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We introduce INDSET, a technique for decomposing a Constraint Satisfaction Prob-

lem (CSP) by identifying a maximal independent set in the constraint graph of the CSP.

We demonstrate empirically that INDSET reduces the complexity of solving the CSP, and

yields compact and robust solutions. We discuss how to integrate this decomposition tech-

nique with stochastic local search (SLS), and evaluate SLS+INDSET, which combines the

two. We discuss the benefit of identifying dangling components of the decomposed con-

straint graph, and evaluate SLS+INDSET+DANGLES, a strategy that exploits this structural

improvement. We explore the possibility of applying INDSET recursively. We explore the

capabilities and limitations of INDSET, and provide insights on the combination of INDSET

with backtrack search and the detection of local interchangeability.
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Chapter 1

Introduction

Solving techniques for difficult problems can often be improved by identifying types of

structure that exists in the problem. This structure often allows us to decompose the prob-

lem into smaller pieces in such a way that the problem becomes easier to solve. We present

a new conjunctive decomposition technique INDSET that exploits the structure of a bi-

nary Constraint Satisfaction Problem (CSP) to boost performance of solving the CSP while

yielding multiple solutions. A CSP has a set of variables, and each variable has a domain

of values. A binary CSP also has binary constraints limiting which combinations of values

are allowed. A binary constraint is an arbitrary relation on the domains of any two vari-

ables. The problem is how to assign a value to every variable in such a way that all of the

constraints are satisfied. This problem is, in general, in NP-complete. A binary CSP can

be represented as a constraint graph, where each variable is a vertex, and two vertices are

adjacent (i.e., have an edge connecting them) if and only if there is a constraint on the two

variables.

INDSET, which first appeared in [Gompert, 2004, Gompert and Choueiry, 2005], is

based on identifying, in the constraint graph of the CSP, a maximal independent set I,

which is a set of variables that are pairwise non-adjacent (see Figure 1.1). A graph with
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Figure 1.1: Circled vertices form a maximal independent set.

a low number of edges is likely to contain a large independent set. Therefore, INDSET is

particularly suited to these types of problems.

1.1 Motivation

Two important factors in solving a CSP are the amount of time that is required to solve the

problem and the flexibility of the solution(s) found. Flexibility is desired when a problem

has multiple solutions and the user would like some ability to choose between multiple

possible solutions, rather than be constrained to one particular solution. Our technique,

INDSET, which is used as an enhancement to existing algorithms for solving CSPs, pro-

vides improvement in both of these factors, by reducing the time to solve the problem and

by returning multiple solutions.

Other factors to consider for solving a CSP are the space required by the solving tech-

nique, and the quality of solutions returned. The measurement of the quality of solutions

depends on the particular application, so we cannot specify that here. As for the space re-

quired, using INDSET with any solving technique does not increase the space complexity.

INDSET partitions the variables of a CSP into two sets, I and its complement Ī , and

restricts the search to the variables in Ī in order to find a solution to the CSP induced by

Ī. We then extend the solution found (in Ī) to the variables in I by applying directional

arc-consistency (DAC, defined in Section 2.2) between the variables in Ī and those in I.

DAC can be computed in linear-time in the number of variables in I and the number of

constraints between I and Ī . When arc-consistency succeeds, it yields multiple solutions
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to I consistent with the solution found on Ī, thus we have multiple solutions to the CSP.

The process yields a family of solutions for each of the values remaining in the domain of

a variable in I. This property is particularly useful because most search techniques return

only one solution. The only solving technique of which we are aware that returns multiple

solutions is the dynamic bundling technique of [Choueiry et al., 1995]. We are not aware

of any decomposition technique other than INDSET that has been suggested to be used to

find multiple solutions simultaneously. Using INDSET returns multiple solutions simul-

taneously, in addition to being less time consuming. Obtaining multiple solutions makes

the results of this approach more robust, by providing flexibility to the user in choosing

assignments to the variables in I. INDSET is described in detail in Chapter 3.

While any search technique can be used to solve the variables in Ī, we have developed

and tested a method, SLS/INDSET, for using this approach in combination with stochas-

tic local-search (SLS) with steepest descent. SLS/INDSET integrates information about

the constraints between Ī and I in order to find solutions for Ī that can be extended to I.

We found that INDSET significantly improves the performance of SLS, and yields robust

results by finding multiple solutions and returning them in a compact form. Section 2.4 de-

scribes SLS in further detail, and Chapter 4 explains SLS/INDSET. In Section 5.1 we intro-

duce an additional structural technique for finding dangling trees, which further improves

INDSET, and in Section 5.2 we recall the definition of neighborhood interchangeability and

examine its use to further improve solving techniques in combination with INDSET.

1.2 Contributions

The main contributions of this thesis are as follows:

• We present the new decomposition technique INDSET.

• We describe one method to incorporate INDSET into local-search techniques, and
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discuss several heuristics that can be used in this combination.

• We demonstrate that the combination of INDSET with local search yields an improve-

ment in the time required to solve a problem, and yields multiple solutions.

• We describe how to identify and utilize trees dangling off the graph of the CSP.

• We report preliminary evidence that neighborhood interchangeability techniques can

enhance our search techniques.

• We analyze the INDSET decomposition structure and identify additional information

that can be gained from knowledge of the structure, such as being able to compute a

lower bound on the number of solutions of the CSP.

• We analyze the technique of applying INDSET recursively on the constraint graph of

a CSP, and explain its potential and drawbacks.

1.3 Outline of the thesis

This thesis is organized as follows. Section 2 reviews background information and related

work. Chapter 3 describes our basic decomposition technique, INDSET and highlights its

benefits. Chapter 4 discusses how to exploit INDSET in local search. Chapter 5 points

out some further enhancements that can be made with INDSET, such as finding ‘dangling’

trees in the constraint graph and applying neighborhood interchangeability, as well some

other uses for independent sets, such as finding cycle-cutsets. Chapter 6 analyzes the fea-

tures of INDSET and discusses the additional information gained from this approach, such

as computing a lower bound on the number of solutions in the CSP, comparing INDSET

to CYCLE-CUTSET, analyzing runtime variance, and performing experiments on clustered

constraint graphs. Chapter 7 presents a recursive independent-set decomposition (RECIND-

SET) and describes the results of its use to obtain a variable ordering for systematic search.
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Chapter 8 summarizes our contributions and results and identifies directions for future re-

search. The appendices provide documentation for the source code that we developed for

the experiments in this thesis.
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Chapter 2

Background and Related Work

This chapter provides the background for the rest of the thesis and identifies some related

prior work. We recall the definition of a Constraint Satisfaction Problem (CSP), Arc Con-

sistency (AC), Directional Arc Consistency (DAC), phase transition, robust solutions, and

independent sets. We explain the concept of local search, describe the generation of ran-

dom problem instances. We give a brief overview of the concept of CSP decomposition

and list some additional related work.

2.1 The Constraint Satisfaction Problem (CSP)

A Constraint Satisfaction Problem (CSP) is a tuple P = {V ,D, C}, where V = {V1, V2,

. . ., VN } is a set of N variables, D = {DV1
, DV2

, . . . , DVN
} is a set of domains for these

variables (a domain DVi
is a set of values for the variable Vi). In this thesis we work only

with finite, discrete domains. C is a set of relations on subsets of D, which specify the

allowed combinations of values for variables. Each row of a relation (i.e., an assignment of

values to the variables of the constraint) is called an allowed tuple.

Solving a CSP requires assigning to each variable Vi a value chosen from DVi
such that

all constraints are satisfied. We denote by PX the CSP induced on P by a set of variables
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X ⊆ V . In this thesis we focus on binary CSPs: each constraint is a relation on at most

two variables. Every CSP has an equivalent binary CSP. Converting a non-binary CSP to

its binary equivalent is straightforward–we replace a constraint involving k variables by a

clique on those variables. The resulting graph is called the primal graph.

An alternative graph representation has each variable-value pair as a vertex. Edges ei-

ther represent pairs of values that the constraints allow, or pairs that the constraints disallow.

This graph is called the microstructure of the CSP.

• The tightness t of a constraint is the ratio of the number of tuples forbidden by the

constraint to the number of all possible tuples. We performed experiments using

tightness 10%, 30%, and 50%. When we were interested in results at higher tight-

nesses, we experimented with 58% (a result of following experiments of [Dechter, 2003])

and/or 60%. Tighter random problems are unlikely to be solveable.

• The constraint ratio r is the ratio of the number of constraints e in the CSP to the

number of possible constraints in the CSP r = e
N∗(N−1)/2

. We assume that there is at

most one constraint for each pair of variables.

• The constraint graph of a CSP is a graph G where each vertex in G represents a

variable in the CSP, and each (binary) constraint in the CSP is represented by an

edge in G, connecting the two corresponding vertices.

• A neighbor of a vertex (variable) Vi is any vertex that is adjacent to Vi (i.e., shares a

constraint with Vi). The set of all such variables is the neighborhood of Vi.

Systematic search is a category of complete solving techniques, where, one at a time,

variables are assigned values that are consistent with the constraints, backtracking if any

conflicts occur, until a solution is found or all combinations of assignments have been

eliminated. At any point in the search, variables already assigned values are considered past
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variables, and variables not yet assigned values are considered future variables. Forward

checking is a ‘lookahead strategy’ that can be used during systematic search where, each

time a variable Vi is assigned a value, the domains of all of the future variables in the

neighborhood of Vi are reduced, in order to eliminate all values that conflict with the value

assigned to Vi. Forward checking provides a significant performance increase.

2.2 Arc Consistency and Directional Arc Consistency

Arc Consistency (AC) is a technique that removes inconsistent values from the domains of

the variables. A binary constraint on variables Vi and Vj is arc consistent if and only if,

for every value a in DVi
, there exists a value b in DVj

such that the tuple (a, b) is allowed

by the constraint. A CSP is arc consistent if and only if every constraint is arc consistent.

A procedure called REVISE(Vi, Vj ) is useful for enforcing arc consistency. REVISE(Vi,

Vj) deletes from the domain of Vi any value that does not have a corresponding consistent

value in Vj . A constraint can be made arc consistent by executing REVISE(Vi, Vj) and

REVISE(Vj, Vi) alternately until no more changes are made to the domains. The CSP is

arc consistent when no domains are changed by applying REVISE(Vi, Vj) to any pair of

variables. Various algorithms have been proposed, and are commonly used, for enforcing

AC efficiently.

Directional Arc Consistency (DAC), a weaker form of AC, takes into account a strict

ordering < of the variables. REVISE(Vi, Vj) is executed only if Vi < Vj in the ordering.

In DAC, it is not necessary to execute REVISE(Vi, Vj) multiple times on each constraint.

Instead, we can proceed from the largest variable (according to the ordering) to the smallest,

executing REVISE(Vi, Vj ) once on each constraint. DAC is a necessary, but not sufficient,

condition for AC. DAC is more efficient to compute than AC.

An assignment to a CSP is a solution if and only if it is also a solution to the resulting
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problem after enforcing AC or DAC. Thus the resulting problem can be considered equiv-

alent to the original, but can be solved more efficiently. It may be the case that AC or DAC

annihilates the domain of a variable, which is sufficient (but not necessary) to let us know

that the original has no solutions.

2.3 Phase transition

Cheeseman et al. [1991] presented empirical evidence for the existence of a phase transi-

tion phenomenon at a critical value of certain parameters for some combinatorial problems.

They showed a significant increase in the cost of solving these problems around the critical

value. Figure 2.1 illustrates this situation. In the case of CSPs, tightness and constraint
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(Constraint tightness t)

instances
Mostly solvable
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Figure 2.1: Cost of problem solving.

ratio are often used as order parameters. Also, in CSPs, the phase transition is often as-

sociated with the transition between problems being solvable and being unsolvable. For

example, problems with low constraint ratio are likely to be solvable and problems with

high constraint ratio are likely to be unsolvable. The phase transition usually corresponds

to the same value of constraint ratio where the majority of problems transition from being

solvable to being unsolvable. Problems near this transition point are usually the most diffi-

cult to solve. For this reason, experiments comparing algorithms are usually conducted in

this area.
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2.4 Local search

Local search refers to search algorithms that start with a complete random assignment

of values to the variables and make incremental changes to it in an attempt to reach a

solution. These algorithms are not guaranteed to find a solution if one exists, however

they are useful because they can sometimes find solutions in large problems faster than a

systematic search. The basic local search technique is to make greedy incremental changes

that yield the largest improvement to the current assignment according to some evaluation

function. Each such move yields an assignment to the variables with a better evaluation than

the previous assignment. This process is analogous to climbing a hill. A global optimum of

the evaluation function yields a solution to the CSP. As we climb a hill we may reach a local

optimum that may not be a solution to the CSP, yet we cannot climb any higher from that

point, and, as a result, the local search technique is said to be trapped. Many techniques

for recovering from, or avoiding, local optima have been proposed. One of the simplest

ways to deal with encountering a local optimum is a random restart, i.e. to restart the local

search process with a new, random assignment. One common evaluation function for CSPs

is the number of constraints broken (i.e., violated) by the assignment. At each iteration,

an incremental change is made that most reduces the number of broken constraints (i.e.,

constraints that are violated by the current assignment).

We consider Algorithm 1, the the local search algorithm SLS as described in [Dechter, 2003].

This algorithm starts with a random initial assignment to the variables, and then makes in-

cremental changes until it finds a consistent assignment. At each step, SLS evaluates for

each variable-value pair the number of broken constraints resulting from changing the as-

signment of the variable to the value in the pair. SLS chooses the pair that yields the

minimum number of broken constraints, breaking ties lexicographically. This heuristic is

called ‘steepest descent’ [Galinier and Hao, 1997]. This atomic step is repeated until either
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Algorithm 1 SLS.
for i = 1 to MAX_TRIES do

Make a random assignment to all variables.
Count B = broken constraints
repeat

if B = 0 then
Return current assignment as a solution

end if
for each variable-value pair < xi, ai > not in the current assignment do

Suppose we swap the pair for the current assignment of xi

Compute B for this assignment.
end for
Choose variable-value pair < xi, ai > that minimizes B.
xi ← ai

until no further changes occur
end for

a solution is found or no improvement is possible, in which case the search is restarted from

a new random assignment. The process is repeated for a specified number of restarts or a

given time duration unless a solution is found. We call each iterative improvement a move.

We denote by RUN or TRIAL the process of running a search algorithm until it either finds

a solution or is terminated by a cutoff criterion.

Chapter 4 describes in greater detail how local search can be focused on the variables

in Ī of an independent-set decomposition.

2.5 Random problems

Random problems are often used to empirically evaluate new CSP techniques. Typically

these problems are generated with a specified number of variables and constraint ratio, the

same domain size for each variable, and the same tightness for every constraint. There

are several models for generating such problem instances, of which we primarily use the

common Model B [Achlioptas et al., 1997].

The above models distribute the constraints among the variables with a uniform random
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distribution. A different technique for distributing the constraints yields clustered graphs

[Hogg, 1996]. In this technique, variables are assigned to leaves of a balanced binary tree.

Two variables that are connected at a deeper depth are more likely to have a constraint

generated between them than two variables that are connected higher in the tree. The

probability of generating a constraint decreases exponentially with this depth of the tree.

We evaluate the performance of INDSET on both Model B and clustered graphs.

We conduct our experiments on connected problems only. If the problem generation

procedure produces a problem with a disconnected constraint graph, then we discard the

problem. Generating sparse problems is difficult, since there is a high probability of a

random graph being disconnected.

2.6 Independent sets

An independent set in a graph G = (V,E) is a set of vertices I ⊆ V such that the subgraph

induced by I has no edges (i.e., a set of pairwise non-adjacent vertices). See Figure 1.1.

A vertex cover is a set of vertices such that every edge in the graph is incident to a vertex

in the set. The complement of an independent set is always a vertex cover. A maximal

independent set is one that is not a subset of any larger independent set. A maximal in-

dependent set is to be distinguished from a maximum independent set, which is a largest

independent set in the graph. In this thesis we use the CLIQUEREMOVAL algorithm, which

runs in polynomial time in the number of variables [Boppana and Halldórsson, 1990].

2.7 Decomposition

Decomposition is a natural strategy for reducing the cost of solving a CSP. Freuder and

Hubbe introduced two general schemas for decomposing CSPs: conjunctive and disjunc-
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tive decomposition [1995a]. In a conjunctive decomposition schema, a solution to the

problem is obtained from ‘putting’ together solutions of the subproblems (e.g., using ar-

ticulation points [Freuder, 1982] and cycle-cutset method [Dechter and Pearl, 1987]). In a

disjunctive decomposition schema, a solution to any subproblem is a solution to the ini-

tial problem (e.g., Inferred Disjunctive Constraint [Freuder, 1993], and Factor Out Failure

[Freuder and Hubbe, 1995b]). INDSET is a conjunctive decomposition that partitions the

CSP variables with an independent set (see Figure 3.1).

2.7.1 Backdoor variables

INDSET, first reported in [Gompert, 2004], may be considered as one of the techniques

that exploit ‘strong backdoors’ [Williams et al., 2003]. These are techniques that divide a

problem into two sets of variables, search is performed on one of the sets (i.e., the back-

door), and the resulting partial solution can be expanded to a full solution (or be shown to

be inconsistent) in polynomial time. In our case, the complement Ī = V \I of our indepen-

dent set I forms a ‘strong backdoor.’ Indeed, any instantiation of Ī leads to a linear-time

solvable sub-problem PI , because PI has no edges.

2.7.2 CYCLE-CUTSET

Another example of a backdoor is a cycle-cutset. In the cycle-cutset decomposition tech-

nique, CYCLE-CUTSET, one chooses a set A of variables such that removing A from the

constraint graph leaves the graph acyclic [Dechter and Pearl, 1987, Dechter, 2003]. An ex-

ample is shown in Figure 2.2. Thus, given any assignment for A, the remaining tree can

be solved, or be proved unsolvable, in linear time with backtrack-free search, assuming

the CSP is arc-consistent [Freuder, 1982]. Like INDSET, CYCLE-CUTSET is also more

beneficial when the constraint graph has a low constraint ratio, because finding a smaller
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Figure 2.2: Circled vertices form a cycle-cutset.

cycle-cutset increases the benefit of the technique, and small cycle-cutsets are less likely to

exist in dense graphs, just as large independent sets are less likely to exist in dense graphs.

We compare and contrast CYCLE-CUTSET and INDSET in further detail in Section 6.2.

2.7.3 Other related work

A related work, carried out in the context of SAT, partitions the set of Boolean variables in

a SAT problem into ‘independent’ and ‘dependent’ variables and exploits this distinction

in local search [Kautz et al., 1997]. The technique is heavily dependent on SAT encodings

and its application to CSPs is not straightforward.

Finally, except for [Choueiry et al., 1995], none of the decomposition techniques re-

ported in the literature discuss the ‘production’ of multiple solutions, a by-product of our

technique. We argue that this feature of INDSET, shared to a lesser extent by CYCLE-

CUTSET, sets our approach apart from the rest.

2.8 Robust solutions

Using INDSET in combination with a search technique yields robust solutions, in the sense

that the solutions provide flexibility to the user. Figure 2.3 shows an example CSP. Table 2.1

shows an example of a single solution to the CSP in the left column, where each variable

is assigned a single value. In contrast, the robust solution assigns a set of values to each

variable. In the context of INDSET, a robust solution is an assignment of a set of values

to each variable, such that every element of the Cartesian product of the sets of values is a
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{c, d, e, f}{ d }

Figure 2.3: Example CSP.

Table 2.1: Single solution vs robust solution.

Single solution Robust solution
V1: d V1: {d}
V2: e V2: {d, e, f}
V3: a V3: {a}
V4: c V4: {b, c}

solution to the CSP. Thus, the robust solution in Table 2.1 represents 6 solutions. INDSET

yields a single values to variables in Ī and sets of values to variables in I, and thus a robust

solution to the entire CSP.

Summary

In this chapter, we reviewed the definition of a CSP and the basic concepts that will allow

us to introduce our techniques. We also summarized the main related techniques in the

literature.
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Chapter 3

INDSET

We present here a decomposition method, which we denote INDSET, using maximal in-

dependent sets of the constraint graph of a CSP. We explain how INDSET can not only

improve the performance of search but enable it to return multiple solutions. We also de-

scribe in general how this technique can be incorporated into stochastic local search.

3.1 Decomposition

INDSET partitions the variables of a CSP into two sets I and Ī, such that I is a maximal

independent set of the constraint graph (see Figure 3.1). By definition, no two variables

in I are neighbors. Because I is maximal, every variable U in Ī has a neighbor in I.

Otherwise, we could move U from Ī to I to obtain a larger independent set. Incidentally,

Ī forms a minimal vertex cover on the constraint graph. We denote as PI the subgraph of

the constraint graph induced by I, and PĪ the subgraph induced by Ī.
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3.2 Solving a CSP with INDSET

INDSET allows us to focus our search on Ī . After decomposition, we perform search on Ī,

and then propagate that solution to I. Figure 3.1 shows an example CSP decomposed into

a, b, c, d

a, b, c, d

a, b, c, d

a, b, c, da, b, c, d

a, b, c, d
I I

Figure 3.1: Step 1: Decompose into Ī and I .

I and Ī, where I is an independent set. We can then solve Ī using any solving technique,

which will yield an assignment to Ī, as shown in Figure 3.2.

I

a, b, c, d

a, b, c, d

a, b, c, da

b

c

I

Figure 3.2: Step 2: Solve PĪ , using any technique.

Once we have an assignment to Ī , we can propagate that solution to I, using Directional

Arc Consistency (DAC). The result of this is shown in Figure 3.3. DAC will remove any

I
a

b

c

c, d

a, c, d

a, b, d

I

Figure 3.3: Step 3: Propagate to I using REVISE(I , Ī).

inconsistent values from the domains of the variables in I. In this final result we have a
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robust solution (i.e., every element of the Cartesian product of the remaining domains is a

solution to the CSP).

For a given assignment of Ī, and for each variable Vi in I, let di be the set of values in the

domain of Vi that are consistent with the current assignment of Ī . For any two variables Vi,

Vj in I, we have |di|·|dj| consistent combinations, because there is no constraint between Vi

and Vj . In fact, every element of the Cartesian product d1×d2×· · ·×d|I | is an expansion of

the assignment of Ī to a full solution. Thus, for any assignment of Ī we can quickly obtain

all
∏

i |di| solutions possible with that assignment. Furthermore, because the result is the

Cartesian product of subsets of domains, this possibly large set of solutions is represented

in a compact form.

In Figure 3.3 the domains in I become {c, d}, {a, c, d}, and {a, b, d}. Consequently,

the set of all possible remaining solutions consists of the Cartesian product of these three

sets, along with the instantiation on Ī. Thus, we have found 2× 3× 3 = 18 solutions.

Again, in INDSET, we restrict the search to the variables in Ī, and, for a solution of PĪ ,

we can find all the resulting solutions using directional arc-consistency. This process re-

duces the search space by a factor exponential in the size of I. Consequently, we would like

to choose an independent set I as large as possible. Finding the maximum independent-set

of a graph is NP-hard [Garey and Johnson, 1979]. However, we do not need the maximum

independent-set for this technique to be beneficial. Fortunately, many efficient approx-

imation algorithms exist for finding independent sets [Boppana and Halldórsson, 1990].

Choosing an approximation algorithm depends on how much time one is willing to spend

finding a large independent set.

For finding independent sets, we used the CLIQUEREMOVAL algorithm, which runs

in polynomial time in the number of variables [Boppana and Halldórsson, 1990]. For the

problem instances we used in our experiments, CLIQUEREMOVAL takes negligible time

to execute (less than the clock resolution of the system on which we run our experiments,
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which is 10 ms). This algorithm incorporates some randomness in building the independent

set. Running it multiple times may therefore yield different independent sets. Figure 3.4

shows the average size of the independent set found on random graphs of 80 variables using

0

5

10

15

20

25

30

35

40

0% 20% 40% 60% 80% 100%

Constraint ratio

V
a

ri
a

b
le

s
 i
n

 i
n

d
e

p
e

n
d

e
n

t 
s
e

t

|I|

+1 stdev

-1 stdev

Graph with 80 variables

Figure 3.4: Independent set sizes using CLIQUEREMOVAL.

CLIQUEREMOVAL while varying the constraint ratio. It also shows lines above and below

showing±1 standard deviation. For each constraint ratio, we generated 100 graphs and ran

CLIQUEREMOVAL 100 times on each graph.

Summary

The independent sets of the constraint graph can be used to focus the efforts, and improve

the performance, of the search. It also provides the additional unique feature of producing

multiple solutions instead of a single solution. This technique can be incorporated into
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any kind of strategy for solving the CSP induced by Ī. In Chapter 4 we explain how to

incorporate it with local search.
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Chapter 4

Using INDSET with Local Search

Exploiting independent sets is straightforward for systematic backtrack search, because we

can obtain a performance benefit by searching over the variables of Ī before those of I.

Once we reach the variables of I, then the search is already complete, because we have

considered all the constraints, since there are no constraints in PI . However, in general,

it is less clear how decomposition and/or structural information can be used to improve

stochastic local search [Kautz et al., 1997]. Therefore, we focus our investigations on how

to use INDSET in conjunction with local search. Our solution is to guide the local search

on Ī with information from the constraints between I and Ī .

Section 4.1 explains how INDSET can be incorporated into local search techniques.

Section 4.2 provides several heuristics for use in this search technique. And Section 4.3

reports the results of empirical evaluation of the technique.

4.1 SLS/INDSET

We extend SLS to SLS/INDSET, which performs SLS on Ī and is guided by the constraints

between PI and PĪ . We incorporate, in the mechanism for solving Ī,the information about

the constraints between PI and PĪ by modifying the method by which SLS counts broken
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constraints (i.e., constraints violated by the current assignment). Algorithm 1, presents

SLS/INDSET in detail.

Algorithm 2 SLS/INDSET.

Find an independent set I and its complement Ī.
for i = 1 to MAX_TRIES do

Make a random assignment to Ī.
Filter the domains of I.
Count B = broken constraints in Ī + heuristic measurement of broken constraints
between I and Ī.
repeat

if B = 0 then
Return current assignment as a solution

end if
for each variable-value pair < xi, ai > of Ī not in current assignment do

Suppose we swap the pair for the current assignment of xi.
Filter the domains of I.
Compute B for this assignment.

end for
choose variable-value pair < xi, ai > that minimizes B.
xi ← ai

until no further changes occur
end for

When counting broken constraints, SLS/INDSET includes not only the constraints in

PĪ , but also some measurement of the number of broken constraints between PI and PĪ .

The question is how to define whether constraints between PI and PĪ are broken. For two

variables in Ī, the situation is clear: they have values assigned to them and these values

either do or do not violate a constraint. However, whether or not a particular constraint

between PI and PĪ is broken is ambiguous. Each variable V in I participates in a set of

constraints. If filtering the domain of V with all of the constraints does not annihilate the

domain (i.e., leave it with no remaining values), then there is no problem. If however the

domain is annihilated, it may be the case that filtering the domain with some subset of the

constraints will not annihilate the domain. Because every subset of constraints may or may

not annihilate the domain, we cannot say whether or not a particular constraint is broken.
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As a result of this imprecision, there is more than one way to consider these constraints

to be broken or not. For a constraint between PI and PĪ , we have an assignment of the

variable U in Ī , but not to the variable V in I. There may be multiple values for V that

support the assignment to U . Even if there are multiple values in V supported by every

constraint on V , it is still possible for directional arc-consistency on V to annihilate its

domain, due to other constraints. In fact, it may be the case that no single constraint on

V will annihilate its domain, but certain combinations of the constraints may do so. In

Section 4.2 we discuss ways to measure the brokenness of the constraints on V .

For example, in Figure 4.1, both values B and C in the variable in I are consistent

A
B
C

=

=

=
I

B,C

I

Figure 4.1: Example where a value in I will have its domain annihilated.

with the top-most constraint. In fact, taking any one of the constraints individually will

not annihilate the variable’s domain. However, when all of the constraints are considered

simultaneously, neither value is consistent with the assignment to PĪ , which means that the

variable’s domain will be annihilated.

Due to this repeated filtering of the domains of I, SLS/INDSET could be thought of as

using a procedure analogous to backtracking in systematic search. We make an assignment

to PĪ . This assignment is checked for consistency with I. If it is not consistent, then we, in

some sense, ‘backtrack’ to PĪ to obtain a new assignment to PI .

A possible modification for future investigation would be to move the finding of the

independent set inside the first for loop in Algorithm 1, which would mean that a new
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independent set would be used for each restart.

4.2 Counting broken constraints

Recall that in SLS, incremental improvements are made to the current assignment. In

order to provide an improvement, we need a measurement of the quality of assignments.

A common such evaluation function is the number of constraints that are not satisfied (i.e.,

broken) by the assignment. As we discussed, this is measurement is not well defined for

the constraints between PI and PĪ . In this section, we explore different ways of defining

this evaluation function for these constraints.

When designing a criterion for determining whether the constraints are broken or not,

we would like to maintain the property that the number of broken constraints is zero if

and only if we have at least one consistent solution to the CSP. Once we have no broken

constraints, then, given the assignment on Ī and the filtered domains of the variables in I,

we obtain at least one solution, and usually a large number of solutions. We implemented

and tested five ways to count the number of broken constraints after an assignment is made:

None, Zero-domain, Some, All, and PrefRelax. Note that the heuristics are ap-

plicable not only for the combination of INDSET with SLS but also for that of INDSET

with other iterative-repair algorithms. Empirical evaluation of the heuristics are provided

in Section 4.3.

None: The simplest approach is to simply ignore PI and the constraints between PI and

PĪ . Figure 4.2 illustrates the heuristic None, showing an example where a variable

in I will have its domain annihilated. This heuristic counts none of these constraints

as broken. We perform search solely to find a solution to PĪ , and then we check

whether this partial solution extends to a full solution. If not, then we restart search

again on PĪ with a new random initial assignment. Note that this heuristic does not
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Figure 4.2: Heuristic None. No constraints are considered to be broken.

maintain the property outlined above (i.e., the number of broken constraints may be

zero even when we have not found a solution to the CSP). One would expect that this

approach performs poorly. We include this heuristic in our experiments solely as a

frame of reference.

Zero-domain: In this heuristic, after making an assignment, we simply add the resulting

number of variables with annihilated domains to the number of broken constraints

in PĪ . In Figure 4.2, the variable in I will have its domain annihilated, and this

is counted as one broken constraint. On random problems, this method performed

worse than SLS alone. In special cases SLS/INDSET(Zero-domain) did outper-

form SLS. In a star graph1 [West, 2001], for example, it is obvious that any use of

independent set information will yield an improvement, because it is easy to find an

independent set containing n − 1 of the variables. INDSET allows us to focus the

search on the single, center variable that really affects the problem. SLS alone will

spread its search across the entire star graph, wasting much of its effort. In trivial

cases like this one, even the poor-performing zero-domain significantly outper-

forms SLS. Because this heuristic performed poorly in preliminary experiments on

random CSPs, we will not discuss it further.

All: In this next method, we filter the domains in PI and then, for each variable left with

1A graph in which there exists a variable that participates in every constraint.
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an empty domain, we consider all of the constraints on that variable to be broken. In

Figure 4.3, illustrating heuristic All, the domain of the variable in I is annihilated,

A
B
C

=

=

=
B,C

I I

Figure 4.3: Heuristic All. All the constraints on the variable are considered to be broken.

so we count 3 broken constraints. Thus, we include in the count of broken constraints

the sum of the degrees of the variables of I left with empty domains.

Some: In this method, we iterate through each of the constraints between PI and PĪ. In

Figure 4.4, illustrating heuristic Some, the constraints are considered from top to

bottom. Consider one such constraint Cu,v with V being the variable in I and U

A
B
C

=

=

=
I

B,C

I

Figure 4.4: Heuristic Some. The constraints in bold are considered to be broken.

being the variable in Ī . We reduce the domain of V to those values allowed by the

constraint, given the value currently assigned to U . Each successive constraint on V

may further reduce the domain of V . For each constraint, if this filtering annihilates

the domain of V , then we consider the constraint to be broken. Any other constraint

on V that we consider afterwards will also be considered to be broken. Note that
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the value returned by this heuristic depends on the order in which we examine the

constraints on V .

PrefRelax: We also attempted a heuristic using preferred relaxations of Junker [2004].

Given a set of constraints that cannot all be satisfied simultaneously, a relaxation is

a subset of those constraints that have a satisfying assignment. For each variable

V in I, we found the preferred relaxation R of the constraints on V , given the lex-

icographical order of the constraints. We used |Du| − |R| as the measurement of

the number of broken constraints on V . PrefRelax is a more accurate measure-

ment of the number of broken constraints than Some. An even better consideration

would be to find the maximum relaxation of the constraints. However, computing the

maximum relaxation requires exponential time in the number of constraints in the

worst case. For the problem sets in our experiments, PrefRelax did not provide

a significant improvement over Some, likely due to the sparseness of the problems.

See Section 4.3.3 for the experimental results. Further investigations may reveal an

improvement of PrefRelax on denser graphs, or more specifically, on variables in

I with a large degree. Also, additional heuristics for determining the order in which

to consider the constraints on V may improve performance of PrefRelax as well

as Some.

4.3 Empirical evaluation of SLS/INDSET

We empirically compared the performance of SLS with that of SLS/INDSET with the

heuristics described in Section 4.2. We evaluate the ability of the algorithms to solve CSPs,

and their runtime.
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4.3.1 Experimental setup

We tested the algorithms on random CSP instances (Model B), with 80 variables, 8 values

per variable, a constraint tightness of 58%2, on connected graphs, varying the constraint

ratio. In this and all experiments in this thesis that vary the constraint ratio, we varied the

constraint ratio up to (and just beyond) the point at which problem instances are no longer

solved within the given cutoff criterion. Beyond this point, the algorithms never return

solutions and always terminate because of the cutoff criterion, and thus are not interesting

to study with local-search algorithms. In each case, the graph shown displays the relevant

and/or significant portion of the data. We used two different cutoff criteria in this thesis.

The first stops the algorithm after a specified number of restarts have occurred. The second

criterion stops the algorithm after a specified amount of time has elapsed. We perform arc-

consistency before executing each algorithm, which is a common procedure for solving

CSPs. Because arc-consistency itself can find a problem instance to be unsolvable, in our

experiments we used only randomly generated problems that can be made arc-consistent.

For the problems used in these experiments, refer to Section 3.2 for the average inde-

pendent set size found. For each value of constraint ratio, we tested the algorithms on over

1000 instances with a cutoff of 200 restarts per instance.

We selected the number of 1000 instances for the experiment because 1000 instances

was sufficient to stabilize the mean. A larger sample size results in a more reliable estimate

of various population statistics. A common way to determine what sample size is ‘large

enough,’ is to compute the cumulative mean after every trial. This is called the moving

average. Figure 4.5 shows an example of a moving average of runtime over 1000 instances.

As the number of trials (and thus the sample size) increases, the mean begins to stabilize.

A sample size of 1000 yielded an adequately stable mean.

258% is a remnant from our following experiments of [Dechter, 2003].
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Figure 4.5: Example of moving average over 1000 trials.

4.3.2 Experiment 1: Ability to solve

We report in Figure 4.6 the percentage of instances each algorithm solved comparing

SLS alone and SLS/INDSET with heuristics Some, All, and None. The results for

PrefRelax are given below. For each curve, the algorithm solves 100% of problems

with constraint ratios to the left of the curve and 0% of problems with constraint ratios to

the right. Note that the curves for the different algorithms/heuristics have similar shapes

but appear shifted to the left or right. The curves further to the right indicate that the algo-

rithm can solve problems with more constraints. As a curve shifts to the right, it approaches

the similar curve representing the percentage of problems that are actually solvable, corre-

sponding to the phase transition. It is not feasible to compute the actual phase-transition

curve for large size problems because a complete solver is needed, which requires an expo-

nential amount of time (i.e., weeks of CPU time), and thus is infeasible for large problems.

Consequently, we cannot easily determine how closely the algorithms tested approach the
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Figure 4.6: Percentage solved for SLS and SLS/INDSET.

actual curve.

It is clear from the graphs that None, as expected, performs poorly. It is surprising

however that it performs as well as it does, considering that it is merely stumbling around

in the dark by ignoring a large number of variables (those in I) and constraints (those

between I and Ī . The best-performing algorithm is SLS/INDSET using Some, although

All is not far behind.

Finally, SLS/INDSET, with the various heuristics, returns a large number of solutions

on average. In general, the algorithm returns an average of about three (out of eight) values

per variable in I, over the tested range of constraint ratio. If the independent set con-

tains 30 variables, then the number of solutions obtained is approximately 330. Figure 4.7

gives the average domain size for the variables in I in the robust solutions returned by

SLS/INDSET, over varying constraint ratio. Figure 4.8 shows the estimated log10 of the

number of solutions found, over varying constraint ratio. The estimate was computed as
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log10(
∏

i,Vi∈I
|SVi
|) =

∑

i,Vi∈I
(log10 |SVi

|) ≈ I · log10(µ̄SVi
), where |SVi

| is the number of values

assigned to variable Vi in the solution, and µ̄SVi
is the average number of values assigned

to a variable in I.

4.3.3 Experiment 2: Runtime

The runtime for SLS and SLS/INDSET are shown in Figures 4.9, 4.10, and 4.11, for differ-

ent tightnesses over varying constraint ratio. We used a cutoff time of 120 seconds. Each

graph increases constraint ratio until SLS becomes unable to solve most of the problems

(i.e., the median is no longer meaningful). Note that SLS alone sometimes runs faster on

problems with low tightness and constraint ratio. Solving these problems is usually simple

enough that the overhead of SLS/INDSET is unnecessary. INDSET provides greater bene-

fits as constraint ratio increases until the problems are no longer solvable by SLS3. Overall

it appears that Some has the best runtime for most of the range.

Figures 4.12, 4.13, and 4.14 show the results of comparing the runtime of PrefRelax

and Some, over varying constraint ratio. For 10% tightness, PrefRelax does have a

little better runtime than Some as the constraint ratio increases. This evidence supports

our conjecture that PrefRelax would be more beneficial for higher constraint ratios. For

30% tightness, the two heuristics are approximately equal in performance, and for 50%

tightness, Some dominates.

4.3.4 Experiment 3: Effect of independent-set size

We also performed experiments regarding the effect that the size of the independent set

has on SLS/INDSET. We ran CLIQUEREMOVAL4 repeatedly on the same graphs to obtain

independent sets of different sizes. For example, we ran CLIQUEREMOVAL repeatedly

3Because these are not complete solvers, if the algorithm does not return a solution, we do not know
whether the problem is solvable.

4Introduced in Section 3.2.
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on a graph of 80 vertices and 104 edges. Within a few minutes it returned independent

sets ranging from 32 vertices to 41 vertices. Continuing to repeat CLIQUEREMOVAL over

the following 24 hours did not yield any independent sets larger or smaller. After 1000

runs, with a tightness of 60% (which yielded a dramatic result for purposes of illustration),

this graph was solved in an median of 147 seconds with SLS (effectively SLS/INDSET

with empty independent set). Using the largest independent set found (41), SLS/INDSET

solved in an median of 1.625 seconds, and using the smallest independent set found (32),

SLS/INDSET solved in an median of 4.855 seconds. Table 4.1 summarizes these results.

Table 4.1: SLS/INDSET median runtime vs. size of independent set.

Size of I SLS/INDSET runtime (seconds)

0 147.20
32 4.86
41 1.64

Clearly a larger independent set can greatly reduce the time to solve. The dramatic

difference in running time seen in this example is partly due to the high tightness of the

constraints. Problems with lower tightness yield a smaller difference, as was seen by

comparing Figures 4.9, 4.10, and 4.11 (because SLS is SLS/INDSET with an empty in-

dependent set). SLS/INDSET with a non-empty independent set still yields more solutions

than SLS. SLS/INDSET returns a multitude of solutions and does it in less time than SLS

requires to return only one.

Summary

We presented and evaluated SLS/INDSET, one possible combination of INDSET with a

local search algorithm. We discussed and compared heuristics for incorporating the de-

composition into local search. The empirical results show a performance improvement in
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search when using the decomposition and how a large number of solutions were returned

on average.
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Chapter 5

Improving INDSET

Additional processing can be done to enhance and extend the benefit of the independent-

set decomposition. For example, Section 5.1 examines the benefit of identifying ‘dangling

trees’ in the constraint graph. Section 5.2 shows the results of using static bundling with

INDSET, providing preliminary evidence that Neighborhood Interchangeability techniques

can benefit INDSET. Also, Section 5.3 shows that INDSET can be used to find small cycle

cut-sets.

5.1 Identifying dangling trees

We discuss additional processing to enhance INDSET and extend its benefits. We do so by

detecting trees that ‘dangle’ off the variables in I. For a variable V in I, we find connected,

acyclic, induced subgraphs that become disconnected from the rest of the graph if V is

removed. These subgraphs are trees said to ‘dangle’ from V . An example of extracting

these dangling trees is shown in Figure 5.1. The graph on the left shows an example of

a CSP decomposed using INDSET, and the graph on the right shows the result of finding

dangling trees.

We can find these dangling trees quickly, using a linear-time breadth-first search. Algo-
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Figure 5.1: Dangling trees.

rithm 3, FINDDANGLESONVAR, finds the set of variables in all trees dangling off a given

Algorithm 3 FINDDANGLESONVAR(v).

result← ∅
for each neighbor of v do

result← result
⋃

GETTREE(v, neighbor)
end for
return result

variable. Note that some of the vertices in the dangling trees were removed from I and

some from Ī , yielding I ′ ⊆ I and C ⊆ Ī respectively. Let T be the set of variables in the

trees dangling off I ′. Algorithm 4, GETTREE, performs a breadth-first search starting with

v2, without searching past v1, and stopping if a cycle is found. In the worst case, this al-

gorithm requires time linear in the number of variables in the subgraph containing v2 after

v1 is removed. Thus, in the worst case, it requires time linear in the number of variables in

the graph (i.e., O(n)). FINDDANGLESONVAR requires time O(n), because we can have

GETTREE mark nodes as it searches, to ensure that we never visit a node twice.

5.1.1 Benefits of identifying dangles

Finding dangles has two benefits. It slightly reduces the runtime and increases the number

of solutions returned. Suppose we enforce directional arc-consistency (DAC), from the
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Algorithm 4 GETTREE(v1, v2).
Require: v1 and v2 are adjacent variables.
Ensure: Return set of variables of the tree rooted at v2 dangling off v1; otherwise return ∅

result← v1

stack← v2

while NOTEMPTY(stack) do
nextvar← POP(stack)
N ← NEIGHBORSOF(nextvar)
I ← result

⋂
N

if SIZEOF(I) 6= 1 then
return ∅ {We found a cycle}

end if
N ← N \ I

result← result
⋃

nextvar
stack← stack

⋃
N

end while
return result \{v1}

leaves of the dangling trees towards the variables in I ′. If DAC annihilates any domains,

then we know immediately, and before doing any search, that the problem is not solvable.

Proposition 1 When a CSP is decomposed with INDSET+DANGLES, and DAC is applied

from the leaves of T to I ′, if any domain is annihilated, then the CSP has no solution.

The proof is straightforward.

Also, any selection of a value remaining in the domain of a variable in I ′ can be ex-

tended to a solution of the trees dangling off that variable. Now, given an assignment on

PC , because any two variables in I ′ (and their respective dangling trees) are disconnected

from each other, we can select their values independently of each other.

Furthermore, we can completely ignore the nodes in T during search, because we know

that any value that remains in the domain of a variable in I has a support. Thus, if we

find a partial solution for the variables in C and if directional arc-consistency can suc-

cessfully extend this partial solution to the variables I ′, then we know that this partial

solution can necessarily be extended to at least one full solution in a backtrack-free man-
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ner [Freuder, 1982]. We can also determine a lower bound on the number of solutions as

discussed in Section 6.1.

We perform search using an algorithm like SLS/INDSET on C and I ′ just as we did

before on Ī and I, respectively, and ignore the vertices in T . Reducing the size of the cutset

Ī to C has two advantages. First it reduces the search space, and secondly it yields more

solutions.

Finding dangling trees reduces our search space because |C| ≤ |Ī| and because it

reduces the cost of the filtering step at each iteration of the inner-loop of Algorithm 2. This

is because |I ′| ≤ |I|, and the number of constraints between C and I ′ is smaller than the

number of constraints between I and Ī.

Dangling trees also yields more solutions. Recall that every variable in Ī has a fixed

value assigned to it, while the other variables can have a flexible assignment of multiple

values. Because |C| ≤ |Ī|, the number of variables with a fixed, single assignment is

reduced, and the number of variables that can have a flexible assignment is increased, thus

increasing the total number of solutions returned.

5.1.2 Evaluation

Figure 5.2 shows the effect of dangle identification on reducing the number of variables that

search needs consider. The vertical axis shows the ratio of the cutset size to the number

of variables N , while the horizontal axis varies constraint ratio. For low constraint ratio,

identifying dangles reduces the subgraph (Ī or C) over which we perform search. This

benefit is negligible above 9%.

We implemented SLS/INDSET+DANGLES based on SLS/INDSET. Using the dangling

trees requires a preprocessing step of directed arc-consistency from the leaves of the trees

to the roots. Since we apply full arc-consistency as a preprocessing step to our experiments,

this is not an issue. We considered 1000 instances for each set of problem parameter values,
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Figure 5.2: Ratios of sizes of C and Ī to the number of variables N .

with a cutoff criterion of 200 restarts.

Figures 5.3 and 5.4 show the results of comparing SLS, SLS/INDSET, and SLS/IND-

SET+DANGLES using the heuristic Some and at a high values of tightness and a low value

of tightness. We show the results for Some because it yields the best results. The vertical

axis shows the percentage of problems that were solved, while the horizontal axis varies

constraint ratio.

For the lower tightness (i.e., Figure 5.3), the fall-off curve appears with a larger number

of constraints, and the distinction between SLS/INDSET, and SLS/INDSET+DANGLES

disappears. The improvement on percentage of problems solved of SLS/INDSET+DANGLES

over SLS/INDSET is more visible at the higher tightness (Figure 5.4).

Figures 5.5, 5.6, and 5.7 show the runtime comparison for SLS, SLS/INDSET+DANGLES,

and SLS/INDSET, over varying constraint ratio. Even in cases where the use of IND-

SET+DANGLES requires the same runtime as INDSET, it is still beneficial, since it yields

more solutions than INDSET, in the same amount of time, as was explained in Section 5.1.1.
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A difficulty arises when attempting to count the number of solutions. Counting the solu-

tions is easy with INDSET because it is the product of the domain sizes of the variables in

I. Counting the solutions in INDSET+DANGLES is more difficult, because it requires per-

forming a search on the trees rooted in I ′ and iterating through all of the solutions, which

may be infeasible because the number of solutions is potentially exponential in the number

of variables. Techniques for computing a loose lower bound on the number of solutions in

the dangling trees are suggested in Section 6.1.

5.1.3 Performance near phase transition

Like SLS/INDSET, SLS/INDSET+DANGLES has a greater benefit closer to the phase tran-

sition area. Intuitively, it also has a greater benefit for lower-constraint-ratio graphs, which

have a higher probability of having larger dangles. Indeed, we find that SLS/INDSET+DANGLES

provides the greatest benefit when the phase transition exists at a small constraint ratio,

which occurs as tightness increases. An example is shown in Figure 5.8, where the run-

time cumulative distribution shows SLS/INDSET+DANGLES dominating SLS/INDSET on

runtime for these tight, sparse problems.

5.1.4 Effect of |I|

We also performed experiments regarding the effect the size of the independent set has

on the performance of SLS/INDSET+DANGLES. We used the same independent sets (by

running CLIQUEREMOVAL repeatedly) and experimental setup used in Section 4.3.4. We

used the same graphs and independent sets with SLS/INDSET+DANGLES and measured its

runtime over 1000 runs. Using the largest independent set found, SLS/INDSET+DANGLES

solved in an median of 1.16 seconds, and using the smallest independent set found, SLS/INDSET

solved in an median of 2.79 seconds. Table 5.1 summarizes these results. A larger inde-
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Table 5.1: SLS/INDSET+DANGLES running time (seconds) vs. size of independent set for N=80.

Size of I SLS/INDSET SECONDS SLS/INDSET+DANGLES seconds |C| |T |

32 4.855 2.79 40 8
41 1.635 1.16 33 10

pendent set can significantly reduce the time to solve with SLS/INDSET+DANGLES.

5.1.5 Heuristics and DANGLES

Using the experimental data from experiments in Section 5.1, we compared the effect of us-

ing the different heuristics (of applying INDSET to local search) to the effect of using DAN-

GLES. The runtime comparison is shown in Figure 5.9. SLS/INDSET+DANGLES(All)

performs worse on average than SLS/INDSET(Some).

From Section 4.2, we know that Some performs better than All, and we know that

using DANGLES performs better than not using DANGLES, thus, from Figure 5.9 it appears
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Figure 5.9: Comparison of heuristic to use of DANGLES.

that the benefit of Some over All is greater than the benefit of DANGLES. Consequently,

the choice of heuristic has a greater influence on runtime than whether or not we use DAN-

GLES. However DANGLES increases the number of solutions found.

5.1.6 Finding dangles first

As described earlier, dangles are identified off variables in I, that is, we find them after

decomposing the CSP with INDSET. Further experimentation has lead us to advise

1. to apply the dangle identification procedure before applying the decomposition, and

2. to do so for all the variables in the CSP.

We call this technique DANGLES+INDSET. Note also that finding dangles first may result

in having trees that dangle off variables in C as well as dangling off variables in I. We

designed SLS/DANGLES+INDSET to ignore these trees after directional arc-consistency

in the same way SLS/INDSET+DANGLES ignores trees in T assuming no domain was
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annihilated. Note that identifying dangles, which can be done efficiently, could benefit the

performance of any search procedure (i.e., not only SLS) for solving a CSP, regardless of

whether or not we use INDSET. We can find dangling variables in a CSP using Algorithm 5.

Algorithm 5 FINDDANGLES.

result← ∅
stack← set-of-all-variables
while NOTEMPTY(stack) do

Vi ← POP(stack)
temp← FINDDANGLESONVAR(Vi)
stack← stack \ temp
result← result

⋃
temp

end while
return result

FINDDANGLESONVAR in Algorithm 5 is a depth-first search procedure that returns the

set of variables that are in trees dangling off the specified variable, and runs in O(N) time in

the worst case. Because, in the worst case, FINDDANGLES calls FINDDANGLESONVAR

for every node in the graph, FINDDANGLES is O(N 2). However, this worst case is not

likely to occur, because it requires specially structured graphs (such as when a triangle is

attached to a leaf of a tree), and then only when we consider the nodes in a particular order.

FINDDANGLES finds the set of nodes in the graph that do not participate in any cycles1.

We tested DANGLES+INDSET (which extracts dangles first then finds an independent

set) and INDSET+DANGLES (which finds an independent set first and then extracts dan-

gles). We measured the sizes of C and T for Model B random CSPs over a range of den-

sities on problems with 100 variables. Because the sets of variables identified by INDSET

and DANGLES are derived from only the structure of constraint graph, the domain sizes

and constraint tightness are irrelevant. Figure 5.10 shows that finding dangles first does

result in a larger set of dangles than finding dangles last. (Obviously, it can never result in

1It does not find isolated nodes, but we we consider only connected graphs. Typically, if a CSP is discon-
nected, then each connected component is treated as a separate CSP and is solved independently.
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The increase of the size of T must come from a reduction of the size of I ′ or that

of C. Note that, in Figure 5.10, because the resulting reduction of |C| is smaller than

the increase of |T |, most of the newer dangles must come from I ′. Thus, most of the

added benefit from finding dangles first lies in reducing the time required in the domain

filtering step of SLS on the decomposition, because I ′ has fewer variables, and there are

consequently fewer constraints between I ′ and C. We show in Figure 5.11 the runtime cu-

mulative distributions for SLS/DANGLES+INDSET and SLS/INDSET+DANGLES on 1000

instances of Model B random CSPs, with 100 variables, 10 values per variable, 50% tight-

ness and 2.6% constraint ratio. This figure shows that SLS/DANGLES+INDSET outper-

forms SLS/INDSET+DANGLES. Incidentally, the ‘hump’ between 1 and 2 seconds, on

both curves, corresponds to the first time SLS restarts due to encountering a local opti-
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mum2.

5.2 Neighborhood interchangeability

We also attempted to exploit interchangeability techniques in INDSET. Two values of a

CSP variable are said to be neighborhood interchangeable (NI) if they are consistent with

the same values of the neighbors of the variable in the CSP. Freuder [1991] provided a

mechanism that partitions the domain of a CSP variable into sets of equivalent values ac-

cording the notion of neighborhood interchangeability. Choueiry and Noubir [1998] mod-

ified this mechanism to (1) apply to any restricted neighborhood of the variable and to

(2) determine how the variable can be disconnected from this restricted neighborhood. The

latter is indeed possible when there is one or more values in the domain of the variable that

are found consistent with all the values in the restricted neighborhood because the variable

can be safely assigned any of these values and disconnected from the specified neighbor-

hood. For example, in Figure 5.12, the value f for the variable V2 is consistent with all of its

= =

V1

=

V2 

V4V3 ={a, b, d} {a, b, c}

{c, d, e, f}{ d }

Figure 5.12: Example CSP with potential bundling.

neighbors’ values. Thus we can make the assignment of f to V2 and disconnect V2 from the

rest of the problem. We use the mechanism of [Choueiry and Noubir, 1998] by applying it

to each variable in I ′ using each variable’s neighbors in C as a restricted neighborhood.

We exploit the mechanism in two ways. First, when we find that a variable Vi ∈ I ′ can

2The restart time varied among the 1000 runs, but they were clustered around the area of the ‘hump.’
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be disconnected from the variables in C, we restrict the domain of Vi to the values consis-

tent with all the values of Vi’s neighbors in C, and then remove Vi and its dangling tree from

the problem. Naturally, this pruning should be done only after performing directional arc-

consistency on the decomposed CSP, from the leaf nodes in T towards nodes I ′, in order to

ensure that Vi has only values that are consistent with the dangles. This variable, restricted

to its values consistent with C and together with its dangles, forms a subproblem that we

solve independently. Because it is a tree, it can be solved in linear time by backtrack-free

search [Freuder, 1982].

Our second application of neighborhood interchangeability was to use the restricted

NI-sets found for the variables remaining in I ′. We replaced the values in each equivalent

set by a single representative. For example, in Figure 5.12, {e, f} is an NI-set. Because

e and f are equivalent, we can replace those two values with one that represents both of

them. This operation reduces the effective domain size of the corresponding variable and

can reduce the cost of solving the CSP.

We tested the impact of the above two ideas on the performance of SLS/ INDSET+

DANGLES by running experiments with and without NI. Figure 5.13 shows the resulting

runtimes for Model B random CSPs with 80 variables, domain size 10, and 10% constraint

tightness, and a cutoff criterion of 120 seconds. (The results on clustered graphs are shown

in Figures 6.5 and 6.6.) As it can be seen, the improvement due to NI is not significant,

but increases as we approach the region of the phase transition, where the cost of the prob-

lem solving drastically increases. Thus, this research direction may benefit from further

investigations.
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5.3 New technique for finding cycle-cutsets

This study on independent sets and the dangling trees has also led us to propose a new

algorithm for finding cycle cutsets. Here are some of the previous heuristics for finding

cycle cutsets [Barták, 1998]:

1. Remove variables from the graph in order of decreasing degree (DD) until no cycles

remain.

2. Improve the results of (1) by, before removing a variable, first checking whether that

variable participates in any cycle.

3. Determine, dynamically, for each variable, the number of cycles in which it partici-

pates, and take the variable that participates in the most cycles.

The technique we propose is to use the independent sets to perform a pre-processing

step on the nodes of the graph before searching for a cycle-cutset. Finding an independent
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set I and the dangling trees, as in Section 5.1 leaves us with a set of variables C. C is

a cycle-cutset, because removing C from the graph will leave only trees remaining. C is

likely not a minimal cycle cutset, thus some subset of C may also be a cycle-cutset). We

propose finding this subset of variables C as a preprocessing step to searching for a cycle

cutset, which can save time by eliminating the need to consider the variables outside C

when looking for a cycle cutset. We can search for a cycle-cutset within C using whatever

technique we wish, such as heuristic (2) above, checking whether each variable participates

in any cycle (because C may still contain variables that do not participate in any cycle).

We performed experiments comparing this IndSet method, DD (heuristic 1 above), and

DD-WITH-CHECK (heuristic 2), across the range of constraint ratio. Cutset sizes were

found for 1000 instances for each value of constraint ratio. The average cutset sizes are

shown in Figure 5.14. Note that, for most of the range, INDSET outperforms the others
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Figure 5.14: Comparing cutset sizes for three techniques.

in cutset size. And, for most of the range, DD and DD-WITH-CHECK return identical

cutsets. To show the comparison between INDSET and DD-WITH-CHECK more clearly,
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Figure 5.15 shows the ratio of size of cutsets obtained by the former to the size of cutsets

obtained by the latter. Only for a small range of graphs with low constraint ratio, does
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Figure 5.15: Ratio of cutset sizes of INDSET and DD-WITH-CHECK.

DD-WITH-CHECK return better cutsets.

5.3.1 Runtime

To return these smaller cutsets, the INDSET method does take longer to run. Figure 5.16

shows the ratio of runtimes of INDSET to DD-WITH-CHECK, over varying constraint ratio.

For most of the range, INDSET requires a small increase in time. Note that if the runtime

for solving the problem is exponential in the size of the cutset, then a small amount of

extra time to find a smaller cutset will be more than offset by the reductions in search cost.

The rapid increase at the left end of the graph results as the runtime for DD-WITH-CHECK

falls below the resolution of our system timer, and the runtime of the INDSET technique

becomes dominated by the time to find the independent sets. This data point corresponds

to a runtime of about 200 ms for INDSET and 10 ms for DD-WITH-CHECK.
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Figure 5.16: Ratio of runtime of INDSET and DD-WITH-CHECK.

Work has also been done on finding cutsets that leave more connectivity in the graph

[Bidyuk and Dechter, 2004]. We will discuss this further in Section 6.2.

Summary

By identifying trees dangling off the independent-set variables, the efforts of search can be

focused further, slightly reducing the time to solve, and increasing the number of solutions

returned. We obtained preliminary evidence for the benefit of NI techniques on INDSET,

and further investigation was suggested. It was also shown that INDSET may be useful as

a preprocessing step when attempting to find small cycle cutsets.
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Chapter 6

Analysis

In this chapter, we report additional qualitative and quantitative analysis of INDSET. First,

Section 6.1 explains how INDSET allows us to compute lower bounds on the number of

solutions extendible from a given robust solution. Section 6.2 compares and contrasts

INDSET with CYCLE-CUTSET of Dechter [1987, 2003]. Section 6.3 identifies potential

sources of runtime variance. Section 6.4 evaluates the performance of INDSET+DANGLES

on clustered graphs.

6.1 Computing lower bounds of the number of solutions

Dangling trees increases the difficulty of counting the number of solutions found, when

the solving process has completed. Counting the solutions is easing with INDSET because

it is the product of the domain sizes. Counting the solutions in INDSET+DANGLES is

more difficult, because it requires performing a search on the trees and iterating through

all of the solutions, which may be infeasible because the number of solutions is potentially

exponential in the number of variables. We discuss here techniques for computing a loose

lower bound on the number of solutions in the dangling trees.

After instantiating the variables C, the nodes in I ′ become the roots of a forest, as
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shown in Figure 6.1. Each of the trees in this forest can be solved independently of the

I I

T

I’C

Figure 6.1: Dangling trees.

others, which increases the robustness of our solutions because modifying the solution to

one tree does not affect the others. Note that CYCLE-CUTSET does not necessarily yield

such independent trees, and when it does, recognizing them requires additional effort.

In addition to improving the performance of problem solving and returning multiple

solutions, INDSET allow us to compute a lower bound of the number of solutions that can

be extended from the partial assignment.

After instantiating the variables in C, when performing directed arc-consistency (DAC)

on I ′ does not annihilate the domain of any of the variables in I ′, then the number of

solutions to any of the trees rooted in I ′ is bounded from below by the size of the largest

domain of the tree. Indeed, in each tree, we know that any value of each domain is part

of some solution. Thus, we can choose any value for any of the variables in a tree and

extend it to a full solution for the tree (and thus for the CSP) using backtrack-free search.

Consequently, the number of solutions must be at least the size of the largest domain in the

tree. Furthermore, because each of the trees can be solved independently, the product of the

maximum domains of all the trees gives us a lower bound on the number of solutions we

have obtained for the entire CSP:
∏

∀ti,trees
MAXDOMAIN(ti). Figure 6.2 shows an example

comparing the number of solutions found by SLS/INDSET with the lower bound of the
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number of solutions found by SLS/INDSET+DANGLES. Although the two lines appear

approximately the same, note that the line for SLS/INDSET+DANGLES is a loose lower

bound, and the actual value is larger.
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Figure 6.2: Estimated log1 0 of number of solutions found.

Another possible method for obtaining perhaps an even better lower bound is to per-

form backtrack-free search on each tree, using bundling [Haselböck, 1993]1. Bundling is a

technique for obtaining a solution to a CSP in which some variables are assigned a bundle

of equivalent values. At each step in a backtrack-free search, we choose the largest bundle.

Each element of the Cartesian product of the domain bundles gives a solution to the tree.

Thus, the product of the sizes of the bundles chosen gives us a lower bound on the number

of solutions in the tree. The product of these lower bounds of each tree again gives us a

lower bound on the number of solutions for the original CSP.

1Note that static [Haselböck, 1993] and dynamic [Beckwith et al., 2001] bundling on trees yield the same
result.
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6.2 Comparison to CYCLE-CUTSET decomposition

INDSET and INDSET+DANGLES are both special cases of CYCLE-CUTSET of Dechter

[1987, 2003], which identifies a subset of vertices that, when instantiated, leave the rest of

the constraint graph acyclic. However, both of these decompositions go further than the

general CYCLE-CUTSET. INDSET goes further than leaving the graph acyclic, it leaves

the graph with no edges at all. The particularity of INDSET+DANGLES with respect to

CYCLE-CUTSET is a little less obvious.

In CYCLE-CUTSET, removing the cutset nodes leaves the constraint graph acyclic. The

remaining graph may have multiple components, each a tree. A given tree may have more

than one vertex adjacent to the cycle-cutset. For example, Figure 6.3 shows a cutset inside

BA

Figure 6.3: Vertices inside the circle form a cutset.

the circle. This could be a cutset found in C of the INDSET+DANGLES decomposition.

Suppose an edge is added between vertices A and B. The tree containing A and B would

then have two vertices adjacent to the cutset. In that case, the circled vertices still form a

cycle-cutset, but not a INDSET+DANGLES cutset C.
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In contrast, INDSET+DANGLES leaves trees, each of which has at most one vertex

adjacent to the cutset. This fact results in the advantage of allowing us to ignore all but one

vertex of the tree when performing search. On the other hand, in CYCLE-CUTSET, a tree

that has even two vertices adjacent to the cutset greatly complicates matters.

The extra edge creates a cycle that causes difficulty, because we can no longer afford

to only look at those vertices adjacent to the cutset, because there may be a cycle in the

graph extending further out. In this case, arc-consistency is not sufficient to guarantee our

independent choices for values of the neighborhood of the cutset.

Another issue to consider is that a tradeoff exists between connectivity and cutset size.

INDSET leaves a graph with less connectivity than CYCLE-CUTSET, while the cutsets of

INDSET are larger. Although we would like both small cutsets and low connectivity, we

have a tradeoff between the two. It is worth exploring this tradeoff to determine the best bal-

ance between the two. In fact, work has been conducted exploring the other direction from

CYCLE-CUTSET, i.e. finding and using cutsets that leave the graph with more connectiv-

ity with the benefit of having smaller cutsets (e.g., w-cutsets [Bidyuk and Dechter, 2004]).

We are not aware of prior work that explores the tradeoff for connectivity below that of

CYCLE-CUTSET.

6.3 Runtime variance

In this section we attempt to justify one aspect of our experimental procedures by examin-

ing the sources of runtime variation. Previously in this thesis, we have performed experi-

ments primarily by generating a set of problem instances and running each algorithm (e.g.,

SLS and SLS/INDSET+DANGLES) once on each problem instance. That approach has the

potential to hide the true source of runtime variation. Indeed, while the stochastic nature

of the search method clearly causes runtime variation, the probability distribution of the
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runtime may also vary between problem instances.

To determine what amount of the runtime variation arises from the stochastic nature of

the algorithm and what amount arises from differing problem instances, we conducted the

following experiment. We generated 100 instances of Model B CSPs, with 80 variables,

domain size = 10, constraint ratio = 22%, and tightness = 10%. These are solvable prob-

lems, and we measured the median runtime for SLS on these problems at 8.5 seconds. We

executed each of SLS and SLS/INDSET+DANGLES 100 times on each problem instance.

Thus we obtain, for each algorithm, a matrix of runtimes, where each row contains 100

runtimes for a particular problem instance, as illustrated in Figure 6.4. We then computed

Instance 1
Instance 2
Instance 3
Instance 4

trial 1    trial 2    trial 3    trial 4
  8.74       9.02      4.77     38.71
27.01     27.89      4.97       4.63
  8.99       8.98      4.48       8.70
  4.10     53.60    17.16       8.72

Figure 6.4: 100×100 matrix of runtimes, in seconds.

the variances of the rows and the columns. Table 6.1 shows the average row variance and

the average column variance for SLS and SLS/INDSET+DANGLES.

Table 6.1: Average row and column variances.

SLS SLS/INDSET+DANGLES

Row variance 67.83 24.02
Column variance 68.45 24.12

If the runtime within a row does not vary much, then we can conclude that the algo-

rithm is consistent across runs (the runtimes of a deterministic algorithm would not vary

at all within a row). Conversely, variation of the runtime between the rows is a result of

both the stochasticity of the algorithm and of the differing problem instances. Therefore,
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we should expect the column variance to be greater than the row variance, which is, in-

deed, what Table 6.1 shows. Furthermore, the difference between the row variance and the

column variance represents the variance due to the problem instances. From the table we

can see that this difference is small. Therefore we conclude that runtime variation due to

differing problem instances, while present, is insignificant compared to the variation due

to the stochastic nature of the algorithm. Thus running each algorithm once on each prob-

lem instance does give a good approximation of running each algorithm multiple times on

each instance. We performed this experiment for other values of constraint tightness and

constraint ratio, which yielded similar results.

Additionally, because SLS with and without INDSET+DANGLES yielded approximately

the same results in this regard (at different scales), we can conjecture that the above con-

clusion about the runtime variance is a property of SLS and is not affected by IND-

SET+DANGLES.

6.4 Clustered graphs

In order to verify that the decomposition technique is beneficial in the case of problems

other than Model B random instances, we tested SLS/INDSET+DANGLES against SLS

on structured problems. We used the clustered graphs of Hogg where “the search costs

[is] typically much larger than for random graphs” [Hogg, 1996]. Hogg showed that the

phase transition occurs at a lower constraint ratio than Model B problems. We generated

problems with 80 variables and 10 values per variable, while varying constraint tightness

and constraint ratio. We show the median runtimes in Figures 6.5 and 6.6, using a cutoff

criterion of 120 seconds.

In general, the combination of SLS and INDSET+DANGLES results in an improvement

on clustered graphs. The improvement tends to increase as the number of constraints in-
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Figure 6.5: Runtime on clustered problems with 10% tightness.

creases to the right (i.e., towards the region of the phase transition). In fact, Figure 6.5

shows improvement only for the higher constraint-ratio values. Otherwise, and for the

lower constraint-ratio values, SLS alone sometimes performs slightly better than in combi-

nation with INDSET+DANGLES. Note that these problems with lower constraint-ratio are

relatively easy to solve, and thus do not matter as much as those in the region of the phase

transition.

As stated above, CSPs with clustered graphs are more difficult to solve than Model B

problems for the same parameters. For 50% tightness we were not able to generate sparse

connected clustered problems. The were only able to produce connected graphs at a higher

constraint-ratio at which SLS never returned a solution.
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Figure 6.6: Runtime on clustered problems with 30% tightness.

Summary

Useful information can be gained by examining the independent set and dangling tree struc-

ture of the constraint graph of a CSP instance. For example, lower bounds on the number of

solutions may be computed. Also, we argued that the independent-set decomposition has a

close relationship with the cycle-cutset decomposition, but results in stronger cutsets at the

cost of having larger cutsets. The runtime variance was found to be due primarily to the

stochastic nature of SLS. And INDSET was found to be beneficial on CSPs with clustered

graphs.
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Chapter 7

Recursive Decompositions

We noticed that the subproblem Ī identified by INDSET sometimes consists of more than

one connected component as shown in Figure 7.1. This observation lead to the idea of

I I

T

I’C

Figure 7.1: Dangling trees.

applying INDSET recursively on connected components of C. Below we introduce this

mechanism and a similar one that operates on maximal cliques. While both of these de-

compositions themselves appear to be interesting, we are as of yet unable to determine a

practical use for them. Further investigation may prove fruitful.
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7.1 Recursive INDSET

At first glance, the notion of applying INDSET recursively, which we denote RECINDSET,

appears as a promising one. We perform this decomposition by first finding an independent

set I in the constraint graph of a CSP, then removing I from the graph. The remaining

subgraph may contain a number of connected components. Figure 7.2 shows such a situa-

tion schematically, where we find an independent set I and the remaining graph has three

components A, B, and C.

I

A

B

C

Figure 7.2: First step.

I

Ia

Ib

Ic

Figure 7.3: Second step.

We then apply RECINDSET to each of the connected components A, B, and C, first

identifying, in each of them, a maximal independent set, as shown in Figure 7.3. We repeat

this process recursively, thus building a tree such as the one shown in Figure 7.4. The

I
Ia Ib Ic

Figure 7.4: RECINDSET tree.

stopping criterion is when no independent set with more than one vertex remains in the

graph, which occurs in the case of a clique. Each branching node in the resulting tree

‘contains’ the independent set found at a given step of RECINDSET, and each child node

contains a connected component remaining after removing the independent set from the

graph. The tree yields a partition of the set of variables of the CSP. The branching nodes
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are maximal independent sets and leaf nodes are cliques.

For example, Figure 7.5 shows an example of RECINDSET. The process proceeds from

5
4

7 8

210 3

5
4

6
7 8 9

21

5
4

Figure 7.5: RECINDSET example.

left to right in the figure. The leftmost graph shows the original. In each graph, vertices of

a maximal independent set are circled, which are removed from the graph immediately to

the right. This is repeated until we are left with a clique in the rightmost graph. Figure 7.6

shows the result by redrawing the original graph so that the clique is on the left. In this
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Figure 7.6: RECINDSET example result.

example, the RECINDSET tree has no branching.

We examined the possibility of using RECINDSET in the same way we used INDSET

in combination with local search. Intuitively, we could solve the decomposition tree at the

leaves, and propagate upward. Recall that in SLS/INDSET there is a kind of backtracking

as search moves from Ī to I. This same type of backtracking will occur as we perform

search on the RECINDSET tree from the leaves up. For every assignment of values to the

variables in the leaves, each level of the tree will have to propagate to all the levels above

it, starting with the deepest level. If any domain becomes annihilated in this process, then

the domains must be restored and another local-search move will begin. This processing
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overhead (quadratic in the depth of the tree) is too great to gain a performance increase from

this use of RECINDSET. Further investigation may uncover a way to utilize RECINDSET

in this manner.

We tested the possibility of using this tree to provide a (static) variable ordering for

backtrack search. First, we sort the set of variables at each RECINDSET tree node by

decreasing degree (breaking ties lexigraphically). We then build the variable ordering by

performing a post-order traversal of the tree. As we visit each node, we add the node’s

variables to the end of the variable ordering. As a result of this ordering, search first instan-

tiates the variables in the cliques, then works its way to variables in the first independent

set I. For the example of Figure 7.6, the order would be: {4, 5, 2, 7, 1, 8, 3, 6, 0, 9}. Note

that search, using forward checking, will be finished after considering variable 8 because

all of the constraints will have been considered.

We compared the performance of backtrack search with forward checking using this

variable ordering (BT/RECINDSET) to that of the same search mechanism using the static,

decreasing-degree ordering, which we denote BT. We conducted the tests on CSP instances

with 24 variables, 12 values, and varying constraint tightness and constraint ratio around

the region of the phase transition. We show the runtime cumulative-distributions for 30%

tightness at the phase transition, using 1000 problem instances for Model B problems (Fig-

ure 7.7) and clustered problems (Figure 7.8). These figures show that BT clearly outper-

forms BT/RECINDSET. The difference is more pronounced for clustered graphs. The poor

performance of BT/RECINDSET is likely due to the fact that the ordering resulting from

RECINDSET places all the variables of an independent set consecutively in the search tree.

Having strings of mutually non-adjacent variables in the ordering is likely to cause unnec-

essary thrashing. This problem, though obvious to us now, was not immediately clear to

us when first examining the potential benefits of RECINDSET. Also, further investigation

may reveal that other search techniques do benefit from this type of variable ordering.
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Figure 7.7: Recursive decompositions as variable orderings on Model B problems.
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Figure 7.8: Recursive decompositions as variable orderings on clustered problems.

7.2 Recursive decomposition using cliques

The above negative result led to the idea of applying the same recursive decomposition in a

complementary way. Instead of repeatedly finding and removing independent sets, we re-

peatedly find and remove cliques. We denote this decomposition as RECCLIQ. Figure 7.9

provides an example of RECCLIQ. The process proceeds from left to right in the figure. The

leftmost graph shows the original. In each graph, vertices of a maximal clique are circled,

which are removed from the graph immediately to the right. This is repeated until we are

left with an independent set in the rightmost graph. We obtain the cliques as a by-product of

CLIQUEREMOVAL of [Boppana and Halldórsson, 1990], which we used to identify max-
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Figure 7.9: RECCLIQ example.

imal independent sets. Some leaves of the tree from RECCLIQ contain independent sets,

and all the other nodes of the tree contain cliques. Also, the union of all the independent

sets in the leaves forms an independent set of the original graph. We obtain the variable or-

dering in the same manner as before, except by performing a pre-order traversal of the tree,

and then moving the independent set to the end of the ordering. As shown in Figure 7.7,

this ordering performed significantly better than the one obtained with RECINDSET, but

still did not perform as well as the simple, and widely used, decreasing-degree heuristic.

Finally, note that in BT/RECINDSET, after making an assignment to the cliques, the

remaining graph consists of interconnected independent sets (i.e., it is a k-partite graph).

An interesting area for future research is to determine whether solving bipartite (or, better,

k-partite) graphs can be efficiently done, or at least to design a strategy that heuristically

exploits such a topology during search.

Summary

In this chapter, we presented methods for recursive decomposition, one by applying IND-

SET recursively and a complementary decomposition by recursively extracting cliques.

Practical uses for these decompositions are yet to be found. We suggest that further investi-

gation may provide significant results if a method for solving k-partite CSPs is discovered.
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Chapter 8

Conclusions

Our results demonstrate that finding a large independent set in the constraint graph and

using it to decompose the CSP improves the performance of solving the CSP. An additional

benefit of our approach over other decomposition techniques is that it inherently provides

us with many solutions, at no extra cost beyond that incurred by the search process, and the

multiple solutions are represented in a compact form. We can gain further improvement by

identifying and extracting trees that dangle off the independent set. Additional information

can be reaped from these trees, such as estimating a lower bound on the number of solutions

obtained.

We provided analysis of INDSET and explored some new avenues for improving it.

We determined that runtime does not vary significantly due to changing between problems

with the same parameters. The use of clustered graphs revealed that INDSET is beneficial

not only for uniform random problems, but also for problems having clustered graphs. We

generalized the application of DANGLES. We can find dangles on any variable. Searching

for dangles before applying INDSET can be done efficiently and can only yield more dan-

gles. Furthermore, DANGLES can be applied to any search technique. Some other avenues

yielded negative results. Two applications of using recursive decomposition as a variable
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ordering for systematic search yielded results not as good as simple decreasing-degree or-

dering.

Future investigations include the following:

• Explore the use of INDSET on CSPs with non-binary constraints.

• A possible modification of SLS/INDSET for future investigation would be to move

the finding of the independent set inside the first for loop of Algorithm 2, which

would mean that a new independent set would be used for each restart.

• Evaluate the search techniques presented in this thesis on more types of problem in-

stances, such as real-world problems, other structured problems, or k-regular graphs.

• Compare the ‘percent solved’ curves (from local search) with the curve of actual

percentage of instances solvable, on small problems using a complete systematic

search. While it is infeasible to do make this comparison on large problems, it may

be interesting to see the comparison on small problems.

• Explore ways of counting the number of solutions in a tree-structured CSP, and/or

ways to represent the set of all solutions of a tree.

• Explore the possibility of increasing the robustness of a solution, regarding the vari-

ables in Ī (or C). The current technique leaves Ī with an inflexible solution. On a

related theme, it may be possible to ‘fatten up’ the domains of I in a solution during

search. At present, we stop as soon as we find the first set of solutions.

• INDSET is concerned with only the structure of the constraint graph. Perhaps addi-

tional similar structure can be found when the contents of the constraints are consid-

ered, such as finding independency in the micro-structure of the problem.

• Explore the possibilities of developing more sophisticated ways to integrate INDSET

with search techniques to provide further improvements.
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• Explore the tradeoff between stronger and weaker cutsets.

• Further investigations may likely reveal an dominance of the heuristic PrefRelax

on denser graphs. Also, heuristics for ordering the constraints may improve perfor-

mance of PrefRelax as well as Some.

• As we have shown, the improvement due to NI increases as we approach the re-

gion of the phase transition, hence this research direction may benefit from further

investigations.

• While both of the recursive decompositions (RECINDSET and RECCLIQ) appear to

be quite interesting in themselves, we are as of yet unable to determine a practical

use for them. Further investigation may prove fruitful. For example:

• We suggest future work to find search techniques that exploit a k-partite graph struc-

ture, which would be of great benefit in combination with RECINDSET.

This thesis has furthered the current progress in the field of constraint programming. We

have provided enhancements to solving techniques that reduce the cost of solving CSPs,

and, at the same time, return multiple solutions.
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Appendix A

BinaryCSP Class Index

These apendices provide a documentation for the C++ source code that was developed for

this thesis.

A.1 BinaryCSP Class List

Below are the classes, structs, unions and interfaces with brief descriptions. A full descrip-

tion of each is given in Appendix B at the page numbers shown on the right.

BinaryCSP (A binary CSP ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

BinaryCSP::Constraint (A binary constraint ) . . . . . . . . . . . . . . . . . . 101

BinaryCSP::Variable (A variable in the Binary CSP ) . . . . . . . . . . . . . . 103

Bundle (A bundle, i.e. a set of equivalent variable-value pairs ) . . . . . . . . . . 105

JDT (The Joint Discrimination Tree ) . . . . . . . . . . . . . . . . . . . . . . . 106

recDecNode (Node for RecIndSet tree (Recursive IndSet decomposition) ) . . . . 108

Var_Val (A variable-value pair ) . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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A.2 Directory Reference

Files

Below are the files with brief descriptions. Full documentation for the files is given in

Appendix C.

• file BinaryCSP.cpp

Binary CSP implementation.

• file BinaryCSP.h

A binary CSP.

• file JDT.cpp

Joint Discrimination Tree implementation.

• file JDT.h

A generic Joint Discrimination Tree.

• file main.h

General definitions.
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Appendix B

BinaryCSP Class Documentation

This appendix contains the documentation for all of the C++ classes developed in the im-

plementation for this thesis.

B.1 BinaryCSP Class Reference

A binary CSP.

#include <BinaryCSP.h>

Public Member Functions

• BinaryCSP (int num_vars)

Creates a CSP with specified number of variables and no constraints.

• BinaryCSP (unsigned int num_vars, unsigned int domain_size, float density, float

tightness)

Creates a random (model-b) CSP.
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• void generate_rand (unsigned int num_vars, unsigned int domain_size, float den-

sity, float tightness)

Creates a random (model-b) CSP.

• void generate_rand (unsigned int num_vars, unsigned int domain_size, unsigned int

num_constraints, float tightness)

Creates a random (model-b) CSP.

• void generate_clustered (unsigned int num_vars, unsigned int domain_size, un-

signed int num_constraints, float tightness, float p)

Creates a random clustered CSP.

• void generate_empty (int num_vars, int domain_size)

Creates a CSP with no constraints.

• bool generate_constraint (variable_t var1, variable_t var2, float tightness)

Attempts to create a new constraint between 2 vars.

• unsigned int get_num_vars () const

Returns number of variables in the CSP.

• unsigned int numConstraints () const

Returns number of constraints in the CSP.

• unsigned int degree (variable_t var) const
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Returns the number of constraints on a variable.

• unsigned int degree_exclude (variable_t var, const std::vector< variable_t > &exclude_-

list) const

Returns the number of constraints on a variable in a subgraph.

• template<typename T> void get_variables (T &result) const

Fills result with a list of all variables (i.e., 0 through N-1).

• void get_neighbors (const std::vector< variable_t > &S, std::vector< variable_t

> &result) const

Returns neighbors of a set of variables S.

• void get_neighbors (variable_t var, std::vector< variable_t > &result) const

Returns neighbors of a variable.

• void get_neighbors (variable_t var, const std::vector< variable_t > &S, std::vector<

variable_t > &result)

Returns neighbors of a variable intersected with set S.

• void get_non_neighbors (variable_t var, const std::vector< variable_t > &S, std::vector<

variable_t > &result)

Returns non-neighbors of a variable intersected with S.

• void get_domain (variable_t var, std::vector< value_t > &result) const
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Returns domain of a variable.

• void set_domain (variable_t var, const std::vector< value_t > &dom)

Replaces the domain of a variable.

• unsigned int get_domain_size (variable_t var) const

Returns a variable’s domain size.

• bool is_consistent (variable_t var1, value_t val1, variable_t var2, value_t val2)

const

Returns whether the given tuple is allowed.

• bool duplicateConstraints () const

Checks whether there is more than one constraint between any pair of variables.

• void removeTuple (variable_t var1, variable_t var2, value_t val1, value_t val2)

Causes the given tuple to be forbidden by the CSP.

• bool is_supported (variable_t var1, value_t val1, variable_t var2) const

Checks whether the val1 in var1 is supported by any value in var2.

• void inequality_constraint (variable_t var1, variable_t var2)

Adds mutex constraint between two variables.

• bool is_solution (const std::vector< value_t > &solution)
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Verifies a solution.

• int get_broken_constraints (const std::vector< value_t > &solution, std::vector<

VarPair > &result)

Returns constraints broken by the "solution".

• int numBrokenConstraints (const std::vector< value_t > &solution, variable_t

var)

Returns the number of broken constraints participated in by a specific variable.

• int numBrokenConstraints (const std::vector< value_t > &solution)

Returns the number of broken constraints given a "solution".

• int numBrokenConstraintsIS_countsome (const std::vector< value_t > &solu-

tion, const std::vector< variable_t > &independent_set, const std::vector< variable_-

t > &vertex_cover)

Returns the number of broken constraints using heuristic SOME.

• int numBrokenConstraintsIS_countall (const std::vector< value_t > &solution,

const std::vector< variable_t > &independent_set, const std::vector< variable_t >

&vertex_cover)

Returns the number of broken constraints using heuristic ALL.

• int numBrokenConstraintsIS_PrefRelax (const std::vector< value_t > &solution,

const std::vector< variable_t > &independent_set, const std::vector< variable_t >

&vertex_cover)
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Returns the number of broken constraints using heuristic PrefRelax.

• int numBrokenConstraintsIS_ignore (const std::vector< value_t > &solution, const

std::vector< variable_t > &independent_set, const std::vector< variable_t > &vertex_-

cover)

Returns the number of broken constraints using heuristic NONE.

• void tree (const std::vector< variable_t > &cycle_cutset, const std::vector< variable_-

t > &tree_vars, const std::vector< value_t > &partial)

Tree algorithm described in Dechter’s book.

• void sort_tree_vars (std::vector< variable_t > &tree_vars)

Helper function for tree()(p. 83).

• int solveFC (std::vector< value_t > &solution, bool count_solutions=false)

Solves the CSP using Forward Checking (FC).

• int solveFC (const std::vector< variable_t > &order, std::vector< value_t > &o_-

solution, bool count_solutions=false)

Solves the CSP using Forward Checking (FC) with static variable ordering.

• int solveFC_DynamicOrder (std::vector< value_t > &solution, bool count_solutions=false)

Solves the CSP using Forward Checking (FC) with dynamic variable ordering.
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• int solveFC_IS (const std::vector< variable_t > &order, int count, std::vector<

value_t > &o_solution, bool count_solutions=false)

Solves the CSP using Forward Checking and IndSet.

• int solveWalkSAT (std::vector< value_t > &solution)

Solve the CSP using WalkSAT (Min-conflict random walk).

• bool solveSLS (std::vector< value_t > &solution, double fMaxTime, unsigned int

&o_nFlips)

Solve the CSP using SLS.

• int solveWalkSatIS (const std::vector< variable_t > &independent_set, std::vector<

list< value_t > > &solution) const

Solve the CSP using SLS/IndSet.

• bool solveSLS_IS_dangles (int(BinaryCSP::∗numBroken)(const std::vector< value_-

t > &solution, const std::vector< variable_t > &independent_set, const std::vector<

variable_t > &vertex_cover), const std::vector< variable_t > &cutset, const std::vector<

variable_t > &independent_set, std::vector< list< value_t > > &solution, double

fMaxTime, unsigned int &o_nFlips, unsigned int &o_nRestarts)

Solve CSP using SLS/IndSet+Dangles.

• void get_independent_set_Ramsey (const std::vector< variable_t > &G, std::vector<

variable_t > &result, std::vector< variable_t > &clique)

Obtains an independent set from the subgraph G using the Ramsey algorithm.
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• void getIndependentSet_CliqueRemoval (const std::vector< variable_t > &G,

std::vector< variable_t > &result)

Obtains an independent set from the subgraph G using CliqueRemoval.

• void getClique_IndependentSetRemoval (const std::vector< variable_t > &G,

std::vector< variable_t > &result)

Obtains a clique from subgraph G using IndependentSetRemoval algorithm.

• bool isIndependentSet (const std::vector< variable_t > &S)

Determines whether S is an independent set in the constraint graph.

• unsigned int expandSolution (const std::vector< variable_t > &independent_set,

const std::vector< variable_t > &vertex_cover, const std::vector< value_t > &partial_-

solution, std::vector< list< value_t > > &solution) const

Expands a partial solution on I-bar to the variables in I.

• bool getSubproblem (const std::vector< variable_t > &S, BinaryCSP &result)

const

Obtains the sub-problem induced by the subgraph S.

• void getSubproblem (const std::vector< variable_t > &S, const std::vector< value_-

t > &solution, BinaryCSP &result)

Obtains the sub-problem induced by the subgraph S.



86

• int freedom (variable_t var, const std::vector< value_t > &solution)

Returns number of values in the variable that are consistent with the rest of the solution.

• void print ()

Outputs the CSP to standard out.

• void printshort ()

Outputs the CSP to standard out without listing the constraint tuples.

• bool getTree (variable_t var1, variable_t var2, std::vector< variable_t > &re-

sult)

Returns a tree containing var2 and dangling off var1.

• void getDanglingTrees (variable_t var, std::vector< variable_t > &result)

Get set of variables consisting of subtrees "dangling off" var.

• void getDangles (const std::vector< variable_t > &ind_set, std::vector< variable_t

> &o_cutset, std::vector< variable_t > &o_Iprime)

Returns the variables dangling off ind_set.

• void getDangles (std::vector< variable_t > &result)

Returns the dangles in entire graph.

• void sortDecreasingDegree (std::vector< variable_t > &varlist)

Sorts variables in order of decreasing degree.
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• void getCycleCutset_DecreasingOrder (std::vector< variable_t > &result)

Finds a cycle cutset using decreasing-degree heuristic.

• void getCycleCutset_DecreasingOrder_checkParticipate (std::vector< variable_-

t > &result)

Finds a cycle cutset, checking whether a var participates in a cycle.

• void getCycleCutset_RemoveMostCycles (std::vector< variable_t > &result)

Finds a cycle-cutset by repeatedly removing the variable that participates in the most

cycles.

• void getCycleCutset_ISMethod (std::vector< variable_t > &result)

Finds a cycle-cutset by finding an Independent Set.

• void getComponent (variable_t var, std::vector< variable_t > &result)

Returns the component of the graph containing the variable.

• void getComponent_exclude (variable_t var, std::vector< variable_t > &result,

const std::vector< variable_t > &exclude_list)

Returns the component containing the variable, in the subgraph induced by removing the

exclude_list.

• void getComponent_subgraph (variable_t var, std::vector< variable_t > &result,

const std::vector< variable_t > &subgraph)
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Returns the component containing the variable, in the induced subgraph.

• int getComponents_subgraph (const std::vector< variable_t > &subgraph, std::vector<

std::vector< variable_t > > &result)

Returns all components in the induced subgraph.

• unsigned int nComponents ()

Returns the number of components in the graph.

• unsigned int nComponents_exclude (const std::vector< variable_t > &exclude_-

list)

Returns the number of components in the subgraph induced by removing exclude_list.

• bool bParticipatesInACycle (variable_t var)

Does var participate in any cycle.

• bool bParticipatesInACycle_exclude (variable_t var, const std::vector< variable_-

t > &exclude_list)

Does var participate in any cycle in the subgraph induced by removing exclude_list.

• unsigned int nCyclesParticipated (variable_t var)

Returns number of cycles containing var.

• bool isAcyclic_exclude (const std::vector< variable_t > &exclude_list)

is the graph (excluding the vars in the exclude list) acyclic
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• bool isConnected ()

is the graph connected

• unsigned int nEdges (const std::vector< variable_t > &varlist)

Returns the number of edges in the subgraph varlist.

• const BinaryCSP::Constraint ∗ getConstraintBetween (variable_t var1, variable_-

t var2)

Returns a pointer to the constraint between var1 and var2 (if one exists).

• bool Revise (variable_t var1, variable_t var2)

reduces the domain of var1, removing values not supported by var2

• bool AC3 ()

Enforce arc consistency.

• void save (string outputfile)

Write the CSP to a file.

• bool load (string inputfile)

Write a CSP from a file.

• void loadChineese (string inputfile, unsigned int nVars, unsigned int domainsize,

unsigned int nConstraints, unsigned int nNogoods)
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Loads a Chineese problem.

• void loadChineeseConstraint (istream &fin, unsigned int nNogoods, unsigned int

nValues)

Loads a constraint from a Chineese problem.

• void loadChineeseTuple (istream &fin, BinaryCSP::Constraint &C)

Loads a constraint tuple from a Chineese problem.

• void adjustForBundling (const std::vector< variable_t > &cutset, std::vector<

variable_t > &independent_set, unsigned int &o_vars_eliminated, unsigned int &o_-

num_bundles, float &o_ave_bundle_size)

Optimizes the CSP using static bundling with the independent set.

• void recursiveDecompose (const std::vector< variable_t > &subgraph, recDec-

Node &node)

Performs RecIndSet and returns the tree through the argument node.

• int sortRecDec (std::vector< variable_t > &result)

Obtains RecIndSet variable ordering.

• void recursiveCliqueDecompose (const std::vector< variable_t > &subgraph, rec-

DecNode &node)

Obtains RecCliq decomposition.
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• int sortCliqueRecDec (std::vector< variable_t > &varlist)

Obtains RecCliq variable ordering.

Classes

• struct Constraint

A binary constraint.

• struct Variable

A variable in the Binary CSP.

B.1.1 Detailed Description

A binary CSP.

In order to minimize memory storage, each constraint is stored in the first of the two

variables, lexicographically

Difference between Variable(p. 103) and variable_t

Definition at line 183 of file BinaryCSP.h.

B.1.2 Member Function Documentation

B.1.2.1 void BinaryCSP::adjustForBundling (const std::vector< variable_t

> & cutset, std::vector< variable_t > & independent_set, unsigned

int & o_vars_eliminated, unsigned int & o_num_bundles, float &

o_ave_bundle_size)

Optimizes the CSP using static bundling with the independent set.
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NOTE: may adjust the independent set

Definition at line 3795 of file BinaryCSP.cpp.

References JDT::build(), get_domain_size(), and JDT::getBundles().

B.1.2.2 unsigned int BinaryCSP::degree_exclude (variable_t var, const std::vector<

variable_t > & exclude_list) const

Returns the number of constraints on a variable in a subgraph.

Does not count the constraints with variables contained in the exclude list.

Definition at line 500 of file BinaryCSP.cpp.

References degree().

Referenced by bParticipatesInACycle_exclude().

B.1.2.3 unsigned int BinaryCSP::expandSolution (const std::vector< variable_t >

& independent_set, const std::vector< variable_t > & vertex_cover, const

std::vector< value_t > & partial_solution, std::vector< list< value_t > > &

solution) const

Expands a partial solution on I-bar to the variables in I.

Precondition:

• independent_set is an independent set of the CSP

• partial_solution is a std::vector of length equal to the number of variables in the CSP,

with a value for each variable not in the independent set. These values must be

consistent.

Postcondition: result will be filled with an expanded solution giving all the possibilities

for the variables inside the independent set

Definition at line 2501 of file BinaryCSP.cpp.
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References get_neighbors(), and is_consistent().

Referenced by solveWalkSatIS().

B.1.2.4 int BinaryCSP::freedom (variable_t var, const std::vector< value_t > &

solution)

Returns number of values in the variable that are consistent with the rest of the solution.

i.e., given a solution, if we vary the variable var, how many values don’t conflict with

the rest of the solution

Definition at line 2397 of file BinaryCSP.cpp.

References is_consistent().

B.1.2.5 bool BinaryCSP::generate_constraint (variable_t var1, variable_t var2,

float tightness)

Attempts to create a new constraint between 2 vars.

Constraint(p. 101) created with specified tightness

Returns false on failure. Will fail if a constraint between the vars already exists.

Definition at line 116 of file BinaryCSP.cpp.

References BinaryCSP::Constraint::tuples, and BinaryCSP::Constraint::var.

Referenced by generate_clustered().

B.1.2.6 void BinaryCSP::get_independent_set_Ramsey (const std::vector<

variable_t > & G, std::vector< variable_t > & result, std::vector<

variable_t > & clique)

Obtains an independent set from the subgraph G using the Ramsey algorithm.

Returns the set in result.

Definition at line 2844 of file BinaryCSP.cpp.
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References get_neighbors(), and get_non_neighbors().

Referenced by getClique_IndependentSetRemoval(), and getIndependentSet_Clique-

Removal().

B.1.2.7 void BinaryCSP::getComponent_exclude (variable_t var, std::vector<

variable_t > & result, const std::vector< variable_t > & exclude_list)

Returns the component containing the variable, in the subgraph induced by removing the

exclude_list.

exclude_list must not contain var

Definition at line 3001 of file BinaryCSP.cpp.

References get_neighbors().

Referenced by getComponent_subgraph(), isAcyclic_exclude(), and nComponents_-

exclude().

B.1.2.8 void BinaryCSP::getComponent_subgraph (variable_t var, std::vector<

variable_t > & result, const std::vector< variable_t > & subgraph)

Returns the component containing the variable, in the induced subgraph.

exclude_list must contain var

Definition at line 3042 of file BinaryCSP.cpp.

References get_variables(), and getComponent_exclude().

Referenced by getComponents_subgraph().

B.1.2.9 void BinaryCSP::getDangles (const std::vector< variable_t > & ind_set,

std::vector< variable_t > & o_cutset, std::vector< variable_t > &

o_Iprime)

Returns the variables dangling off ind_set.
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Input: ind_set - an independent set Output: o_cutset - the resulting cutset minus the

dangles o_Iprime - the resulting independent set minus the dangles

Definition at line 1307 of file BinaryCSP.cpp.

References get_neighbors(), get_variables(), and getDanglingTrees().

B.1.2.10 void BinaryCSP::getSubproblem (const std::vector< variable_t > & S,

const std::vector< value_t > & solution, BinaryCSP & result)

Obtains the sub-problem induced by the subgraph S.

Precondition, 1) solution is a valid solution of this CSP, 2) S is a subset of the variables

of this CSP

Postcondition: result is the subproblem containing the variables in S, with values and

constraints modified by the restriction that the resulting CSP is allowed only those solutions

that do not conflict with the other variables (not in S) in this original CSP with the given

solution.

Definition at line 2658 of file BinaryCSP.cpp.

References is_consistent(), and vars.

B.1.2.11 bool BinaryCSP::getSubproblem (const std::vector< variable_t > & S,

BinaryCSP & result) const

Obtains the sub-problem induced by the subgraph S.

Precondition: S is a subset of the variables of this CSP

Postcondition: result is the subproblem containing the variables in S, NOTE that the

variables are renumbered. If S = {7, 3, 19} then they will be variables {1, 2, 3}, respec-

tively, in the resulting sub-problem. Returns false if any variable’s domain is annihilated.

Definition at line 2564 of file BinaryCSP.cpp.

References get_variables(), is_supported(), and vars.
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Referenced by solveWalkSatIS().

B.1.2.12 bool BinaryCSP::getTree (variable_t var1, variable_t var2, std::vector<

variable_t > & result)

Returns a tree containing var2 and dangling off var1.

Input: two adjacent variables var1 and var2.

Output: if the removal of var1 from the graph leaves var2 in a component which is a

tree, then result returns the set of variables in that tree and getTree returns true. Otherwise,

getTree returns false. this function is used to detect trees that are "dangling" off var1.

Definition at line 571 of file BinaryCSP.cpp.

References get_neighbors().

Referenced by getDanglingTrees().

B.1.2.13 int BinaryCSP::numBrokenConstraintsIS_ignore (const std::vector<

value_t > & solution, const std::vector< variable_t > & independent_set,

const std::vector< variable_t > & vertex_cover)

Returns the number of broken constraints using heuristic NONE.

Ignores constraints between I and I-bar

Definition at line 713 of file BinaryCSP.cpp.

References is_consistent(), and BinaryCSP::Constraint::var.

B.1.2.14 int BinaryCSP::numBrokenConstraintsIS_PrefRelax (const std::vector<

value_t > & solution, const std::vector< variable_t > & independent_set,

const std::vector< variable_t > & vertex_cover)

Returns the number of broken constraints using heuristic PrefRelax.
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Uses the prefered relaxation (using lexicographic order) according to paper by Ulrich

Junker(2004).

Definition at line 845 of file BinaryCSP.cpp.

References is_consistent(), and BinaryCSP::Constraint::var.

B.1.2.15 bool BinaryCSP::Revise (variable_t var1, variable_t var2)

reduces the domain of var1, removing values not supported by var2

used for arc-consistency.

Definition at line 3390 of file BinaryCSP.cpp.

References is_supported().

Referenced by AC3().

B.1.2.16 int BinaryCSP::solveFC (const std::vector< variable_t > & order,

std::vector< value_t > & o_solution, bool count_solutions = false)

Solves the CSP using Forward Checking (FC) with static variable ordering.

Returns solution through the parameter solution. If count_solutions is false, return value

true: solved, false: no solution. If count_solutions is true, return value indicates number of

solutions to the CSP

Definition at line 2149 of file BinaryCSP.cpp.

References is_consistent().

B.1.2.17 int BinaryCSP::solveFC (std::vector< value_t > & solution, bool

count_solutions = false)

Solves the CSP using Forward Checking (FC).

Returns solution through the parameter solution. If count_solutions is false, return value

true: solved, false: no solution. If count_solutions is true, return value indicates number of
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solutions to the CSP

Definition at line 1853 of file BinaryCSP.cpp.

References is_consistent().

B.1.2.18 int BinaryCSP::solveFC_DynamicOrder (std::vector< value_t > &

solution, bool count_solutions = false)

Solves the CSP using Forward Checking (FC) with dynamic variable ordering.

Returns solution through the parameter solution. If count_solutions is false, return value

true: solved, false: no solution. If count_solutions is true, return value indicates number of

solutions to the CSP

Definition at line 1995 of file BinaryCSP.cpp.

References DegreeGreater(), get_variables(), and is_consistent().

Referenced by testChineeseData().

B.1.2.19 int BinaryCSP::solveFC_IS (const std::vector< variable_t > & order, int

count, std::vector< value_t > & o_solution, bool count_solutions = false)

Solves the CSP using Forward Checking and IndSet.

count is the number of variables to consider (excludes the independent set)

Definition at line 2275 of file BinaryCSP.cpp.

References is_consistent().
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B.1.2.20 bool BinaryCSP::solveSLS_IS_dangles (int(BinaryCSP::∗)(const

std::vector< value_t > &solution, const std::vector< variable_t >

&independent_set, const std::vector< variable_t > &vertex_cover)

numBroken, const std::vector< variable_t > & cutset, const std::vector<

variable_t > & independent_set, std::vector< list< value_t > > & solution,

double fMaxTime, unsigned int & o_nFlips, unsigned int & o_nRestarts)

Solve CSP using SLS/IndSet+Dangles.

numBroken is a pointer to a function that implements a heuristic, returning the number

of broken constraints (e.g., SOME, ALL, NONE).

B.1.2.21 int BinaryCSP::solveWalkSatIS (const std::vector< variable_t > &

independent_set, std::vector< list< value_t > > & solution) const

Solve the CSP using SLS/IndSet.

solution here is a std::vector. each element of the std::vector corresponds to a variable.

The vector for that variable is a subset of the domain of that variable. The cartisian product

of all these vectors forms a set of solutions to the CSP.

Definition at line 1661 of file BinaryCSP.cpp.

References expandSolution(), get_broken_constraints(), get_variables(), getSubproblem(),

and vars.

B.1.2.22 int BinaryCSP::sortRecDec (std::vector< variable_t > & result)

Obtains RecIndSet variable ordering.

Returns size of the topmost independent set.

Definition at line 3965 of file BinaryCSP.cpp.

References recDecNode::bLeaf, recDecNode::children, recursiveDecompose(), sortDecreasing-

Degree(), recDecNode::user, and recDecNode::vars.



100

The documentation for this class was generated from the following files:

• Desktop/BinaryCSP/BinaryCSP.h

• Desktop/BinaryCSP/BinaryCSP.cpp
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B.2 BinaryCSP::Constraint Struct Reference

A binary constraint.

#include <BinaryCSP.h>

Public Member Functions

• bool is_satisfied (int val1, int val2) const

Returns whether the constraint is specified by the given tuple.

• void removeTuple (value_t val1, value_t val2)

Removes a tuple from the constraint.

Friends

• std::ostream & operator<< (std::ostream &, const Constraint &)

Serializes the constraint to an output stream.

• std::istream & operator>> (std::istream &, Constraint &)

Reads a constraint from an input stream.

B.2.1 Detailed Description

A binary constraint.

Lists allowed tuples.
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The first variable is the one that contains this constraint. The second variable is the one

referenced by this structure.

Definition at line 233 of file BinaryCSP.h.

B.2.2 Member Function Documentation

B.2.2.1 bool BinaryCSP::Constraint::is_satisfied (int val1, int val2) const

[inline]

Returns whether the constraint is specified by the given tuple.

Note that the order of the tuple is important!

Definition at line 241 of file BinaryCSP.h.

B.2.2.2 void BinaryCSP::Constraint::removeTuple (value_t val1, value_t val2)

[inline]

Removes a tuple from the constraint.

Note that the order of the tuple is important!

Definition at line 256 of file BinaryCSP.h.

Referenced by BinaryCSP::removeTuple(), and BinaryCSP::Variable::removeTuple().

The documentation for this struct was generated from the following file:

• Desktop/BinaryCSP/BinaryCSP.h
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B.3 BinaryCSP::Variable Struct Reference

A variable in the Binary CSP.

#include <BinaryCSP.h>

Public Member Functions

• BinaryCSP::Constraint ∗ hasConstraintWith (variable_t var)

Returns whether this variable contains a constraint with a given variable.

• bool hasConstraintWith (variable_t var) const

Returns whether this variable contains a constraint with a given variable.

• void removeTuple (variable_t var2, value_t val1, value_t val2)

Removes a tuple from a constraint (if it exists).

Friends

• std::ostream & operator<< (std::ostream &, const Variable &)

Serializes the variable to an output stream.

• std::istream & operator>> (std::istream &, Variable &)

Reads a variable from an input stream.
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B.3.1 Detailed Description

A variable in the Binary CSP.

This variable is implicitly considered to be the first variable in each of the constraints it

contains.

Definition at line 269 of file BinaryCSP.h.

B.3.2 Member Function Documentation

B.3.2.1 bool BinaryCSP::Variable::hasConstraintWith (variable_t var) const

[inline]

Returns whether this variable contains a constraint with a given variable.

NOTE: Since constraints are only stored with the lower numbered variable, this func-

tion only checks variables with higher indices. Thus: var1.has_constraint_with(var2) should

only be called if var1 is before var2 in the CSP list.

Definition at line 297 of file BinaryCSP.h.

B.3.2.2 BinaryCSP::Constraint∗ BinaryCSP::Variable::hasConstraintWith

(variable_t var) [inline]

Returns whether this variable contains a constraint with a given variable.

NOTE: Since constraints are only stored with the lower numbered variable, this func-

tion only checks variables with higher indices. Thus: var1.has_constraint_with(var2) should

only be called if var1 is before var2 in the CSP list.

Definition at line 280 of file BinaryCSP.h.

Referenced by removeTuple().

The documentation for this struct was generated from the following file:

• Desktop/BinaryCSP/BinaryCSP.h
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B.4 Bundle Struct Reference

A bundle, i.e. a set of equivalent variable-value pairs.

#include <JDT.h>

Public Attributes

• vector< Var_Val > contents

The equivalent pairs.

• unsigned int depth

The number of (neighbor) var-val pairs the bundle is consistent with.

B.4.1 Detailed Description

A bundle, i.e. a set of equivalent variable-value pairs.

Definition at line 20 of file JDT.h.

The documentation for this struct was generated from the following file:

• Desktop/BinaryCSP/JDT.h
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B.5 JDT Class Reference

The Joint Discrimination Tree.

#include <JDT.h>

Public Member Functions

• void build (const vector< variable_t > &S)

Builds the JDT with respect to set S.

• void build (const vector< variable_t > &S, const vector< variable_t > &neigh-

bors)

Builds the JDT for S, using a restricted neighborhood.

• int get_num_bundles (variable_t var)

Returns number of bundles found in the domain of a given variable.

• void print ()

Prints the JDT to standard out.

• void getBundles (vector< Bundle > &o_result)

Obtains a vector of all the bundles found.

B.5.1 Detailed Description

The Joint Discrimination Tree.

Definition at line 60 of file JDT.h.
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B.5.2 Member Function Documentation

B.5.2.1 void JDT::build (const vector< variable_t > & S)

Builds the JDT with respect to set S.

i.e., find bundles in the variables in S, with respect to the neighbors of S, ignoring the

constraints inside S

Definition at line 18 of file JDT.cpp.

References get_domain(), get_neighbors(), is_consistent(), Var_Val::val, and Var_Val::var.

Referenced by BinaryCSP::adjustForBundling().

B.5.2.2 int JDT::get_num_bundles (variable_t var)

Returns number of bundles found in the domain of a given variable.

This function is defined only after the JDT has been built The return value is undefined

before building a JDT. var must be a variable in the set S.

Definition at line 211 of file JDT.cpp.

The documentation for this class was generated from the following files:

• Desktop/BinaryCSP/JDT.h

• Desktop/BinaryCSP/JDT.cpp
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B.6 recDecNode Struct Reference

Node for RecIndSet tree (Recursive IndSet decomposition).

B.6.1 Detailed Description

Node for RecIndSet tree (Recursive IndSet decomposition).

This struct is for internal use only

Definition at line 71 of file BinaryCSP.cpp.

The documentation for this struct was generated from the following file:

• Desktop/BinaryCSP/BinaryCSP.cpp
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B.7 Var_Val Struct Reference

A variable-value pair.

#include <JDT.h>

B.7.1 Detailed Description

A variable-value pair.

Definition at line 13 of file JDT.h.

The documentation for this struct was generated from the following file:

• Desktop/BinaryCSP/JDT.h
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Appendix C

BinaryCSP File Documentation

This appendix contains documentation for the C++ source files for the implementation for

this thesis.

C.1 Desktop/BinaryCSP/BinaryCSP.cpp File Reference

Binary CSP implementation.

#include <ctime>

#include <cmath>

#include <iostream>

#include <cassert>

#include <algorithm>

#include <fstream>

#include <deque>

#include "main.h"

#include "BinaryCSP.h"

#include <windows.h>

#include "JDT.h"
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Namespaces

• namespace std

Defines

• #define IS_WINDOWS 1

Change this define to 0 for compiling under UNIX and 1 for Windows.

Functions

• DegreeGreater_t DegreeGreater (const BinaryCSP &csp)

A function object for comparing variables by their degree.

• DegreeGreater_t DegreeGreater (const BinaryCSP &csp, const vector< variable_t

> &excl)

A function object for comparing variables by their degree.

• void get_neighbors (const vector< variable_t > &S, vector< variable_t > &re-

sult)

Obtains the neighbors of a set of nodes in the graph.

• void get_domain (variable_t var, vector< value_t > &result)

Obtains the domain of a variable.

• bool is_consistent (variable_t var1, value_t val1, variable_t var2, value_t val2)
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Performs a binary constraint check.

• void testChineeseData (int argc, char ∗∗argv)

Tests search algorithm with chineese data sets.

• void save_set (const char ∗filename, const vector< variable_t > &set)

Saves a set of variables to a file.

• void load_set (const char ∗filename, vector< variable_t > &o_set)

Loads a set of variables from a file.

• void find_min_max_IS ()

Repeatedly finds random independent sets, recording the largest and smallest sets found.

C.1.1 Detailed Description

Binary CSP implementation.

Author: Joel Gompert 2003-2005

Definition in file BinaryCSP.cpp.

C.1.2 Function Documentation

C.1.2.1 void get_domain (variable_t var, vector< value_t > & result)

Obtains the domain of a variable.

Returns the result in the argument: result Define this function for a particular CSP in

order for other classes to interface with it.



113

Definition at line 2798 of file BinaryCSP.cpp.

References BinaryCSP::get_domain().

Referenced by JDT::build().

C.1.2.2 void get_neighbors (const vector< variable_t > & S, vector< variable_t >

& result)

Obtains the neighbors of a set of nodes in the graph.

Returns the result in the argument: result Define this function for a particular CSP in

order for other classes to interface with it.

Definition at line 2793 of file BinaryCSP.cpp.

References BinaryCSP::get_neighbors().

Referenced by JDT::build().

C.1.2.3 bool is_consistent (variable_t var1, value_t val1, variable_t var2, value_t

val2)

Performs a binary constraint check.

Returns the result in the argument: result Define this function for a particular CSP in

order for other classes to interface with it.

Definition at line 2803 of file BinaryCSP.cpp.

References BinaryCSP::is_consistent().

Referenced by JDT::build().
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C.2 Desktop/BinaryCSP/BinaryCSP.h File Reference

A binary CSP.

#include <vector>

#include <list>

#include <string>

#include <ostream>

#include <iterator>

#include <algorithm>

Typedefs

• typedef std::pair< value_t, value_t > Tuple

A constraint tuple.

• typedef std::pair< variable_t, variable_t > VarPair

A pair of variables.

Functions

• template<typename T> void append (std::vector< T > &S1, const std::vector< T

> &S2)

Modifies S1, adding the contents of S2 to the end of S1.

• std::ostream & operator<< (std::ostream &fout, const BinaryCSP::Constraint &C)

Serializes the constraint to an output stream.
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• std::istream & operator>> (std::istream &fin, BinaryCSP::Constraint &C)

Reads a constraint from an input stream.

• std::ostream & operator<< (std::ostream &fout, const BinaryCSP::Variable &V)

Serializes the variable to an output stream.

• std::istream & operator>> (std::istream &fin, BinaryCSP::Variable &V)

Reads a variable from an input stream.

C.2.1 Detailed Description

A binary CSP.

Author: Joel Gompert 2003-2005

Definition in file BinaryCSP.h.
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C.3 Desktop/BinaryCSP/main.h File Reference

General definitions.

#include <vector>

Typedefs

• typedef unsigned int variable_t

A handle ’pointing’ to a variable.

• typedef unsigned int value_t

The value type for the variable domains.

Functions

• void get_neighbors (const vector< variable_t > &S, vector< variable_t > &re-

sult)

Obtains the neighbors of a set of nodes in the graph.

• void get_domain (variable_t var, vector< value_t > &result)

Obtains the domain of a variable.

• bool is_consistent (variable_t var1, value_t val1, variable_t var2, value_t val2)

Performs a binary constraint check.
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C.3.1 Detailed Description

General definitions.

Author: Joel Gompert 2003-2005

Definition in file main.h.

C.3.2 Typedef Documentation

C.3.2.1 typedef unsigned int variable_t

A handle ’pointing’ to a variable.

This is to be distinguished from a BinaryCSP::Variable(p. 103) The implementation

may treat variable_t as an index into the array of varaibles

Definition at line 16 of file main.h.

C.3.3 Function Documentation

C.3.3.1 void get_domain (variable_t var, vector< value_t > & result)

Obtains the domain of a variable.

Returns the result in the argument: result Define this function for a particular CSP in

order for other classes to interface with it.

Definition at line 2798 of file BinaryCSP.cpp.

References BinaryCSP::get_domain().

Referenced by JDT::build().

C.3.3.2 void get_neighbors (const vector< variable_t > & S, vector< variable_t >

& result)

Obtains the neighbors of a set of nodes in the graph.
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Returns the result in the argument: result Define this function for a particular CSP in

order for other classes to interface with it.

Definition at line 2793 of file BinaryCSP.cpp.

References BinaryCSP::get_neighbors().

Referenced by JDT::build().

C.3.3.3 bool is_consistent (variable_t var1, value_t val1, variable_t var2, value_t

val2)

Performs a binary constraint check.

Returns the result in the argument: result Define this function for a particular CSP in

order for other classes to interface with it.

Definition at line 2803 of file BinaryCSP.cpp.

References BinaryCSP::is_consistent().

Referenced by JDT::build().
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