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An AI planning problem is one in which an agent capable of perceiving certain

states and of performing some actions finds itself in a world, needing to achieve certain

goals. A solution to a planning problem is an ordered sequence of actions that, when

carried out, will achieve the desired goals.

Constraint satisfaction is a general method of problem formulation in which the

goal is to find values for variables such that these values do not violate any constraints

that hold between the variables. This problem formulation can be used to solve many

problems in artificial intelligence, computer science, and engineering.

In this thesis, we study a particular formulation of AI planning problems as con-

straint satisfaction problems. Using this formulation, we study the utility of dynamic

neighborhood partial interchangeability, but find that it is not applicable. We use tree

decomposition to justify the choice of static variable orderings with forward check-

ing. We also show the effectiveness of maintaining arc consistency (MAC) in solving

AI planning problems so formulated. In addition, we present an improvement to

the MAC algorithm that is not described in the CSP literature. The improvement

to MAC uses no special properties of AI planning problems, so we expect that this

improvement will prove fruitful in the context of solving general CSPs.
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Chapter 1

Introduction

Much of the framework used to model and solve AI planning problems can be traced

to the STRIPS solver [9]. This program was created for use with a mobile robot, in

order to help it with tasks like navigation and rearranging objects in the world. Like

the planner discussed in this thesis, STRIPS worked with planning problems that

represented the initial conditions and the goal conditions as conjunctions of facts,

while actions were represented by listing the preconditions and effects of each action.

The preconditions of an action are simply the facts that must be true before an action

can be applied, while the effects of an action are simply the collection of facts whose

truth is changed by the application of an action. The influence of STRIPS on AI

planning can be seen in the problem description syntax used by modern planners.

Problems are still described by listing the initial conditions, the goals conditions and

schema for available actions in terms of preconditions and effects.

There are many approaches that can be taken to solving AI planning problems. In

this thesis we concentrate on a formulation of such problems as Constraint Satisfaction

Problems. Constraint Satisfaction [15] is used to model and solve various problems in

computer science, engineering, database, and management. Scheduling and resource
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allocation problems are commonly solved using Constraint Satisfaction techniques.

After presenting a method of formulating AI planning problems as a CSP, we

turn our attention to examining the applicability and effectiveness of various CSP

techniques to this class of problems. In particular, we investigate variable ordering

in chapter 3, Dynamic Neighborhood Partial Interchangeability in chapter 4, CSP

decomposition in chapter 5, and Maintaining Arc Consistency in chapter 6.

1.1 Questions addressed

In this thesis, we address the following questions:

1. Are CSP techniques suitable for solving AI planning problems?

Answer: As discussed in [8] and further explored here, these techniques are

quite effective.

2. Is Dynamic Neighborhood Partial Interchangeability (DNPI) effective in the

context of CSP formulations of AI planning problems?

Answer: No, when formulated as a CSP as in [8], AI planning problems do not

exhibit the structure required by DNPI. This is a consequence of the enumera-

tion of objects required by planning description languages.

3. Is there an effective conjunctive decomposition for planning problems formu-

lated as CSPs?

Answer: No, planning graphs are too dense, in that a single planning graph con-

tains solutions to many problems. Hence any subproblem that does not include

the goal information will discover many, many partial solutions to problems

that we are not trying to solve.
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4. Is Maintaining Arc Consistency (MAC) [20] an effective algorithm for finding

solutions to CSP formulations of AI planning problems?

Answer: Yes, MAC seems to perform quite well on the tested planning problems.

5. How does MAC perform with various variable orderings?

Answer: While Forward Checking quickly gets lost if solution extraction doesn’t

begin at the goal level, MAC is able to perform well with other variable order-

ings, including ones that do not begin at the goal level. In fact, certain dynamic

ordering strategies give the best performance on tested problems.

1.2 Summary of contributions

Our contributions are as follows:

1. In the course of automatic conversion of the planning graph created by Graph-

Plan into a CSP, a variable pruning method was discovered. This allows us to

detect certain dual-valued variables that can have no impact on the planning

problem. These variables can be reduced to a single value and their constraints

can safely be ignored. These variables then correspond to facts that can never

be negated, and these are the sorts of facts that often express typing informa-

tion. For example, the precondition for an action which loads a package into

a truck should require that the thing being loaded actually be a package. This

is generally encoded by creating a fact for each box that explicitly labels it of

type package. These kinds of facts are never negated, and these are the CSP

variables that we are able to prune.

2. We have shown the ineffectiveness of DNPI in the context of AI planning prob-

lems. This is a consequence of the formalisms used to express such problems
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and the CSP encoding that we have used. This cannot be resolved without

finding a new formalism, adding an extra layer of abstraction, or possibly by

finding a different CSP encoding of planning problems.

3. The CSP literature provides no clear iterative algorithm for MAC. We provide

such an algorithm, as well as an enhancement to MAC that can provide a

several-fold increase in performance.

4. We identify some dynamic variable ordering strategies for MAC that seem to

work well in the context of planning problems.

5. We identify areas for further research. Among these are a more thorough in-

vestigation of the improvement to MAC in the context of general CSPs and an

investigation into different encodings of planning problems as CSPs.

1.3 Guide to thesis

This thesis is structured in the following way. Chapter 2 gives an introduction to the

concepts behind AI planning and Constraint Satisfaction Problems (CSPs). Chapter

3 presents a method for automatically converting planning problems to CSPs and

solving them in this representation. Chapter 4 discusses the concepts of Dynamic

Neighborhood Partial Interchangeability (DNPI) and why it cannot be applied to our

formulation of planning problems. Chapter 5 discusses a decomposition strategy for

the CSPs representing planning problems. Chapter 6 features a discussion of the full

lookahead solution finding method called Maintaining Arc Consistency (MAC). We

show here the effectiveness of MAC in solving AI planning problems and present a

simple improvement to the algorithm. Finally, chapter 7 reviews our contributions

and gives some direction for future work.
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Additionally, Appendix A presents an overview of the code we have written to

formulate and store a planning problem as a CSP. The appendix also discusses the

implementations of the solution extraction methods which we tested. The implemen-

tation is in C++ and is extended from the GP-CSP system of Do and Kambhampati

[8].
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Chapter 2

Background

The work described in this thesis uses Constraint Satisfaction techniques to solve

classical AI Planning Problems. This chapter provides relevant background in these

areas. Section 2.1 describes the ideas and techniques behind Planning, while section

2.2 introduces Constraint Satisfaction Problems. Section 2.3 introduces the planning

system that our work extends.

2.1 Planning

A planning problem is one in which an agent capable of some sensing and of perform-

ing some actions finds itself in some world, needing to achieve certain goals. A simple

example of such a problem is one in which two men, Jason and Alex, are initially

in London with Jason wishing to travel to New York and Alex wishing to travel to

Paris. There are two rockets in London, each capable of carrying one or more persons

and making a single flight. A solution to a planning problem is an ordered sequence

of actions that, when carried out, will achieve the desired goals.

This particular example problem is very simple and most humans can easily see

that it can be solved by loading Alex into one rocket and flying it to Paris, and loading
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Jason into the other rocket and flying it to New York. To solve this problem, humans

will often use ad hoc methods and intuit the correct sequence of actions. However,

automated planning systems must use a more rigorous methodology to ensure plan

validity and, in some cases, to guarantee some notion of plan optimality.

More formally, a planning problem should specify three things [24].

1. A description of the world’s initial state (as a set of facts).

2. A description of the agent’s goal (as a set of facts).

3. A description of the possible actions that can be carried out to affect the state

of the world. Actions are described by their preconditions and effects. The

preconditions of an action are a set of facts that must be true before an action

can be performed. The effects of an action are sometimes divided into an add

list and a delete list, where the add list contains facts that are made true by

the action and the delete list contains facts that are made false by the action.

There are several domain description languages that are used to provide a uniform

syntax for encoding this information. Planning systems are written to parse these

standard formats, which enables us to easily share problems and compare results.

Since 1998, the Artificial Intelligence Planning Systems competition has used the

PDDL [11] language to specify planning problems. Portions of a PDDL description

of the example planning problem outlined above can be found in Figure 2.1. This

excerpt shows two action definitions, one for move and one for unload. These actions

are part of the domain definition. Figure 2.1 also lists the initial conditions of the

world, and the goal of the planning problem; these are part of the problem definition.

The action definitions are part of the domain definition. The init and goal

definitions form part of the problem definition. Domain definitions are more general

than problem definitions, in that they merely express the propositions that are defined
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(:action move
:parameters (?r ?from ?to)
:precondition (and (has-fuel ?r) (at ?r ?from) (rocket ?r) (place ?from)

(place ?to))
:effect (and (at ?r ?to) (not (has-fuel ?r)) (not (at ?r ?from))))

(:action unload
:parameters (?c ?r ?p)
:precondition (and (at ?r ?p) (in ?c ?r) (rocket ?r) (cargo ?c)

(place ?p))
:effect (and (at ?c ?p) (not (in ?c ?r))))

(:init (at r1 london) (at r2 london) (at alex london) (at jason london)
(has-fuel r1) (has-fuel r2) (rocket r1) (rocket r2)
(place london) (place paris) (place jfk) (cargo alex)
(cargo jason))

(:goal (and (at alex paris)
(at jason jfk)))

Figure 2.1: Excerpts from a PDDL definition of a planning problem.

and the actions that can be performed in a particular world. Problem definitions

indicate which domain is to be used for generating actions. Additionally, they specify

the initial state of the world and the goal conditions that must be achieved to solve

the planning problem.

Several simplifying assumptions are made in classical AI planning:

• All actions require a single, uniform, unit of time to execute.

• Actions will be successful and produce their expected results.

• The agent knows the initial state of the world, as well as the impact of its own

actions on the state of the world.

• The only change in the world is the result of the agent’s own actions.

These are somewhat limiting assumptions, but some of the more recent planning

systems are able to deal with problems that violate one or more of these assumptions.
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Of course, such planners must be more complex to handle the relaxation of one or

more of these assumptions [21]. Below, we review three main types of planning

systems: POP [5], GraphPlan [3], and SAT-based [14].

2.1.1 Partial-order planning

The partial-order planner (POP) algorithm was an early planning algorithm that

met with success using the idea of partial-order planning. In partial-order planning,

you practice least-commitment planning where only essential ordering information is

recorded. That is to say, if there are, for example, a pair of actions that can be exe-

cuted in either order without impacting the outcome of the plan, a least commitment

planner would not decide on an explicit ordering for these actions, thus leaving the

decision to the execution agent.

In partial-order planning, plans are constructed incrementally, with causal links

used to record information on why a particular action has been added to a plan.

When a new action is added, all of the previous causal links must be checked to make

sure that this new action does not interfere with those already chosen. An action that

would interfere with another is called a threat. It may be possible to handle a threat

by introducing an explicit ordering constraints between actions. When an action A1

is moved before another action A2, we say that A1 is demoted. When A1 is moved

after A2, we say that A1 is promoted. This is illustrated in Figure 2.2.

The POP algorithm carries out partial-order planning in the following manner. To

initialize a problem, a *start* action is created with the facts of the initial state as

its effects. Additionally, an *end* action is created with the goals as its preconditions.

The unsatisfied preconditions of any actions in the partial plan are added to a so-

called agenda. Upon initialization, the only unsatisfied preconditions belong to the

*end* action and they are the goals of the planning problem itself. The next step is
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Start

Finish

A1

A2

A3

(c)
(not c)

Start

Finish

A1

A2

A3

(c)

(not c)

Figure 2.2: On the left, action A3 has been added to an existing plan. However, A3
threatens (c) which is required by A2. To resolve this threat, A3 is demoted before
A1, as illustrated on the right.

to choose a fact from the agenda and find an action that can be used to produce this

fact. A causal link is recorded to indicate the reason for adding this new action. The

new action must be checked to ensure that it does not threaten any actions already

in the plan. If there is a threat it will, if possible, be handled by introducing ordering

constraints between the actions involved. Any unsatisfied preconditions of the new

action are added to the agenda and the process continues until the agenda is empty.

Partial-order planning has fallen out of favor in recent years, as planners using

other methods can out-perform partial-order planners in most domains [25].

2.1.2 GraphPlan

In 1995 Blum and Furst introduced GraphPlan, a method for modeling and solving

planning problems that proved to be rather revolutionary [3]. It offered much better

performance in terms of both CPU time and solvable problem size than the other
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Fact layer
Level 0

Action layer
Level 0

Fact layer
Level 1

F1

F2

F3

F4

A1

A2

F5

F6

F7

F8
noop

initial
state

future
layers

Figure 2.3: Alternating layers of facts and actions. To prevent clutter, only the noop

from F4 to F8 is shown. In reality, every fact supports a noop.

planners of the day. While today’s high performance planners are nonsystematic1 in

order to take advantage of the great speedups available to those willing to sacrifice

optimality, in some cases optimality is still important, and today’s planners that make

that guarantee are still based on GraphPlan.

GraphPlan finds solutions to planning problems by constructing a planning graph

level-by-level, and searching for valid plans within that graph. Planning graphs consist

of alternating layers of facts and actions (see Figure 2.3). Each time a new fact layer

is created, GraphPlan checks to see if the goals are found within that layer. If they

are, a simple backtracking search is launched to attempt to find a valid plan. If a

plan is found, it is output and GraphPlan halts. Otherwise, it extends the planning

graph, creating a new action layer followed by a new fact layer.

When a planning graph is first created, it simply contains a fact layer made up of

the initial conditions that specify the initial state of the planning problem. Planning

graphs are extended by finding all actions whose prerequisites are satisfied at the

most recent fact level and adding these actions in the next layer of the graph. The

1That is, they are based on stochastic search.
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effects of these actions form the next fact layer. Of note is the fact that a so-called

noop action exists that can take any fact as a prerequisite with that same fact as the

action’s only effect. In this way, once a fact becomes true, noops will propagate that

fact forward each time the planning graph is extended. Plan extension is carried out

until all the properties of the goal state are satisfied.

During plan extension, GraphPlan discovers binary mutual exclusion (mutex ) re-

lationships between actions and facts. A mutex is declared between a pair of actions

when:

• The effect of one action is the negation of another action’s effect (termed in-

consistent effects).

• One action deletes the precondition of another (termed inconsistent effects).

• The actions have preconditions that are marked as mutex (termed competing

needs).

For example, one action may have (door open) as a prerequisite while the other

action has (not (door open)) as a prerequisite. Clearly, these actions cannot occur

at the same time. Or one action may have (door open) as a prerequisite while the

other action achieves the fact (not (door open)) as an effect. It obviously matters

in which order these actions are performed, so the partially ordered plans produced

by Graphplan cannot allow them to be placed at the same time level.

A mutex is declared between a pair of facts when:

• One fact is the negation of the other.

• All actions supporting the facts are pairwise mutex (termed inconsistent sup-

port).
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For example, (door open) and (not (door open)) are two facts that are clearly

mutex. Or if, for example, fact F1 is an effect of only the action A1 and fact F2 is an

effect of only the action A2, and A1 and A2 are mutex actions, then we must declare

F1 and F2 to be mutex.

Mutex relationships are specific to levels in the planning graph. A pair of facts that

are mutex in one level of the planning graph may not be mutex at later levels if, for

example, a new action becomes applicable that removes the problem of inconsistent

support. Additionally, it should be noted that actions can only be mutex with other

actions in their own level of the planning graph, and the same is true of mutex

relationships between facts.

Plan extraction is first attempted when all of the goals are present in the highest

fact layer and are non-mutex. Plans are extracted via a simple backtracking search,

starting with the highest fact layer as the current fact layer. Each goal is put in a

goal list for the current fact layer, which records which facts must have an action

chosen to support them. The search iterates through each fact in the goal list at the

current fact layer, trying to find an action to support it which is not mutex with any

other actions that have been chosen. When an action is chosen, its prerequisites are

added to the goal list at the next lower fact layer. When all facts in the goal list of

the current fact layer have a consistent assignment of actions, the search moves to

the next lower layer. The search terminates with success when it reaches the first

fact layer. It backtracks when it is unable to assign an action to each fact in the goal

list for a given layer. Eventually, the search will have tried all legal combinations

and if it has not found a plan, it will terminate with failure. If no plan was found,

the planning graph is extended and GraphPlan attempts plan extraction on this new

planning graph. Since GraphPlan first searches for a solution at the earliest possible

point that a plan could exist, and incrementally extends the planning graph if no
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solution is found, it must find the plan that uses the fewest time steps.

The plans produced by GraphPlan are optimal in the number of time steps needed

to execute the plan, but not necessarily in the total number of actions in the plan.

Optimality in time steps is guaranteed by the incremental method used to build

and search planning graphs. Optimality in the total number of actions cannot be

guaranteed because GraphPlan produces partially ordered plans, in which actions

that do not interfere with each other are allowed to occur at the same time. Therefore,

a given time level can contain any number of actions. The mutex relationships that

are discovered during plan extension are used during plan extraction to build partially

ordered plans that do not contain inconsistencies.

Our work is an extension of the ideas used in Graphplan. Consequently, this is

the most fully described of the planning methods considered.

2.1.3 SAT solutions to planning problems

Another approach that has met with success is the compilation of Planning Problems

to Satisfiability Problems. Once this is done, the SAT problem can be solved by any

of a number of general purpose SAT solvers. Both systematic solvers and stochastic

solvers can be used, depending on what is desired from the generated plan.

There are several ways to convert a Planning Problem to a SAT problem. One

encoding explicitly creates frame axioms that prevent unaffected facts from changing

when unrelated actions occur as well as axioms that state that an action implies its

preconditions and effects. Another encoding can be realised by directly converting

a GraphPlan planning graph into a SAT problem [14]. For example, to encode that

operators imply their preconditions, a frame axiom for the load operator used in the
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rocket problem (see Figure 2.1) would be

LOAD(alex, r1, london, 2) ⇒ (AT(alex, london, 1) ∧ AT(r1, london, 1).

Additionally, each fact implies the disjunction of all the operators at the previous

level that have it as an add-effect:

IN(alex, r1, 3) ⇒ (LOAD(alex, r1, london, 2) ∨

LOAD(alex, r1, paris, 2) ∨ NOOP(IN(alex, r1), 2)).

And finally, mutex actions are encoded as follows:

¬LOAD(alex, r1, london, 2) ∨ ¬MOVE(r1, london, paris, 2)

Having introduced planning, we now turn our attention to Constraint Satisfaction

Problems.

2.2 Constraint satisfaction

Constraint satisfaction is a general method of problem formulation in which the goal

is to find values for variables such that these values do not violate any constraints

that hold between the variables. This problem formulation can be used to solve many

problems in artificial intelligence, computer science, and engineering.

2.2.1 Definition

A Constraint Satisfaction Problem (CSP) involves a set of variables {V1, V2, . . . , Vn}.

Each variable Vi has an associated domain Di which specifies the possible values of
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Figure 2.4: An example CSP: list coloring problem

the variable. Additionally, there exists a set of constraints between the variables. In

the general case, constraints may be k-ary, but in the case of planning, only binary

constraints are used, and that set looks like: {Ci,j, . . . , Ck,l} where the constraint Ci,j

holds between Vi and Vj. It is not necessarily the case that constraints exist between

all pairs of variables. A constraint Ci,j is a relation that restricts the values that

variables Vi and Vj may simultaneously hold.

An example will make this terminology clearer. Consider a map coloring problem,

in which you have a number of regions that can be colored from a restricted palette

subject to the constraint that neighboring regions may not be the same color. Figure

2.4 shows a small CSP that is made up of a set of three variables {V1, V2, V3} with

a set of constraints {C1,2, C2,1, C1,3, C3,1}. It is often the case that constraints are

symmetric, and in such circumstances it would only really be necessary to store one

of C1,2, C2,1 and C1,3, C3,1. In fact Figure 2.4 uses a single line to represent each pair

of symmetric constraints. These constraints are all mutex constraints, which simply

state that their associated variables may not assume the same value. Each variable

has a domain, where D1 = {R,G,B}, D2 = {R,G}, and D3 = {R, G,B}.

A CSP is solved when a value is found for each variable such that no constraints
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are violated. One solution to this CSP is the set of assignments: V1 ⇐ R, V2 ⇐ G,

V3 ⇐ B. Of course, this CSP has more than one solution. This CSP is sufficiently

small that it can be solved by inspection. However, in the case of larger CSPs, or the

case that all solutions are desired, more systematic solution extraction methods are

required.

2.2.2 Solution extraction

A few terms that need to be introduced to discuss algorithms that find solutions to

CSPs. While looking for solutions, the variables are considered in some order. In the

simplest case, this is a static ordering, but it is also possible to dynamically order the

variables. As a partial solution is constructed, past variables are those that have been

instantiated, while future variables are those that have not yet had a value assigned

to them.

One of the simplest systematic methods of finding a solution to a CSP is a depth

first backtracking search. This search proceeds by starting with the first variable and

assigning it the first value in that variable’s domain. It then moves to the next variable

and checks the first value in that variable’s domain against the previously assigned

variable. If there is no problem it moves on to the next variable, otherwise it tries the

next value in the current variable’s domain against the previously assigned variable.

The assignment of a value to each variable is a backtracking point. The search ends

when either a satisfying solution is found, or the search space is exhaustively checked

with no solution found. This algorithm is clearly described by Prosser [18].

Forward checking (FC) is a more intelligent method for finding a solution to a

CSP. First described by Haralick and Elliot [12], forward checking is a look-ahead

scheme in which consistency with future variables is ensured, removing the need to

check against previously assigned variables. In forward checking, each time a variable
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Vi is assigned a particular value dj, this value is used to reduce the domains of future

variables. For each future variable Vk, each value in its current domain is checked for

consistency with the value dj that has been assigned to variable Vi. Any inconsistent

value is removed from the current domain of Vk. If all of the values are eliminated from

a future variable (termed domain annihilation), we know that the current variable

assignments can never lead to a solution and we must backtrack. If, after checking dj

against the future variables there has been no domain annihilation, we can consider

the next variable.

Consistency is propagated forward, and the current domain of the current variable

can only contain values that are consistent with all past variables. Hence, it is only

necessary to check a proposed value against the future variables. This algorithm is

also clearly documented by Prosser [18].

2.3 GP-CSP

Our work extends a planning system called GP-CSP, which is the work of Do and

Kambhampati [8]. GP-CSP unifies the traditional GraphPlan method for planning

with the Constraint Satisfaction Problem (CSP) methods for solution extraction.

In this system, GraphPlan’s plan extension is unchanged while GraphPlan’s normal

backtracking search is replaced with a CSP solver. An earlier planning system by

van Beek and Chen called CPlan had already brought planning and CSPs together

[23]; however, their system required hand-encoded CSPs while GP-CSP automates

the process.
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Figure 2.5: The architecture of the GP-CSP system.

2.3.1 The GP-CSP planner

The GP-CSP planner differs from the original GraphPlan only in the way that it looks

for solutions. It generates and maintains the same planning graph as GraphPlan and

carries out plan extension in the same way. But instead of launching a backtracking

search for solution extraction, GP-CSP turns the entire planning graph into a CSP

that it then attempts to solve. Just like the original GraphPlan, this attempt to find

a solution either succeeds with GP-CSP halting, or it fails and the planning graph

is extended. Each time the planning graph is extended and the planner attempts to

find a solution, a new CSP is formulated. Figure 2.5 illustrates this process.

CSP formulation

The backtracking search used by the standard GraphPlan implementation is analo-

gous to a dynamic constraint satisfaction problem (DCSP) as introduced by Mittal

and Falkenhainer [16]. This stems from GraphPlan’s use of goal sets at each fact

layer. There are certain fact variables that need not be assigned, and this changes

depending on which actions are chosen higher in the planning graph. In a DCSP,

one has a standard CSP with the addition of an activity flag for each variable. A
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satisfying assignment for the DCSP need only assign consistent values to variables

that are marked as active. DCSPs also introduce the notion of activity constraints

that are responsible for marking new variables as active. For example, one could

have a constraint that says something like “if v1 = x then variables vi, . . . , vj must

be marked as active.”

To formulate the backtracking search as a DCSP, the facts are converted to vari-

ables and the actions supporting these facts become the variable domains. The con-

straints between the variables enforce action and fact mutexes as well as activity

constraints to activate subgoals at lower levels of the planning graph. When the at-

tempt to solve the DCSP begins, only the goal facts are marked as active and they

are not allowed to be deactivated. In the backtracking search, choosing an action to

achieve some goal adds that action’s preconditions to the next lower goal set. Sim-

ilarly, in the DCSP when an action is chosen to satisfy an active variable (achieve

some goal), the activity constraints associated with that action activate new variables

corresponding to that action’s preconditions. There are methods for directly solving a

DCSP. However, in GP-CSP this DCSP is further transformed to become a standard

CSP.

This transformation is remarkably simple. All that needs to be done is to introduce

an extra null value to the domain of each variable. A variable whose value is non-

null is active. A variable whose value is null is not active and this variable can

only be said to violate activation constraints. If the variables representing the goal

facts each have such a null value, then a trivial solution is to deactivate all variables.

Instead, the null value is not added to the domains of the goal facts. This guarantees

that a satisfying assignment must achieve the goals.
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2.3.2 Details of GP-CSP

Do and Kambhampati claim that GP-CSP makes use of the CSP library written

by van Beek [22]. This is not entirely accurate, as GP-CSP is actually using the

CSP solver code that was written for CPlan. Of course, van Beek worked on the

CPlan project and the solver he wrote for it seems to have been an extension of his

CSP library. An additional point of confusion in [8] is that they spend some amount

of time discussing the fact that the CPlan solver is able to deal with non-binary

constraints. However, the CSP formulation used by GP-CSP makes exclusive use of

strictly binary constraints. The CPlan solver makes use of GAC (described in [17])

because it needs to handle non-binary constraints. This is not at all required by

GP-CSP as it formulates the CSP using only binary constraints.

There are exactly three kinds of constraints that appear in the CSPs created by

GP-CSP. These are ACTIVITY CONSTRAINTs, MUTEX CONSTRAINTs, and FACT MUTEX

CONSTRAINTs. For the following discussion of constraints, it will be useful to have a

concrete example of a planning problem (see Figure 2.6).

ACTIVITY CONSTRAINTs These are used to force activation of variables that represent

prerequisites of current goal nodes (see Figure 2.7). These constraints are such

that when some variable V takes on some value v1 we must activate some

set of variables Vi, . . . , Vj. Recalling that each CSP variable represents a fact

while its domain is the actions that can achieve that fact, consider a variable

representing (at r1 paris). We might try to achieve this by assigning the

variable the value (move r1 london paris). This would force us to mark

(has-fuel r1), (at r1 london), (rocket r1), (place london), and (place

paris) as active variables.

FACT MUTEX CONSTRAINTs These are directly generated by considering the mutexes
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(:action move
:parameters (?r ?from ?to)
:precondition (and (has-fuel ?r) (at ?r ?from) (rocket ?r) (place ?from)

(place ?to))
:effect (and (at ?r ?to) (not (has-fuel ?r)) (not (at ?r ?from))))

(:action unload
:parameters (?c ?r ?p)
:precondition (and (at ?r ?p) (in ?c ?r) (rocket ?r) (cargo ?c)

(place ?p))
:effect (and (at ?c ?p) (not (in ?c ?r))))

(:init (at r1 london) (at r2 london) (at alex london) (at jason london)
(has-fuel r1) (has-fuel r2) (rocket r1) (rocket r2)
(place london) (place paris) (place jfk) (cargo alex)
(cargo jason))

(:goal (and (at alex paris)
(at jason jfk)))

Figure 2.6: Excerpts from a PDDL definition of a planning problem.

discovered by GraphPlan in its forward expansion phase. GraphPlan would,

for example, note that (in jason r1) is mutex with (in jason r2). This

is represented in GP-CSP by not allowing both variables to assume non-null

values. The CSP formulation need only note that this constraint exists (see

Figure 2.8), as no other information is necessary to enforce the constraint.

MUTEX CONSTRAINTs Because actions are the values of the CSP variables, action mu-

texes are modeled by adding constraints between fact variables in the CSP.

These are called MUTEX CONSTRAINTs. They are found as in GraphPlan, by

looking for conflicting preconditions or effects. For example, this sort of con-

straint would be used to handle the fact that (unload jason r2 jfk) is mutex

with (unload alex r2 paris). The pairs of variables that contain these values

would have a MUTEX CONSTRAINT placed between them to disallow this conflict-

ing variable assignment (see Figure 2.7). This type of constraint is different
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Figure 2.7: Examples of a MUTEX CONSTRAINT and ACTIVITY CONSTRAINTs.

from a FACT MUTEX CONSTRAINT in that FACT MUTEX CONSTRAINTs assert that

two variables cannot be simultaneously active, while this type of constraint

says that two variables may both be active, as long as they are not assigned

particular values.

There is an additional feature of the CPlan solver that seems to be the true reason

that it was used in GP-CSP. It has the ability to define constraints intensionally using

functions instead of defining them in extension. Because these functions must be

defined at compile time, such a solver is no longer general purpose. But by becoming a

specialized solver, the memory required for constraint storage is dramatically reduced.

The constraints are all represented by simply noting which kind of constraint exists

between pairs of variables. In the case of FACT MUTEX CONSTRAINTS a constraint

check simply consists of seeing if both variables have a non-null value. A MUTEX

CONSTRAINT can be checked by looking in GraphPlan’s mutex table to see if the
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Figure 2.8: Example of a FACT MUTEX CONSTRAINT.

current assignment of a pair of variables is allowed or forbidden. The ACTIVITY

CONSTRAINT is the most complex, but is still actually quite simple. For each value ai

of a variable f , we simply generate a set of binary constraints between f and each of

the variables representing the preconditions of ai.

Putting together all of the details outlined above, GP-CSP works by generating a

planning graph and extending it until all of the goal facts appear at the highest fact

level (exactly as in GraphPlan). At this point, the planning graph is transformed

into a CSP that is given to the CPlan solver. If the solver is unable to find a valid

plan, the planning graph is extended and a new CSP is created and searched.

2.3.3 Enhancements to the CSP solver

The first enhancement discussed in [8] is the addition of explanation based learning

(EBL). This allows the solver to explain failures and use those explanations in subse-

quent searches to avoid the same failures. Their results show that in most of the cases

reported, EBL decreases the CPU time required to find a solution, but in general the
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speedup is less than two. The no-goods learned by EBL are not transfered from one

CSP to the next (recall that a new CSP is generated each time the planning graph is

extended). The developers of GP-CSP attempted to store this information between

formulations, but found that the effort required was too great and they observed

decreased performance. They suggest that this may have been due to the fact that

in the CSP solver they could record inter-level (with respect to the planning graph)

no-goods while GraphPlan only records intra-level no-goods. This results in GP-CSP

recording a much larger number of no-goods, meaning that more work must be done

to maintain and check the no-good information.

They also made use of dynamic variable and dynamic value ordering in an effort

to speedup the CSP solver. By default the GAC solver uses a DCL strategy where

variables are ordered first by smallest live domain (D), then by most constrained

variable as measured by degree (C), then by preferring variables from higher levels of

the planning graph (L). The authors also tried LDC and DLC orderings in an effort

to more closely mimic the natural order of GraphPlan’s backtracking search. Their

experiments were not conclusive. They found that each variable ordering scheme gives

better performance in certain domains, and worse performance in others. Hence they

were unable to recommend any one ordering as being superior to the others.

They experimented with variable and value orderings similar to those used by the

HSP planning system [4] and concluded that value ordering is not very important

in comparison to variable ordering. HSP stands for heuristic search planner and is

so named because it solves planning problems by using best-first hill-climbing search

algorithms guided by automatically extracted heuristics.

Do and Kambhampati experimented with fairly simple level-based heuristics in

which the heuristic value of a fact is the level in the planning graph where it first

appears and the heuristic value of an action is based on the heuristic values of its
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preconditions [13]. They tried two methods of computing the heuristic value of an

action: the maximum value of any of the action’s precondition, and the sum of the

values of the action’s preconditions. As noted above, they found that the different

methods of computing the heuristic values of actions (which corresponds to CSP

value ordering) had little effect on the performance of search. They also found that

the variable orderings produced by the heuristic values of facts did little to improve

the performance of the planner.

They next tried to automate the selection of variable ordering heuristics. As

they previously noted, DCL gave better performance in some domains and LDC gave

better performance in others. In a fairly ad hoc manner, they found a heuristic to

select between DCL and LDC variable orderings. They calculated the value of the

number of action mutexes divided by the number of actions as well as the value of

the number of fact mutexes divided by the number of facts. With the appropriate

thresholds for each quotient, they were able to choose the better variable ordering for

each of their test problems.

As an aside, what they have done here is to train their heuristic on their

test data. They did not test this heuristic on problems that it had never

seen, and it is not clear that it would make the correct choice in such

situations.
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Chapter 3

Our changes to GP-CSP

This chapter presents the changes that we have made to GP-CSP in order to inves-

tigate various CSP techniques. Section 3.1 outlines the areas that we have studied.

Section 3.2 briefly describes the planning problems that we used to test our planning

system. Section 3.3 introduces a preprocessing technique that can help reduce the

size of planning CSPs. Section 3.4 investigates the effects of variable ordering on

solution extraction. And finally, 3.5 describes the sizes of the planning problems that

we are solving.

3.1 Our investigations

• We have replaced the GAC solver with a strictly binary solver that we wrote. We

extended this solver to perform dynamic symmetry detection, decomposition,

and the MAC algorithm.

• We have implemented our own CSP representation which maintains strictly

binary constraints. We wrote code to automatically encode Graphplan planning

graphs in a manner similar to that described by Do and Kambhampati. First, we
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wrote a simple backtracking (BT) solver to verify that the CSP representation

was correct. Then, we wrote a Forward Checking (FC) solver.

• We also have implemented DNPI, which is used to dynamically discover inter-

changeability in CSPs. This interchangeability is used to create bundled solu-

tions in which some variables may have a set of values that interact identically

with the other variables in the CSP. Hence, multiple solutions to the CSP can

be found by simply iterating through the bundled values.

• We have also investigated a tree decomposition of planning problems when

formulated as a CSP. This makes use of the structure inherent to the planning

graphs created by GraphPlan.

• We have carried out some experiments to gauge the effectiveness of MAC in

solving planning problems encoded as CSPs.

3.2 Planning problems

In carrying out our investigations, we tested our code using a set of benchmark

planning problems, where:

• the rocket problem is as introduced in Section 2.1

• the towers of hanoi problems are what one would expect

• the gripper problem involves a robot with a pair of arms that needs to move a

set of balls from one room to another

• the logistics problem involves moving several packages from location to location

using various vehicles
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• the bulldozer problem involves moving a vehicle around a map

• bw-large-a is a blocks world problem, wherein a set of blocks on a table need to

be arranged in a particular order

• the mystery problem is a disguised problem where the actions and facts have

been renamed at random, to prevent humans from giving hints to their planner.

3.3 Preprocessing

We have discovered a preprocessing step that can reduce certain variables to a single

value. It was found that when searching for all solutions, the backtracking solver was

outputting many plans that looked identical. When plans are printed, only “real”

actions are printed; that is to say, noops and variables with the value NOTHING are not

printed. Upon further investigation we found that certain facts could be satisfied by

either a noop or NOTHING with no impact on their neighbors, and so plans would look

identical when output, while differing in certain variables that were not shown. For

example, in the rocket problem that we keep referring to, the fact (rocket r1) at

any fact layer higher than the initial conditions has a domain of noop and NOTHING.

The exact circumstances in which a noop becomes equivalent to NOTHING are that

the variable in question has only these two values and only participates in ACTIVITY

CONSTRAINTS. Recall that an ACTIVITY CONSTRAINT only says that in some cases,

NOTHING is an unacceptable value, but otherwise any value will do. The noop will

always satisfy such a constraint. So when a variable has only two values (which must

necessarily be NOTHING and a noop by construction of the CSP) and only participates

in ACTIVITY CONSTRAINTs, we can reduce the variable’s domain to just the noop.

Additionally, we know the variable cannot possibly violate any of its constraints, and
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Table 3.1: Results of pruning applied to planning CSPs
CSP # var. # pruned % removed
rocket problem 37 13 35.1
3 disc towers of hanoi 164 81 49.4
4 disc towers of hanoi 566 291 51.4
mystery problem 2 435 188 43.2
gripper problem 2 116 37 31.9
logistics rocket-a 280 9 3.2
bulldozer problem 1 269 164 60.9
bw-large-a 720 14 1.9

these constraints can be removed from the problem. Table 3.1 shows some results

from using this pruning method.

These circumstances have only been observed to occur with the initial conditions of

a problem. However, the substantial number of variables that are pruned in certain

problems clearly indicates that variables other than those corresponding to initial

conditions must be eligible for pruning. In fact, in many cases the pruned variables do

correspond to initial conditions, but higher in the planning graph. In many planning

problems, some of the initial conditions are facts that are never supported by any

actions, often encoding typing information. Consequently, when these facts appear

at higher levels in the planning graph, they are only supported by the noop action.

As an example, the rocket problem has facts like (rocket r1), (place paris),

and so forth that never change. These facts appear over and over in each layer of

the planning graph. In Table 3.1, we can see that the logistics rocket-a problem

experiences relatively little pruning. This is due to the fact that the problem is

encoded with the typing feature of PDDL, which eliminates the need to encode such

facts as initial conditions.

Consequently, this pruning method can be seen as a way to find and ignore typing

information in planning problems. The typing information has already been used by

GraphPlan in creating the planning graph, as only actions with satisfied preconditions
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are added to the graph. Because typing of objects is static for a given problem, no

object will have its type suddenly change in the middle of the plan, and plan extraction

need not be concerned with object types.

This CSP pruning method has little impact on solution extraction if the default

variable ordering is used. As discussed in Section 3.4, the default variable ordering

corresponds to a layer by layer traversal of the facts in the planning graph, starting

at the goal layer. When using Forward Checking to solve a CSP ordered in this way,

if any fact variable (F1) has an ACTIVITY CONSTRAINT with a variable eligible for

pruning (F2), F1 would necessarily be considered before F2. Forward Checking from

F1 would ensure that F2 has a consistent value which would never require backtracking

on F2.

If, however, a different variable ordering is used, the pruning can make a difference.

Using the same notation as above, what happens if variable F2 is considered before F1?

By construction of the CSP, the value NOTHING is the first in each variable’s domain.

F2 would then first try NOTHING which could conceivably eliminate the action we

require for F1. However, this would not be noticed until a later time when we must

choose a value for F1. This would fail, and we would need to backtrack all of the way

to F2 and set its value to noop. Clearly, pruning variable F2 from the CSP would

prevent this backtracking from occuring.

When finding only a single solution to the CSP, there is little to prompt the

discovery of this pruning method. Consequently, I suspect that Do and Kambhampati

did not ever notice this effect.

3.4 Variable ordering

We tried several static orderings including:
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1. Number of constraints, with the least degree first (DEG).

2. Domain size, with the largest domain first (LDF).

3. Ratio of domain size to degree, with the smallest value first (DDR).

All of these orderings produced worse runtimes than the default ordering, which is

simply the order of facts as they are traversed layer-by-layer (from the goal level

backwards) in the planning graph.

Table 3.2 presents some experimental data comparing the different variable or-

derings. Processes were killed after three minutes of computation, since GP-CSP is

known to be able to solve these problems in a matter of seconds. The searches were

all carried out beginning at the solution bearing level of the planning graph. The

random order is an average over 10 solutions, although only the simplest problem

was solvable in the allotted CPU time using a random ordering.

It seems that the default variable ordering produced by the encoding of the plan-

ning problem as a CSP may be the best. This ordering is created by traversing the

facts layer by layer, starting at the highest fact level. Visiting variables in this order

corresponds quite closely to the order in which GraphPlan itself examines goals and

their possible supporting actions. This seems somewhat intuitive as starting with any

other variables would likely force ACTIVITY CONSTRAINTs to become active and they

may force irrelevant actions to be considered.

Indeed, starting search at any point other than the fact layer corresponding to

the goals of the planning problem can cause a large number of irrelevant actions to

be considered. Consider again the problem introduced in Figure 2.6. In this problem

our goal is to have the facts (at alex paris) and (at jason jfk). Of course, this

planning domain could also solve a problem where we want (at alex jfk) and (at

jason paris). In fact, the same planning graph can be used to solve either problem.
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Table 3.2: Constraint checks, number of nodes visited, and CPU time (in seconds)
required to solve planning CSPs using various orderings. LDF is largest domain first,
DDR is domain/degree ratio, DEG is degree, GPO is the default GraphPlan ordering,
random is the average from 10 trials.

LDF DDR DEG GPO random
rocket problem

#CC 194 1811 1887 132 873 (σ = 1051)
NNV 42 243 244 37

CPU time 0.02 0.04 0.02 0.01 0.01 (σ = 0.003)
3 disc towers of hanoi

#CC 956181 - 12150671 109087 -
NNV 27390 - 173765 3300 -

CPU time 1.03 > 180 11.01 0.16 > 180
4 disc towers of hanoi

#CC - - - - -
NNV - - - - -

CPU time > 180 > 180 > 180 > 180 > 180
mystery problem 2

#CC - - - 215221 -
NNV - - - 838 -

CPU time > 180 > 180 > 180 10.48 > 180
gripper problem 2

#CC - - - 532638 -
NNV - - - 15893 -

CPU time > 180 > 180 > 180 0.51 > 180
logistics rocket-a

#CC - - - - -
NNV - - - - -

CPU time > 180 > 180 > 180 > 180 > 180
bulldozer problem 1

#CC - - - 6173 -
NNV - - - 308 -

CPU time > 180 > 180 > 180 0.13 > 180
bw-large-a

#CC - - - 57919778 -
NNV - - - 169190 -

CPU time > 180 > 180 > 180 81.32 > 180
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Table 3.3: Size of various planning problems encoded as CSPs

At solution bearing level
CSP 1st level soln. level # var. ave. dom. size ave # cons. per var.
rocket problem 3 3 37 1.9 4.6
3 disc towers of hanoi 5 7 164 2.9 13.5
4 disc towers of hanoi 6 16 566 4.0 20.9
mystery problem 2 6 6 435 3.1 25.0
gripper problem 2 4 6 116 2.8 14.7
logistics rocket-a 5 8 280 3.8 44.3
bulldozer problem 1 10 10 269 2.5 10.2
bw-large-a 9 12 720 5.4 82.3

By starting solution extraction at the goal level, we immediately limit ourselves

to those actions that are actually relevant to what we are attempting to accomplish.

If solution extraction is started in the “middle” of the CSP, we may begin considering

actions that will ultimately place jason at paris, when we really want him to be at

jfk. Any time the goals of a planning problem can be permuted to create distinct

(yet very similar) problem instances, as in the rocket example above, starting solution

extraction with the goal nodes can dramatically decrease the branching factor of the

search space of the CSP.

3.5 CSP sizes

The size of a CSP can have a large impact on the difficulty in finding a satisfying

solution. Planning problems can generate CSPs that are quite large, which can make

solution extraction slow to the point of considering the problem unsolvable.

We present some size information of this nature in Table 3.3. The first column

indicates the level of the planning graph at which the goals were first non-mutex

with each other. This is the heuristic that GraphPlan uses for determining when to

begin search. The second column indicates the level of the planning graph at which
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a solution can actually be found. The last three columns show size information from

the level of the planning graph that contains the solution.

Of note is the size of the average domain. It seems that planning problems tend

to have very small domains, which means that CSP techniques like value ordering

can have only limited benefit. While the domain sizes are comparable amongst the

different planning problems, the average number of constraints per variable varies

from 4.6 to 85.7. The number of constraints is an indicator of the “complexity” of

a planning domain. A constraint is introduced for each precondition of every action,

and actions that undo each other’s effects require further constraints.

3.6 Additional extensions

Using the ideas of the GP-CSP planning system, we have created our own CSP

representation and written our own CSP solvers to be used for solution extraction.

After completing the work outlined in the previous section, we turn our attention

to the possible enhancements to the solver. The first technique to be considered is

DNPI (discussed in chapter 4), followed by a decomposition technique (discussed in

chapter 5), and finally MAC (discussed in chapter 6).
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Chapter 4

Exploiting partial

interchangeability

This chapter summarizes our efforts to use partial interchangeability in the context

of planning problems. Section 4.1 gives some relevant information about interchange-

ability. Section 4.2 discusses DNPI, the particular type of interchangeability that we

investigated. Section 4.3 presents our findings with regard to planning problems.

4.1 Background

Interchangeability amongst the values of a variable in a CSP is a term used to describe

an equivalence that exists between these values. The idea is that if values v1 and v2

for variable Vi are found to be interchangeable, then any solution to the CSP with Vi

taking the value v1 will remain a solution if the value is changed to v2.

There are different levels of interchangeability ranging from functional interchange-

ability to neighborhood interchangeability (NI), which allows only the variable Vi to

change value. There are weaker forms of interchangeability, which allow a subset of
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variables in the CSP to be affected when values are selected for variable Vi.

It is desirable to find interchangeable values for several reasons. They can help to

create more robust solutions. If a CSP is modeling some type of physical process, say

manufacturing, we can imagine that a pair of values that are marked interchangeable

(or bundled) correspond to two different ways of building something. If one of these

values is no longer available (say a machine has failed), then we can simply substitute

the other value in the bundle without having to resolve the problem from scratch.

Because these two values are known to be interchangeable, we know that making this

substitution on the fly will not affect the correctness of our solution.

Additionally, finding bundled values can help to reduce the search space, by al-

lowing us to replace the bundled values with a single meta-value. Hence the solver

can avoid solving what end up being identical search trees. This is especially useful if

all solutions for a CSP are required, which necessarily demands considering the entire

search space.

4.2 Dynamic neighborhood partial interchangeabil-

ity

It is important that the computational cost of finding interchangeable values not be

exceedingly burdensome. For example, finding full interchangeability may require

computing all solutions to the CSP. This still achieves the aim of providing robust

solutions, but it does nothing to help reduce the search space. A less expensive

method of finding a subset of the interchangeable values is thus desired.

Using the joint discrimination tree (JDT) introduced by Choueiry and Noubir [6]

it is possible to compute dynamic neighborhood partial interchangeability (DNPI)

without incurring too much additional overhead [1]. In fact, the computations re-
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V3, { 9 }

V2, { 3 }

V2, { 6, 7 }
V3, { 3, 4 }

Figure 4.1: Left: CSP. Right: JDT of V2, V3.

quired by DNPI are the same as the ones used for perfomring forward checking while

maintaining some extra information.

A search that makes use of DNPI is quite simple to explain. When a new variable

is first considered, forward checking is performed with each of that variable’s values.

The JDT captures this information, as well as bundling together values that have the

exact same impact on the future variables. That is, in order to be bundled together,

two values must produce identical results when used in forward-checking. As an

example, see figure 4.1 where the JDT shows the forward checking information, and

shows us that the values of 3 and 4 for variable V1 can be bundled together.

Any sets of bundled values are replaced in the variable’s domain with a single

meta-value. The forward checking information is cached, and search continues as

normal. When a value for the current variable is selected, the effects of forward

checking are simply pulled from the cache instead of being recomputed. When meta-

values are introduced, they reduce the search space. In the case that all solutions to a

CSP are desired, the only additional work done by DNPI is the bookkeeping necessary

to calculate interchangeable values. And when values can be bundled, DNPI will do

less work, as the search space is reduced by the introduction of meta-values. In fact,

even when no bundles appear in solutions, no-goods can often be bundled together,

and this will again act to reduce the search space.
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4.3 Application to planning problems

There are many situations in which planning problems exhibit what, to the human

mind, seem to be symmetric actions. For example, there is a benchmark planning

problem called the gripper domain in which a robot with a left arm and a right arm

must move a set of balls from one room to another. Each arm can hold one ball at a

time. As far as each ball is concerned, being picked up by the left arm or by the right

arm makes no difference in being moved from one room to another. Similarly, each

robot arm cares very little which particular ball is picked up as the order in which

the balls are moved does not matter.

For the reasons outlined in section 4.1, we would like to try to automatically dis-

cover interchangeability. Recall that the CSP representation of a planning problem

turns each fact in the planning graph into a variable and the actions which support

some fact become the values of the variable corresponding to that fact. Using a tech-

nique like DNPI, we should be able to find any sets of actions that behave identically

and use them to create robust bundled solutions.

To test the utility of this approach, a DNPI solver was implemented that could

be used in conjunction with our CSP representation. Initial tests showed virtually no

interchangeability in any of the planning problems tested. Occasionally, a NOTHING

and a noop would be marked as interchangeable, but never any “real” actions that

form steps in a plan. The first attempt to explain this appealed to the fact that

planning problems seldom include unnecessary objects or actions. Generally, anything

placed in the problem by the domain designer is there for a specific reason.

We modified the rocket problem that was introduced in chapter 2 to include extra,

unneeded rockets. Figure 4.2 reproduces an abridged definition of the rocket domain

with the addition of rockets r3 and r4.

The goal level of the CSP contains two variables: one for (at alex paris) and
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(:action move
:parameters (?r ?from ?to)
:precondition (and (has-fuel ?r) (at ?r ?from) (rocket ?r) (place ?from)

(place ?to))
:effect (and (at ?r ?to) (not (has-fuel ?r)) (not (at ?r ?from))))

(:action unload
:parameters (?c ?r ?p)
:precondition (and (at ?r ?p) (in ?c ?r) (rocket ?r) (cargo ?c) (place ?p))
:effect (and (at ?c ?p) (not (in ?c ?r))))

(:init (at r1 london) (at r2 london) (at alex london)
(at r3 london) (at r4 london) (at jason london)
(has-fuel r1) (has-fuel r2) (rocket r1) (rocket r2)
(has-fuel r3) (has-fuel r4) (rocket r3) (rocket r4)
(place london) (place paris) (place jfk) (cargo alex)
(cargo jason))

(:goal (and (at alex paris)
(at jason jfk)))

Figure 4.2: Extended rocket problem.

one for (at jason jfk). Looking at the effects list for action unload, we see that

this is the action which can update the location of cargo. Both goals can be achieved

by applying the unload operator to any of the four rockets and the appropriate person

(recall that we are searching from the goal level backwards, so our choice at this point

determines into which rocket we need to load which person). Since two of the rockets

are superfluous, we might expect that DNPI could tell jason to treat rockets r1, r2,

and r3 as a single meta-rocket while alex is assigned to use rocket r4. This would

give us the bundling that we desire.

Unfortunately, this does not happen. Look again at the definition of the unload

operator in figure 4.2. Notice that the precondition list refers to two facts about the

parameter ?r. One of them, (rocket ?r) corresponds to typing information, and

our preprocessing method (see section 3.3) can eliminate this. However, the other

fact (at ?r ?p) cannot be ignored. This precondition demands that before applying
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(unload jason r1 jfk) we must establish the fact (at r1 jfk), while if we want

to apply (unload jason r2 jfk) we must establish the fact (at r2 jfk). These

facts correspond to different variables in the CSP.

In section 4.2 we pointed out that in order for two values of some variable to

be bundled together by DNPI, they must have the exact same effect when used to

forward check a partially instantiated solution. Since each action has its own set of

preconditions and effects that refer to specific objects in the planning world, no two

actions will be constrained with the exact same set of variables. This is a result of the

fact that PDDL requires all objects to be explicitly named, making them distinct.

GraphPlan generates fully instantiated actions when creating the planning graph

and not action templates. Hence, each action will refer to its own particular set of

objects in its preconditions and effects and thus DNPI will never be able to mark

any “real” actions as interchangeable, unless a planning domain contains, for some

reason, an action that is simply an alias for another.

Returning to the gripper domain introduced in the beginning of this section, we

see now that DNPI cannot help to simplify this problem, given the particular CSP

encoding of the planning problem that we use. Each ball has its own identity and

has its own facts to record its location. Consequently, despite the tremendous simi-

larity between (get ball1 left) and (get ball2 left), we are powerless to take

advantage of this using DNPI.

4.4 Conclusion

The kind of symmetry that exists in planning problems cannot be detected or taken

advantage of using DNPI. Even though we can intuitively see relations between dif-

ferent actions in our own minds, the explicit naming of objects in PDDL planning
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domains prevents DNPI from being effective.
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Chapter 5

Using decomposition methods

This chapter covers our examination of a particular decomposition method used with

Constraint Satisfaction Problems. Section 5.1 provides some background information

on decomposition. Section 5.2 describes the method in which we decompose planning

problems represented as CSPs. Our experiments are discussed in section 5.3.

5.1 Background

It is sometimes possible to more efficiently solve a problem by decomposing that prob-

lem into a set of independent subproblems. Each subproblem can be independently

solved, and those solutions can be combined to form a solution to the original prob-

lem. Since the subproblems are independent, a decomposition strategy can lead very

naturally to solvers that run in parallel. This is one simple method of improving the

performance of a solver as measured in wall time.

In this chapter, we investigate the applicability of the tree clustering algorithm

of Dechter and Pearl [7] to our CSP representation of planning problems. This is a

method of restructuring a CSP to make solution extraction less costly.
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5.2 Decomposing a planning problem

The constraint graphs that are created by converting a planning problem to a CSP

exhibit structure that makes decomposition quite simple. Recall that the CSP is cre-

ated from the planning graph maintained by GraphPlan. Just as the planning graph

is divided into layers, so too is the CSP. While the planning graph has alternating

layers of facts and actions, the variables in the CSP only represent facts, with actions

making up the domain values of the variables.

Additionally, the constraints in the CSP can only be of three types. The mutex

constraints (between facts and between actions) can only exist between variables

in the same layer. Activation constraints can only exist between one variable and

another variable that is either one layer above, or one layer below the first. Thus a

variable in the CSP at layer li can only interact with other variables at layer lj when

|li − lj| ≤ 1. (5.1)

Figure 5.1 illustrates the structure of a CSP that models a planning problem as

well as how such a CSP can be split into independent subproblems. In the top of

the figure, we see the original CSP, where the variables that are vertically aligned

represent facts that belong to the same layer. All constraints are represented as lines,

without regard to the particular type of the constraint. All intra-level constraints

are mutex constraints, and the constraints that link variables in different layers are

activation constraints. To split the CSP, we need only observe that the constraints

force the CSP variables to partition themselves. And equation 5.1 tells us that we

can group interacting variables with little work, determining the subproblem(s) to

which a variable belongs using only each variable’s layer property.

We can start at the highest level n in the planning graph and form a new CSP
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Layer 1 Layer 2 Layer 3

Layer 1 Layer 2
Layer 2 Layer 3

Figure 5.1: Top: Original CSP. Bottom: CSP split into independent subproblems.
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Table 5.1: Results of decomposition
CSP #CC full CSP all soln. #CC all subproblems

rocket problem 406 24844
bulldozer problem 1 73696 3197887

with the variables one layer lower (i. e. at level n− 1). Only the constraints between

this subset of variables are kept. We can again form a new CSP, this time using the

variables in layer n− 1 and n− 2. This continues until we reach the layer containing

the initial conditions. Thus a CSP representing an n-layer planning problem will be

decomposed into n− 1 subproblems.

5.3 Experiments

To find out if this decomposition strategy is useful in the context of planning, we

wrote a simple function to split a planning CSP. The function returns a collection of

CSPs that represent the subproblems, forming a chain. Each of these new CSPs is

represented in the same way as a full planning CSP, so the same solution extraction

methods that are used to solve the full CSPs can be applied to the subproblems.

If we want to solve the subproblems simultaneously, we do not want one subprob-

lem to have to wait for solution information from another before attempting to find its

own solution. Hence, we will need all solutions to each subproblem, and these partial

solutions can then be joined to form solutions to the entire planning problem. We

use the DNPI mechanism discussed in chapter 4 to solve the subproblems. Although

there is no symmetry for DNPI to take advantage of, DNPI does no more work than

FC when all solutions are sought.

Table 5.1 shows some of the results of testing the decomposition technique. The

first column lists the name of the planning problem, the second column lists the
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number of constraint checks used by DNPI to find all solutions to the original CSP.

The third column lists the sum of the number of constraints checks required to solve

all of the subproblems. Also worth noting is that, while column two represents the

work required to get all solutions, column three represents only the work required to

solve the subproblems – more work would be required to turn these partial solutions

into full solutions.

Only two results are presented in table 5.1 because the cost is prohibitively high.

In both cases, the number of constraint checks required to solve all subproblems is

more than 40 times the number of constraint checks required to solve the original

problem. And bear in mind that when decomposing a problem additional work must

be performed to find a full solution. The two tested problems, rocket problem and

bulldozer problem 1, are both “easy” problems, but the amount of work required

to merely solve the subproblems is already becoming prohibitive. The code necessary

to find full solutions from the partial solutions of subproblems was not completed, as

it is clear that this decomposition of planning problems is notably unhelpful.

The reason that this decomposition performs worse is that the planning graph is

a compact representation of many planning problems. For example, in the rocket do-

main that has been used several times as an example, the planning graph that contains

a solution for the goal (and (at jason jfk) (at alex paris)) would also con-

tain plans that solve (and (at jason paris) (at alex paris)), (and (at jason

jfk) (at alex jfk)), (and (at jason paris) (at alex jfk)), and so forth. Con-

sequently, the lower subproblems that do not include any information about the

problem’s goals will contain many, many solutions that have nothing to do with the

problem that we actually want solved.

An attempt to “fix” the decomposition strategy might suggest solving the highest

subproblem first (the one containing the goals) and then passing on the information
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to the next lowest subproblem. However, this forces us to serialize computation of

the solutions to the subproblems, and then using the tree decomposition we would

solve each layer in order to propagate facts backwards. This corresponds to using

forward checking with the default GraphPlan variable ordering.

5.4 Conclusion

This particular tree decomposition of the CSPs that represent planning problems is

not an effective method of increasing the performance of the solver. The decomposi-

tion causes the subproblems to lose information about the goals of the problem being

solved. Consequently, the subproblems exhibit excessive numbers of solutions that

will need to be discarded when full solutions are computed.

However, the fact that the tree decomposition ends up acting like forward checking

with the default variable ordering helps to explain why that particular static ordering

was so powerful. Had we been unaware of that particular ordering, we would have

seen an improvement in using the tree decomposition compared to our results from

forward checking.

Along with the experiments with variable ordering, this helps to show the impor-

tance of using goal information as early as possible when solving a planning problem.

This is, at least in part, due to the density of the planning graph. A planning graph

that contains a solution to a given problem, will also contain solutions for any possible

goals reachable by the actions in the planning problem.
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Chapter 6

MAC

This chapter introduces the MAC algorithm and shows how we have applied it to

planning problems. Section 6.1 explains MAC. Section 6.2 presents our results from

using MAC to solve CSPs representing planning problems. Section 6.3 introduces an

improvement to the MAC algorithm that we have discovered.

6.1 Background

Maintaining Arc Consistency (MAC) is a technique used to solve CSPs by enforcing

Arc Consistency (AC) at each step in a backtracking search [20]. AC is a property

of a CSP whereby for any variable Vi, each element in its domain has a support in

the domain of any variable with which Vi is constrained. That is to say, in order for

AC to hold, it must be the case that for every value di in the domain of Vi, we can

find a value dj in the domain of a variable Vj such that the constraint between Vi and

Vj is not violated. This implies that any value of a variable Vi in a CSP known to

be AC will not immediately cause backtracking, as this value must have support in

all other variables that are constrained with Vi. However, because AC only enforces

2-consistency, we may need to backtrack when a third variable is assigned a value.
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Obviously, we do not expect to frequently find CSPs that are already in an AC

state, and so we must use AC algorithms to propagate constraint information and

prune values from variable domains until the CSP is AC [2]. This can be done in

time polynomial in the size of variable domains and the number of constraints, which

is not overly burdensome given the exponential complexity of search. On its own,

AC is often enforced on a CSP as a preprocessing step to reduce the size of variable

domains. This is, of course, intended to increase the efficiency of actually finding a

solution to the CSP.

MAC takes a more active approach and continually enforces AC throughout the

process of finding a consistent variable assignment for the CSP. Conceptually, this can

be thought of as the most näıve backtracking search, but where an AC algorithm is

called each time a variable is assigned a value. We backtrack whenever AC completely

eliminates some variable’s entire domain. And of course, some extra information must

be maintained in order to correctly undo upon backtracking the effects of enforcing

AC.

6.2 Results

Our experiments with MAC were concerned with the effects of various variable or-

derings on the performance of MAC. We first examine static orderings, and then turn

our attention to dynamic variable orderings.

6.2.1 Static variable ordering

We tested MAC with several static variables orderings, and the results are presented

in Table 6.1. For comparison, a random ordering was also used, and the results of

those trials are presented in Table 6.2. The most striking result is that in all but
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one case, when a problem is solvable by MAC using one static ordering, it is solvable

using any other tested ordering, even the random ordering. This is in stark contrast

to the results presented in Table 3.2 where all but the most trivial problems could

only be solved by FC using the default GraphPlan ordering.

FC performed badly when using anything other than the default GraphPlan order-

ing, because any other ordering fails to use goal information to reduce the branching

factor of search. However, the propagation inherent to MAC ensures that goal infor-

mation is used, even when search is not begun at the goal nodes.

The experiments involving random variable orderings (summarized in Table 6.2)

illustrate the great impact that variable ordering has on solution extraction time. In

every tested problem save one, we observe that the standard deviation in constraint

checks is the same order of magnitude as the mean number of constraint checks.

Consequently, the solution extraction times recorded for each problem had a large

variance as well.

The number of possible variable orderings grows factorially with the number of

variables, and it is clearly infeasible to test every ordering. As previously noted, the

random experiments discovered static orderings that led to faster solution extraction

in a few cases. We are thus unable to choose the best ordering for a given problem

ahead of time, but it may be possible to suggest a good ordering that seems to be

effective most often across many problems.

Clearly, MAC does not suffer from FC’s inability to handle anything other than

the default variable ordering. Dynamic variable ordering was not useful in conjunction

with FC because of the lack of goal information when search does not begin at the

goal nodes. But the good behavior of MAC on all of the static orderings suggests

that it may benefit from dynamic variable ordering, which we turn to next.
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Table 6.1: Constraint checks, number of nodes visited, and CPU time (in seconds)
required to solve planning CSPs using MAC with various static orderings. LDF is
largest domain first, DDR is smallest domain/degree ratio, DEG is smallest degree,
GPO is the default GraphPlan ordering.

LDF DDR DEG GPO
rocket problem

#CC 806 4,647 12,458 830
NNV 37 37 61 37

CPU time 0.02 0.02 0.03 0.02
3 disc towers of hanoi

#CC 246,200 1,018,725 1,043,545 119,140
NNV 218 248 238 202

CPU time 0.24 0.74 0.64 0.15
4 disc towers of hanoi

#CC - - - -
NNV - - - -

CPU time > 180 > 180 > 180 > 180
mystery problem 2

#CC 18,774,822 200,739,983 52,756,781 38,098,959
NNV 838 838 838 838

CPU time 27.40 113.21 40.32 39.2
gripper problem 2

#CC 14,132,672 1,023,732 3,693,785 1,455,606
NNV 4,431 684 601 1,973

CPU time 12.64 0.85 2.36 1.24
logistics rocket-a

#CC - - - -
NNV - - - -

CPU time > 180 > 180 > 180 > 180
bulldozer problem 1

#CC 3,390,753 4,598,262 444,098 77,473
NNV 444 509 308 308

CPU time 2.15 2.68 0.36 0.18
bw-large-a

#CC - - - 112,841,652
NNV - - - 6,253

CPU time > 180 > 180 > 180 70.02
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Table 6.2: Constraint checks, number of nodes visited, and CPU time (in seconds)
required to solve planning CSPs using MAC and random variable orderings. The data
presented is computed from 100 random orderings per problem. The final column
tabulates the number of random orderings that exceeded the allowed 180 seconds of
CPU time.

#CC σ NNV σ time σ % unsolvable
rocket problem 1,917 1,108 37.7 1.3 0.02 0 0
3 disc towers of hanoi 8,354,261 16,495,095 3,105.9 7,194.9 7.56 16.34 0
4 disc towers of hanoi - - - - - - 100
mystery problem 2 106,818,571 14,339,388 844.5 48.5 71.67 9.06 9
gripper problem 2 5,568,009 7,262,796 2,144.7 3,333.6 4.64 6.49 0
logistics rocket-a 74,346,951 49,795,856 1,581.1 904.6 77.05 55.42 92
bulldozer problem 1 20,160,951 30,820,424 4,502.6 7,332.1 17.10 29.47 10
bw-large-a - - - - - - 100

6.2.2 Dynamic variable ordering

Dynamic variable ordering (DVO) works by deciding on the fly which variable to visit

next. When the current variable assignments are all consistent, and we wish to move

on to a new variable, we can compute some metric value for each variable and then

choose the most “promising” variable for consideration next. A common metric is

the number of constraints in which a variable participates. For these experiments, we

test three metrics:

1. from among the variables at the highest level in the planning graph, choose the

one with the smallest remaining domain (LDF)

2. from among the variables at the highest level in the planning graph, choose the

one with the smallest ratio of remaining domain to the number of constraints

in which the variable participates (DDR).

3. from among the variables at the highest level in the planning graph, choose the

one with the smallest ratio of remaining domain to the number of constraints

the variable shares with unassigned future variables (DDD).
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Table 6.3: Constraint checks, number of nodes visited, and CPU time (in seconds)
required to solve planning CSPs using various solution extraction methods. The first
column presents results of FC using the default GraphPlan ordering, the second col-
umn presents the best performance for MAC with the associated static ordering in
parentheses, the third column presents the results of MAC using dynamic least do-
main first variable ordering, the fourth column presents the results of MAC using
dynamic domain/degree ratio variable ordering, and the final column represents the
results of MAC using dynamic domain/future variables ordering.

FC (GPO) MAC (best) (DVO-LDF) (DVO-DDR) (DVO-DDD)
rocket problem

#CC 132 806 (LDF) 851 822 840A
NNV 37 37 37 37 37

CPU time 0.01 0.02 0.02 0.02 0.02
3 disc towers of hanoi

#CC 109,087 119,140 (GPO) 148,935 70,699 97,824B
NNV 3300 202 166 164 166

CPU time 0.16 0.15 0.15 0.11 0.14
4 disc towers of hanoi

#CC - - - - -C
NNV - - - - -

CPU time > 180 > 180 > 180 > 180 > 180
mystery problem 2

#CC 215,221 18,774,822 (LDF) 178,643,049 175,591,092 182,780,437D
NNV 838 838 838 838 838

CPU time 10.48 27.40 108.73 100.48 105.07
gripper problem 2

#CC 532,638 1,023,732 (DDR) 1,009,514 746,619 274,541E
NNV 15,893 684 1,018 577 267

CPU time 0.51 0.85 0.93 0.59 0.27
logistics rocket-a

#CC - - 4,767,109 - -F
NNV - - 348 - -

CPU time > 180 > 180 3.24 > 180 > 180
bulldozer problem 1

#CC 6,173 77,473 (GPO) 33,994,667 2,984,655 1,906,714G
NNV 308 308 12,482 1,590 1,003

CPU time 0.13 0.18 28.02 2.31 1.55
bw-large-a

#CC 57,919,778 112,841,652 (GPO) 162,919,122 99,002,285 45,601,895H
NNV 169,190 6,253 4,662 3,686 1,139

CPU time 81.32 70.02 91.87 64.68 28.89
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Table 6.3 compares the constraint checks and CPU time required to solve various

planning problems using FC with the default static ordering, MAC with the best

static ordering noted, and MAC with dynamic ordering. In three cases (rows A,D,

and G), FC is the least costly method of finding a solution. In one case (row B),

MAC with DVO-DDR is the least costly method of solution extraction. In one case

(row F), MAC with DVO-LDF is the only method that can find a solution. Both

MAC with DVO-DDR and DVO-DDD outperform MAC with DVO-LDF in all cases

except for the one problem which is only solved by MAC with DVO-LDF. In two

cases (rows E and H), MAC with DVO-DDD is the least costly method of solution

extraction. All of the MAC methods are able to solve the same problems that can be

solved with FC.

However, MAC with DVO-LDF is able to solve one additional problem that FC

and MAC with static ordering are unable to solve. In fact, MAC with DVO-LDF

can solve the logistics rocket-a problem in a mere 3.2 seconds while the other

methods grind away for 180 seconds before being interrupted without having found a

solution. Given the better performance of DVO-DDR on the other tested problems,

this just serves to reinforce the fact that there is no one correct variable ordering.

While FC may be able to solve a given planning problem faster, MAC with DVO-

DDR or DVO-DDD is competitive. This comes as somewhat of a surprise as, concep-

tually, one tends to think that MAC involves a “lot of work” while FC is “fast and

simple”. Thus it is commonly believed that the extra computation in MAC will slow

it down too much for the algorithm to be useful. But the results are clear that MAC

can approach the performance of FC on the problems that FC is able to solve, and

MAC is able to solve additional problems that are infeasible using FC.

In order for MAC to approach the performance of FC, it needs a good variable

ordering. We shall now consider the problem of how to choose a good ordering.



56

Table 6.4: Size of various planning problems encoded as CSPs
At solution bearing level

CSP soln. level # var. ave. dom. size ave # cons.
rocket problem 3 37 1.9 4.6
3 disc towers of hanoi 7 164 2.9 13.5
4 disc towers of hanoi 16 566 4.0 20.9
mystery problem 2 6 435 3.1 25.0
gripper problem 2 6 116 2.8 14.7
logistics rocket-a 8 280 3.8 44.3
bulldozer problem 1 10 269 2.5 10.2
bw-large-a 12 720 5.4 82.3

6.2.3 Choosing a variable ordering

Ideally, we would like to solve each CSP using the best possible variable ordering. It

is unlikely that there is an efficient way to find the best ordering, so instead we would

like to either find a way to pick from several orderings on a per problem basis, or an

ordering that works well for many problems.

If we want to choose an ordering on a per problem basis, we need some ways to

characterize a CSP in order to make such a decision. Table 6.6 shows the constraint

density and the tightness for the tested planning problems. Table 6.4 shows the

average domain sizes and average number of constraints per variable in the tested

problems.

Perhaps the first thing to consider, is why the 4 disc towers of hanoi problem is

unsolvable using either FC or MAC. This problem has a comparatively large average

domain size, and low constraint density. This indicates that information propagates

poorly through the constraint network (owing to the low constraint density) and thus

the domains experience little pruning.

In fact, the average domains reported in Table 6.4 are somewhat misleading.

Recall the variable pruning introduced in Section 3.3. The pruned variables were

counted when computing the average domain sizes, as the implementation does not
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Table 6.5: Average domain sizes excluding pruned variables
CSP # unpruned var. ave. dom. size

rocket problem 24 2.4
3 disc towers of hanoi 83 4.8
4 disc towers of hanoi 275 7.2
mystery problem 2 247 4.7
gripper problem 2 79 3.6
logistics rocket-a 271 3.9
bulldozer problem 1 105 4.8
bw-large-a 706 5.5

physically remove the variables – it simply reduces their domains to size one and

removes all constraints involving the pruned variables. Because these variables no

longer have an impact on solution extraction, surely the average domain size should

be computed without considering these variables.

Table 6.5 presents the average domain sizes of the planning CSPs without con-

sidering the pruned variables. In this table, we see that the 4 disc towers of hanoi

problem actually has the largest average domain size of any of the tested problems.

The blocks world problem bw-large-a has the next largest average domain size, with

a large number of variables. MAC could only solve this problem using the default

GraphPlan ordering. Not a single random ordering was able to solve this problem.

However, average domain size seems, at best, to merely indicate which prob-

lems may be unsolvable. The next most difficult problem seems to the logistics

rocket-a problem. This problem does not have a particularly large average domain

size, yet it could only be solved by MAC using DVO-LDF and 8% of the random or-

derings. Yet, three problems that have larger average domain sizes than the logistics

problem are all solvable using any tested ordering. So it does not seem that we can

draw any solid conclusions from the average domain sizes.

Let us now turn our attention to the information on constraint density and con-
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Table 6.6: Density and tightness of the solution bearing level of various planning
problems encoded as CSPs

tightness
CSP soln. level # var. density mean σ max min
rocket problem 3 37 0.104 0.236 0.084 0.500 0.167
3 disc towers of hanoi 7 164 0.069 0.301 0.239 0.800 0.008
4 disc towers of hanoi 16 566 0.029 0.333 0.265 0.833 0.004
mystery problem 2 6 435 0.092 0.233 0.198 0.990 0.000
gripper problem 2 6 116 0.110 0.234 0.163 0.675 0.010
logistics rocket-a 8 280 0.141 0.191 0.143 0.694 0.028
bulldozer problem 1 10 269 0.031 0.333 0.278 0.790 0.012
bw-large-a 12 720 0.115 0.301 0.189 0.904 0.000

straint tightness shown in Table 6.6. Notice that these problems have low density

and relatively high tightness. There is experimental evidence that indicates MAC

performs well in general on problems with these characteristics, and our findings are

consistent with this.

It does not seem that we have a good way to recommend a variable ordering based

on any of the CSP metrics that we have collected. Perhaps then, we should suggest

a standard ordering that performs well on most problems. MAC with DVO-DDR or

DVO-DDD is very competitive with FC. Thus it seems that one of these dynamic

orderings may be the best variable ordering to use with MAC. Clearly, the ordering

is not guaranteed to be best, but it seems to perform reasonably well.

6.3 Improvement to the MAC algorithm

Although widely known and used, the MAC algorithm itself does not seem to be well

described in the literature. There is a recursive implementation given by Sabin and

Freuder [20], and other papers which discuss MAC seem to assume that the reader is

familiar with how to implement it. Indeed, it is not terribly difficult to implement and

the algorithm can be thought of as the most näıve backtracking search, but where
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an AC algorithm is called each time a variable is assigned a value. We backtrack

whenever AC completely eliminates some variable’s entire domain. And of course,

some extra information must be maintained in order to correctly undo the effects of

enforcing AC upon backtracking.

A recursive algorithm is not well suited to the size of these planning problems,

so an iterative implementation was needed. Algorithm 1 presents such an iterative

implementation. In the course of developing the iterative implementation, we found

a rather simple yet effective improvement.

The while loop from lines 20 to 22 in Algorithm 1 simply avoids calling the

AC procedure when the next variable has a domain size of one. Because AC is

enforced at each step of solution extraction in MAC, we know that any variable with

a domain size of one must be consistent with all of its neighbors when that value is

selected. The recursive implementation given by Sabin and Freuder does not exhibit

this improvement. Given the simplicity of this improvement, it is likely that it may

have been found and utilized by others, but there does not seem to be any mention

of it in the literature.

Table 6.7 presents a comparison of the costs associated with solving various plan-

ning problems both with and without the above improvement. The number of nodes

visited is unchanged by the optimization, as the only thing it can do is avoid making

calls to the AC routine when the constraint network can already be guaranteed to be

in an arc-consistent state.

The results clearly indicate the efficacy of this improvement, as none of the trials

indicate less than a doubling of performance. In fact, MAC-I always uses fewer than

half as many calls to the AC routine as the unimproved version of MAC. As the

improvement does not take advantage of anything special about planning problems,

it seems likely that it would be effective in solving general CSPs. Indeed, the amount
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Algorithm 1 Improved iterative implementation of MAC

1: if not ac() then
2: no solution found
3: end if
4: i = 1
5: loop
6: consistent = 1
7: if variables[i].nextValue() then
8: if not ac() then
9: consistent = 0

10: undoac()
11: end if
12: else
13: consistent = 0
14: update domain of variables[i] as in FC
15: undoac()
16: i = i-1
17: end if
18: if consistent then
19: i = i+1
20: while variables[i].currentDomain.size == 1 do
21: i = i+1
22: end while
23: end if
24: if i > variables.size then
25: solution found
26: break
27: else if current < 1 then
28: no solution found
29: break
30: end if
31: end loop



61

Table 6.7: Constraint checks and CPU time (in seconds) required to solve planning
CSPs using the standard GraphPlan ordering. The first column presents results of
the improved MAC while the second column presents results of the normal MAC. The
final column shows the speedup.

MAC-I MAC MAC
MAC−I

rocket problem
#CC 830 2,986 3.60

CPU time 0.02 0.02 1.00
calls to AC 2 38 19

skipped calls to AC 36 0 -
3 disc towers of hanoi

#CC 119,140 577,905 4.85
CPU time 0.15 0.49 3.27

calls to AC 24 210 8.75
skipped calls to AC 186 0 -

4 disc towers of hanoi
#CC - - -

CPU time > 180 > 180 -
calls to AC - - -

skipped calls to AC - - -
mystery problem 2

#CC 38,098,959 78,502,074 2.06
CPU time 39.2 116.18 2.96

calls to AC 340 839 2.46
skipped calls to AC 499 0 -

gripper problem 2
#CC 1,455,606 5,456,754 3.75

CPU time 1.24 5.08 4.10
calls to AC 627 2311 3.68

skipped calls to AC 1684 0 -
logistics rocket-a

#CC - - -
CPU time > 180 > 180 -

calls to AC - - -
skipped calls to AC - - -
bulldozer problem 1

#CC 77,473 521,952 6.74
CPU time 0.18 0.83 4.61

calls to AC 16 309 19.31
skipped calls to AC 293 0 -

bw-large-a
#CC 112,841,652 - -

CPU time 70.02 > 180 -
calls to AC 433 - -

skipped calls to AC 6047 - -
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of work required to check if the next variable has a domain size of one is very small

compared to the amount of work required to run an AC algorithm on a network that

is already arc consistent.

6.4 Conclusion

MAC seems to be an effective tool for use in solving planning problems formulated

as CSPs. Using static variable orderings, MAC is able to come near the performance

of FC in solving these problems. Using dynamic variable ordering, MAC is able in

several cases to surpass the performance of FC. While FC quickly gets lost if solution

extraction does not begin at the goal level, MAC performs best using orderings quite

different from the GraphPlan based ordering needed by FC. That is, FC only seemed

to work using the default GraphPlan static ordering while MAC could find solutions

using many different variable orderings.

The improvement outlined in Section 6.3 certainly helped improve MAC in the

context of solving planning problems. Given the extremely low overhead of the im-

provement and its potential for reducing effort, we strongly believe that this improve-

ment would carry over to solving general CSPs.
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Chapter 7

Conclusion

In this thesis we have considered a method of converting an AI Planning Problem

to a Constraint Satisfaction Problem. We have then turned our attention to the

application of various CSP techniques to solving these planning problems.

7.1 Summarizing our contributions

We identified a variable pruning method that allows us to detect certain dual-valued

variables that have no impact on the planning problem. These variables can be

reduced to a single value and their constraints can safely be ignored. We found that

these variables generally correspond to the sort of typing information needed by the

action definitions in planning domains.

Additionally, we have shown the ineffectiveness of DNPI in the context of AI

planning problems that are modeled using the CSP formulation that we studied.

Because the objects in planning problems are always enumerated and actions are fully

instantiated, there is no way for two actions to have completely identical impacts

on future variables. This is a consequence of the formalisms used to express such

problems.
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We also investigated a decomposition strategy for the CSPs we create that encode

planning problems. This decomposition strategy was not fruitful, as any subproblem

not involving the goal information of the planning problem will generate far too many

partial solutions. A planning graph contains solutions to an exceedingly large number

of problems. Consequently, each subproblem will have many partial solutions to these

extra problems that we are not actually attempting to solve.

Finally, we provide an iterative algorithm for MAC, as well as an enhancement

to MAC that can provide a several-fold increase in performance. The existing CSP

literature provides no clearly described iterative algorithm for MAC.

7.2 Future work

This work has left us with some questions that deserve investigation:

1. Can the pruning technique described in section 3.3 be used to derive type in-

formation? How does this relate to the typing information discovered by TIM

[10]?

2. Is our improvement to MAC equally effective in solving general CSPs?

3. How can we take advantage of the kind of symmetry we see in solutions to plan-

ning problems? For example, the rocket problem we have used as an example

throughout this thesis has the following two solutions:

1 : load jason r2 london

1 : load alex r1 london

2 : move r2 london jfk

2 : move r1 london paris

3 : unload jason r2 jfk

3 : unload alex r1 paris

1 : load jason r1 london
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1 : load alex r2 london

2 : move r1 london jfk

2 : move r2 london paris

3 : unload jason r1 jfk

3 : unload alex r2 paris

The only difference between these solutions is which person rides which rocket.

That is to say, one solution is a permutation of the other. This sort of situation

occurs in other planning domains like the logistics domain and the gripper

domain, and so it seems to be a fruitful area of research.

4. Can we effectively decide which dynamic ordering heuristic to use, based on

some information about a planning problem that can be known ahead of time?

5. Can we find other ways to model planning problems as a CSP that might allow

techniques such as DNPI to produce better results?
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Appendix A

Implementation details

The code written for this thesis was a C++ extension of the GP-CSP planning system.

GP-CSP was written in C, but it is not overly difficult to merge a C++ program with

a C program. C++ was chosen over C because of certain niceties afforded by an

object oriented language.

Section A.1 shows an outline of the project structure, how to build the program,

and how to run it. Section A.2 discusses our representation of Constraint Satisfac-

tion Problems in the context of C++ objects. Section A.3 presents an overview of

the solution extraction methods we have implemented. Finally, section A.4 briefly

discusses the problems that we used to test our planner.

A.1 Project structure

The files that we have added to GP-CSP are found in the tundish directory. Ad-

ditionally, the top-level makefile has been altered to build these extra files and link

them with GP-CSP.

• Makefile
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• csp.cc

• csp.hh

• dnpi.cc

• dnpi.hh

• graphplan.h

• generate.cc

• my gp csp.cc

• my gp csp.hh

• solve.cc

• stl/

– Makefile

– hash.cc

– hash.hh

– list.cc

– list.hh

The stl directory contains a linked list and a hash table written to duplicate the

interface presented by the versions of these data structure’s found in Java.

The project can be built using the unix make command. An executable named

gpcsp will be created, that can be run as follows:

gpcsp -csp -o domain file -f problem file

where domain file is a file containing a PDDL domain description and problem file

is a file containing a PDDL problem definition. The -csp flag tells the program to

use our CSP solver instead of the traditional GraphPlan based solution extraction.
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A.2 CSP representation

GP-CSP has code which automatically converts a GraphPlan planning graph to a

CSP. We built a new CSP representation in C++ and were able to modify GP-CSP’s

conversion routine to produce a CSP formulated in our representation. By using

C++, our CSP representation takes advantage of object orientation to hide certain

implementation details and expose methods that more closely match the pseudocode

presented for CSP algorithms. Our representation does not have computational ben-

efits over GP-CSP’s original C representation, but the abstraction makes the code

easy to follow.

The CSP itself is represented by a C++ class which contains a pointer to an array

of CSP variables and some bookkeeping information that is updated by solution

extraction methods. The CSP class also exposes a method to systematically output

the contents of all CSP variables and their domains and constraints.

The C++ class which represents CSP variables is more complicated. It needs to

record:

• the domain of a variable

• the fact to which the variable corresponds

• the current value assigned to the variable

• information required by various solution extraction methods, like a list of future

variables for forward checking, or the bundled domains generated by DNPI

• information required by various solution extraction methods to undo instantia-

tions

• a list of constraints in which the variable participates
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Additionally, this class exposes methods to:

• iterate through the standard domain

• iterate through the bundled domain

• check consistency with other variables

• undo the effects of variable assignment, needed when consistency methods back-

track

Each value in a CSP variable’s domain, is represented by another class. The value

class simply records information like the action to which the value corresponds and

the level in the planning graph where this action is found. The value class does not

expose any methods.

A.3 Solution extraction

Several solution extraction methods were written as a part of this thesis. The back-

tracking search and the forward checking search were implemented as described in

[18], with a few modifications. The modifications were slight and just had to do with

the fact that our object oriented representation cut down on the amount of global

data that needed to be passed around.

Our MAC algorithm was the iterative implementation described in section 6.3.

Our CSP representation was adjusted to make it closely resemble the pseudocode

shown in Algorithm 1. MAC requires an arc consistency algorithm, and we use AC-3

as described in [2].

The final solution extraction method with which we experimented is DNPI. The

only DNPI function exposed publicly is the solve method, which all of the solution

extraction methods expose. Hence changing the solution extraction method only
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requires changing one line of code. DNPI uses a kind of forward checking search,

in that each time a discrimination tree is built, the associated forward checking is

necessarily computed and can be cached. The difficult part is the construction of

a discrimination tree, which is carried out by a separate function. This function is

called when we advance to a new variable which has not yet had a discrimination tree

built.

When a solution is found, all of the solution extraction methods leave the CSP in

a state where all variables are assigned a value. The value is one of three types:

1. a noop – meaning that the fact remains true from earlier in the plan graph

2. a nothing – meaning that the fact is never made true

3. a “real” action – meaning that an action has been instantiated to achieve the

fact

. Thus a common function is able to print solutions generated by any solution extrac-

tion method as it needs only traverse the list of variables and output those that are

“real” actions. Solutions to planning problems do not list noops since an execution

agent does not need to intervene to achieve the effect of a noop.

A.3.1 Further details

The file solve.cc contains the following functions:

• int mac(csp_t *C)

Finds a solution, if one exists, to the CSP using the MAC algorithm.

• int csp_bt_solve(csp_t *C)

Finds a solution, if one exists, to the CSP using a backtracking search.
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• int csp_fc_solve(csp_t *C)

Finds a solution, if one exists, to the CSP using forward checking.

• int fc_label(csp_t *C, int i)

Required by the function csp_fc_solve.

• int fc_unlabel(csp_t *C, int i)

Required by the function csp_fc_solve.

• int ac(csp_t *C, int level)

Enforces arc consistency; called by the function mac.

• int revise(csp_var_t *xi, csp_var_t *xj, int level)

Required by the function ac.

• int propagation(LinkedList *Q, int level)

Required by the function ac.

• int undo_ac(csp_t *C, int level)

Required by the function mac.

The file dnpi.cc contains the following functions:

• int DNPI::solve(csp_t *csp)

Finds a solution, if one exists, to the CSP using the DNPI method.

• int DNPI::fc_label(int i)

Required by the function DNPI::solve.

• int DNPI::fc_unlabel(int i)

Required by the function DNPI::solve.
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• void DNPI::discriminationTree(int i)

Required by the function DNPI::fc_label.

• JDTnode* search(JDTnode *start, csp_var_t* var, void* val)

Required by the function DNPI::discriminationTree.

A.4 Test problems

The problems that we used to test our planning system were included as part of the

GP-CSP distribution. The web page for GP-CSP is located at

http://rakaposhi.eas.asu.edu/gp-csp.html

The problems which we used were all encoded in PDDL, which most modern

planning systems are built to handle.

Additionally, we encoded one domain of our own, and a problem to go with it.

Figure A.1 shows the PDDL definition of the rocket domain. Figure A.2 shows the

PDDL definition of a problem in this domain, namely the one where Alex wants to

go to Paris and Jason wants to go to JFK.
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(define (domain rocket)
(:requirements :strips)
(:predicates (in ?o ?r) (at ?o ?p) (has-fuel ?r)

(rocket ?r) (cargo ?c) (place ?p))

(:action load
:parameters (?c ?r ?p)
:precondition (and (at ?r ?p) (at ?c ?p) (rocket ?r)

(cargo ?c) (place ?p))
:effect (and (in ?c ?r) (not (at ?c ?p)))
)

(:action unload
:parameters (?c ?r ?p)
:precondition (and (at ?r ?p) (in ?c ?r) (rocket ?r)

(cargo ?c) (place ?p))
:effect (and (at ?c ?p) (not (in ?c ?r)))
)

(:action move
:parameters (?r ?from ?to)
:precondition (and (has-fuel ?r) (at ?r ?from) (rocket ?r)

(place ?from) (place ?to))
:effect (and (at ?r ?to) (not (has-fuel ?r)) (not (at ?r ?from)))
))

Figure A.1: Domain definition for the rocket domain.
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;2 objects to be transported

(define (problem rocket1)
(:domain rocket)
(:objects london paris jfk r1 r2 alex jason)

(:init
(at r1 london)
(at r2 london)
(at alex london)
(at jason london)
(has-fuel r1)
(has-fuel r2)
(rocket r1)
(rocket r2)
(place london)
(place paris)
(place jfk)
(cargo alex)
(cargo jason))

(:goal (and (at alex paris)
(at jason jfk))))

Figure A.2: Problem definition for the rocket problem.



75

Bibliography

[1] Amy M. Beckwith and Berthe Y. Choueiry. On the Dynamic Detection of In-
terchangeability in Finite Constraint Satisfaction Problems. In Toby Walsh,
editor, Proceedings of 7th International Conference on Principle and Practice of
Constraint Programming (CP’01), volume 2239 of Lecture Notes in Computer
Science, page 760, Paphos, Cyprus, 2001. Springer Verlag.

[2] Christian Bessière and Jean-Charles Régin. Refining the basic constraint prop-
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