 3.3.

34
4.2 Experimental methodology

We tested and compared the 5 search strategies, namelyeBlidi$2.3), LS (Section 2.4),
ERA (Section 2.5), RGR (Section 2.6.2), and RDGR. BT is deteistic and the other 4
search techniques (i.e., LS, ERA, RGR, and RDGR) are sttichas

4.2.1 Main experiments

We conducted the following three sets of experiments:
1. Effect of running time on RGR and RDGR.
2. The influence of the choice of the ratizused in RGR and RDGR.

3. Relative performance of BT, LS, ERA, RGR, and RDGR.

4.2.2 Evaluation criteria

We compare the performance of the algorithms using thevimtig criteria:

1. Solution quality distribution$SQD) taking as reference the longest known solution
for each data set, as recommended by Hoos and Stit#00d. SQD’s are cu-
mulative distributions of the solution quality, similar tiee cumulative distributions
of run-time in run-time distributions. The horizontal axepresents in percent the
relative deviation of the solution sizefrom the longest known solutios,,;, com-
puted asw. Thus, the point 0% on the-axis denotes a solution as long as
the longest known solution, the point 20% denotes a solditiahis 20% shorter than

the longest known solution. Theaxis shows the percentage of test runs that obtain

a solution in terms of deviation from the best known solution

35
2. Descriptive statistic®f all the solutions found, for all search techniques. This i
cludes the measures: mean, median, mode, standard deyiatmum, and maxi-

mum length of the solution.

3. 95% confidence intervdb assess the performance differences of RDGR over RGR
and ERA. For single problem instance (i.e., GTAAP data s&is)use the Mann-
Whitney U-test for the computation of confidence intervei®r ensembles of in-
stances (i.e., randomly generated problems), we use theoXdih matched pairs

signed-rank test.

4.2.3 Data sets

We tested these search techniques on the 8 GTAAP data-sé&blef 2.1 and 4 sets of
randomly generated binary CSPs. For the GTAAP data setsgpeated our experiments
500 times for all stochastic search techniques. Naturalgingle run is sufficient for BT

because it is deterministic.

4.2.3.1 GTAAP data sets

Figure 4.1 shows the moving averages for the running tim&GR and RDGR. Moving
averages is an indicator that shows the average runnirgeuer various sample sizes. We
found that the average run-time for all stochastic algonglstabilizes after 300 runs on all
the GTAAP data sets, as shown in Figure 4.1 for data set 1 hwustifies our decision of

repeating the experiments 500 times. We report the resulthé following data sets:

1. Data set 1 as a representative of an over-constrainetepnob

2. Data set 5 as a representative of a tight but solvable gmabl

The results for all data sets are qualitatively equivaledt@n be found in Appendices A.3,

A.4, and A.5.

36

200

| Data set 1: Moving averages for CPU Time

N
®
=]

— RGR
-» RDGR

=
@
=}

Cumulative Averages [sec]
I N
o o

=
o
=]

80 ‘ ‘ ‘ ‘ ‘ ‘ ngple Numbqr
50 100 150 200 250 300 350 400 450 500

Figure 4.1:Moving average for CPU run-times for data set 1.

4.2.3.2 Randomly generated problems

We also evaluated all the search techniques on randomlyafedebinary CSPs. Before
we started our work, all the search techniques (except RGRR®GR) were customized
for GTAAP data. We adapted all the search techniques to sahdomly generated prob-
lems. All the randomly generated binary CSPs, used fomtgsére of the model B type,
generated using the random generatofvain Hemert, 2004 We generated three types
of random problems as shown in Figure 4.2, where:, p;, t) denote the number of vari-
ables, the (uniform) domain size, the proportion of constsaand the (uniform) constraint

tightness:

1. Under-constrained instancesThe first type of randomly generated problems are
under-constrained binary CSPs with 40 variables, unifoomain size of 20 val-
ues, 0.5 proportion of constraints, and 0.2 constrainthigés. We generated 100

instances and ran each instance for 3 minutes.

2. Over-constrained instanced he second type of randomly generated problems are

over-constrained binary CSPs with 40 variables, uniformmaio size of 20 values,

37

Solvable<25,15,0.5,0.36:
Unsolvable<25,15,0.5,0.36

Cost of solving the problem

<40,20,0.5,0.
<40,20,0.5,0.5>

Critical value Order parameter
of order parameter (Constraint tightness t)

Figure 4.2:Randomly generated problem instances.

0.5 proportion of constraints, and 0.5 constraint tightne¥/e generated 100 in-

stances and ran each instance for 3 minutes.

. Instances at the phase transitioifhe third type of randomly generated problems
are from thephase transitiorarea. In binary CSPs, as the tightness is varied from
small to larger values, a transition occurs from a regiontaiomg problems hav-
ing many solutions to a region in which almost all problemgehiao solutions. The
values of tightness where this transition occurs is knowmtmagphase transition and
acknowledged to contain the hardest problem instancesdores number of vari-
ables, domain size, and proportion of constraints. At theesphransition, we gener-
ated random binary CSPs with 25 variables, uniform domaie sf 15 values, 0.5
proportion of constraints, and 0.36 constraint tightnddsese problems were split
into two sets. The first set contains 87 solvable instances tlee second set con-
tains 111 unsolvable instances. All the solvable and uasbddvinstances are from

the random generator 6fan Hemert, 2004 We ran each instance for 3 minutes.

38
4.3 Effect of the running time on RGR and RDGR

To compare the performance of RGR and RDGR, we tested therar@usg running times
for the GTAAP data sets. Figures 4.3 and 4.4 show the resulesins of SQDs.
Thez-axis shows the deviation from the best known solution foRREad RDGR with
varying run-times. And, thg-axis shows the percentage of test runs that obtain a solutio
in terms of deviation from the best known solution. The dbsttions for greater run-
times lie to the right of the smaller run-times. This is bessgwvith increasing run-times,
better solutions are found. In both the figures, the distidouof RDGR for 20 minutes
running time is to the right of the corresponding distributof RGR. This means that the
probability of RDGR finding a particular solution qualitynsore than RGR. This is true
for all the run-times. Thus, RDGR consistently outperfofR@&R over different run-times.
Clearly, increasing the running time has no affect on thatined dominance of the two

algorithms.

39

100 ~ e
« | Dataset1
80 -
2 70 A
2 S
B 60 - ®- >
E 504 || [im. ..
g —+— RDGR-20min
g “ -=- RDGR-10min
& 30 —4— RDGR-5min
~4- RGR-20min
e - RGR-10min
10 ~&- RGR-5min
0 »'.»'.»'.»'.»'.»'.» ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14
Deviation from best known solution [%]
Figure 4.3:Varying run time: GTAAP, over-constrained.
100e & §. & &
A
%4 S S g R
oy Data set 5
2 70 A
el [me
2
EES —— RDGR-20min
g ~4- RGR-20min
g 40 -#- RDGR-10min
& 30 - RGR-10min
______ —4— RDGR-5min
207 ~4&~ RGR-5min
1049 /7 &3
(= T T T T T T)
0 2 4 6 8 10 12 14

Deviation from best known solution [%]

Figure 4.4:Varying run time: GTAAP, solvable.

40
4.4 Influence of the ratior

We tested RGR and RDGR with different ratios, with 5 minuteisning time. For the
GTAAP problem we tested the values: 1, 121, 22, 2, and 4. For the random CSPs
we tested the values: 1, 144, 22, 2, 3, and 4. Figures 4.5, 4.6, 4.7, and 4.8 show the
percentage of test runs that obtain solutions for the diffevalues of the ratio used to
increase the cutoff value in RGR and RDGR.

For example, in Figure 4.5, for data set 1 using a value=af1, nearly 90% of the runs
obtain solutions that are 6% deviant from the best knowntswlu While other values of
r yield poorer results. Thus, in accordance wWhtalsh, 1999, Figures 4.5 and 4.7 show
that a value of-=1.1 is the best among the values tested for RGR. While thimapratio
does not change with the problem type (i.e., GTAAP vs. randoshlem) for RGR, it does
for RDGR. For the GTAAP, it ig'=1.1 (Figure 4.6). For randomly generated problems,
it is r=2 (Figure 4.8). We conducted further tests on larger ranga@enerated binary
CSPs having 60 variables, uniform domain size of 30 valuéspfportion of constraints,
and 0.5 constraint tightness. Figure 4.8 shows that evem aviarger problem size, the
best value for RDGR ig=2. This ensures that the best value-a$ not dependent on the

problem size.

100 ~

Percentage of test runs

(&) [e2] ~ o] (o]
o o o o o
I I I I I

w0
o O

41

" RGR on data sets 1 & 5

| ——Data set 1 at 6%

| -3 -Data set 5 at 6%

20 ~

1 1.5 2 2.
Rat5|o

Figure 4.5:Effect of r: RGR on GTAAP.

RDGR on data sets 1 & 5

20 —o— Data set 1 at 6%
10 - -#-Data set 5 at 6%
0 T T 1
1 1.5 2 2.5 3 3.5 4
Ratio

Figure 4.6:Effect of r: RDGR on GTAAP.

Percentage of test runs

90 -

RGR on Random CSPs
80 -
70 -
»w 60 -
< B
2 ;
:gj 50 9
s i
] i
o 40~
k= 1
8
& 30 "
i - —+
20 —4— Under-constrained
§i - - Over-constrained
---4-- Phase transition, solvable
101 -X--Phase transition, unsolvable
—+— <60, 30, 0.5, 0.2>
0 ; ; ; ‘ ‘ ‘
1 15 2 25 3 35 4
Ratio
Figure 4.7:Effect ofr: RGR on random CSPs.
100 -

/ —e— Under-constrained
30 - - Over-constrained
---&-- Phase transition, solvable
20 —x<— Phase transition, unsolvable
——<60, 30, 0.5, 0.2>
10
0+ ; ; ; ; ; ‘
1 15 2 25 3 35 4
Ratio

Figure 4.8:Effect of r: RDGR on random CSPs.

43

This discrepancy in the value offor RDGR on random problems can be explained by

the fact that the cutoff value increases more quickly in RG&tin RDGR, as shown in

Figure 4.9.
Random binary CSP

200 -
I
I

180
I

160
1
1
140 1

; —RGR, r=2
/ ----RGR, r=1.
RDGR, r = 2
-----RDGR, r = 1.1

- -

o N

[S) (=}
L

Cutoff value

®
S
L

60
/
404 ,
100

Ve
60 70 80

20 A
50 90

30 40
Number of restarts

20

Figure 4.9:Increasing rate of the cutoff value (3 minutes).

44
4.5 Relative performance of BT, LS, ERA, RGR, and RDGR

In this section we compare the relative performance of aldbarch techniques. Each
stochastic algorithm was run 500 times of 10 minutes eactherTAAP data-set and
on ensembles of instances of randomly generated problethseach instance run for 3
minutes. Figures 4.10 and 4.11 show the distributions ofBf$A, RGR, and RDGR on
data set 1 and data set 5.

In both the figures, the percentage of test runs finding swiatin the range of 0%-10%
deviation from best known solution is more for RDGR than R@Rrigure 4.10, ERA is
unable to find a solution better than 25% deviation from bestkn solution. While in
Figure 4.11, ERA finds complete solutions for all the tessrun

Figures 4.12, 4.13, 4.14, and 4.15 show the relative pedoo®m on the random prob-
lems. We do not show LS and ERA in Figure 4.13 because theyfdbeo$cale.

Percentage of test runs

Percentage of test runs

45

100 1 eemememmmmmmmm—————m—mmmm e
90
80 - Data set 1
70 +

— RDGR
60 -

---RGR)
so4 [e LS
40 | --—-ERA
30 -

20 -
10 -
0 T T e - T |
0 10 20 30 40 50
Deviation from best known solution [%)]
Figure 4.10:SQDs: GTAAP, over-constrained.
100 ——
90
80 | Data set 5
70 +
60 -
50 -
-—-ERA
40 - — RDGR
30 1 ---RGR
204 /7 e LS
10
0 L — (.\ T T 1
0 5 10 15 20 25

Deviation from best known solution [%)]

Figure 4.11:SQDs: GTAAP, solvable.

Percentage of test runs

Percentage of test runs

100 oo

0 2 4 6 8 10 12 14
Deviation from best known solution [%]

Figure 4.12:SQDs: under-constrained, random CSPs.

100

(]
o

Over-constrained

0]
o
|

~
o
|

— RDGR
-~ RGR
—~ BT

[o)]
o
I

0
o
I

N
o
|

w
o
I

N
o
I

-
o
L

o
\
R

10 15 20 25
Deviation from best known solution [%]

o
a

Figure 4.13:SQDs: over-constrained, random CSPs.

46

Percentage of test runs

Percentage of test runs

100 + g
Phase transition, solvable
90
80 -
1 | —RDGR
60 - ---RGR
50 - 5 BT
o | ERA
------ LS
30
20 -
10 .
0 - ’/‘ ‘ e ‘ ‘
0 2 4 6 8 10 12 14

Deviation from best known solution [%)]

Figure 4.14:SQDs: solvable random CSPs, at phase transition.

1007 Phase transition, unsolvable |/
90
80 -
70 +
., | —RDGR
-—-—RGR
501 |>-BT
40 -- ERA
304 L LS
20 -
10
O 7~ T T
0 2 4 6 8 10 12 14

Figure 4.15:5QDs: unsolvable random CSPs, at phase transition.

Deviation from best known solution [%)]

a7

48

Tables 4.1 and 4.2 show the lower limit and the upper limithef tonfidence intervals

of the performance differences of RDGR over RGR and ERA.

Table 4.1:Improvements of RDGR with 95% confidence level, GTAAP dats.s

Solvable data sets

Data set|| Improvements over RGR| Improvements over ERA
Lower limit | Upper limit | Lower limit | Upper limit

2 1.53 1.61 -6.15 -6.15

5 0 1.85 -3.7 -3.7

6 1.56 1.56 -6.25 -6.25

7 4.00 4.00 -3.99 -3.99

8 2.44 4.87 0 0

\ Over-constrained data sets \
Data set|| Improvements over RGR| Improvements over ERA
Lower limit | Upper limit | Lower limit | Upper limit

1 1.61 1.61 45.16 46.77

3 3.43 3.44 27.58 31.03

4 1.84 1.85 24.08 27.77

Table 4.2:Improvements of RDGR with 95% confidence level, randomlyegated problems.

Data set

Improvements over RGR

Lower limit | Upper limit

Improvements over ERA
Lower limit | Upper limit

Under-constrained 0 2.49 -4.99 -3.75

Over-constrained 0 3.99 83.99 86.00

Phase transition, unsolvable 0 4.00 14.00 19.99

Phase transition, solvable, 0 4.00 -4.00 -4.00
lower solution quality deviations

Phase transition, solvable, 0 4.00 17.99 22.00
higher solution quality deviationg

Comparing the improvement of RDGR over RGR, we see that thigsliof the confi-

dence intervals are positive, indicating that RDGR doesawvg over RGR. As for ERA,

RDGR is superior to ERA for over-constrained problems,(cenfidence intervals have

positive values), and the opposite holds for under-coim&daproblems (i.e., confidence

49

intervals have negative values). These results hold fdr BAAAP data sets and randomly
generated problems. Note that this holds across the prasstion, where ERA remains

the only technique capable of solving more of the instansatis given more time.

4.5.1 Improvement of RDGR over BT

Tables 4.3, 4.4, and 4.5 show that the mean and maximum vafue® solution sizes

produced by RDGR are clearly greater than those of the solsizes produced by BT.

Table 4.3:Statistics of solution size for data set 1 (500 runs, 10 neimeiach).

\ Data set 1(69 variables, over-constrained) \

| Search | Mean | Median| Mode | Standard dev] Minimum | Maximum |
BT 57 57 57 0 57 57
LS 47.12 48 49 4.44 30 55
ERA 30.99 31 32 4.37 18 45
RGR 58.27 58 58 2.83 23 62
RDGR 59.66 60 60 0.77 58 62

Table 4.4:Statistics of solution size for data set 5 (500 runs, 10 neisietach).

\ Data set 5(54 variables, tight but solvable) |

| Search || Mean | Median| Mode | Standard dev] Minimum | Maximum |
BT 52 52 52 0 52 52
LS 42.88 44 46 3.94 29 50
ERA 53.99 54 54 0.04 53 54
RGR 51.70 52 52 1.04 49 54
RDGR 52.17 52 52 0.78 50 54

However, due to its stochastic nature, RDGR suffers fronh lmgtability (non-zero
standard deviation) in its solution quality. Even on randmoblems (Table 4.5 and Fig-
ures 4.12, 4.13, 4.14, and 4.15) RDGR dominates BT. Also,@embles of problem

instances, RDGR is more stable (lower standard deviatiar) BT.

Table 4.5:Statistics of solution size for randomly generated prolslem

Under-constrained (40 variables)

| Search | Mean | Median| Mode | Standard dev] Minimum | Maximum |
BT 37.5 38 38 1.12 35 40
LS 35.2 35 35 0.80 34 38
ERA 40 40 40 0 40 40
RGR 38.0 38 38 0.61 37 40
RDGR 38.2 38 38 0.49 37 40

\ Over-constrained (40 variables) |

| Search | Mean | Median| Mode | Standard dev] Minimum | Maximum |
BT 21.3 21 21 0.77 20 23
LS 19.6 20 20 0.61 19 21
ERA 0.7 1 0 0.89 0 4
RGR 21.6 22 22 0.60 21 24
RDGR 21.8 22 22 0.45 21 24

\ Phase transition, solvablg25 variables) \

| Search | Mean | Median| Mode | Standard dev] Minimum | Maximum |
BT 22.4 22 23 0.71 21 24
LS 20.8 21 21 0.66 20 23
ERA 19.0 19 21 3.83 6 25
RGR 22.7 23 23 0.55 22 24
RDGR 22.8 23 23 0.43 22 24

\ Phase transition, unsolvablg25 variables) \

| Search | Mean | Median| Mode | Standard dev] Minimum | Maximum |
BT 22.2 22 22 0.63 20 24
LS 20.4 20 20 0.50 20 22
ERA 18.2 19 21 3.48 7 23
RGR 22.4 22 22 0.53 21 24
RDGR 22.5 23 23 0.53 22 24

50

51
4.5.2 Superiority of RDGR over LS

Tables 4.3, 4.4, and 4.5 show that the mean and maximum lehgtk solution yielded by
LS is smaller than RDGR. Clearly, the performance of RDGRisesior to that of LS (see
also Figures 4.10, 4.11, 4.12, 4.14, and 4.15). Althouglstiation quality is variable for
both RDGR (standard deviation of 0.77 in Table 4.3) and L&@ard deviation of 4.44 in
Table 4.3), the low mean value of the solution quality of LSumes that RDGR remains

superior to LS.

4.5.3 Superiority of RDGR over ERA on over-constrained prollems

In Figure 4.10, RDGR yields solutions that are within a ranf®-10% deviation from
the best solution. While the best solution that ERA gives aerthan 25% deviated from
the best solution. Clearly, on over-constrained probleffnguie 4.10 and Tables 4.1 and
4.2), the livelock phenomenon prevents ERA from finding 8ohs of quality comparable
to those found by the other techniques. BT, LS, RDGR, and RGRal exhibit such a

dichotomy of behavior between over-constrained cases@wdlde instances.

45.4 Performance of ERA

As we just stated, on over-constrained problem (both GTAAR @nd randomly gener-
ated problems), RDGR, RGR, BT, and LS are superior to ERA. @solvable problem
instances around the phase transition (Figure 4.15), RIR&FR, and BT are still superior
to ERA, but ERA outperforms LS.

On solvable GTAAP instances (Figure 4.11) and randomly geed under-constrained
problem instances (Figure 4.12), ERA completely dominalleke other search techniques
for all values of the deviation from the best known solutiblewever, on solvable problem

instances around the phase transition (Figure 4.14), twescmust be distinguished. On

52

lower values of deviation from the best known solution, ERAihates all the other search
techniques. Thus, confirming that ERA is our best techniquedlving solvable problems
and the only one that can solve tight instances. Howeveiafger values of deviation
from the best known solution, ERA performs only better th&) Wwhile RDGR, RGR, and

BT perform better than ERA. More tests are needed to undetskas phenomenon.

455 RDGR is more stable than RGR
Table 4.6 shows the standard deviation of RGR and RDGR onTA&\B data sets. Due to

Table 4.6:Standard deviation of RGR and RDGR on GTAAP data sets.

|Dataset| 1 [2 | 3| 4|56 7 | 8|
RGR 28/11]07[10[1.0[1.2]059]0.73
RDGR [0.7]/0.8[0.6/0.9]0.7[1.1]0.43]047

their stochastic nature, RDGR and RGR techniques showtiaaria their solution quality.
However, the smaller standard deviations of RDGR compardRiGR in Table 4.6 show

that RDGR is relatively more stable than RGR.

4.5.6 Sensitivity of LS to local optima

The inability of LS to yield any good solutions shows that Léhisitivity to local optima

makes it particularly unattractive. Even BT outperforms LS

4.5.7 Larger number of restarts in RDGR

Table 4.7 shows the average number of restarts occurrinGR &d RDGR. This confirms

our expectations stated in Section 4.1 that RDGR performe mestarts than RGR.

53

Table 4.7:Average number of restarts by RGR and RDGR on GTAAP data sets.

Dataset] 1 [2] 3 [4 [5[6] 7 | 8 |
RGR 16.7| 17.4| 225 |14.7| 22.4| 19.5| 27.8 | 30.4
RDGR 7451 59.9| 167.4| 39.1| 39.1| 46.2| 826.2| 272.0

Summary

We tested the 5 search strategies, namely: BT, LS, ERA, RGRRDGR on two types
of problems. The first is a real-world resource allocatiabpem, GTAAP, which was the
initial motivation for all our investigations. To validatee observations made on GTAAP
data-sets, we conducted tests on randomly generated prebfd| these experiments sup-

port that our proposed RDGR restart strategy improves ugaR.R

54

Chapter 5

Conclusions and future work

In this thesis we proposed an improved dynamic restareglydRDGR). We compared its
performance with other search techniques, namely: BT, E#,and RGR. We showed in
RDGR that making the restart strategy dependent on thelspargress enhances the per-
formance of randomized backtrack search compared to the statart strategy of RGR.
We studied these search techniques on a real-world apph¢&TAAP, and also on ran-
domly generated binary CSPs. In this chapter we summarizeesaarch and results, and

propose directions for future investigations .

5.1 Summary of the research conducted

The basic backtrack search is deterministic, completesandd. However, on large prob-
lems its performance is seriously undermined by thrashiadarge variance in its run-time
on various instances of the same problem. Variable/valderorg heuristics and methods
such as look-ahead and backjumping can improve the perfarenaf search, but cannot
eliminate thrashing completely. Zou and Chou¢2903a; 2003; 2003lshowed the draw-

backs of LS and ERA on GTAAP instances. Our tests showed hileaetdrawbacks also

seem to be present on randomly generated problems.

55

Given the disadvantages of BT, LS, and ERA, we studied raimhBT search with
restarts. Gomes et al. demonstrated that randomizatioewfdtic choices combined with
restart mechanisms is effective in overcoming the effetthrashing and in reducing the
total execution time of systematic BT seafd999. RGR and RDGR are such algorithms
that use randomized BT search with restarts. We proposedRR &G improvement over

RGR of Walsh1999.

5.2 Conclusions

By addressing a real-world application, we are able to ifiertharacterize, and compare
the behavior of various search techniques. We tested \sadeterministic-ordering heuris-
tics for BT. As expected, dynamic selection of variables feamd to be superior to static
selection of variables. However, there was no differengeeirfiormance among variable-
ordering and value-ordering heuristics. Also, while BT enplete and sound, it suffers
from thrashing. LS is vulnerable to local optima. ERA has armazaing ability to solve
tight solvable problems (some of which we thought were uradne). However, ERAs
performance degrades on over-constrained problems dbe liw¢lock phenomenon. Ran-
domization of backtrack search with restart strategiegtieetive in preventing thrashing.
RGR operates by increasing the cutoff values at every testhich makes it more increas-
ingly vulnerable to thrashing. RDGR attenuates this effgcmaking the cutoff value de-
pend upon the result obtained at the previous restart, ttmusasing the number of restarts
in comparison to RGR. Consequently, RDGR exhibits a morglestachavior than RGR
while yielding at least as good solutions.

The following five statements, where denotes dominance of an algorithm over an-

other, summarize the behavior of the 5 search strategsesbakefly explained in Table 5.1:

e On unsolvable instances:

56

— Beyond the phase transition: RDGRRGR > BT - LS - ERA.

— Around the phase transition: RDGRRGR - BT >~ ERA >~ LS.

e On solvable instances:

— Beyond the phase transition: ERARDGR - RGR > BT - LS.

— Around the phase transition: two cases must be distingdi@es Figure 4.14).

If we focus on the percentage of problems solved (i.e., loxa@res of SQDs),

ERA remains the dominant technique: ERARDGR - RGR - BT - LS.

However, if we accept larger values of the deviation fromiist solution, then

RDGR statistically dominates: RDGR RGR - BT - ERA - LS.

Table 5.1:Comparing the behavior of search strategies.

Characteristics |

ERA

General: Stochastic and incomplete

Tight but solvable problems: Immune to local optima and solves tight CSPs

Over-constrained problems: Livelock causes instability and yields shorter solutig

LS

General: Stochastic, incomplete, and quickly stabilizes

Tight but solvable problems: Liable to local optima, and fails to solve tight
CSPs even with random-walk and restart strategies

Over-constrained problems: Finds longer solutions than ERA

RDGR

General: Stochastic, incomplete, immune to thrashing,
produces longer solutions than BT, immune to livelock,
reliable on unknown instances, and

immune to local optima, but less than ERA

RGR

General: Stochastic, approximately complete,
less immune to thrashing than RDGR, and
yields shorter solutions than RDGR in general.

BT

General: Systematic, complete (theoretically, rarely in practice)
liable to thrashing, yields shorter solutions than RDGR B@R,

stable behavior, and more stable solutions than stochastiicods in general

ns

57

5.3 Open questions and future research directions

Our research was motivated and enabled by the GTA assigrnpneject. However, we
extended our results beyond this particular applicatiorat@lomly generated problems.

Below we describe the future research directions:
1. Enhance RDGR with tabu behavior across restarts.
2. Validate our findings on other real-world case-studies.

3. Design ‘progress-aware’ restart strategies, thatrategjies that can decidgyringa

given restart, whether to continue or abandon this pagiaexecution.

4. Design new search hybrids where a solution from a givemigoe such as ERA is

fed as a seed to another one such as heuristic backtrack searc

58

Appendix A

Results from the GTAAP data sets

This chapter presents results of all the experiments dortbeodata sets of GTAAP. Sec-
tion A.1 contains the best solutions obtained by the fivecketechniques (i.e., BT, LS,
ERA, RGR, and RDGR). Section A.2 presents the results ahgpgite various determin-
istic ordering heuristics of BT. Section A.3 presents thé3fpaphs of comparing the four
stochastic search techniques (i.e., LS, ERA, RGR, and RDG&jtion A.4 presents the
SQD graphs of the effect of running time on RGR and RDGR. Kingkction A.5 presents
the SQD graphs for the different values of the ratio useddreimse the cutoff value for both

RGR and RDGR.

A.1 Bestresults of the GTAAP data sets

This section contains the best solutions obtained for thaAFTdata sets. All the exper-

iments were carried out for 5 minutes. Table A.1 shows the fessilts obtained by BT

using the 12 different deterministic ordering heuristM& note the number of unassigned
courses (i.e. unassigned variables), the solution qualitgrms of the geometric mean of
the assigned GTAs preferences, the number of unused GTéAay#ilable resources, time
taken for finding the best solution, the number of constreligicks needed to find the best
solution, and the combination of variable-value orderimgistic that obtained the best

solution for each GTAAP data-set.

59

Table A.1:Best results obtained by BT using deterministic variougond) heuristics: GTAAP (5
minutes).

gz

4 S

3| 2 3

= |0

HEIEE

S| 219 | T 2

n| S|l 8| &| <

s| 2|3 ®| & 3

c o || S| E O

DataSets|| @ | @ |2 <| | ©O Ordering Heuristic

112|231 0| 45| 94| 1.39| DDD-OCCURRENCE
2 21265 0|27| 22|0.92| DLD-OCCURRENCE
3 31373 0|15 21 0.04| DLD-PREFERENCE
4 71286| 035|162 2.27 DDD-FIL
5 01322 0(15| 25| 0.75| DLD-OCCURRENCE
6 214.15| 0| 23| 25(1.07| DLD-PREFERENCE
7 6(288| 0]|4.2|253|0.92 DDD-FIL
8 11389 3|4.6|102]|0.50 DLD-FIL

Tables A.2 and A.3 show the best solutions obtained by LS, BHRBR, and RDGR.
Each experiment was run 500 times, with each run for 5 minlésnote the number of
unassigned courses (i.e. unassigned variables), thesotuality in terms of the geomet-
ric mean of the assigned GTAs preferences, the number oedrfa3As, and the available

resources.

Table A.2:Best results of LS and ERA: GTAAP (500 runs, 5 minutes each).

| Data Set| o, LS | » ERA \
e | 2 ol 3| & 3
Ol 32| 8|2 T |2| ¢
8 > = o 8 > = Iod
S| 219 2|5 218 e
w| S| 3| Blw| 8|8 2
%2} = (2] Pt (2] = 0 —
i =] o Tl «© 2|3 T
c [=S c (@] < >
5| #| D3| &|D] o |D| <
1] 14[322| 0| 3.7(23[284| 7| 144
2| 41298 1| 55| 0/299| 0| 1.6
3| 41361 0| 20| 8[322] 1| 20
4 71374 0| 43| 9[3.01] 2| 45
5| 3364 2115 0|282| 2| 7.8
6| 9/364| 0| 72| 0/328/ 0| 15
7| 3|270| 4[466| 0|347| 0| 17
8| 7|4.02|12|145| 0441 5| 42

Table A.3:Best results of RGR and RDGR: GTAAP (500 runs, 5 minutes each)

| DataSet| , RGR | » RDGR |
o Sl e 3
3 5| = 5
ol 2 ol 3| & o
| SIE| &|g| S| &
@ Rl || o B @
c Clo| 5l < clo p
(@) c ko) — (o)) c oS =
I Slao| 8l @ S| @ <
%2} = %2} —_ (2] = (2] —_
© 2| 3| T © 2|3 T
c @] c > c (@) c >
) nw D |l > 0w | D <
1| 7/268| 0| O 8|210| 0| 0.6
2| 1/281 0|26 2|29 1| 3.6
3| 2(362, 0| 0| 2(340| 0 0
41 51285 0|10| 4305/ 0| 10
5| 0(330 1|15} 0272 0| 15
6| 1[270 1|35| 1252 0| 35
71 01294 225| 0275 0| 17
8| 0/299 5/36| 0]3.01| 7| 3.68

61

A.2 Results obtained from BT using the various determin-
istic ordering heuristics

This section presents the results of testing the variowsriehistic ordering heuristics of
BT on all the data sets (i.e. 12 experiments for each dat®8etxperiments all together).
Each experiment was run for 5 minutes. And, for each experime note the number
of unassigned courses, the solution quality in terms of dweretric mean of the assigned
GTAs preferences, the number of unused GTAs, the avail&sleurces, time taken for
finding the best solution, the number of constrains checkslee to find the best solution
and during 5 minutes, the number of nodes visited to find tts $a@ution and during 5
minutes, the depth of the search tree (i.e., number of V@sglihe shallowest level reached

by backtracking, and the number of backtracks for the bdgtiea and in 5 minutes.

Table A.4:Deterministic ordering heuristics of BT: GTAAP, data set 1.

S S 5

(7] = = 5
8 g Bl 2| 2| g8z 3| ¢
> =] 7] - o — £
S| 52| & 8l o| 2| 2| 8|5| B| :
8 8; = @ — a’o‘\ 0 ®) o D - -
c (O ° g) =) S S22 3 2 N
2 S|z = 0 — = — — © 2 S S
2 S|g 3 2, X X X X c | B »; %
@ = > T g ~ ~ hat ~ 2 =T - =
. L c [} c S = [©] Q > > [} < = =
Ordering heuristics =) n | D ¢ [O O z z [a] n m m
SLD-FIL 17 | 284 | 0| 25| 291 || 3.98 | 4.08 || 67.36 | 69.37 || 69 | 52 | 44.95| 46.28
SLD-PREFERENCE|| 16 | 428 | 0 | 3.6 | 136 || 2.02 | 3.93 || 33.19 | 74.71|| 69 | 51 | 21.35 | 47.78
SLD-OCCURRENCH| 17 | 246 | 0 | 25| 40| 0.92| 3.82 8.16 | 73.27 || 69 | 53 | 4.74 | 44.44
SDDFIL 17 | 284 | 0| 25| 293 | 3.98 | 4.05|| 67.36 | 68.88 69 | 52 | 44.95| 45.94
SDDPREFERENCE|| 16 | 428 | 0 | 3.6 | 137 || 2.02 | 3.93 || 33.19 | 74.78 || 69 | 51 | 21.35 | 47.82
SDDOCCURRENCH| 17 | 246 | 0 | 25| 41| 0.90 | 3.58 8.16 | 71.14 || 69 | 53 | 4.74| 43.10
DLDFIL 15| 246 | 0| 43| 230 259 | 3.19 || 65.57 | 87.14 || 69 | 55 | 34.79 | 46.34
DLDPREFERENCE|| 16 | 390 | O | 5.0 | 205 || 2.44 | 3.34 || 55.14 | 81.92 || 69 | 55 | 29.36 | 43.62
DLDOCCURRENCE| 18 | 2.44 | 0 | 4.6 16 || 0.73 | 3.25 0.40 | 88.61 || 69 | 56 0.17 | 47.22
DDDFIL 16 | 231 | 0| 53| 39| 090 | 3.76 7.67 | 8164 69 | 51 3.89 | 51.00
DDDPREFERENCE|| 13 | 3.64 | O | 47| 24| 0.76 | 3.31 295 | 7950 || 69 | 54 152 | 42.39
DDDOCCURRENCH| 12 | 231 | 0 | 4. 94 || 1.39 | 3.22 || 21.19| 79.85| 69 | 53 | 11.12| 42.32

Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.

NV: Number of nodes visited.

BT: Number of backtracks.

Table A.5:Deterministic ordering heuristics of BT: GTAAP, data set 2.

g g 5
n =) = 5
o g 2 2 a 2 § 2 é ol
S| leld | 22 2] 2)3)5| &) 5
S 21 o T OB B OBl OEl2|E | =
) S| @ g 2, X X X X = 3 ; :
g 2|2l g| 8| 3| g ¥ T|&|=E| = ¢
Ordering heuristics D 3|5 Z = O O z z [a) o m m
SLD-FIL 81291| 1] 6.2 35 || 0.95| 4.26 3.83 | 40.93 || 65 | 48 2.31 | 24.29
SLD-PREFERENCE|| 10 | 355 | 3 | 91| 13| 065 | 3.46 || 0.06 | 84.81 (| 65 | 51 0| 48.92
SLD-OCCURRENCH| 10 | 276 | 0 | 7.5 15 || 0.74 | 3.70 0.06 | 56.98 || 65 | 54 0 | 29.69
SDDFIL 81291| 1] 6.2 36 || 0.95| 4.22 3.83 | 40.98 || 65 | 48 231 | 24.32
SDDPREFERENCE|| 10 | 355 | 3 | 9.1 13 || 0.65 | 3.45 0.06 | 84.65|| 65 | 51 0 | 48.83
SDDOCCURRENCH| 10 | 276 | 0 | 7.5 15 || 0.74 | 3.69 0.06 | 56.87 || 65 | 54 0 | 29.63
DLD-FIL 7129 | 141 20 || 0.86 | 3.52 0.06 | 42.49 || 65 | 58 0 | 12.16
DLDPREFERENCE|| 5| 3.11| 0| 5.7 21 || 0.90 | 3.41 0.06 | 53.85 || 65 | 56 0 | 26.05
DLD-OCCURRENCH| 2 | 265 | 0 | 2.7 22 || 0.92 | 3.63 0.12 | 43.25|| 65 | 56 0.02 | 18.90
DDDFIL 6 |308| 0] 3.9 52 || 1.18 | 3.87 6.59 | 41.08 || 65 | 56 2.84 | 18.54
DDDPREFERENCE|| 7 | 341 | 0| 4.9 20 || 0.87 | 3.66 0.06 | 46.16 || 65 | 57 0| 20.78
DDDOCCURRENCH| 6 | 299 | 0 | 6.7 | 273 || 3.13 | 3.37 || 47.22 | 52.58 || 65 | 55 | 22.23 | 24.93
Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.
Table A.6:Deterministic ordering heuristics of BT: GTAAP, data set 3.
g S 5
%) = =] 5
5ozl 3| g8z 3|
3 5 7] g @ = 2| 2 - k=
= =3 = - - - - Q 4 —~ —~
2| Olo|l Tl T | % L e | 8| 2 =
k=) c - <@ Q — — — — bS] g 8 S
) S |la| 8 2, X X X “lesl| 2B X X
22\l gl 5| 5| 5Bl 5| :
Ordering heuristics || D 315 Z = O O z z a & 'n_: 'n_n
SLD-FIL 71332 0| 45| 244 || 3.34 | 410 || 36.37 | 43.77 || 31 9 | 22.37 | 26.76
SLD-PREFERENCE|| 6 | 410 0 | 2.3 45 0.64 | 4.47 4.70 | 26.47 || 31 8 2.74 | 14.98
SLD-OCCURRENCE| 6 | 356 | 0 | 4.0 94 || 1.38 | 4.47 8.73 | 26.32 || 31 9 4.89 | 14.56
SDDFIL 71332 0| 45| 235 3.18 | 4.07 || 36.37 | 44.92 || 31 9 | 2237 | 27.41
SDDPREFERENCE|| 6 | 410 0 | 2.3 45 0.64 | 4.47 4.70 | 26.45 || 31 8 2.74 | 14.97
SDDOCCURRENCE| 6 | 356 | 0 | 4.0 93 || 1.38 | 4.50 8.73 | 26.45 || 31 9 4.89 | 14.63
DLD-FIL 51337 0] 25 11 || 0.14 | 3.99 182 | 38.66 | 31| 13 0.99 | 21.70
DLDPREFERENCE|| 3 | 3.73| 0| 15 2 0.04 | 4.04 0.12 | 3577 31| 11 0.05 | 20.85
DLD-OCCURRENCH| 6 | 3.68| 0 | 4.0 88 || 1.20 | 424 || 10.33| 3361 31| 11 5.83 | 19.21
DDDFIL 51337 0| 25| 136 1.73| 392 || 22.38| 4455 31 | 13 | 12.70| 25.41
DDDPREFERENCE|| 3 | 3.73| 0| 15 45 0.57 | 4.01 755 | 36.05| 31| 12 4.24 | 20.63
DDDOCCURRENCH| 6 | 3.75| 0 4 90 || 0.79 | 2.63 8.38 | 28.45 || 31 | 13 4.68 | 16.15

Time: CPU run time needed to reach best solution.

CC: Number of constraint checks.

NV: Number of nodes visited.

BT: Number of backtracks.

62

Table A.7:Deterministic ordering heuristics of BT: GTAAP, data set 4.

63

g s 5
1% = = 5
8| £|q| 8 g1 5| & S5|e|| B| E
3| 5|h| ¢ ~ ol 2 SIElEl 2 2
2l Slol Sl gl &l 2l &)28 =| =
) o) | L X X X X - 3 I X
g 22| 5| || 5| | 3| s|&|E| | &
Ordering heuristics D al5 Z = O O z z a o 'n_: 'n_:
SLD-FIL 11 (261 1 6.5 | 191 || 3.06 | 4.73 || 30.96 | 4493 || 59 | 41 | 17.86 | 25.68
SLD-PREFERENCE|| 11| 4.15| O 3.3 6 || 0.34 | 4.24 0.05 | 62.24 || 59 | 42 0 | 36.42
SLD-OCCURRENCEH| 11 | 290 | 0 5.3 8 || 0.38 | 4.18 0.12 | 57.31 | 59 | 43 0.03 | 32.18
SDDFIL 11 (261 1 6.5 | 198 || 3.06 | 459 || 30.96 | 43.85 | 59 | 41 | 17.86 | 25.08
SDDPREFERENCE|| 11 | 415| O 3.3 6 || 0.34 | 4.14 0.05 | 60.18 || 59 | 42 0| 35.21
SDDOCCURRENCEH| 11 | 290 | 0 5.3 8 || 0.38 | 4.03 0.12 | 55.01 | 59 | 43 0.03 | 30.91
DLDFIL 8[(291| 0 6.0 | 271 || 2.82 | 3.08 || 70.92 | 78.48 || 59 | 47 | 37.32 | 41.28
DLDPREFERENCE|| 8 371 0 5.0 98 || 1.11 | 261 || 30.16 | 99.72 || 59 | 48 | 12.58 | 40.80
DLDOCCURRENCE| 9| 3.20| O 4.7 32 || 0.65| 3.17 6.94 | 73.50 || 59 | 48 3.23 | 38.10
DDDFIL 71286 0 35| 162 || 2.27 | 3.73 || 26.29 | 53.98 || 59 | 47 | 13.92 | 28.26
DDDPREFERENCE|| 11 | 3.78| 0 7.7 56 || 0.82 | 3.18 || 14.41 | 80.32 || 59 | 47 7.09 | 40.53
DDDOCCURRENCE| 10 | 2.73| 0 | 6.75 16 || 0.52 | 3.39 2.07 | 74.62 || 59 | 48 1.13 | 41.06
Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.
Table A.8:Deterministic ordering heuristics of BT: GTAAP, data set 5.
g s g
%) = = 5
o > 3 < = 1] =
S| 5|zl § S22 2|8 |E| &) 4
2l Olol Sl gl & 2| & 20|28 =| =
R =y he] el b — — — - o = — —
2 218 B o 2| 2| 2| Xlslg| x| X
= 2|2l el E|l o| ol 5| S|&B|E8| £ &£
Ordering heuristics D » | D 4 = O O z z a n m m
SLD-FIL 13 285| 3| 92| 230 || 256 | 3.26 6.42 8.14 || 54 | 39 | 2.44 | 3.19
SLD-PREFERENCE|| 14 | 4.04| 2 | 85 17 || 0.51 | 4.29 0.96 | 32.12 || 54 | 41 | 0.47 | 14.63
SLD-OCCURRENCE| 10 | 3.49| 1| 82| 270 || 4.38 | 4.85 || 13.08| 14.00 || 54 | 38 | 5.56 5.98
SDDFIL 13 285| 3| 9.2 146 || 253 | 5.02 6.42 | 1254 || 54 | 38 | 2.44 | 5.08
SDDPREFERENCE|| 14 | 4.04| 2 | 85 17 || 0.51 | 4.26 0.96 | 32.44 || 54 | 41 | 0.47 | 14.76
SDDOCCURRENCE| 10 | 3.49 | 1| 82| 271 || 441 | 4.87 || 13.08| 13.96 || 54 | 38 | 5.56 5.96
DLDFIL 3322 0| 35| 278 3.54| 3.82|| 15.18| 16.38 || 54 | 44 | 6.29 6.81
DLDPREFERENCE|| 4 | 3.82| 2 | 4.2 23 || 0.70 | 4.46 0.30 | 10.73 || 54 | 46 | 0.08 3.49
DLDOCCURRENCE| 0| 322| 0| 15 25 || 0.75 | 4.39 029 | 896 | 54| 43| 0.11 3.32
DDDFIL 5128 0| 48| 290 | 433 | 445 16.10| 16.90 || 54 | 44 | 5.60 5.93
DDDPREFERENCE|| 1| 362 | 0 | 25 87 || 1.56 | 4.40 298 | 10.67 || 54 | 42 | 1.17 | 4.21
DDDOCCURRENCE| 2 | 3.33| 0| 35 42 || 095 | 3.70 1.64 | 3491 | 54 | 44 | 0.68 | 18.89
Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.

64

Table A.9:Deterministic ordering heuristics of BT: GTAAP, data set 6.

§ 5 5
) = = 5
3| 2 3 S| E|l 8| E|s|2| 8| £
Sl glel 8| | 22 B 2)g|e B 2
2 oo s T &l B) Slel 8 = 2
k=) c B = b — — — — o ; = =
a1 218 8 o | 2| X| ZX|s|s| x| X
g 3|82 8| E ol © > O = = g g
Ordering heuristics D n | D 4 = O O zZ zZ [a) n m m
SLD-FIL 15| 255| 3| 105 75 1.77 | 5.42 530 | 21.79 | 64 | 49 | 254 | 10.73
SLD-PREFERENCE|| 13 | 436 | 2 8.1 92 167 | 3.98 || 1543 | 6164 || 64 | 49 | 7.98 | 31.84
SLD-OCCURRENCH| 18 | 3.24 | 3 | 12.1 | 189 || 3.99 | 6.02 520 | 8.08| 64 | 46 | 205 | 3.22
SDDFIL 15| 255| 3| 105 76 1.79 | 5.44 530 | 2144 | 64 | 49 | 254 | 10.57
SDDPREFERENCE|| 13 | 436 | 2 | 8.13 93 170 | 401 || 15.43 | 60.93 || 64 | 49 | 7.98 | 31.46
SDDOCCURRENCH| 18 | 3.24 | 3 | 12.1 | 192 || 4.00 | 5.97 520 | 800 64 | 46 | 205| 3.18
DLD-FIL 6| 308| 0| 417 | 296 || 5.10 | 5.14 8.07| 823 64 | 53| 284 | 290
DLDPREFERENCE|| 2 | 415| O 2.7 25 1.07 | 4.64 0.08 | 13.92 || 64 | 55 | 0.00 5.28
DLD-OCCURRENCE| 10 | 3.21| O 55| 117 || 2.39 | 5.13 3.94 9.39 || 64 | 54 | 1.43 3.29
DDDFIL 6]1292| 0 42| 191 || 3.44 | 493 || 10.24 | 1797 || 64 | 50 | 4.67 8.45
DDDPREFERENCE|| 6 | 3.78 | O 4.2 24 1.09 | 5.13 0.13 8.76 || 64 | 55 | 0.03 3.42
DDDOCCURRENCH| 5 | 2.81| O 39| 294 | 486 | 493 || 11.35| 11.68|| 64 | 54 | 3.60| 3.73
Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.
Table A.10:Deterministic ordering heuristics of BT: GTAAP, data set 7.
£ s 5
0 =) = 5
o P 3 o e 7] S = <@ 7 £
Sl g2 g Slal 2| 2|58l 2] =
2 Slo| S| Tl 2| % 5 T2 8 N 2
2l 5|3l 8| &) =| 3| x| %|&|&| 3| 3
20 218 E| o | 2| I Z|e|g Z| Z
Ordering heuristics 5 A 5 Z E 8 8 5 5 8 % 'n_: 'n_n
SLD-FIL 8287 1| 276 95| 0.36| 1.29 79.19 | 225.05|| 25 | 4 42.94 | 126.14
SLDPREFERENCE|| 7 | 292 | 1| 3.26| 67 || 0.26 | 1.37 || 52.06 | 207.56 || 25 | 4 | 28.26 | 117.09
SLD-OCCURRENCH| 7 | 293 | 0 | 3.26 | 215 || 0.86 | 1.24 || 181.30| 241.60|| 25 | 5 | 107.47 | 142.26
SDDFIL 8287 1|276| 94| 036| 131 79.19 | 227.22|| 25 | 4 42.94 | 127.46
SDDPREFERENCE|| 7 | 292 | 1 | 3.26 65 0.26 | 1.38 52.06 | 209.04|| 25 | 4 28.26 | 117.93
SDDOCCURRENCH| 7 | 293 | 0| 3.26| 216 || 0.86 | 1.24 || 181.30| 241.11 | 25| 5| 107.47| 141.98
DLD-FIL 6| 288| 0 42| 281 1.01| 1.05| 258.10| 27854 || 25| 7 | 151.53 | 162.80
DLDPREFERENCE|| 6 | 291 | O 4.2 | 284 || 1.00 | 1.04 || 261.42 | 277.86 || 25 | 7 | 153.27 | 162.30
DLD-OCCURRENCH| 6 | 293 | O 4.2 1|l 0.00| 0.98 0.00 | 265.72 || 25 | 9 0 | 142.94
DDDFIL 6| 28| 0 42| 253 | 0.92 | 1.08 || 21452 | 251.65 | 25 | 7 | 125.32 | 144.80
DDDPREFERENCE|| 6 | 291 | O 4.2 | 255 || 0.92 | 1.07 || 217.65| 253.10|| 25 | 7 | 126.98 | 145.58
DDDOCCURRENCH| 6 | 293 | 0 4.2 1] 0.00| 1.08 0.47 | 22953 || 25 | 9 0.21 | 121.03

Time: CPU run time needed to reach best solution.

CC: Number of constraint checks.

NV: Number of nodes visited.

BT: Number of backtracks.

Table A.11:Deterministic ordering heuristics of BT: GTAAP, data set 8.

65

g g 5

%) = = 5

S] 2 < = 7] s

Sl sl & sS|o) 2] o8l Bl o

el 2o Sl gl 2| 2 > Tlel 8 2| 2

o S| o = 8 = v iy, —~ 5| 2 S =

21 218 sl Sl X Z x *lls| & X X

gl 3|2 T E| o] o > S| 8| 8| E| E
Ordering heuristics =) »n | D Z = O O pd pd (&) %) m m
SLD-FIL 13 | 358 | 8 106 | 215 || 0.96 | 1.44 89.40 | 116.51 || 41 | 21 | 25.76 | 34.56
SLD-PREFERENCE|| 9 | 415| 6 8.17 67 || 0.15| 0.89 40.93 | 163.44 || 41 | 22 | 11.55 | 49.83
SLD-OCCURRENCE| 13 | 3.26 | 6 | 10.68 | 198 || 0.78 | 1.24 83.82 | 122.45|| 41 | 24 | 21.22 | 32.08
SDDFIL 13 | 358 | 8 | 10.67 | 218 || 0.96 | 1.41 89.40 | 114.82 || 41 | 21 | 25.76 | 34.02
SDDPREFERENCE|| 9 | 415| 6 8.17 69 || 0.15| 0.88 40.93 | 160.39 || 41 | 22 | 11.55 | 48.95
SDDOCCURRENCE| 13 | 3.26 | 6 | 10.68 | 199 || 0.78 | 1.23 83.82 | 121.85|| 41 | 24 | 21.22 | 31.90
DLDFIL 1]1389| 3 468 | 102 || 0.50 | 1.64 33.17 78.88 || 41 | 19 | 10.00 | 28.55
DLDPREFERENCE|| 3 | 414 | 5 5.68 | 128 || 0.54 | 1.46 47.47 9478 || 41 | 21 | 13.06 | 29.60
DLDOCCURRENCE| 5| 3.11| 4 6.68 | 280 || 1.12 | 1.20 || 112.22 | 119.31 | 41 | 30 | 31.59 | 33.70
DDDFIL 51344 | 5 7.18 | 296 || 1.36 | 1.38 9596 | 97.17 || 41 | 25 | 22.70 | 23.02
DDDPREFERENCE|| 4 | 417 | 5 5.68 | 260 || 1.24 | 1.40 82.05| 96.39 || 41 | 25 | 21.94 | 25.99
DDDOCCURRENCE| 5| 3.30| 4 6.68 | 288 || 1.18 | 1.22 || 109.43 | 114.09 | 41 | 30 | 29.59 | 30.75
Time: CPU run time needed to reach best solution.
CC: Number of constraint checks.
NV: Number of nodes visited.
BT: Number of backtracks.

66
A.3 SQDsof LS, ERA, RGR, and RDGR

This section presents the SQDs of the four stochastic seactimiques (i.e., LS, ERA,
RGR, and RDGR) for all the data sets of GTAAP.

100 7 e T
90 -
/ Data set 1
80 - ;
2 1
2 70 +
3 o — RDGR
@ ,
..‘c:’ ---RGR
o 501 - LS
=) /
£ 40 |/ ---ERA
8 /
5 30 +
[/
20/
10
0 T T E— T]
0 10 20 30 40 50

Deviation from best known solution [%]

Figure A.1:SQDs: GTAAP, data set 1 (unsolvable, 500 runs, 10 minutes)eac

: Data set 2

2
2
3
5
]
g ~ERA
8 —RDGR
s —RGR
LS
15 20 25

Deviation from best known solution [%]

Figure A.2:SQDs: GTAAP, data set 2 (solvable, 500 runs, 10 minutes each)

Percentage of test runs

100 +

40 50
Deviation from best known solution [%)]

Figure A.3:SQDs: GTAAP, data set 3 (unsolvable, 500 runs, 10 minutes)eac

Percentage of test runs

100

30 40 50
Deviation from best known solution [%)]

Figure A.4:SQDs: GTAAP, data set 4 (unsolvable, 500 runs, 10 minutes)eac

67

Percentage of test runs

100 - —
90 -
80 | Data set 5
70 -
60 |
%01 "_ERA
40 - — RDGR
30 - ---RGR
204 7S e LS
10 |
0 | '(‘\ T T 1
0 5 10 15 20 25

Deviation from best known solution [%)]

Figure A.5:SQDs: GTAAP, data set 5 (solvable, 500 runs, 10 minutes each)

Percentage of test runs

100

90 -

80 ~

70

60 -

5 10 15 20 25
Deviation from best known solution [%)]

Figure A.6:SQDs: GTAAP, data set 6 (solvable, 500 runs, 10 minutes each)

68

100 ~
90 -
80 ~
70 -
60 -
50 -
40 ~

30 -

Percentage of test runs

20
10 ~

69

/ Dataset7

Figure A.7:SQDs

100 -~
90 -
80 ~
70 -
60 -
50 -
40 ~

30 -

Percentage of test runs

20 A

104 |

40 50

10 20 30
Deviation from best known solution [%)]

: GTAAP, data set 7 (solvable, 500 runs, 10 minutes each)

/ Data set 8

5 10 15 20 25

Deviation from best known solution [%)]

Figure A.8:SQDs: GTAAP, data set 8 (solvable, 500 runs, 10 minutes each)

70

A.4 RGR and RDGR over varying run time

This section presents the SQDs of comparing RGR and RDGRdifferent periods of

times for all the data sets of GTAAP.

100 4

90 -

80 -

Percentage of test runs

20 -

70 A

60 -

50 -

40

30 -

Data set 1

—- RDGR-20min
-#- RDGR-10min
—4- RDGR-5min
-4 RGR-20min
- RGR-10min
-4~ RGR-5min

2 4 6 8 10 12 14
Deviation from best known solution [%]

Figure A.9:Varying run time: GTAAP, data set 1 (unsolvable, 500 runs).

1

Percentage of test runs

00 -
90 |
80 |
70 1
60 1
50 1
40
30 1

20 4

—— RDGR-20min
|-+~ RGR-20min
-+ RDGR-10min
~u-RGR-10min
—+— RDGR-5min
~+- RGR-5min

0 2 4 6 8 10 12 14

Deviation from best known solution [%]

Figure A.10:Varying run time: GTAAP, data set 2 (solvable, 500 runs).

1007 Data set 3
90 +

80 ~

70 1 |+ RDGR-20min
60 . |—=RDGR-10min
—+— RDGR-5min

507 |.+.RGR-20min
40 | | = RGR-10min

Percentage of test runs

20 | -4 RGR-5min oaaw
IRl | ERERR -,]
20 -
Ao EERERED Ao &
10 +
0 & # % ‘ ‘ ‘ ‘ ‘ |
0 2 4 6 8 10 12 14

Deviation from best known solution [%)]

Figure A.11:Varying run time: GTAAP, data set 3 (unsolvable, 500 runs).

100 1 & '-""ZZZZZZZ::::::i:::::::::::::=:
907 Data set 4
so+4 |) r
2
2 707 :
g 60 /[~ RDGR-20min
G 50 - /|-~ RDGR-10min
o
> ~+- RGR-20min
= 40 .
< —— RDGR-5min
e 304 S fmes 3 -a- RGR-10min
o e / -4-- RGR-5min
204 g i
10 +
0+ S i T T 1
0 2 4 6 8 10 12 14

Deviation from best known solution [%)]

Figure A.12:Varying run time: GTAAP, data set 4 (unsolvable, 500 runs).

1000——¢ ¢ —6—6—f—8—B—
A
%4 S S g R
oy Data set 5
2 70
‘é 604 | @
B 5] —— RDGR-20min
g ~4- RGR-20min
g 401 - RDGR-10min
& 30 - RGR-10min
______ —4— RDGR-5min
201 A~ RGR-5min
1049 /) &3
o0& T T T T T T !
0 2 4 6 8 10 12 14

Deviation from best known solution [%]

Figure A.13:Varying run time: GTAAP, data set 5 (solvable, 500 runs).

100 - —
o Dataset6 '
80 -
2
) 70 -
g 60 -
G =% o RDGR-20min
o 50- .
> ' -+-RGR-20min
t 401 |-+ RDGR-10min
S o ~=- RGR-10min
a -+ RDGR-5min
20 1 , -+ RGR-5min
10 - At »
O l ------- ' = T T 1
0 2 4 6 8 10 12 14

Deviation from best known solution [%)]

Figure A.14:Varying run time: GTAAP, data set 6 (solvable, 500 runs).

72

100 +

91 Data set 7

80 +
2
) 70 +
® |
g ~—RDGR-20min
o 50 —=- RDGR-10min
S — RDGR-5min
£ 40+ : .
5 ~+ RGR-20min
S 30- - RGR-10min
o 4 .

20 + ,;ifff -+ RGR-5min

10 - (’;,{,j.'f':':':':':':'f:':':':':':':f:':':':':':f

0 ereeee L L 9?;7 T T T T T]
0 2 4 6 8 10 12 14

Deviation from best known solution [%)]

Figure A.15:Varying run time: GTAAP, data set 7 (solvable, 500 runs).

100 - g

9 | ;+« Dataset8

80 A ,,,,,,, aek
) 70 +
3 60 - —« RDGR-20min
5 —= RDGR-10min
) 50 - .
= —— RDGR-5min
€ 401 -+~ RGR-20min
S o =~ RGR-10min
& -+ RGR-5min

20

10

O T T T T T T 1
0 2 4 6 8 10 12 14

Deviation from best known solution [%)]

Figure A.16:Varying run time: GTAAP, data set 8 (solvable, 500 runs).

74
A.5 Effect of r on RGR and RDGR

This section presents the SQDs of comparing different wahi¢he ratio used to increase

the cutoff value for all the data sets of GTAAP.

100 -
o0 | Data set 1
80 - L
g /
S 70 4 ;
= h
8 e ;o
5 o 1.1
o 901 i/ —r=1.
>] S o r=1.19
£ 407 L —r=1.41
o .~ i / / S
E 30 - ’,y r_2
20 -x-r=4
—er=1
10 A s
0 : : : ‘
0 2 4 6 8 10 12 14

Deviation from best known solution [%]

Figure A.17:Effect ofr: RGR on GTAAP, data set 1 (unsolvable, 500 runs).

Figure A.18:Effect ofr: RDGR on GTAAP, data set 1 (unsolvable, 500 runs).

100 S—
90{ Dataset1
80 | ~
e T
S 70 A
- -
& 60
Y ! -
° i —r=1.1
50 -
S —r=1.41
©
E 01 L [r=1.19
£ 30 ’ =2
o ; ~r=4
20 -+ r=
10 -
0 w=—==¥= : : .
0 10 12 14

Deviation from best known solution [%]

100 -
Data set 2
90 -
80 -
2
S 70 A
b .
$ e0 |—r=11 FAR
s 0l |77 r=119] i ‘I,/
g., -—-r=1.41 P
© — 2 1/‘/ /,’
-'g 40 - r= " 4
car= ,
:h: 30 7 -er=1 ,'/
n_ r - ,/'
20 - ,//
10 +
0 b b - T T 1
0 2 4 6 8 10 12 14

Deviation from best known solution [%)]

Figure A.19:Effect of r: RGR on GTAAP, data set 2 (solvable, 500 runs).

Percentage of test runs

Figure A.20:Effect ofr: RDGR on GTAAP, data set 2 (solvable, 500 runs).

Data set 2

2 4 6 8 10 12 14
Deviation from best known solution [%)]

75

100 +

Data set 3)
90 - pre
80 - ,
:
2 707 |-er=1
- - e =
'g 60 - —r=11 !7_ ' Iy
“6 """ r= 1-19 ,'/ '/‘ /'/l
501 | r=1.41 j s
g"’ r) ! "./ /'//'/
"g 40 - -=r= i ,,'//,'//
[} k= L
:,_: 30 4 ==
o
20 Q)i
10 A
¢ > ¥ T
0 #—=—== L R L — - T T T T T 1
0 2 4 6 8 10 12 14

Deviation from best known solution [%)]

Figure A.21:Effect ofr: RGR on GTAAP, data set 3 (unsolvable, 500 runs).

100 ~
Data set 3

90 -

80+
e e
S 70 - H B S
: —r= 1-1 .fl o /'/ //
7] _ ‘;,,,0 ----- *-——- *-—-—¥ v ,
g 604 | r=1.19 .
b~ e = ;'l"l' /.’ 7
5 5| r=1.41
g - Fr= 1 :"// '/,/ ‘/‘

T e ‘

£ 40 |-=r=2 i
Q P! v
S 30 i
o / P

20 - /A—-—~—-k~—-—-A—-—-—x'

10 -

0 ______________________ ol k- —h——k
0 2 4 6 8 10 12 14

Figure A.22:Effect ofr: RDGR on GTAAP, data set 3 (unsolvable, 500 runs).

Deviation from best known solution [%)]

76

Percentage of test runs

100 ~
Data set 4

90 ~
80 -
70 - v
60 - —r=1.1 //' // '/,/

------ r=1.19
50 |-—r=1.41 ar s
40| |WF=2 N

A= 4 // // '/l/ //
30 -er=1 I// /! ,’A S

N ‘/.’ /'/'
20+ /J . A - —A’l/ ‘/,/'
10 - |
"""""""" — -
0 - W v T T T T 1
0 2 4 6 8 10 12 14

Deviation from best known solution [%)]

Figure A.23:Effect ofr: RGR on GTAAP, data set 4 (unsolvable, 500 runs).

Percentage of test runs

Figure A.24:Effect ofr: RDGR on GTAAP, data set 4 (unsolvable, 500 runs).

100 -
Data set 4

90 -

80 B [K '

70 - I / e ' ,
—r=11 i .

-——r=1.41

60 -

50 -

404 |-a R

30 -

20 A

10 ~

0 2 4 6 8 10 12 14
Deviation from best known solution [%)]

77

100 +

Percentage of test runs

Data set 5

-r=1.41
Ter=2
r=4
r=1

2 4 6 8 10 12 14
Deviation from best known solution [%)]

Figure A.25:Effect of r: RGR on GTAAP, data set 5 (solvable, 500 runs).

107 e e
Data set 5 T
%0 /S 7 U
o4] i y
£ e e v
c I v/)
2 017 1 —r=11 / / Py
8 e0- | r=1.19 Jo
e -—r=1.41 I
504 | o r= 2 _ _4’/ / g
2 =2 || ./
£ 40 +r=4 T
g ,;/’I A= A ’/./
Q 30 n ’4./ ,'/ ,
o ! .
20 1 JERSE i ;
10 =4 V ‘/A—-— A ' ’/,‘ ''''' ¢
0 =% 1;1‘_‘.‘_'_% e g |
0 2 4 6 8 10 i o

Figure A.26:Effect ofr: RDGR on GTAAP, data set 5 (solvable, 500 runs).

Deviation from best known solution [%)]

78

100 +

90 -

80 ~

70 -

60 -

50 -

40 ~

30 -

Percentage of test runs

20 A

10 ~

Data set 6

r=1.1
r=1.19
r=1.41

4 6 8 10 12 14
Deviation from best known solution [%)]

Figure A.27:Effect ofr: RGR on GTAAP, data set 6 (solvable, 500 runs).

100

90 -

80 ~

70 -

60 -

50 -

40 ~

30 -

Percentage of test runs

20 A

10 ~

Data set 6

Figure A.28:Effect ofr: RDGR on GTAAP, data set 6 (solvable, 500 runs).

14
Deviation from best known solution [%)]

79

100 - B R R e e R e

90 74»-—~—&~—-—0—-—~—('/'
Data set 7

80 /
:
s 704 | S
o // /.
7 ot e
o 60 - _ % S
:g -+ r= 1 ; - -

50 | |—r=1
> | r=1.19 S
£ 40 |---r=141 ST ’
g -m-r=2 / /// /
[1) 30 -x-r=4 / - .
o /,'l v

20 7 /,',' /'//

,,,,,,,,,,,,,,,,,,,,,,,,, ! P
10 7 s
O # : - T T T T T 1
0 2 4 6 8 10 12 14

Deviation from best known solution [%]

Figure A.29:Effect of r: RGR on GTAAP, data set 7 (solvable, 500 runs).

Percentage of test runs

Figure A.30:Effect ofr: RDGR on GTAAP, data set 7 (solvable, 500 runs).

L1010 HY DD D S G S S—
9 -
90 -
80 - ’
70
60 -
—er=1
50 - —r=1.1
L r=1.19
40 - —r=1.41
30 - wr=2
s r=4
20 -
10 -
0 hal T T T T T 1
0 2 4 6 8 10 12 14

Deviation from best known solution [%]

100 - —
oo .
90 - /
80 -
2
3 70 /F
3 60 -
= -er=1
® 50 + —r=11
T N A A R S r=1.19
@ -—-r=1.41
2 30
61_) - r=2
20 - e r=4
10
O T T 1
0 4 6 8 10 12 14

Deviation from best known solution [%)]

Figure A.31:Effect ofr: RGR on GTAAP, data set 8 (solvable, 500 runs).

100 7 et Tt o
/‘/ e -
90 -
80 4 I—-—-—I—-—-—I/' /'/v
2
S 70 - o
1S ‘l
; ,I
o 60 - !
%’ J —r=11
° 50 - ! -er=1
g 40 | /’, """ r= 1.19
g AcmoA oA -—-r=1.41
E 30 - - r=2
20 - wr=4
10 -
L
O T T T T 1
0 6 8 10 12 14

Figure A.32:Effect ofr: RDGR on GTAAP, data set 8 (solvable, 500 runs).

Deviation from best known solution [%)]

81

82

Bibliography

[Bartak, 1998 R. Bartak. On-Line Guide to Constraint Programming.

kti.ms.mff.cuni.cZ/ bartak/constraints, 1998.

[Bistarelliet al, 1995 S. Bistarelli, U. Montanari, and F. Rossi. Constraint sajvover

semirings. InProc. of the 14" IJCAI, pages 624-630, 1995.

[Dechteret al, 1991 R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Neks.
Artificial Intelligence 49:61-95, 1991.

[Freuder and Wallace, 19PE.C. Freuder and R.J. Wallace. Partial Constraint Satisfac
tion. Artificial Intelligence 58:21-70, 1992.

[Freuder, 198P E.C. Freuder. Partial Constraint SatisfactionPhoc. of the 11" 1JCAI,
pages 278-283, Detroit, Ml, 1989.

[Glaubius and Choueiry, 200R&. Glaubius and B.Y. Choueiry. Constraint Constraint
Modeling and Reformulation in the Context of Academic Taglsiynment. InWorking
Notes of the Workshop Modelling and Solving Problems withsBaints, ECAI 2002

Lyon, France, 2002.

[Glaubius and Choueiry, 200RHR. Glaubius and B.Y. Choueiry. Constraint Modeling in
the Context of Academic Task Assignment. In Pascal Van hhept, editor,8% In-
ternational Conference on Principle and Practice of Coastt Programming (CP 02)

volume 2470 oLNCS page 789. Springer, 2002.

83
[Glaubius, 200]L R. Glaubius. A Constraint Processing Approach to Assig@naduate
Teaching Assistants to Courses. Undergraduate HonorgsTispartment of Com-

puter Science & Engineering, University of Nebraska-Lin¢@001.

[Gomeset al, 1999 C.P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial
search through randomization. Rroceedings of the Fifteenth National Conference

on Artificial Intelligence (AAAI 98)pages 431-437, Madison, Wisconsin, 1998.

[Haralick and Elliott, 198D R.M. Haralick and G.L. Elliott. Increasing Tree Search Effi-

ciency for Constraint Satisfaction Problerdstificial Intelligence 14:263-313, 1980.

[Hoos and Stiitzle, 2004H.H. Hoos and T. StiitzleStochastic Local Search Foundations

and Applications Morgan Kaufmann, 2004.

[Hoos, 1998 H.H. Hoos. Stochastic Local Search—Methods, Models, Applicati&fD

thesis, Technische Universitat Darmstadt, Germany, 1998

[Junker, 200R U. Junker. Preference-Based Search and Multi-Criterian@pation. In
Rina Dechter, Michael Kearns, and Richard S Sutton, ediRmxeedings of the Eigh-
teenth National Conference on Artificial Intelligence (AAR), pages 34-40, Menlo

Park, California, 2002. American Association for Artificiatelligence, AAAI Press.

[Kautzet al, 2004 H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dymami
Restart Policies. IAMAAI 2002.

[Liu et al, 2004 J. Liu, H. Jing, and Y.Y. Tang. Multi-agent oriented consttaatisfac-
tion. Artificial Intelligence 136:101-144, 2002.

[Lubyetal, 1993 M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup sfilagas
algorithms. Inlsrael Symposium on Theory of Computing Systerages 128-133,
1993.

84
[Minton et al,, 1992 S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Miniirig
Conflicts: A Heuristic Repair Method for Constraint Satgtfan and Scheduling Prob-
lems. Artificial Intelligence 58:161-205, 1992.

[Revesz, 200R P. Revesz.Introduction to Constraint DatabasesSpringer-Verlag, New

York, 2002.

[van Hemert, 2004 J.1. van Hemert. RandomCSP: generating constraint setiisfeprob-

lems randomly. homepages.cwi.nl/ jvhemert/randomcsp, [2004.

[Wallace and Freuder, 19p3R. Wallace and E. Freuder. Heuristic methods for over-
constrained constraint satisfaction problems. In M. Jantpe~reuder, and M. Maher,
editors,OCS 95: Workshop on Over-Constrained Systems at CE&Ssis, Marseilles,
1995.

[Wallace, 1996 R.J. Wallace. Analysis of heuristic methods for partialstoamint satisfac-
tion problems. IrPrinciples and Practice of Constraint Programmirgpges 482—-496,

1996.

[Walsh, 1999 T. Walsh. Search in a small world. Rroc. of the 18" IJCAI, pages 1172—
1177, 1999.

[Zou and Choueiry, 2003aH. Zou and B.Y. Choueiry. Characterizing the Behavior of a
Multi-Agent Search by Using it to Solve a Tight, Real-World$®urce Allocation Prob-
lem. InWorkshop on Applications of Constraint Programmipgges 81-101, Kinsale,
County Cork, Ireland, 2003.

[Zou and Choueiry, 2003bH. Zou and B.Y. Choueiry. Multi-agent Based Search versus
Local Search and Backtrack Search for Solving Tight CSPs:raktizal Case Study.
In Working Notes of the Workshop on Stochastic Search AlgosithJCAI 03) pages
17-24, Acapulco, Mexico, 2003.

85
[Zou, 2003 H. Zou. Iterative Improvement Techniques for Solving Tiglunstraint Sat-
isfaction Problems. Master’s thesis, Department of Coep8tience & Engineering,

University of Nebraska-Lincoln, December 2003.

