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This thesis discusses the application of algorithm selection and configuration tech-

niques to the field of Constraint Processing. A wide range of constraint propagation

algorithms exist, each with unique strengths and weaknesses. We examine how to

make better use of constraint propagation through the proper pairing of problem and

algorithm.

Our study is undertaken from two perspectives. First we consider how to select

an algorithm for a given problem. We show how a simple machine learning classifier

can be constructed to select between two constraint minimality algorithms. Next,

we consider building a problem suited to a given algorithm. We demonstrate how

an algorithm configurator can be used to guide the construction of problem classes

favoring the algorithm. Both approaches are fruitful and have the potential to improve

constraint propagation.
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Chapter 1

Introduction

Constraint Processing is an expressive and powerful framework for modeling and

solving constrained combinatorial problems. Problems from countless real-world ap-

plications such as scheduling, resource allocation, and hardware verification can be

expressed as Constraint Satisfaction Problems. Solving a Constraint Satisfaction

Problem (CSP) is in general NP-complete. The only sound and complete algorithm

for solving is exhaustive backtrack search. However, to supplement the search process,

there exist a myriad of inference strategies that can simplify a CSP. These constraint

propagation algorithms come in many different strengths and enforce varying levels of

consistency upon the CSP. Algorithms that achieve a greater amount of filtering may

take significantly longer to run. Because of this trade-off, there is rarely a clear-cut

best algorithm. An important research direction is the selection of the appropriate

algorithms to employ in solving a given problem instance. The inverse question of

what problems are particularly suited to the strengths of a given algorithm is similarly

interesting. We explore both approaches in this thesis. Investigating these questions

has the potential to yield incredibly useful results. By correctly applying propagation

algorithms, CSP solvers are able to significantly speed their search for a solution.
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Consequently, the Constraint Satisfaction Problem can become another step closer to

tractability.

1.1 Contributions

In this thesis we address both the question of what algorithm to select for a given

problem and the question of what type of problem is best suited to a given algorithm.

In answering these questions, we make use of two algorithms for enforcing a high

level of consistency: constraint minimality. The two algorithms, PerTuple and AllSol,

enforce this consistency in different ways and thus have differing performance. We

make the following contributions:

1. We demonstrate and compare several machine learning classifiers that can be

used to select when to use the two algorithms.

2. We highlight a class imbalance in the problems favoring PerTuple and the prob-

lems favoring AllSol.

3. We demonstrate a framework for configuring randomly generated CSP instances

to favor one algorithm over another.

4. We show what problem features cause PerTuple to run faster than AllSol and

vice-versa.

1.2 Outline of Thesis

The thesis is structured as follows:

Chapter 2 In this chapter, we present background material concerning the Con-

straint Satisfaction Problem. It also addresses background in algorithm se-
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lection and configuration. We give a synopsis of papers dealing with related

research.

Chapter 3 In this chapter, we discuss the constraint minimality property and the

algorithms PerTuple and AllSol. We compare various classification strategies

and identify one that performs the most accurate classification. At the end,

we show the distribution of AllSol and PerTuple problems and discuss how this

affects the classification.

Chapter 4 This chapter covers the question of which types of problems suit a given

algorithm. We show how to use both a random CSP generator and an algorithm

configurator to automatically create a problem built for use with a particular

algorithm. We give details on the effectiveness of such an approach and look at

what parameters make a problem better suited to AllSol or PerTuple.

Chapter 5 This last chapter concludes this thesis, and gives our ideas for future

research.



4

Chapter 2

Background

2.1 The Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined by the tuple P = {V ,D, C}:

1. V = {V1, V2, ..., Vn} is a set of variables.

2. D = {D1, D2, ..., Dn} is a set of finite domains. Each variable Vi ∈ V has a

corresponding domain Di ∈ D

3. C = {C1, C2, ..., Ce} is a set of constraints. Each constraint restricts the possible

assignments of values to variables.

Each constraint Ci ∈ C is defined by a scope and relation. The scope(Ci) ⊆ V is

the subset of variables in V that the constraint applies to. The arity of a constraint

refers to the magnitude of the constraint’s scope, i.e., arity(Ci) = |scope(Ci)|. A

constraint with arity 1 is known as a unary constraint while those with arity 2 are

binary. Constraints covering all n variables are global. A CSP containing only unary

and binary constraints is a binary CSP. The rel(Ci) ⊆ Dx ×Dy × ...×Dz is the set

of allowed tuples of elements from the scope of Ci.
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The density of a CSP is a measure of the number of constraints in the problem. It

is equal to e
emax

where e is the number of constraints and emax = n(n−1)
2

. The tightness

of a CSP is a measure of the restrictiveness of the constraints in the problem. It is

equal to |forbiddentuples||alltuples| . The phase transition is a phenomena witnessed when varying

the tightness of problems. A low tightness will cause solutions to be plentiful and

easy to find. A high tightness will make the problem over constrained and thus it will

be easy to determine that no solutions exit. However, in the intermediate regions of

tightness finding solutions becomes increasingly difficult.

As an example, we will show how a map coloring problem can be represented as

a CSP. The map will be made up of four regions: Nebraska (NE), Iowa (IA), Kansas

(KS), and Missouri (MO). They are laid out as shown in Figure 2.1. Each region can

be colored one of three different colors: red, green, or blue. There is a restriction

that any two adjacent regions may not share a color. A solution is a coloring of the

regions that obeys this restriction.

NE IA

KS MO

Figure 2.1: An example map coloring problem.

To model this problem as a Constraint Processing Problem, we need to identify

variables, domains, and constraints. The variables will be the map regions. Thus

V = {NE, IA,KS,MO}. The domains will be the colors that each region can take.

So D = {DNE, DIA, DKS, DMO} and DNE = DIA = DKS = DMO = {r, g, b}. The
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constraints are binary ‘not-equal’ constraints between all adjacent regions. Thus

CNE,IA = CNE,KS = CNE,MO = CIA,MO = CKS,MO = {(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)}.

This CSP is illustrated in Figure 2.2.

NE IA

KS MO

{r,g,b}
{r,g,b}

{r,g,b}{r,g,b}

≠ ≠

≠

≠

≠

Figure 2.2: Map coloring CSP.

A solution to a CSP is an assignment of values to variables. The values are taken

from the respective domains of the variables and must satisfy all constraints. When

given a CSP, it may be desirable to find a single solution, enumerate all possible

solutions, or determine if any solutions exist.

In our map coloring example, one solution would be: NE = r, IA = g,KS =

g,MO = b. Upon examination, we can see that KS and IA must always be colored

the same. The remaining two colors are used on NE and MO. Thus if we were

to enumerate all solutions, we would find 6 unique colorings of the map. Trivially,

we can see that a solution exists if we can enumerate 6 solutions. However, in some

CSPs, no solution exists and it may be difficult to determine short of an exhaustive

search.

There are many techniques and algorithms utilized in solving a CSP. Generally

these can be classified into two categories: search and inference.
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2.1.1 Search

Search is the process of exhaustively enumerating all possible variable-value combi-

nations for a given CSP in order to find a solution. The most basic search technique,

backtrack search, involves systematically assigning values to variables until a conflict

is reached or a solution discovered. Upon finding a conflicting assignment, the value

is thrown out and the next domain value is used. When all values in a domain have

been tried, domain wipeout occurs and search backtracks to reassign the previous

variable. In this way, the entire search space is explored in a depth first manner.

There are many variations upon the simple backtrack search. The ordering in

which the variables are assigned values can have a significant impact on the search.

For instance, if many conflicts are detected early and high in the search tree, entire

branches of the search may be avoided. Similarly, the ordering in which values are

taken from the variable domains can have an impact. A large number of heuristics

exist for determining orderings of both variables and values.

Backtrack search can be enhanced by look-ahead strategies such as forward check-

ing. A forward checking search will examine all values in unassigned variables to see

if they conflict with currently assigned values. Thus it looks forward and checks the

upcoming values. Conflicting values are removed. This may lead to early domain

wipeouts and prevent unnecessary branches from being explored. Forward checking

is a simple inference technique, though there are many that are more complex.

2.1.2 Inference

Inference is a technique that utilizes information about the constraints to reduce a

CSP to a simpler problem. While inference is not complete and thus not guaranteed to

find a solution, it often can drastically speed the solution search. Inference takes the
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form of constraint propagation algorithms, which are used to enforce local consistency

properties on CSP.

A consistency property defines to what extent a CSP is internally consistent. By

enforcing such a property, domain values that do not meet this consistency require-

ment may be filtered out and the resulting problem simplified. Depending on the

strength of the consistency property, more or less filtering may occur in differing

amounts of computation time.

The simplest and most used consistency property is arc consistency. A value is

arc consistent if it has a support, a neighboring value with which it is consistent.

A variable is arc consistent if all its values are. Similarly, a CSP is considered to

be arc consistent if all variables are arc consistent. Thus every value in the CSP

must have a support. There are numerous propagation algorithms for enforcing arc

consistency. The standard AC algorithm operates on binary CSPs. The Generalized

Arc Consistency (GAC) algorithm operates on constraints of any arity.

There are many more complex uses of inference. Path consistency requires a

chain of supports of a given length for every value. Maintaining Arc Consistency

(MAC) interleaves search and propagation to have an arc consistent CSP at every

step. Relational consistencies operate on the constraints rather than the domains.

Algorithms that enforce relational consistencies filter out tuples from the relations.

2.2 Algorithm Selection

Algorithm selection refers to any method used to choose an algorithm for a given

problem. The question of how to determine the optimal algorithm to apply in a given

situation was addressed in the paper “The Algorithm Selection Problem” by John Rice

[1976]. This paper discusses algorithm selection in a general sense rather than in the
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context of a particular domain. Rice presents four steps that apply to all algorithm

selection problems: the extraction of key features of the problem, the mapping of

those features to a selected algorithm, the mapping of the algorithm to performance

measures, and a norm on the performance measures to evaluate the algorithm. An

algorithm portfolio is a collection of algorithms and a policy for selecting one or more

of the algorithms to run [Huberman et al., 1997]. Ideally the constituent algorithms

will complement each other and make up for each other’s failings. Algorithm portfolios

have found great success in the related field of Boolean satisfiability with the SATzilla

SAT solver [Xu et al., 2008].

2.3 Algorithm Configuration

Algorithm configuration is an optimization technique used to improve the performance

of a target algorithm on a particular set of instances by tuning the algorithm’s input

parameters. Algorithm configuration is typically used to reduce the runtime of the

target algorithm, and it can also be used to improve the algorithm’s solution quality.

Various configuration strategies are used to optimize an algorithm, including racing

procedures [Birattari et al., 2002], local search [Hutter et al., 2009], and model-based

optimization [Hutter et al., 2011]. Algorithm configuration is most effective when

as much as possible of the internals of the algorithm are exposed as parameters,

increasing the flexibility of the configuration. Algorithm configuration is particularly

useful in that it allows for detailed automated exploration of the parameter space and

can eliminate the need for manual tuning by a domain expert.



10

2.4 Related Work

Finding the best algorithm to handle a given problem is an important endeavor. This

is an active area of research and thus there is much work related to our own. The

following are papers most closely related to our own.

Chmeiss and Sais [2004] examine ways to enforce consistency during backtrack

search while avoiding the cost of running full MAC. The paper introduces MAC(dist),

an algorithm that enforces AC at every step of the search out to a distance specified

by the parameter. This allows the algorithm to perform anywhere on a continuum

between FC and MAC. This intermediate consistency is useful on the class of sparse

random CSPs tested on.

Stergiou [2009] identifies 4 heuristics to aid in the selection of a strong consistency

or weak consistency. In this paper, AC is used as the weak consistency while maxRPC

is used as the strong. The heuristics operate by keeping track of value deletions and

domain wipeouts. When the heuristic value passes some threshold, strong consistency

will be applied. Later, it may return to the weak consistency if the strong is no longer

necessary. Utilizing the heuristics resulted in time savings during search, particularly

when combining multiple heuristics.

Epstein et al. [2005] develop ‘propagation policies,’ strategies specifying what

algorithms to apply when during the search. The ACE system used in the experiments

is given several consistency algorithms and run iteratively over a set of CSP instances,

updating the policy as it goes. In this study, six (6) algorithms were used, all variants

of FC and AC. These variants are based around limiting the neighborhood of allowed

propagation, quantifying the responsiveness of a filtering operation, and accounting

for the current depth of the search. Experiments show ACE develops close to an ideal

policy for the algorithms it is given.
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Balafrej et al. [2013] define a general form of parameterized consistency that can

scale in strength from AC to any stronger consistency desired. The scaling is based

around the ‘p-stability’ of the values, which is determined by the distance of the

value from the end of the ordering of values. The paper uses maxRPC as the strong

consistency and thus p-maxRPC is the parameterized consistency. Adaptive forms of

this consistency are also introduced, which change the parameter value in response to

conditions in the search. Tests show the adaptive consistency outperforms the basic

strong and weak consistencies.

Woodward et al. [2011] make use of a machine learning classifier to select between

the use of four (4) variants of a consistency algorithm. The base consistency used is

Relational Neighborhood Inverse Consistency. There is a variant that first removes

redundant edges, a variant that first triangulates the dual graph, and a variant that

does both. A simple hand-tuned decision tree selects the algorithm based on features

of the CSP. This selection process results in better performance than any of the

individual algorithms.
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Chapter 3

Machine Learning Classifier to

Select a Minimality Algorithm

A major limiting factor in the solving of CSPs is the time complexity. By their nature,

the combinatorial problems dealt with in Constraint Processing are difficult to solve.

Luckily, in practice, it is often possible to solve a CSP in under exponential time, given

the right algorithm. Constraint network minimization is a technique that can be used

to simplify a CSP by removing unnecessary tuples from the constraints [Montanari,

1974]. In this chapter, we consider two minimization algorithms: PerTuple and AllSol.

Depending on the CSP being minimized, the performance of two algorithms can vary

widely, to the point where one or the other may not terminate. Therefore it is of great

importance to select the correct algorithm. We show how to use machine learning

classifiers to accomplish this task.
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3.1 Enforcing Constraint Minimality

Constraint minimality is a strong consistency property that operates on the relations

of the CSP. It guarantees that every tuple in every constraint’s relation appears in a

solution to the CSP [Montanari, 1974], see Figure 3.1. The importance of minimality

was established for knowledge compilation [Gottlob, 2012] and achieving higher levels

of consistency [Karakashian et al., 2013].

..… 

Every	
  tuple	
  

In	
  every	
  rela.on	
  

Figure 3.1: Minimal relations. Figure 3.2: Minimality algorithms: Per-
Tuple & AllSol.

3.1.1 PerTuple

PerTuple loops over all tuples of every relation of the CSP. For each tuple, it performs

a backtrack search to find the first solution in which the tuple appears. If no solution

is found involving the tuple, the tuple is removed from the relation. If a solution is

found, all tuples involved in the solution are saved. PerTuple terminates after having

removed or saved every tuple. The number of search processes executed by PerTuple

is linear in the total number of tuples in the relations. Intuitively, PerTuple should

perform well when each search can be quickly completed, that is, instances that are

small or instances that are large but located away from the phase transition.
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Algorithm 1: PerTuple(PD) [Karakashian et al., 2012]

Input: PD
Output: Minimal Network of PD
foreach Ri ∈ PD do1

foreach τi ∈ Ri do SetMark(τi, false)2

foreach Ri ∈ PD do3

foreach τi ∈ Ri, do4

if Marked(τi) = false then5

Assign(Ri, τi)6

/* Backtrack search for a solution */

sol←BTsearchOneSol(PD)7

if sol = false then Delete(τi)8

else foreach τj ∈ sol do SetMark(τj, true);9

3.1.2 AllSol

To enforce minimality, the AllSol algorithm executes a single backtrack search that

enumerates all the solutions. For every solution identified, the involved tuples are

saved. AllSol terminates after exploring the entire search tree. Tuples not appearing

in a solution are removed. AllSol only performs a single but exhaustive backtrack

search. Thus, AllSol should outperform PerTuple in large problems that are around

or above the phase transition where most of the search space is explored anyway. In

problems with plentiful solutions, AllSol may become overwhelmed by enumerating

all the solutions. The situation is depicted in Figure 3.2.

3.2 Problem Features

In order to build a machine learning classifier, features need to be selected in order

to characterize the objects being classified. We use 12 features that provide defining

information about a given CSP. These features can be calculated in relatively short

time by examining the structure and constraints of the problem. The 12 features are:
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Algorithm 2: AllSol(PD) [Karakashian et al., 2012]

Input: PD
Output: Minimal Network of PD
foreach Ri ∈ PD do1

foreach τi ∈ Ri do SetMark(τi, false)2

sol← false3

while sol = false do4

sol←BTsearchNextSol(PD)5

if sol 6= false then6

foreach τi ∈ sol do SetMark(τi, true)7

foreach Ri ∈ PD do8

foreach τi ∈ Ri do9

if Marked(τi) = false then Delete(τi)10

1. κ

2. log2(avg(relLinkage))

3. log2(stDev(relLinkage))

4. stDev(relLinkage)/avg(relLinkage)

5. stDev(tupPerVvp)/avg(tupPerVvp)

6. avg(tupPerVvpNorm)

7. stDev(tupPerVvpNorm)

8. stDev(tupPerVvpNormProd)

9. stDev(tupPerVvpNormProd)/avg(tupPerVvpNormProd)

10. avg(relPerVar)

11. stDev(relPerVar)

12. stDev(relPerVar)/avg(relPerVar)
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κ is a parameter used to predict if the instance is at the phase transition [Gent

et al., 1996]. relLinkage measures the likelihood of a tuple at the overlap of relations

being in a solution. tupPerVvp counts the number of tuples a variable-value pair

appears in. relPerVar counts how many relations there are per variable. These

values are combined with various statistical aggregations to obtain the 12 features.

3.3 Building the Classifier

In order to build a strong classifier, a large data set must be used to train it. We

used benchmarks problems from the 2008 CSP Solver Competition. Each benchmark

is a set of CSP problems coming from a given problem domain and having similar

structure. By drawing upon many benchmarks, the classifier will be more generalized

and avoid fitting to a specific type of problem.

Each instance in each benchmark is broken down into clusters using the CSP tree

decomposition. Each cluster is a smaller subproblem that can treated as a complete

CSP and filtered using either algorithm. The tree decomposition is performed because

it corresponds to one intended use of the two algorithms [Karakashian et al., 2013].

This decomposition also serves to provide smaller problems to handle as well as a

larger data set. AllSol and PerTuple are both run on every cluster of the decomposed

CSP. Execution time of each algorithm, as well as all 12 problem features are output

for every cluster.

From the features and execution times output, we compile a dataset. Each in-

stance is assigned to a class of either AllSol or PerTuple, depending on which executed

faster. Each instance is also given 12 attributes corresponding to the 12 features ex-

tracted from the problem. This data set is then run through one of the algorithms of

the Weka machine learning suite [Hall et al., 2009] and evaluated based on how well
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it classifies the instances.

3.4 Experiments

In order to determine the feasibility and effectiveness of this algorithm selection ap-

proach, we ran several experiments on a set of data collected from five sets of bench-

mark problems: aim50, aim100, aim200, renault, and warehouse. This resulted 62

CSPs and 3592 total data instances.

The data presented in Table 3.1 shows some general statistics about the five

benchmarks individually as well as combined. This data shows that there is in fact

a noticeable difference in algorithm performance between the benchmarks. The class

distribution varies widely between the sets: a fairly even 467 to 517 for the renault

benchmark compared to the one sided 201 to 1 for the warehouse benchmark. The

difference in mean execution times also varies depending on the benchmark. The

aim100 benchmark has a substantially longer AllSol execution time. The warehouse

benchmark, though heavily siding towards the AllSol algorithm, had comparable

execution times for each. This indicates that the execution time difference was only

slightly in favor of AllSol.

Table 3.1: Benchmark Statistics.

Benchmark
#

AllSol

#
Per-

Tuple

Mean
AllSol

Time (ms)

StdDev
AllSol Time

(ms)

Mean
PerTuple
Time (ms)

StdDev
PerTuple
Time (ms)

aim50 130 444 352.65 2,890.86 68.75 201.90

aim100 158 747 16,584.45 474,935.80 55.09 49.66

aim200 174 753 264.76 3,711.17 140.38 72.94

renault 467 517 2,151.40 605.65 2,180.84 684.58

warehouse 201 1 628.76 347.07 724.21 476.07

(combined) 1130 2,462 4,927.83 238,499.30 699.25 999.84

As a first experiment, each benchmark data set, as well as the combined data set,
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was run through three Weka algorithms to generate classifiers. The three classifiers

chosen were: J48, MultilayerPerceptron, and NaiveBayes. During the training we

used 10-fold cross-validation. The data in Table 3.2 shows the F-measures of each

data set with each classifier. F-measure is a statistical analysis of classification and

is calculated from the harmonic mean of precision and recall. An F-measure of 1

represents perfect classification. For the most part, the three classifiers all performed

similarly. The F-measure differed mainly between benchmarks. Some benchmarks

are easier to classify than others. The Warehouse benchmark was able to achieve

almost perfect classification, though this is due to the fact that the classes were split

201 to 1. The renault benchmark had the lowest F-measures but they were still

above random guessing. The F-measure of the combined data was about 0.73 for all

classifiers. This represents a reasonably accurate classification, though it could still

see some improvement.

Table 3.2: Benchmark F-measures.

Benchmark J48 MultilayerPerceptron NaiveBayes

aim50 0.675 0.689 0.463

aim100 0.746 0.745 0.745

aim200 0.729 0.720 0.718

renault 0.551 0.578 0.589

warehouse 0.993 0.993 0.993

(combined) 0.726 0.726 0.728

In an attempt to increase the classifier F-measure, some modifications were made

to the data set and classifier training was run again. These tests were only run on

the combined data from all benchmarks. 10-fold cross-validation was again used.

Table 3.3 shows the results of these tests. The first row shows the F-measures on

the basic data set again. The next test cut out a portion of the data. The instances

where the execution times were within 100 ms of each other were dropped out. The
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F-measure rose significantly as a result. This indicates that the instances having

similar performance on both algorithms are difficult to classify. The next row shows

the results of splitting into three classes. Instead of throwing out instances in which

the difference is less than 100 ms, a third class, Either, is created. The F-measures

with this data set are higher still. However, this result is somewhat misleading. The

bulk of the instances actually fall into the Either class. This class is easy to classify

properly but almost meaningless as it will result in no time savings. The classes

we really care about predicting accurately are AllSol and PerTuple. The fourth row

shows the F-measure on the AllSol and PerTuple instances with classifiers trained on

all three classes. The results are poor and not an improvement over throwing out

the close instances. These tests show that it is possible to improve the F-measure by

modifying the data set.

Table 3.3: Weighted average F-measure of the three algorithms.

Strategy J48 MP NB

All instances 0.726 0.726 0.728
δt ≥100ms 0.917 0.880 0.900
3 classes 0.936 0.941 0.871
PerTuple+AllSol 0.501 0.547 0.433

Throwing out the data instances with minor execution time differences helped to

emphasize the more important data instances. To further emphasize the most mean-

ingful data instances, we experimented with weighted data sets and cost sensitive

classifiers on the J48 classifier. 10-fold cross-validation was incompatible with the

weighting in Weka and thus was not used. In the weighted data set there are still two

classes: AllSol and PerTuple. Each instance is also given a weight equal to the differ-

ence in execution times of the algorithms. Therefore, an instance with a difference of

100000 ms is given considerably more importance than an instance with a difference

of 10 ms. We also created a cost matrix for cost sensitive classification [Elkan, 2001].
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Classifying either class properly has a cost of 0. Classifying an AllSol instance as

PerTuple has an average cost of 59 ms. Classifying a PerTuple instance as AllSol has

an average cost of 6196 ms. Thus the classifier will err towards PerTuple, as the cost

is less.

First, we trained on the unmodified data set and obtained weighted and un-

weighted F-measures and time savings information. The time saved and lost are the

actual amounts of time saved and how much more could have potentially been saved.

We also report the percentage of the total possible time savings that were realized.

The resulting F-measures for J48 are shown in Table 3.4. The accuracy on the

weighted set gives the percent of potential time savings that was actually obtained.

While not achieving perfect F-measures, all four classifiers saved over 99% of the

time possible to save. All the significant instances were properly classified, only the

more trivial instances were incorrect. The classifier trained on the weighted dataset

marginally achieved the best F-measure and time savings. The classifier trained

with the cost matrix had the worst performance. Indeed, the cost matrix takes into

account the average cost of a misclassification, however, the standard deviation of the

execution time is so high that the average is not particularly relevant. We conclude

that J48 with the weighted dataset seems to be the most promising.

Table 3.4: Performance of J48 on four strategies.

Strategy F-measure Time saved Time lost
% ms ms

All instances 0.727 99.87% 15,301,950 19,350
δt ≥100ms 0.729 99.90% 15,306,510 14,790
Weighted 0.743 99.96% 15,314,980 6,320
Cost 0.557 99.57% 15,255,190 66,110

Figure 3.3 shows the distribution of the instances and the effect of the classification

with J48 and the weighted dataset. The vertical axis shows the number of seconds
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to execute AllSol while the horizontal shows execution time for PerTuple. Any data

point above the diagonal is better suited for PerTuple while anything below is suited

to AllSol. The further from the diagonal, the more suited the instance is. We can

indeed see that all important instances are classified. Those that are missed are too

close to the diagonal to have a significant impact. We also see a clear imbalance in

the classes. There are no instances from the five benchmarks that significantly favor

AllSol.

After noticing this class imbalance, we collected algorithm runtime data over a

much larger set of benchmarks. We took 86 benchmarks from the 2008 CSP Solver

competition. Figure 3.4 shows the distribution of runtimes. While we do see a handful

of more example favoring AllSol, substantially more favor PerTuple. This imbalance

may be representative of the distribution of all CSPs, but it can pose a problem to

training a classifier. More examples of problems favoring AllSol are needed to avoid

building a biased classifier. In Chapter 4 we demonstrate how to find these problems.

3.5 Summary

Minimizing the constraint network can be a beneficial step in solving a CSP. Un-

fortunately, using the wrong minimality-enforcing algorithm can cost a substantial

ammount execution time. By using machine learning to look at key features of a

problem and predict the optimal algorithm to apply, a great deal of time can po-

tentially be saved. The experimental results presented in this chapter show that a

machine learning approach is feasible and promising. However, we also highlight an

imbalance in the number of problems on which PerTuple runs faster and number of

problems on which AllSol runs faster. To correct for potential biasing of the classifier,

we need to train with a larger number of AllSol favoring instances.
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Chapter 4

Algorithm Configuration to Guide

Random CSP Generation

In this chapter, we demonstrate the utility of algorithm configuration in the random

generation of CSP instances. By taking a suitably parameterized random CSP gen-

erator, we use an algorithm configurator to tune the parameters such that a given

algorithm performs favorably on the generated instance. With this technique we gen-

erated instances that run over 1000 times faster on one propagation algorithm than

another. We also see what parameters are responsible for this performance difference.

4.1 Configuration of RBGenerator

We use an algorithm configurator that guides a random CSP generator, which gener-

ates instances on which we execute PerTuple and AllSol to test their performances.

After comparing their performances on the generated instances, the configurator se-

lects new parameters for the CSP generator in order to influence the performances.

Figure 4.1 shows the various components of the configuration system.
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Figure 4.1: Operation of the configurator.

4.1.1 RBGenerator

We use the random CSP generator RBGenerator [Xu et al., 2007]. This generator is

based on the model RB, which allows for easy generation of hard satisfiable instances

at the phase transition. RBGenerator uses the following parameters:

1. k ≥ 2 denotes the arity of the constraints

2. n denotes the number of variables

3. α determines the domain size d = nα of each variable

4. r determines the number m = r · n · ln(n) of constraints

5. δ determines the distance from the phase transition pcr + δ
1000

, where pcr =

1− e−αr

6. forced indicates whether or not instances are forced satisfiable

7. merged indicates whether or not constraints of similar scopes are joined

A strength of the RBGenerator is that it guarantees an asymptotic phase transition

under certain parameter conditions. When an asymptotic phase transition exists, the

threshold can be exactly determined. In addition, it provides a useful selection of

parameters for the configuration process.
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4.1.2 Sequential Model-based Algorithm Configuration

To tune the parameters fed into RBGenerator, we use of the algorithm configurator

SMAC (Sequential Model-based Algorithm Configuration) [Hutter et al., 2011]. We

give SMAC a description of the input parameters and acceptable ranges for them as

well as a default parameter configuration. We also give it a list of instances to use

for configuration. In this case, the list of instances is a set of 30 random seeds for the

RBGenerator. It is important to note that SMAC also makes use of a configuration

seed, which is separate from the RBGenerator instance seed. Finally, we give SMAC

a custom algorithm wrapper that handles the execution of RBGenerator, PerTuple,

and AllSol. SMAC takes an initial default configuration, performs an algorithm

execution, and determines its performance based on the wrapper output. Then, it

iteratively repeats the process, selecting new configurations and evaluating them.

Configurations are selected based on a continually developing regression model of the

parameters. The parameter exploration is also tied to the random configuration seed

that is provided to SMAC on launch.

4.1.3 Algorithm Wrapper

The algorithm wrapper encapsulates several programs to be run together. Initially,

RBGenerator runs with the parameters provided by SMAC. This generates a CSP

instance on which the two consistency algorithms for enforcing minimality are exe-

cuted. The wrapper is set to handle any crashes or timeouts from it’s components.

On a successful run, the execution times of PerTuple and AllSol are recorded. These

values are compared by taking the base-10 logarithm of their ratio. The numera-

tor and denominator of the ratio determines which algorithm is being optimized for.

Taking the logarithm ensures that equal weights are given to fractional values when
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the results are averaged in SMAC’s model.

4.2 Experiment Setup

In our experiments, we evaluate how well SMAC is able to generate instances that

favor a given algorithm. To this end, we test two cases: those where SMAC is allowed

to adjust all parameters (denoted adjustable size), and where SMAC has a restricted

set of parameters (denoted fixed size). For the restricted set of parameters, we fix n to

16 and α to 1, allowing SMAC to only control the constraints and thus restricting the

generated CSPs to be of a fixed size. For each of these two cases, we generate instances

favoring PerTuple and instances favoring AllSol (for a total of four tests). Each test

is ran 10 times (for each configuration seed of SMAC) resulting in different paths

through the parameter space and a better picture of the effects of the configuration.

To prevent the algorithm wrapper from stalling during configuration, we set time

limits on its components. RBGenerator is allowed to run for five minute to generate a

CSP instance. PerTuple and AllSol are allowed to run for 20 minutes each while they

enforce minimality on the CSP. If RBGenerator exceeds its time limit, the entire run

is considered crashed. If PerTuple and AllSol exceed their time limit, their runtime

is reported as 20 minutes. Restricting the time limit allows for comparison between

runs that terminate and those that do not. SMAC is allowed to run configuration

runs for four days. After that point, it takes the best configuration and validates the

results by running on all 30 RBGenerator instance seeds.

We run all our tests on a computer cluster of 7232 Intel Xeon cores in 452 nodes.

Each configuration run was allocated a single core of an Intel Xeon E5-2670 2.60GHz

processors and given 3 GB memory.
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4.3 Results

In all four cases, the configurator is able to find parameter settings that cause the

desired algorithm to significantly outperform the other. Table 4.1 shows the results

of the configuration in each of the four tests, across all 10 seeds. The column iters.

reports the number of iterations of SMAC before stopping (four days). The reported

speedup for each seed is the average speedup across 30 different instances generated

with 30 different instance seeds. We also provide the coefficient of variation (CoV),

which is the ratio of the standard deviation to the mean. A CoV value of less than

50% indicates that the variance across instance seeds is low. Consequently, the results

are more dependent on the parameter configuration than on the random variation

between the 30 instances.

The maximum speedup found is bolded for each of the four tests. All four tests

realize a speedup of at least 100 times, enough to definitively show there are classes

of problems heavily suited to either algorithms. However, when configuring for Per-

Tuple, we achieve speedups of over 1000 times. This fact may indicate that PerTuple

has a stronger affinity for a particular problem class than AllSol. It is also worth

noting that the fixed and adjustable problem size causes little change in the achieved

speedup. Adjustable problem size parameters allow discovery of only marginally bet-

ter configurations.

Note that some of the configuration seeds led to configurations with no speedup,

either because of crashes or timeouts. This lack of progress is the result of particular

seeds yielding flawed initial parameters. By continuing to select parameters causing

crashes and timeouts, SMAC has no useful data on which to build its model. On

those seeds, SMAC continues to blindly select new parameters that cause crashes and

timeouts.



29

Table 4.1: Configured parameters and the resulting speedups.
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seed iters k n α r δ forced merged speedup CoV

1 4330 4 19 0.75 9.91 578 n y 101.36 14.55%
2 2434 7 18 0.20 5.88 -9 y y 36.30 6.49%
3 2722 5 17 0.68 9.18 759 n y 75.73 8.10%
4 1451 2 20 1.74 8.28 309 n y 348.43 4.83%
5 393 2 12 1.45 4.43 -54 n n 11.21 32.69%
6 270 3 14 0.78 1.52 -100 y n 9.63 27.00%
† 7 599 2 20 1.75 8.12 302 y n 289.63 27.61%
8 454 3 8 1.70 1.00 -155 n n 13.72 77.29%
9 1864 5 19 0.72 7.70 825 n n 80.70 3.56%

10 2712 4 16 0.86 9.95 646 n y 115.01 17.31%
1 248 2 9 1.28 5.29 -162 n n 378.29 15.12%
† 2 562 2 17 0.79 0.61 -394 y n 4,627.35 78.67%
3 202 3 16 1.01 0.29 -190 n n 296.94 102.49%
4 88 2 14 0.77 2.69 -235 y n 531.85 15.82%
5 905 2 12 0.85 6.19 -98 y y 442.20 12.32%
‡ 6 305 4 13 9.80 8.05 542 n n 1.00 0.00%
7 145 2 19 0.36 3.59 291 n y 0.97 17.70%
8 138 2 14 0.87 1.25 -334 n n 1,510.80 40.12%
∗ 9 95 4 11 1.11 7.61 -52 y n 1.00 0.00%
10 332 3 18 0.99 0.18 -780 y y 63.75 73.30%
11 1198 4 16 1.00 8.35 799 n n 103.05 7.73%
12 1049 4 16 1.00 9.74 832 n n 98.89 5.45%
13 1148 4 16 1.00 9.33 826 n n 107.16 6.87%
14 1057 4 16 1.00 9.00 811 n n 89.80 13.29%
15 1005 4 16 1.00 8.36 794 n y 87.45 11.21%
16 1115 4 16 1.00 7.20 764 n y 92.09 8.51%
17 989 4 16 1.00 7.18 757 y n 87.79 10.54%
18 980 4 16 1.00 8.59 808 n n 102.17 6.20%
19 954 4 16 1.00 9.94 840 y y 109.75 4.05%
20 1168 4 16 1.00 7.73 786 n y 100.21 7.66%
∗ 11 89 4 16 1.00 5.13 -62 y n 1.00 0.00%
12 120 2 16 1.00 1.22 -361 y y 311.41 35.37%
13 82 2 16 1.00 2.21 -276 y y 69.74 28.92%
14 60 2 16 1.00 3.00 -265 n n 47.06 15.05%
‡ 15 33 5 16 1.00 0.46 757 y n 1.00 0.00%
† 16 173 3 16 1.00 0.14 -950 y n 40.36 102.40%
‡ 17 101 7 16 1.00 9.91 -377 n n 1.00 0.00%
‡ 18 131 8 16 1.00 4.41 292 n n 1.00 0.00%
19 188 2 16 1.00 0.74 -481 n n 1,300.63 27.01%
† 20 176 3 16 1.00 0.18 -967 n n 69.71 116.22%

*: all instances timeout, †: one or two instances crash, ‡: all instances crash
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Figures 4.2 and 4.3 show the improvements over the course of the configuration.

Configuring for AllSol tends to see smaller improvements being made, while PerTuple

makes fewer, large improvements. AllSol configuration also tends to find improve-

ments early on. In all cases, there is significant variation between seeds. However,

configuration runs of AllSol with fixed problem size all converge by the end.

The parameter settings obtained by the configuration processes give insight into

what problems each algorithm works well on. Two parameters in particular seem

correlated with the algorithm speedups: r and δ. When configuring for AllSol, r is

set at an average of around eight (8) and δ is a large positive value around 600. For

PerTuple, r is generally lower, around three (3), and δ a large negative value around -

200. There are exceptions to this, such as adjustable-PerTuple-7 or fixed-PerTuple-15,

but those exceptions are almost all poor speedups or crashed runs.

Figure 4.4 shows the effect of both r and δ on the performance of the algorithms.

The data shown here includes the intermediate configurations tested on the way to

the final configurations. Figure 4.5 shows the combined effect of the parameters.

All of the AllSol configurations of fixed problem size end up with extremely similar

parameter configurations as was hinted at by the convergence of their speedups. By

restricting the parameters, fewer paths through the parameter space provide viable

speedups. Thus, the configuration runs tended to converge.

The r parameter sets the number of constraints while δ influences the number

of allowed tuples for constraints. Thus, a configuration with a small r and negative

δ yields significantly under-constrained problems, while a configuration with a large

value of r and positive δ produces a highly constrained problem. Not only are we

able to produce problems favoring both algorithms, we can also determine what makes

them ‘favorable.’
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4.4 Summary

In this chapter, we have confirmed that pockets of CSPs exist that favor both PerTuple

and AllSol. We have also identified the parameters leading to this situation and

generated such problems. The parameter settings important to this algorithm choice

are the parameters that control the number and tightness of constraints. Highly

constrained problems favor AllSol and under-constrained problems favor PerTuple,

consistent with our intuitions of the algorithms.
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Figure 4.4: Effects of r and δ.

Figure 4.5: Combined effects of r and δ.
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Chapter 5

Conclusions and Future Work

The algorithms available to manipulate constraint satisfaction problems are countless

and varied. It is not often clear when one algorithm may outperform another. De-

termining this in an automated manner is a worthy endeavor. In this thesis we have

addressed two approaches and applied them to two constraint minimality algorithms:

PerTuple and AllSol.

We have shown several machine learning classifiers that classify problems to use

either PerTuple or AllSol. We found that the J48 classifier performed the best clas-

sification of our data particularly when training with the weighted data set. The

weighting of the dataset emphasizes the importance of the most extreme cases and

allows them to be properly classified. This classifier saved 99.96% of the time possible

to save.

In our investigation of a larger set of benchmarks, we identified an imbalance

in the number of problems favoring AllSol and those favoring PerTuple. In the 86

benchmarks examined, PerTuple was much more represented both in the number of

instances and the extent to which it was favored. This imbalance could cause a biased

classifier and thus led us to search for examples where AllSol performed stronger.
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We made use of an algorithm configurator in conjunction with a random CSP

generator to build problems better suited to AllSol or PerTuple. This technique

proved successful and we were able to obtain problems that ran 100 times faster on

AllSol than on PerTuple and problems that ran 1000 times faster with PerTuple than

with AllSol. These problems were generated automatically without any human input

in the configuration.

After obtaining the problems, we examined the responsible parameters. The pa-

rameters r and δ closely correlate to the performance of the two algorithms on the

generated problems. These parameters control the number of constraints and the

tightness of the constraints respectively. Problems with more constraints and tighter

constraints performed better with AllSol while problems with less constraints and

looser constraints performed better with PerTuple.

There are several directions for future research:

1. Our technique for random CSP parameter configuration can be extended to

tune for many more algorithms. Any two algorithms for enforcing the same

consistency property may be dropped into the framework and it will be possible

to build problems favoring one over the other. Algorithms for enforcing different

consistencies are less straightforward to compare, but still possible. In this case,

you may compare the summed runtime of both the propagation algorithm and

the subsquent search.

2. Algorithm configuration benefits from having access to many parameters to

tune. The RBGenerator exposes several meaningful parameters, but a random

generator with more could be useful. For example, it may be useful to have

access to parameters that introduce asymmetry in the CSP, control clustering,

or add bottlenecks. More parameters provides much more flexibility to the
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configurator.

3. Examining the final parameter settings after configuration can give insight

about what causes problems to run faster with certain algorithms. We have

seen what parameters matter when choosing between AllSol and PerTuple.

Next, we can make use of that knowledge in building our classifiers. By looking

specifically for the problem features we identify to be important, we can better

categorize the problems.

4. In our initial classification experiments, our class imbalance affected the training

of the classifier. Now that we have shown how to generate instances favoring

AllSol, we can train a classifier on a more balanced set of data. This will allow

it to better discriminate between the two classes of problems.

5. Our long-term goal is to develop a large portfolio of propagation algorithms and

a robust classifier to select the most useful consistency property to enforce, and

for a given property, the most effective propagation algorithm. This selection

will occur dynamically during the search in order to allow the system to adapt

to the changing needs of the problem. Such a system would allow us to make

the best use of the many propagation algorithms available to us.

We have demonstrated feasible approaches for both the selection of propagation

algorithms with machine learning classifiers and the tuning of random problem gen-

eration with algorithm configuration. Both show promise and will put propagation

algorithms to more optimal use.
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