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Scalability is a major obstacle in solving combinatorial problems. Reformula-

tion techniques are often sought to overcome the complexity barrier. In this thesis,

we propose four reformulation techniques that modify one or more components of

a Constraint Satisfaction Problems (CSPs) in order to facilitate scalability. Those

techniques are: query reformulation, domain reduction, constraint-model relaxation,

and symmetry detection. We introduce the techniques and describe their use on

general CSPs. Then, we study the building-identification problem (BID) introduced

and modeled as a CSP by Michalowski and Knoblock [2005]. We introduce an im-

proved constraint model for the BID that accurately reflects the inherent structure

of a problem instance as well as a custom solver that exploits the properties of this

structure.

We apply our reformulation techniques to the BID problem and interleave them

with the various stages of our custom solver. We apply our integrated approach

to real-world case studies of the BID to evaluate the benefits of our reformulation

techniques. We show that our approach allows us to solve much larger problem

instances than it was previously possible.
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Chapter 1

Introduction

Scalability is a major obstacle to the automation of problem solving in real-world set-

tings. Abstraction and reformulation techniques are commonly sought to overcome

the complexity barrier. In this thesis, we propose and characterize new reformulation

techniques for Constraint Satisfaction Problems (CSPs), which are commonly used

to model NP-complete decision problems. Although our techniques are primarily

designed for resource allocation problems modeled as a CSP, we identify how they

can be exploited in relational consistency and symmetry detection. For example, we

show how one of our reformulations is useful for reducing the space complexity of

enforcing relational consistency on general CSPs. Further, we study the building-

identification problem (BID), a geospatial reasoning problem modeled as a resource

allocation problem where we assign each resource to a single task. This problem was

introduced by Michalowski and Knoblock [2005]. We improve their proposed con-

straint model to better reflect the topology of the physical world and to allow the

addition of constraints that reflect characteristics of a particular problem instance.

Finally, we demonstrate the effectiveness of our reformulation techniques in the con-

text of solving the BID problem, and show how they allow us to solve larger problem
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instances than was previously possible.

Choueiry et al. [2005] characterized a reformulation process as a transformation

of the encoding of a problem, where the encoding of a problem P is a combination

of its formulation and a query , P = 〈F ,Q〉. The reformulation transforms the orig-

inal encoding Po = 〈Fo,Qo〉 into a reformulated one Pr = 〈Fr,Qr〉 by changing the

original query and/or any of the components of the original formulation. The goal of

the transformation is to ‘simplify’ problem solving, where the benefit of the ‘simplifi-

cation’ and other effects of the transformation must be clearly articulated, specified,

and evaluated in the particular problem-solving context.

The problem formulation of a CSP is given by F =(V,D, C) where V is a set of

variables, D is the set of their respective domains, and C is a set of constraints. A

constraint is a relation over a subset of the variables specifying the allowable com-

binations of values for the variables in its scope. A solution is an assignment to the

variables such that all constraints are satisfied. The query is usually to find one con-

sistent solution, in which case the general problem is in NP-complete. Alternatively,

the query could be to find all possible solutions. When reformulating a CSP, we can

reformulate any aspect of the problem definition, as illustrated in Figure 1.1.

rP

oQQuery:

oP

o=(V o,Do,C )F o r=(V r ,Dr ,C )F rFormulation:
Query: rQ

ReformulationFormulation:

Figure 1.1: The reformulation process.

In this thesis, we present four techniques to reformulate different components of

the CSP formulation and query. These techniques were also presented in [Bayer et

al., 2007a] and [Bayer et al., 2007b]. The techniques we present are useful in many

application domains, particularly for resource allocation problems. We demonstrate

the effectiveness of the techniques on the building-identification problem introduced
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by Michalowski and Knoblock [2005].

In this chapter, we introduce some motivating applications. We then describe

the contributions of this thesis and discuss related work. Finally, we describe the

organization of this document.

1.1 Motivating examples

In this section, we describe three applications that can be naturally modeled as a CSP

and solved using Constraint Processing (CP) techniques. These applications are: the

computer-configuration problem, the teaching-assistant assignment problem, and the

building-identification problem (BID).

1.1.1 Computer configuration

The computer-configuration problem is the task of selecting and connecting com-

ponents to form a computer that fulfills a given set of computational and Internet

connectivity needs. Given a client’s needs, a set of components along with a descrip-

tion of their characteristics and functionalities, a set of rules about how components

can be chosen and combined, our goal is to find a satisfactory configuration of com-

ponents for a computer. Examples of the rules (e.g., constraints) follow:

• We may have limits on the number of components of a certain type we may use.

For example, a computer may only have a single motherboard.

• Certain components may be mutually exclusive. For example, certain processors

may only be compatible with certain motherboards.

• Some components, or their features, may already be specified by the user. For

example, the users may request a specific graphics card, or they may specify
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only the type of the card.

• The users may specify a maximum total price or a price range.

The query may be either to find a single computer configuration that meets the

requirements, or to find the set of all such configurations.

1.1.2 Teaching assistant assignment

The task in the teaching-assistant (TA) assignment problem is to assign TA’s based on

their qualifications, availability, and preferences, to tasks such as grading, supervising

laboratory work, and conducting lectures or recitations [Glaubius and Choueiry, 2002].

Finding a satisfactory set of assignments is a difficult problem to solve. Previous work

at the Constraint Systems Laboratory has investigated automated and interactive CP

techniques to address this problem with much success [Glaubius, 2001; Zou, 2003;

Guddeti, 2004; Thota, 2004; Lim, 2006].

1.1.3 Building identification

The building-identification problem was introduced by Michalowski and Knoblock [2005].

The task is to assign a list of postal addresses to buildings appearing in a satellite im-

age. We can extract the buildings and streets from satellite images using techniques

such as those introduced by [Agouris and Stefanidis, 1996] and [Doucette et al., 1999].

However, we do not know the addresses of the buildings or, for a building located on

a street corner, on which street the building’s address lies. A variety of data sources,

such as phone-books and gazetteers, provides a (likely incomplete) list of addresses.

One possible practical scenario is when a user opens a Google-map interface, clicks

on a building and asks for the possible postal addresses of the building. Alternatively,

the user gives a postal address and the system highlights the possible buildings that
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may have the requested address1. This problem is important, as an effective solu-

tion to it could have prevented catastrophes such as the inadvertent bombing of the

Chinese embassy in Belgrade, as described in [Pickering, 1999]. More generally, the

information gained by data integration can be used to verify and augment geospatial

databases (e.g., gazetteers2), and extend the capabilities of geospatial systems (e.g.,

Google Maps, Google Earth, and Microsoft VirtualEarth).

A variety of algorithms exists to solve the similar problem of geocoding, which is

the task of determining the precise latitude and longitude of a given address using

information obtained from diverse sources [Bakshi et al., 2004]. This problem differs

from the BID problem, where the task is to assign addresses to buildings identified in

a satellite image. Michalowski and Knoblock [2005] modeled the BID problem as a

CSP. Their work established the feasibility of modeling and solving this problem as a

CSP and identified an important new area where CP techniques are useful for solving

real-world problems. However, they were only able to demonstrate its effectiveness

on a single problem instance containing 34 buildings. The techniques we propose,

when applied to the BID problem, allow us to solve problems with as many as 206

buildings.

1.2 Contributions

We present four main contributions:

1. The design of four new reformulation techniques for the general Constraint

Satisfaction Problem, see Chapter 3.

2. A new constraint model and a custom solver for the Building Identification

1Currently, Google map gives approximate results based only on geocoding coordinates.
2http://www.census.gov/cgi-bin/gazetteer
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problem, see Chapter 4.

3. A proof the that BID problem as described in [Michalowski and Knoblock, 2005]

can be solved in polynomial time.

4. The application of the proposed reformulations to the BID problem, and their

integration with the designed solver, see Chapter 5. The benefits of the refor-

mulations are evaluated and demonstrated on real-world data sets that we built,

in collaboration with Martin Michalowski and Medha Shewale, from publicly

available sources on the world-wide web.

Below, we briefly discuss each of these contributions.

1.2.1 Reformulation techniques for the CSP

We introduce four reformulation techniques for CSPs.

1. Query reformulation: We introduce a technique that reformulates the query in a

problem definition, reducing the complexity class of a problem from a counting

problem to a satisfaction one. We show how this reformulation yields general

relational-consistency algorithms with a significantly smaller space complexity

than RC(i, m), the algorithm proposed by Dechter [2003].

2. Domain reformulation: We introduce a technique that reformulates the domains

of CSP variables to reduce their size in the presence of a new global constraint

that we specify. We argue that this new global constraint and its reformulation

are particularly useful in resource allocation problems.

3. Constraint relaxation: We argue that many resource allocation problems have,

at their core, a problem that can be modeled as a matching problem on a

bipartite graph. Thus, for a problem that may be in NP-complete, we find
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a relaxation that is in P. We exploit this relaxation in a number of ways to

improve the performance of the search process used to solve the problem.

4. Reformulation via symmetry detection: We describe a way to characterize all

maximum matchings in a bipartite graph as symmetric to a single maximum

matching. Then, we use one maximum matching along with the symmetry

description to represent all maximum matchings in a compact manner.

1.2.2 Modeling and solving the BID problem as a CSP

We introduce a new CSP model for the BID problem, and a ‘custom’ backtrack-

search solver for this problem. Our model builds on the work of [Michalowski and

Knoblock, 2005], improving their model to better reflect the underlying structure of

the problem. Further, it is also allow the addition, as a plug in, of new constraints

that reflect characteristics of a particular problem instance. Our solver is designed to

take advantage of the structure of the BID problem. For example, it focuses on those

variables that, when instantiated, reduce the CSP into a tractable structure3.

1.2.3 The tractability of the BID problem

We show that the BID problem as described in [Michalowski and Knoblock, 2005] can

be solved in polynomial time. We introduce a reduction of the BID problem into the

problem of finding a maximum matching in a bipartite graph. While we show that

the specific BID problem they described is tractable, we also characterize versions of

the problem that may not be tractable.

3Such variables are called backdoor variables [Kilby et al., 2005].
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1.2.4 Reformulating the BID problem

We discuss the application of our reformulation techniques to the BID problem and

the integration of these techniques in the solver we designed for the BID problem.

We provide empirical results to show the value of our reformulation techniques in

terms of improved runtime performance for problem solving. Importantly, we show

that under certain conditions the BID problem can be solved in polynomial time, a

result that was not previously known.

1.3 Related work

In this section, we give a broad discussion of related work. Specific approaches are

discussed in more detail in the relevant sections of the remaining chapters.

Although, since the early 1990’s, Constraint Processing has been particularly suc-

cessful in industrial and other real-world settings, the fact that the satisfiability of a

CSP is likely intractable hinders the scalability of this approach to large problems.

Consequently, developing techniques the improve the performance of problem solv-

ing is an important area of research. In this thesis, we focus on techniques based

on abstraction and reformulation. Abstraction and reformulation, although ubiqui-

tous in Science and Engineering in general, have received a particular attention in

the field of Artificial Intelligence where they have been studied for their own sake

since the inception of the field. Simon [1969] has characterized the entire endeavor of

problem solving as a change of representation. Holte and Choueiry [2003] provide a

general discussion of approaches to abstraction and reformulation in Artificial Intel-

ligence, including CSPs. In CSPs, as in other disciplines, most work can be roughly

categorized into two main categories, modeling and reformulation, although a clear

boundary between those categories is often difficult to draw.
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• Modeling: Alternative, manually crafted, models of a given problem are built,

often manually, and compared. Often times, additional constraints (also called

redundant constraints) are added to the problem to speed up constraint propa-

gation and search. In general, such techniques do not modify the set of solutions

of the problem. Modeling remains an art, and has so far resisted automation.

Nadel [1990] used the n-Queens problem as a case study and considered 8 differ-

ent modelings of the problem, some of which were much easier to solve than oth-

ers. Simonis [2005] investigated the addition of various redundant constraints

to the model of a Sudoku puzzle to speed up constraint propagation. A series

of workshops at the the Constraint Programming Conference, known as the

Workshop on Modeling and Reformulating Constraint Satisfaction Problems, is

devoted to this topic.

• Reformulation: Transformation techniques are designed that automatically mod-

ify a problem encoding to facilitate problem solving. The key issue here is that

an initial encoding of the problem exists, and the reformulation is a compu-

tational mechanism that transforms the original encoding into a reformulated

one. While reformulations are sometimes applied manually, the idea is that

their application can be, and often times is, automated. In general, reformu-

lation techniques may or may not change the set of solutions to the problem.

For example, Ellman [1993] studies both necessary and sufficient abstractions

of CSPs.

Reformulation techniques have been proposed for reformulating CSPs, modi-

fying the variables themselves (e.g., by aggregation), their domains (e.g., by

interchangeability [Freuder, 1991]), and/or the constraints (e.g., by relaxation).

The Symposium on Abstraction, Reformulation and Approximation (SARA),
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with proceedings published by Springer Verlag, is devoted to discussing and

unifying views on abstraction and reformulation across Artificial Intelligence4,

including CP.

Problem relaxation by constraint removal, which we discuss in Section 3.3, is the

basis for many approximation techniques in Science and Engineering. In AI, it is the

basis for generating tractable admissible heuristics for A∗ search, one of the oldest and

most famous AI algorithms, see page 107 in [Russell and Norvig, 2003]. In mathe-

matical programming, examples of common relaxation techniques include Lagrangian

relaxation and the relaxation of an integer program into linear program [Milano, 2004].

In this context too, a common reformulation technique is the cutting-plane method,

which consists in adding, instead of removing, constraints. A more complete approach

is to generate two tractable problems that sandwich the original problem, one that

is less constrained than the original problem, thus providing a sufficient approxima-

tion, and another that is more constrained, thus providing a necessary approximation.

Such an approach is discussed for Propositional Logic in [Selman and Kautz, 1996].

The challenge is to keep both problems as close as possible to the original problem,

thus providing tighter approximations, while guaranteeing that both problems are

tractable.

Another approach to reformulation is based on (detecting and) exploiting symme-

try to improve search performance. Such symmetries have been studied as far back as

1874 [Glaisher, 1874], and have been a topic of great interest recently [Brown et al.,

1988; Freuder, 1991; Ellman, 1993; Puget, 1993; Backofen and Will, 1999]. When sym-

metries are known, symmetry breaking constraints are added to the problem to pre-

vent search from exploring symmetrical solutions. In [Freuder, 1991; Haselböck, 1993;

Choueiry and Davis, 2002; Lal et al., 2005], symmetries are detected automatically

4And to some extent Databases and Software Engineering.
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and used to aggregate equivalent values in the domains of variables. Since 2001, a

new workshop on Symmetry in Constraint Satisfaction Problems has been organized

in conjunction with the Constraint Programming Conference. In Section 3.4, we dis-

cuss how to use symmetry as a reformulation to generate all maximum matchings in

a bipartite graph from a single maximum matching.

Régin [1994] introduced an important global constraint known as the AllDiff

constraint. An AllDiff constraint, also known as constraint of mutual exclusion,

restricts given variables from being assigned the same value. Régin reformulated

the problem of enforcing generalized arc-consistency (GAC) on an AllDiff into a

problem involving finding a maximum matching in a bipartite graph. We use the

construction of bipartite-graph matching in several ways in our work, specifically in

Sections 3.3 and 3.4, where we discuss Régin’s work in more detail.

Razgon et al. [2006] studied a class of problems that is similar to the one we

investigate, and which they call Two Families of Sets constraints (TFOS). They in-

troduced a technique for reformulating TFOS problems into network flow problems.

The matchings we study in Section 3.3 constitute a special case of the TFOS problem.

1.4 Overview of this thesis

This thesis is organized as follows. Chapter 2 provides background information on

CSPs and the BID problem. Chapter 3 presents our reformulation techniques. Chap-

ter 4 describes our CSP model for the BID problem and our custom solver. Chapter 5

applies the reformulation techniques to the BID problem and discusses our experi-

mental results, which demonstrate the benefits of the techniques in this context.

Chapter 6 discusses directions for future work. Finally, Appendix A discusses the

new XML file formats that we designed for storing and exchanging instances of the
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BID problem; and Appendix B documents the Java code that implements our model

and solver for the BID problem.
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Chapter 2

Background

In this chapter, we review some background information about reformulation, Con-

straint Satisfaction Problems (CSPs), constraint propagation, backtrack (BT) search

(which is the basis of our solver), and the building-identification problem (BID), to

which we apply our reformulation techniques.

2.1 Abstraction and reformulation

As stated in Chapter 1, abstraction and reformulation are ubiquitous and aim at

solving a problem by reformulating it into a ‘simpler’ problem. It is often difficult

to define what it means for a problem to be ‘simpler’ to solve than the original

one. Computationally, this may mean that the reformulated problem is in a ‘smaller’

complexity class, or that it can be solved with an algorithm whose asymptotic running

time is lower. However, ‘simpler’ may also mean that the reformulated problem has

properties that we can exploit heuristically to improve runtime, while the worst-

case runtime remains the same for both algorithms. Choueiry et al. [2005] discuss the

definition of simplicity in greater detail. In our work, we consider both reformulations

that change the complexity class of the underlying problem and reformulations that
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improve the average runtime performance.

For this purpose, we include reformulations that modify the problem by approx-

imating it, potentially increasing or decreasing the set of solutions the problem has.

Ellman described two types of approximations for CSPs in [1993], necessary and suf-

ficient approximations1.

Definition 1 (Necessary approximation, Ellman [1993]) Pr is a necessary ap-

proximation of problem Po when the following holds: Po is solvable only when Pr is

solvable.

Conversely, when Pr has no solution, then Po does not have a solution. If we de-

fine a function Φ to map Solutions(Po), which is the set of solutions of Po, to

Solutions(Pr), which is the set of solutions to Pr, necessary approximations ver-

ify the following condition: Φ(Solutions(Po)) ⊆ Solutions(Pr), as illustrated in

Figure 2.1:

Reformulated space

S r )P

Φ )( OLUTIONS(S o)POLUTIONS(S o)P

Original space

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

OLUTIONS(

Figure 2.1: Necessary approximations as mappings between sets of solutions.

Definition 2 (Sufficient approximation, Ellman [1993]) Pr is a sufficient ap-

proximation of problem Po when the following holds: Pr is solvable only when Po.

Conversely, when Po has no solution, then Pr does not have a solution. If we define a

function Φ as a mapping between the two sets of solutions, sufficient approximations

1In Software Engineering, the terms ‘over-approximation’ and ‘under-approximation’ are used.
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verify the following condition: Φ−1(Solutions(Pr)) ⊆ Solutions(Po), as illustrated

in Figure 2.1:
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Figure 2.2: Sufficient approximations as mappings between sets of solutions.

In summary, we can use a necessary approximation to conclude the non-solvability

of the original problem when the reformulated (assumingly simpler) one is not solv-

able. Similarly, we can use a sufficient approximation to infer that the original prob-

lem is solvable when we have determined the solvability of the reformulated problem.

Exact approximations enjoy both properties. For example, alternative models [Nadel,

1990] and redundant models [Cheng et al., 1996; Simonis, 2005] of constraint prob-

lems explore semantically equivalent models of a constraint problem to enhance the

performance of constraint propagation and search.

Similar concepts were also introduced by Giunchiglia and Walsh in [1992] with

a terminology based on formal logic. The above approximation are called ‘theorem

decreasing,’ ‘theorem increasing,’ and ’theorem constant’ abstractions, respectively.

The reformulations we introduce are described in Chapter 3. The query and

domain reformulations and the reformulation by symmetry detection are exact ap-

proximations, where as the reformulation by constraint relaxation is a necessary ap-

proximation.
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2.2 The constraint satisfaction problem (CSP)

Definition 3 (Constraint Satisfaction Problem) A Constraint Satisfaction Prob-

lem (CSP) is given by a tuple F = (V,D, C), defined as follows:

• V = {V1, V2, ..., Vn} is a set of variables.

• D = {D1, D2, ..., Dn} are their respective domains.

• C = {C1, C2, ..., Ck} is a set of constraints the restrict the possible combinations

of values assigned to each variable.

A variable-value pair is an assignment of a value to a variable taken from its domain.

We say that the variable is instantiated . A solution is an assignment of a value to

each variable. The task can be to determine whether the problem has a solution, find

one solution, or find all solutions.

Each constraint is defined over a subset of the variables, called the scope of the

constraint. The arity of a constraint is the size of its scope. A unary constraint has ar-

ity 1, a binary constraint has arity 2, and a non-binary constraint has an arity greater

than 2. A binary CSP has constraints of only arity 1 or 2. A universal constraint is a

constraint that allows all possible combinations of values. These constraints are triv-

ially satisfied, so we usually ignore them except when constraint propagation results

in removing value tuples from them, see Section 2.3.

We represent a constraint network by a graph whose vertices correspond to the

variables and whose edges correspond to the constraints. The vertices are labeled with

the domain of the variables. We represent each binary constraint as an edge between

the vertices in its scope, and we represent a non-binary constraint as a hyperedge

across the vertices in its scope. Figure 2.3 shows an example of a binary constraint

network.
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Figure 2.3: An example of a binary constraint network.

Constraints can be defined either in extension or in intension. We define a con-

straint in extension by explicitly listing the set of all allowed tuples that represent

consistent assignments to the variables in its scope. This set can be implemented as

a table, as in a relational database. We define a constraint in intension by defining

a predicate function that determines whether a set variable-values pairs satisfy, are

allowed by, the constraint. Constraints defined in intension can save the space nec-

essary for storing the table of tuples allowed by the constraint. However, constraints

defined in extension can be more easily used to join constraints and create higher arity

constraints, which allow better propagation and greater filtering, as shown in [Dechter

and van Beek, 1996], while consuming more space.

When modeling a problem as a CSP, it may be useful to include in the CSP model

additional variables that do not correspond to decision variables in the problem. Such

these variables are called called hidden variables. They are used to simply store

information internal to the CSP model and facilitate propagation.

2.3 Constraint propagation

The concept of constraint propagation is perhaps the most important contribution of

the CP community to the scientific field. It consists in applying relatively efficient

algorithms to remove values, or combination of values, from the model of a CSP. The
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key issue to keep these algorithms efficient, typically with a quadratic or cubic asymp-

totic complexity, or at least with an exponent bounded by a (constant) parameter.

These algorithms can be broadly classified as follows:

• Algorithms that remove values from the domain of the variables do domain

filtering.

• Algorithms that remove combinations of values typically add new constraints

to the CSP, which is less desirable as the space necessary for storing the CSP

is increased and may explode.

The basic operation of a domain filtering algorithm consists in revising the domain

of a variable Vi given the constraint that links it to another variable Vj. During

this revise operation, values in DVi
that are not consistent with any value in DVj

are

removed from DVi
. When this operation is repeated for Vj , we say that the constraint

CVi,Vj
is made arc-consistent. An arc-consistency algorithm consists in repeating that

revise operation over all the constraints in the CSP until reaching a fixed point, in

which case the CSP is said to be arc-consistent. Figure 2.4 shows the constraint

network from Figure 2.3 after performing arc-consistency.
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Figure 2.4: A binary CSP before and after arc-consistency.

Arc-consistency filters only the domains of the variables and considers, at each

step, individually each constraint, and does not modify the constraints in the CSP.

Mechanisms for enforcing higher-consistency levels exist. They typically operate by
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composing multiple constraints, using the join operator of relational algebra, and

either projecting the results on the domains of the variables (for domain filtering) or

on a subset of the variables, thus generating new constraints.

2.4 Backtrack search

Backtrack search (BT) is a systematic algorithm that we can use to solve CSPs. In

this section we first describe the BT algorithm. We then describe techniques that

improve the performance of the basic algorithm. These techniques are the following:

1. Lookahead, which employs a simple form of constraint propagation.

2. Backjumping, which reduces the backtracking effort during search.

3. Exploiting tree-structured constraint networks. And,

4. Symmetry detection techniques.

2.4.1 BT algorithm

Backtrack (BT) search tentatively assigns values to variables in some order. After

performing an assignment, the algorithm determines whether any constraints have

been violated. (This operation is called back-checking.) If any constraint is violated,

the algorithm undoes the last assignment and tries the next value for the un-assigned

variable. If all values for the current variable result in broken constraints, the al-

gorithm moves back to the last variable, undoes its assignment, and proceeds as

described above.

BT is both sound and complete. It returns a solution if no constraints are violated,

and it tries every possible set of assignments before returning that no solution exists.

However, it is not an efficient algorithm. In the worst case it may have to try every
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possible set of assignments. Thus, the algorithm requires O(dn) time, where n is the

number of variables in the CSP and d is the size of their domains.

The problem of determining the satisfiability of a CSP is NP-complete. Thus,

it is reasonable that any sound and complete algorithm to determine satisfiability

runs in exponential time. However, there are a variety of techniques that we can

use to improve the performance of search. These techniques fall primarily into two

categories: lookahead and backjumping.

2.4.2 Lookahead

Lookahead techniques attempt to prune the search space by applying constraint prop-

agation to remove values from the domains of future variables given the instantiation

of the variables in the path currently expanded in the tree.

Forward checking is the most basic lookahead strategy [Haralick and Elliott,

1980]. At every variable instantiation during search, it revises the domains of the

un-instantiated variables adjacent to the current variable by removing from these do-

mains the values that are not consistent with the current instantiation. In doing so,

it considers only the constraints existing between the current variable and the future

variables. If this process annihilates the domain of any future variable, we know

that the current search path cannot extend to a complete solution, and we undo the

current instantiation. Thus, lookahead may allow us to backtrack earlier and avoid

exploring unnecessary portions of the search space. With some adaptation, we can

use forward checking with non-binary constraints. Several techniques for lookahead

with non-binary constraints were introduced in [Bessière et al., 1999].

We can perform even more filtering if we check more constraints. For example,

we can apply an arc-consistency algorithm over all the future variables in the CSP,

thus revising also all the constraints between the future variables. MAC is a looka-



21

head technique introduced by [Gaschnig, 1974] and [Sabin and Freuder, 1997] that

makes the entire problem arc consistent after each instantiation. MAC performs

more filtering than FC, but it is also more costly.

2.4.3 Backjumping

Backjumping avoids unnecessary search by making more informed decisions when

we encounter an inconsistent partial solution. When it determines that there are

no consistent values for the current variable during search, BT always backtracks

to the previous variable instantiated. However, the true source of conflict may lie

much earlier in the search. Conflict-Directed Backjumping (CBJ) jumps back to the

variable that was the source of the current inconsistency [Prosser, 1993].

One can use both lookahead and backjumping in the search procedure. Lookahead

techniques filter the domains of future variables, whereas backjumping techniques only

affect the behavior of backtracking. For example, we could perform backtrack search

using both MAC and CBJ. This algorithm is MAC-CBJ, introduced in [Prosser,

1995].

2.4.4 Tree-structured CSPs

Whenever possible, it is useful to exploit the structure of the CSP network (or the

semantic of the constraints) to improve the performance of search. For example,

Freuder [1982] showed that any CSP with a tree-structured constraint graph can be

solved in polynomial time2. Dechter and Pearl [1987] proposed a technique that takes

advantage of this fact in search. Their technique, called the cycle-cutset technique,

identifies a set of variables whose removal leaves only a forest of trees. Once the

cycle cutset is instantiated and all the remaining trees are filtered by arc-consistency

2More precisely, in linear time after arc-consistency, which is quadratic.
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against the instantiated variables, we can find a solution to the remaining part of the

CSP in linear time.

2.4.5 Symmetry detection

Symmetry detection techniques take advantage of structures in the search space. If we

can detect that multiple portions of the solution space are symmetrical, we can take

advantage of the symmetry to improve the performance of search. Puget [1993] intro-

duced techniques to take advantage of exact symmetries, while Ellman [1993] consid-

ered approximations of symmetry relations. Freuder [1991] introduced the concept of

interchangeability among the values of CSP variables as special form of symmetry.

2.5 The building-identification problem (BID)

Our case study targets the building-identification problem described by [Michalowski

and Knoblock, 2005]. In this section, we define the problem and specify the compo-

nents of a problem instance.

2.5.1 Problem definition

We define the BID problem as follows. Given a map of streets and buildings positioned

on the streets, and a phone book that has a list of addresses, determine which address

(in the phone book) corresponds to which building on the map. There are restrictions

on matching phone-book addresses and buildings. Our work addresses four kinds of

restrictions:

1. Buildings on the same side of the street must have the same parity (e.g., odd

or even).
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2. Buildings on a street, or a given street segment, must appear in increasing or

decreasing order.

3. All addresses in the phone book must be used.

4. Across certain gridlines, addresses increase or decrease to the next increment

of some value k. For example, in many cities in the United States, addresses

increase to the next increment of 100 when crossing intersections. Gridlines

can correspond to physical street intersections or correspond to virtual grids

[Michalowski, 2006].

In [Michalowski and Knoblock, 2005], the problem is modeled as a CSP and

solved using the CPlan solver of [van Beek and Chen, 1999]. Our model, described

in Sections 4.1 and 4.2, uses slightly different variables and constraints; and our

solver, described in Section 4.4, is a custom backtrack search, with lookahead and

backjumping, tailored to improve the performance of problem solving.

2.5.2 Problem instance specification

A problem instance is composed of four pieces of data:

1. The layout of buildings and streets.

2. A list of phone-book addresses.

3. The layout of the gridlines.

4. A set of known landmarks, which are buildings with known addresses.

The first two items are required in every instance specification, while the last two

are optional. We store problem instances as a set of XML files of a format that

we designed and articulated in collaboration with Martin Michalowski. Appendix A
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describes the schema for each XML file. Figure 2.5 shows a simple problem instance,

with 2 streets and 2 buildings. Solid squares represent non-corner buildings, and

dashed squares represent corner buildings.

Figure 2.5: A two-street example.

2.5.2.1 Layout

The layout data describes the streets and buildings on the map. It must provide

information about the order in which buildings appear along streets and the set of

streets to which each building is adjacent.

2.5.2.2 Phone-book

The phone-book data lists the known addresses in the region, typically collected from

online white-pages. We consider that the buildings corresponding to these addresses

must exist. Thus, any solution to a BID instance must use all the addresses in the

phone-book. Note that it is possible to have fewer phone-book addresses than we

have buildings in the layout. In this case, we have an incomplete phone-book. If

we have exactly as many addresses as we do buildings, we have a complete phone-

book. When the phone-book is incomplete, some buildings will have to be assigned

addresses that may or may not be their addresses in the real world. In Figure 2.5

the map has four buildings and the phone-book lists three addresses. Thus, the
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phone-book is incomplete. One possible solution to the example in Figure 2.5 is

B1←S2#111, B2←S2#205, B3← S2#213, and B4←S1#105. However, because the

phone-book is incomplete, this problem has many other solutions. In addition to

the above solution, the assignments B1←S2#111, B2←S1#119, B3←S2#213, and

B4←S1#105 also form a solution.

The layout and phone-book information are required for every problem instance.

The remaining information, gridlines and landmarks, is optional. When it is available,

it is used to further constrain the problem.

2.5.2.3 Gridlines

The gridline data about a region describes virtual lines across which addresses incre-

ment to the next increment of some value. For example, in many cities in the United

States, addresses increase to the next increment of 100 across intersections. Thus, in

these regions there are grid lines along the streets with increments of 100.

2.5.2.4 Landmarks

The landmark data provides an exact address for a specific building that is already

known. For example, it is often possible to determine the addresses of some buildings

using gazetteers.

2.5.2.5 Additional numbering rules

Above, we described the four types of data that we consider in modeling and solving

the BID problem. However, it is possible that in different regions, different rules may

apply. For example, in Italy, a red-black numbering scheme can be used, and it is not

uncommon to increase numbers by a half number or by adding ‘A’ and ‘B’ suffices.

In this thesis we only consider the above listed rules. The doctoral research
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of Martin Michalowski is concerned with determining which rules apply in which

context. Our new CSP model provides the flexibility of easily integrating such rules

as new constraints, and our solver is designed to handle them with relatively few

modifications.

Summary

In this chapter we gave background information on reformulation, CSPs, and the

backtrack search algorithm that we can use to solve them. We also described the

BID problem, which we use as a case study for the techniques we develop.
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Chapter 3

Reformulation techniques for CSPs

In this chapter, we propose four reformulation techniques to improve the perfor-

mance of solving CSPs. As described in Section 2.1, reformulation techniques may

change any aspect of a problem’s formulation or query. In this chapter, we introduce

techniques that modify the query (Section 3.1), the domains of the CSP variables

(Section 3.2), and the constraints (Section 3.3). We also introduce a technique for

generating all the maximum matchings in a bipartite graph by symmetry from a

single maximum matching in the graph (Section 3.4).

3.1 Query reformulation

In a CSP, the query is usually to find a single solution (i.e., satisfiability problem)

or all solutions (i.e., enumeration problem). However, in some applications, we may

be interested in all the values that a given variable (alternatively, all variables) can

possibly take. One way to compute this exact set is to generate all solutions to the

problem, and collect the values taken by the variables in those solutions, which cor-

responds to solving an enumeration problem. In this section, we propose to look

at this task as a reformulation of an enumeration problem into a set of satisfiabil-
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ity problems. Below, we motivate the reformulation, provide a simple algorithm to

implement it, and describe an improvement suggested by an anonymous reviewer.

Finally, we discuss how this simple reformulation is useful for computing relational

(i, m)-consistency with a lower space complexity than was previously proposed.

3.1.1 Per-variable solution

Example 1 Consider the computer configuration problem described in Section 1.1.1.

Assume that the users have chosen a specific video card and a processor, and they

want to know which motherboards and which monitors they may choose. Here, the

users are not looking for a complete configuration. Rather, they are looking for all

possible motherboards and monitors they can choose from, that is, the set of all

possible values for the variables corresponding to the motherboard and the monitor.

One way to solve the above problem is to find all solutions1, then, for each vari-

able, compute the union of the values it takes in all those solutions. We propose to

reformulate the problem as follows. For each of the variables of interest to the users,

consider every value in the domain of the variable, and determine whether the CSP

with that variable-value pair assignment is solvable. If it is, then the value is kept in

the answer to the query; otherwise, it is discarded. On average, it is significantly less

costly to establish satisfiability (i.e., stop searching after finding the first solution),

then to count all solutions (i.e., traverse the entire search space). We express this

new problem, which we call a per-variable solution, as a reformulation of the counting

problem by a change of the query. That is, we reformulate the query of the counting

problem from Qo=enumerating all solutions to Qr=finding a per-variable solution,

1As it is done in [Michalowski and Knoblock, 2005].
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where Qr is defined as:

∀Vi, x ∈ DVi
, find if Fo ∧ (Vi ← x) is satisfiable. (3.1)

Figure 3.1 illustrates this reformulation.

oQ

oP
Query: = Enumerate all solutions
The problem is a counting problem

rQ

rP
Query: = Find a per−variable solution
The problem is a satisfiability problem

Figure 3.1: Query reformulation.

In CP terminology, the ‘per-variable solution’ corresponds to finding the minimal

network of a CSP as described in [Montanari, 1974]. It is also equivalent to the

inverse consistency property introduced in [Freuder and Elfe, 1996], and to relational

(1,|C|)-consistency defined in [Dechter and van Beek, 1996].

In terms of asymptotic complexity, we are replacing a counting problem, whose

complexity is O(dn), where n is the number of variables and d is the maximum do-

main size, by a polynomial number of satisfiability problems O(n ·d ·dn−1)=O(n ·dn),

which may appear to be bad idea. However, the worst-case asymptotic complexity is

misleading as, in practice, proving satisfiability is significantly cheaper than enumer-

ating all solutions. In some cases, particularly those with a large number of solutions,

the reformulated problem is significantly easier to solve than the original one.

3.1.2 Algorithm for finding per-variable solutions

Given a CSP F =(V,D, C), Algorithm 1 tests (Line 10), for every variable-value pair

(Vi, x), where Vi ∈ V and x ∈ DVi
, whether the CSP with Vi←x is soluble (Line 11).

When a solution exists, x is added to the data structure returned by the algorithm

(Line 12). The algorithm returns the set of variables along with all their values
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Input: F =(V,D, C)
Output: S, or a message indicating that no solution exists
foreach Vi ∈ V do1

S[Vi]← ∅2

end3

vvps ← ∅4

foreach Vi ∈ V do5

foreach x ∈ DVi
do6

vvps ← vvps ∪{(Vi, x)}7

end8

end9

foreach (Vi, x) ∈ vvps do10

if F with Vi←x has a solution then11

S[Vi]← S[Vi] ∪ {x}12

end13

end14

if |S[v]| = 0 then15

return F has no solutions16

end17

return S18

Algorithm 1: Finding the per-variable solutions.

that appear in a solution. The loop of the algorithm, Line 10, runs O(nd) times.

Each iteration requires determining the satisfiability of a CSP. This operation appears

costly, but in cases where the original CSP has significantly more than nd solutions,

Algorithm 1 performs in practice significantly better than enumerating all solutions

to the CSP.

We introduce here an improvement proposed to us by an anonymous reviewer.

When the test in Line 11 is executed by finding a solution to the CSP, the values for

the variables in the solution found can be collected, and excluded from future calls

in the loops at Line 10, because we already know that they appear in at least one

solution. Thus, we would execute fewer iterations of the loop, improving performance.

As we apply the query reformulation to the BID problem, however, Line 11 is such

that we do not generate a solution to the problem to establish satisfiability. Thus,
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we cannot exploit the improvement proposed by the reviewer. We explain in greater

detail why our BID solver does not use this improvement in Section 5.2.

3.1.3 Relational consistency by query reformulation

In Section 2.3 we discussed the arc-consistency algorithm that considers each con-

straint individually and filters, from the domains of variables in its scope, any values

that violate the constraint. We can perform even more filtering by enforcing higher

levels of consistency that consider combinations of constraints.

3.1.3.1 Relational (i, m)-consistency

Dechter and van Beek introduced relational (i,m)-consistency as a consistency prop-

erty for CSPs [Dechter and van Beek, 1996]. Dechter defines the relational (i, m)-

consistency property as follows.

Definition 4 (Relational (i, m)-consistency, Dechter [2003]) A set of relations

{RS1
, ..., RSm

} is relationally (i,m)-consistent iff for every subset of variables A of size

i, A ⊆ ∪m
j=1Sj , any consistent assignment to A can be extended to an assignment to

∪m
j=1Sj − A that satisfies RS1

, ..., RSm
and the respective domain constraints simul-

taneously. A network is relationally (i, m)-consistent iff every set of m relations is

relationally (i, m)-consistent. A network is strong relationally (i, m)-consistent iff it

is relationally (j, m)-consistent for every j ≤ i.

Dechter [2003] also proposed the algorithm RC(i,m) for enforcing relational (i, m)-

consistency in a constraint network. RC(i,m) takes as input a constraint network

F = (V,D, C). For every set of constraints Cm = {CS1
, ..., CSm

} ⊆ C, where CSm
is a

constraint over the scope Sm, the algorithm computes the join of the constraints in

Cm and projects the result onto each subset of variables A = {V1, ..., Vi} ⊆ ∪m
j=1Sj .
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Figure 3.2 illustrates a step in the algorithm for RC(2,2). At this step, Cm = {CS1
, CS2
}

and A = {V3, V4}. The algorithm will compute the join of of CS1
and CS2

, and then

project the result onto the constraint between V3 and V4. When m = |C|, RC(i,m)

Constraint
Variable

1S S2

C
m

V5 V6 V7V43V2V1V

CS 1
CS 2

CS 3
CS 4

A
∪

Figure 3.2: A step in the execution of RC(i,m).

is not useful, because the algorithm would compute the join of all relations in the

CSP. Computing this join completely solves the problem by enumerating all solutions,

eliminating the value of enforcing higher levels of consistency.

On the other hand, Algorithm 1 enforces relational (1, |C|)-consistency in a CSP,

where C is the set of constraints, without enumerating all solutions. After executing

Algorithm 1, the domain of each variable only contains the values that appear in at

least one solution, which is equivalent to computing the join of all constraints and

projecting the result onto each variable’s domain.

3.1.3.2 A new algorithm for Relational (i, m)-consistency

We can easily adapt Algorithm 1 to enforce relational (1, m)-consistency for m ≤ |C|.

For every subset Cm = {CS1
, ..., CSm

} ⊆ C, generate the induced CSP containing only

the constraints in Cm and execute Algorithm 1 on the induced CSP. This algorithm,

like RC(1,m), has a runtime complexity that is exponential in | ∪m
j=1 Sj |. However,

RC(1,m) must compute and store the join of all constraints in Cm. The number of
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tuples in the join is exponential in | ∪m
j=1 Sj |. The adapted version of Algorithm 1 we

described enforces the same level of consistency, but requires only polynomial space.

Algorithm 2 generalizes Algorithm 1 to enforce relational (i, m)-consistency for

any i ≤ |V| and m ≤ |C|. The algorithm loops over every subset of m constraints and

generates the CSP induced by those constraints (Line 3 and 4). For each subset of

constraints, the algorithm loops over every subset A of i variables in the union of their

scopes (Line 5). For each subset of variables, the algorithm loops over every tuple

in the cross product of their domains (Line 7). For each tuple, the algorithm tests

whether or not the assignment of the values in the tuple to the variables in A appears

in at least one solution to the induced CSP (Line 8). If it does, we add it to the set

of allowed tuples (Line 9). After all tuples have been tested, the algorithm intersects

the set of allowed tuples with the existing constraint over the scope A (Line 12). If

no such constraint already exists, then CA is the universal constraint over A.

Algorithm 2 returns a network that is relationally (i, m)-consistent. Note that

Algorithm 1 is a special case of Algorithm 2 where i = 1 and m = |C|.

Line 8 in Algorithm 2 must determine the satisfiability of CSPs with s variables,

where s = | ∪m
j=1 Sj |. Thus, Algorithm 2 has a worst-case time complexity of O(ds),

where d is the maximum domain size. RC(i,m) also has a worst-case time complexity of

O(ds), because it must compute the join of s variables with domain size d. However,

Algorithm 2, which finds one solution, is in practice significantly less costly than

RC(i,m), which must enumerate all solutions to the same induced CSP.

However, RC(i,m) requires computing and storing the join of each subset of m

constraints, which requires O(ds) space. Algorithm 2 only stores the tuples for each

set of i variables, and thus only requires O(di) space, where i ≤ s, for each subset

of variables in of size i in ∪m
j=1Sj . The total space required is then O(s2di). Thus,

Algorithm 2 enforces the same level of consistency as RC(i,m), but requires less space.
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Input: F =(V,D, C), i, m

Output: A relational (i, m)-consistent network equivalent to F , or a message
indicating that F has no solutions.

repeat1

Fp ← F2

for every Cm = {CS1
, . . . , CSm

} ⊆ C do3

Fi ← the CSP induced by Cm on F4

for every A = {V1, . . . , Vi} ⊆ ∪m
j=1Sj do5

R = ∅6

foreach tuple r ∈ V1 × . . .× Vi do7

if Fi with (V1 ← r[1]) ∧ . . . ∧ (Vi ← r[i]) has a solution then8

R← R∪ {r}9

end10

end11

CA ← CA ∩R12

if |CA| = 0 then13

return F has no solution14

end15

end16

end17

until Fp = F ;18

return F19

Algorithm 2: Enforcing relational (i,m)-consistency.

3.2 Domain reformulation

In this section, we introduce AllDiff-Atmost, a global constraint useful for for-

mulating resource allocation problems. We define AllDiff-Atmost and describe

a reformulation procedure that modifies the domains of the variables in its scope.

Then we show how to apply this reformulation when the variable domains are totally

ordered. In Section 5.3, we use AllDiff-Atmost to model the BID problem and

illustrate the use of the reformulation in that context.
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3.2.1 AllDiff-Atmost

An AllDiff-Atmost constraint is useful in a resource allocation problem to restrict

the variables in its scope from using more than a certain number of values from a

given set. Consider the simple resource allocation problem of Example 2.

Example 2 An emerging country received an aid to build 7 hospitals on its territory,

but does not want to put more than 2 hospitals in areas with high volcanic activity.

We propose the constraint AllDiff-Atmost to model this situation. Formally, we

define the AllDiff-Atmost constraint as follows.

Definition 5 (AllDiff-Atmost) Given a set of variables A = {V1, . . . , Vi, . . . , Vn}

with continuous or finite domains DVi
, AllDiff-Atmost(A, k, d), where d ⊆ DVi

,

k ∈ N, and k ≤ |d|, requires that the following conditions hold:

1. All variables are different.

2. At most k variables in A can take values from d. When k ≥ |d|, then k ← |d|.

Example 3 is another example of the AllDiff-Atmost constraint.

Example 3 Consider the variables A={V1,V2,V3,V4} of a CSP, with Di={1,2,. . . ,8}

and the constraint AllDiff-Atmost(A,2,{1, 3, 4, 5, 8}). The assignment V1←5,

V2←2, V3←7, and V4←4 satisfies the constraint.

The AllDiff-Atmost constraint is useful in real-world settings; we use it in

Section 5.3 in our constraint model for the BID problem. Example 4 illustrates the

use of this constraint in the computer configuration problem of Section 1.1.1.

Example 4 Consider the configuration of a computer that has 3 expansion-card

slots, represented by the variables s1, s2, and s3. The domain of each si is Dsi
= S,
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the set of all expansion cards. Suppose we want to restrict the configuration to

have only a single network card, where N ⊆ S is the set of all expansion cards

that are network cards. We can model this restriction with the constraint AllDiff-

Atmost({S1, S2, S3}, 1,N ).

3.2.2 Reformulation of AllDiff-Atmost

We now introduce a reformulation that reduces the domain size of the variables in

the scope of an AllDiff-Atmost constraint. We replace the original domain Do
Vi

of a variable Vi in the scope of the constraint AllDiff-Atmost(A, k, d) with the

reformulated domain D
ref
Vi

by introducing k values si that we call symbolic values as

follows:

∀Vi ∈ A Dref
Vi

= {s1, s2, . . . , sk} ∪ (DVi
\ d) (3.2)

where the symbolic values sj (1 ≤ j ≤ k) can take any distinct values in d. We then

replace the AllDiff-Atmost(A, k, d) constraint with AllDiff(A).

Strictly speaking, the reformulation procedure affects both the AllDiff-Atmost

constraint, which is replace with an AllDiff constraint, and the set Do of the do-

mains of the variables in the scope of the AllDiff-Atmost constraint, as shown in

Figure 3.3. However the most significant modification is the domain reformulation.

The set of domains in the original CSP Do is replace with the set of reformulated

domains Dr, where the domains of variables in A have been reformulated according to

Equation (3.2). Replacing d in the original domains with k symbolic values reduces

the domains sizes by |d| − k, which is useful when d is large or infinite.

In Example 2, the domains become {s1, s2} ∪ {sites in non-volcanic areas}

where s1, s2 are different and range over sites with volcanic activities. Applying

this reformulation to Example 3 yields the following domains for all four variables:
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oP
rF

rD
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Formulation:
Formulation:

: Replace AllDiff−Atmost with AllDiff
: Smaller domains with symbolic values

Figure 3.3: The reformulation of AllDiff-Atmost.

DVi
={s1,s2,2,6,7}, where s1,s2 can take any different values in {1,3,4,5,8}.

This reformulation is an exact approximation in the sense that solutions to the

reformulated problem map to solutions to the original problem [Ellman, 1993]. The

benefit of this reformulation is the reduction of the domain sizes. Because the com-

plexity of many CP techniques depends on the sizes of the domains, the reformulation

improves the performance of the solver.

Indeed, this operation is particularly useful during backtrack search where the

domain values are enumerated. If we want to assign ‘ground’ values to each symbolic

value, we can do so as a post-processing step while ensuring that two symbolic values

are always mapped back to distinct ground values. While a solution to the refor-

mulated problem does not map to a unique solution to the original problem, we can

generate any solution to the original problem from some solution to the reformulated

problem.

Of particular concern is the interaction between this reformulation and the other

constraints in the problem. When all the constraints in a problem can be checked on

the symbolic values, as in the case of the BID problem, the reformulation is sound.

When one or more constraints in a problem must be checked on the ‘ground’ values,

then propagation must run on the appropriate representation for each constraint

and, as soon as domain filtering causes |d| ≤ k, then reformulated domains should

be dropped and AllDiff-Atmost replaced with a AllDiff constraint, as is the

case in a BID instance with a complete phone-book. While this double representation

works for constraint propagation, using it during backtrack search requires further
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investigation.

3.2.3 Reformulating totally ordered domains

When the values in the domains of the variables follow a total order, as in numeric

domains, it is common to represent the domains as intervals. It is also common to re-

strict propagation of algebraic constraints defined over such variables to the endpoints

of the intervals in the domains, as in box- or bound-consistency algorithms [Benhamou

et al., 1994]. The reformulation of an AllDiff-Atmost obviously remains valid in

the presence of totally ordered domains. However, in order to restrict propagation

to the endpoints of the intervals representing the domains, we need to enforce the

following:

1. We require the values in d to form a convex interval.

2. We must add total ordering constraints between the sk symbolic values: s1 <

s2 < . . . < sk.

3. We must add total ordering constraints between the two extreme symbolic val-

ues, s1 and sk, and their closest neighbors in the reformulated domains, which

is accomplished as follows. Let D
ref,l
Vi

and D
ref,r
Vi

be the intervals of Do
Vi
\ d re-

spectively to the left and right of, and adjacent to, d. The right endpoint of

D
ref,l
Vi

must be less than s1, and the left endpoint of D
ref,r
Vi

must be greater than

sk. Figure 3.4 illustrates the effects of the reformulation on the domains.

{ }
i

Do
Vi

VDref
i

D= V
ref,l Dref,r

V i
, ,1 2 , ... ks ss

...

d

∪∪

Figure 3.4: Reformulation of a totally ordered domain.
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4. When mapping the symbolic values back to the ground values at the post-

processing step, the ground values must respect the total ordering imposed on

the symbolic values.

Example 5 illustrates the domain reformulation for a problem where we maintain

the total ordering for the symbolic values.

Example 5 Consider the variables A={V1,V2,V3,V4} of a CSP, with Di={1,2,. . . ,8}

and the constraint AllDiff-Atmost(A,2,{2, 3, 4, 5}). The set {2, 3, 4, 5} is a convex

interval, so we can reformulate the domains as follows. DVi
={1,s1,s2,6,7,8}, where

1 < s1 < s2 < 6.

Thus, the reformulation of the AllDiff-Atmost constraint reduces the sizes

of domains while maintaining a total ordering among the values. We apply this

reformulation techniques to the BID problem in Section 5.3.

3.3 Problem reformulation by constraint relaxation

As we argued in Section 1.3, relaxing a problem by removing a constraint yielding

a necessary approximation that is tractable is a common approach in many fields

including Artificial Intelligence, Mathematical Programming, and Constraint Pro-

gramming. In this section we describe one such approximation. In particular, we

show how to relax a likely intractable resource allocation problem into a matching

problem in a bipartite graph, which is tractable. We then show how to use the re-

laxation, both as a pre-processing mechanism and as a lookahead mechanism, during

search process we use to solve the original problem.
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3.3.1 Bipartite matching as a relaxation

At the core of many resource allocation problems lies the problem of matching between

the elements of two sets: the tasks and the resources. In general, the problem may be

complex (and likely intractable). However, in some cases, we may be able to identify

some constraints that, when removed, reduce the original problem into the problem

of finding a matching in a bipartite graph that saturates one of the two partitions, as

defined below.

First, we introduce some graph theoretic terms, which can be found in [West,

2001]. Let G = (X∪Y, E) be a bipartite graph with edge set E, vertex set V = X∪Y ,

and partitions X and Y , which are disjoint sets of vertices. We define a match count

for each vertex in v ∈ V , which we denote m(v), to be a positive (non-null) integer.

A matching in G is a set of edges M ⊆ E such that for every v ∈ V there exists at

most one edge e ∈ M incident to v. In this thesis we consider a matching in G to

be a set of edges M ⊆ E such that for every v ∈ V there exists at most m(v) edges

e ∈ M incident to v. Further, we say that a matching M saturates vertex v iff there

are m(v) edges in M incident to v, and a matching M saturates a set of vertices S

iff M saturates all vertices in S. Figure 3.5 shows a bipartite graph with partitions

X and Y . The match count of each vertex is shown in parenthesis. The matching

M = {(x1, y1), (x3, y2), (x4, y2)}, shown as darkened edges, saturates Y .

Finding a saturating matching in a graph where vertices have specified match

counts has the same complexity as finding a saturating matching in a bipartite graph

without match counts. We simply construct a graph G′ where every vertex is repli-

cated as many times as its match count. There exists a matching saturating vertex

set S in G if and only if there exists a matching saturating the corresponding set of

replicated vertices in G′. Figure 3.6 shows the graph from Figure 3.5 after replicating

vertices.
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Figure 3.5: A bipartite graph with a matching saturating Y .
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Figure 3.6: The graph from Figure 3.5 after vertex replication.

When S is the partition of the bipartite graph (i.e., X or Y ) that has the smallest

number of vertices, we can find a matching that saturates S by finding a maximum

matching in G′. Thus, for our purposes, finding a maximum matching and finding a

saturating matching are the same problem. We can find a maximum matching in a

bipartite graph in polynomial time, using an algorithm such as the one introduced

by [Hopcroft and Karp, 1973].

We propose to reformulate a general resource allocation problem by relaxing it

into a matching problem in a bipartite graph that saturates one of the graph’s two

partitions (obviously, the one with the smallest number of vertices). Specifically, the

variables in the problem correspond to vertices in partition X, and values correspond

to vertices in partition Y . Thus, and edge (x, y) in the matching corresponds to the
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assignment of value y to variable x. We relax the problem by removing constraints

until we can model the remaining problem as a matching. Figure 3.7 illustrates this

relaxation. The challenge is to identify those constraints whose removal yields the

relaxation.

Po Pr

o=(V o,Do,C )oFFormulation:
Query:Q o = Is the problem satisfiable?

Formulation:
Query:Q r = Is there a matching saturating a partition of V?

G = (V,E)

Figure 3.7: Relaxation of a CSP as a matching problem.

While the original problem may be intractable, the reformulated one can be ef-

ficiently solved (i.e., in polynomial time). When the reformulated problem is not

soluble, the more constrained original problem is not soluble. However, the solubility

of the reformulated problem does not guarantee that of the original problem. Our

reformulation is thus a necessary approximation in the sense of [Ellman, 1993].

When modeling an assignment problem as a CSP and solving it with backtrack

search, we can take advantage of the relaxed problem in two ways:

1. As a pre-processing step prior to search.

2. As a lookahead mechanism during search to filter out, from the domains of the

future variables, those values that cannot yield a solution.

Next, we describe how to exploit the matching relaxation in those two ways.

3.3.2 Matching as a pre-processing step

When solving a resource allocation problem, modeled as a CSP, with backtrack search,

we can use the matching relaxation as a pre-processing step prior to search in two

ways. The first technique is useful prior to solving a CSP using search. The second

technique is useful when finding a per-variable solution using Algorithm 1.
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We can use a matching relaxation as a pre-processing technique prior to search

as follows. If we determine, using the matching relaxation, that the relaxed problem

is not soluble, we can safely avoid running search at all. If the relaxed problem is

soluble, we must still proceed with the search to determine whether or not the CSP

has a solution. The reformulation of a resource allocation problem into a matching

problem is especially useful when finding per-variable solutions, because Algorithm 1

solves a large number of CSPs.

When solving a problem using Algorithm 1, we can use a matching relaxation to

filter some Variable-Value Pairs (VVPs) from being considered in the loop at Line 10.

Before Line 10, we enumerate the set of all edges that appear in any maximum match-

ing. We can identify this set of edges using the algorithm proposed by [Régin, 1994].

If a vvp does not appear in any maximum matching in the original problem, then it

cannot appear in any solution. Thus, we do not have to include the corresponding

vvp’s in the loop at Line 10.

We propose Algorithm 3 that integrates both of these pre-processing mechanisms

in Algorithm 1. Instead of initializing vvps to contain all possible vvps, Line 4 initial-

izes the vvps with only the set of vvps that appear in at least one maximum matching.

Line 6 tests whether the relaxed problem is soluble, and Line 7 proceeds with the

backtrack search only when the test has succeeded.

3.3.3 Matching as a lookahead mechanism

We use the matching during the backtrack search to solve the CSP as follows. An

assignment (i.e., variable-value pair) appears in a solution if and only if its corre-

sponding edge appears in a matching that saturates Y . Hence, along a given path

in the search tree, we can apply the matching algorithm to the remaining CSP, not

only to determine its satisfiability, but also to filter from the domains of the future
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Input: F =(V,D, C)
Output: S, or a message indicating that no solution exists
foreach Vi ∈ V do1

S[Vi]← ∅2

end3

vvps ← the set of all vvps whose corresponding edges appear in at least one4

maximum matching
foreach (Vi, x) ∈ vvps do5

if the matching problem with Vi←x is solvable then6

if F with Vi←x has a solution then7

S[Vi]← S[Vi] ∪ {x}8

end9

end10

end11

if |S[v]| = 0 then12

return F has no solutions13

end14

return S15

Algorithm 3: Integrating matching in Algorithm 1.

variables values that may not appear in any maximum matching. To implement this

filtering, we adapt the algorithm of [Régin, 1994] for generalized arc-consistency on

an All-Diff constraint, which finds all edges of the bipartite graph that do not par-

ticipate in any saturating matching, to identify, in one step, all values in the domains

of all future variables that do not participate in any solution. This single operation

allows us to filter the domains of all future variables in one step.

This additional filtering does not come without a cost. It is possible that the cost

of calculating the matching may exceed the benefits gained by the additional filtering

or prevented searches. In Chapter 5 we provide experimental results to evaluate these

techniques on the BID problem.

Note that using the matching as a pre-processing step and using the matching

as a lookahead mechanism require different algorithms, and thus cannot easily be

combined. Pre-processing uses the Hopcroft-Karp algorithm [1973] to determine the

existence of a single maximum matching. For lookahead to filter a vvp, we must
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determine that the vvp does not appear in any maximum matching, and thus must

run Régin’s algorithm [1994] to enumerate the set of all edges that appear in at least

one maximum matching.

3.4 Generating solutions by symmetry

Given a bipartite graph and one maximum matching, we can enumerate all all max-

imum matchings using an algorithm such as the one proposed by Uno [1997]. In

this section, we describe a way to characterize all maximum matchings in a bipartite

graph as symmetric to a single ‘base’ matching. We then use this symmetry detection

to enumerate all maximum matchings. First, we describe some properties of max-

imum matchings, then, we show how to use these properties to identify symmetric

maximum matchings.

3.4.1 Matching terminology

As in Section 3.3, we consider a bipartite graph G = (X∪Y, E) with partitions X and

Y . Assume that |X| ≥ |Y |. Our goal is to find a matching that saturates Y . Consider

the bipartite graph G = (X ∪Y, E) in Figure 3.8. G has two possible matchings that

saturate Y :

M1 = {(x1, y1), (x2, y2), (x3, y3)}

and

M2 = {(x2, y1), (x3, y2), (x4, y3)}.

Figure 3.9 shows these matchings, where darkened edges indicate the edges included

in the matching.

If we are simply trying to find a solution, it is sufficient to find any such matching.
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Figure 3.8: Bipartite graph with multiple maximum matchings.
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Figure 3.9: Matchings M1 and M2 for Figure 3.8.

However, if we want to find all solutions, we need an algorithm that finds all such

matchings. Berge [1973] addressed the issue and showed that, given a maximum

matching M , an edge e appears in some maximum matching iff e appears in M or

some alternating cycle or even alternating path beginning at a free vertex relative to

M as defined below.

Definition 6 (Free vertex, Berge [1973]) For a bipartite graph G = (X ∪ Y, E)

with matching M , a free vertex is a vertex in G that is not incident to any edge in

M .

Definition 7 (Alternating cycle, Berge [1973]) For a bipartite graph G = (X ∪

Y, E) with a matching M , an alternating cycle is a cycle in G that alternates between

edges in M and edges that are not in M .

Definition 8 (Alternating path, Berge [1973]) For a bipartite graph G = (X ∪

Y, E) with a matching M , an alternating path is a path in G that alternates between
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edges in M and edges that are not in M .

Hopcroft and Karp [1973] proposed a technique for finding alternating cycles for a

graph G and a matching M . We orient the graph G such that all edges in M are

oriented from X to Y , and all edges not in M are oriented from Y to X. Any cycle

in the oriented graph is an alternating cycle.

To take advantage of alternating paths and cycles, we use the symmetric difference

operation for graphs. The symmetric difference operation for graphs is an extension

of the symmetric difference operation for sets.

Definition 9 (Symmetric difference, West [2001]) For graphs G and H , the

symmetric difference G∆H is the sub-graph of G ∪ H whose edges are the edges

of G ∪H appearing in exactly one of G and H . We also use this notation for sets of

edges.

Clearly, if M is a maximum matching and P is an even alternating path or cycle,

then M∆P is also a maximum matching.

Definition 10 (Disjoint subgraphs) Two sub-graphs of a graph are said to be

disjoint if and only if the sets of their edges are disjoint.

3.4.2 Symmetric maximum matchings

West [2001] showed that given two matchings M1 and M2, M1∆M2 is a set of al-

ternating paths and cycles. As a corollary to this theorem, given M , a maximum

matching, and S, a set of all even alternating paths and cycles relative to M , we can

enumerate all maximum matchings by taking the symmetric difference between M

and every set of disjoint alternating paths and cycles in S. Example 6 illustrates the

construction of alternative maximum matchings by finding the symmetric difference

between a base matching M0 and three sets of disjoint alternating paths and cycles.
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Example 6 Consider the graph G shown in Figure 3.10. Figure 3.11 shows the

matching M0, which saturates Y . We can construct graph G′, shown in Figure 3.12,

by orienting the edges in G such that edges in M1 are oriented from the X to Y

and edges not in M1 are oriented from Y to X. Any cycle in G′ corresponds to an

alternating cycle in G relative to M0. Figures 3.13 and 3.14 show the alternating

path P and the alternating cycle C, respectively. P and C are disjoint. Thus, we

can generate the following maximum matchings: M1 = M0∆P , M2 = M0∆C, and

M3 = M0∆(P ∪ C), where P ∪ C is the set of edges that appear in either P or C.

Figures 3.15, 3.16, and 3.17 show M1, M2, and M3.
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Figure 3.10: Bipartite
graph G.
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Figure 3.11: The matching
M0 of G.
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Figure 3.12: G′, oriented
relative to M0.
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Figure 3.13: Alternating path P in G′.
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Figure 3.14: Alternating cycle C in G′.

We can enumerate all even alternating paths starting at free vertices from the set of

free vertices [Berge, 1973]. We can orient the graph using the technique described by
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Figure 3.15: M1 =
M0∆P .

2

x

x2

x3

4x

X

y3

Y

y1

y

1

Figure 3.16: M2 =
M0∆C.
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Figure 3.17: M3 =
M0∆(P ∪C).

Hopcroft and Karp [1973] and then enumerate all alternating cycles from the strongly

connected components in the oriented graph, as described by Régin [1994]. Thus, to

store the information necessary to enumerate all alternating paths and cycles, and

therefore all maximum matchings, we only need to store a single base matching, the

set of free vertices, and the set of strongly connected components2.

3.4.3 Symmetric solutions as a reformulation

Figure 3.18 illustrates the two reformulations of Po, the problem of enumerating

all maximum matchings. We can reformulate Po as Pr1, the set of all maximum

matchings, using Uno’s algorithm. Alternatively, we can reformulate the problem as

Pr2, a base matching and its corresponding sets of strongly connected components and

free vertices. All matchings can be enumerated from Pr2 as needed. Our construction

has the same time complexity as Uno’s, which is linear in the number of maximum

matchings. However, our characterization of the solutions as symmetries is valuable:

1. It provides a more compact representation of the set of solutions. Rather than

storing all matchings, we store a single matching, a set of strongly connected

components, and a set of free vertices.

2An improvement suggested by a anonymous reviewer.
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Pr2

Pr1

−A maximum matching
−The set of strongly connected components from the oriented graph
−The set of free vertices

Formulation:
Query:Q r = Enumerate all maximum matchings in G

G = (V,E)

Po

Formulation:

Uno’s algorithm
Formulation: The set of all maximum matchings in G

M

Figure 3.18: Finding all maximum matchings.

2. In case one is indeed seeking all , or a given number of, the solutions to the

BID problem (similarly, to a resource allocation problem that has a maximum

matching relaxation), we can generate every matching symmetric to that known

single matching and test whether or not it satisfies the additional constraints of

the non-relaxed problem. When it does, the matching is a solution to the non-

relaxed problem. Note that it is found without search. Naturally, the number

of maximum matchings can be large.

We do not currently exploit those features for solving the BID problem, but they

deserve further investigations.

Summary

In this chapter, we introduced four reformulation techniques for CSPs. First, we

described a query reformulation that reduces a counting problem into a polynomial

number of satisfiability problems. Using this reformulation, we designed relational-

consistency algorithms with significantly reduced space complexity than existing ones.

Second, we introduced the AllDiff-Atmost constraint and defined a reformulation

to reduce the domain sizes of the variables in its scope. Third, we argues that a general

resource allocation problem can be relaxed into a maximum matching problem, which

is tractable. We then showed how to use this necessary approximation before and
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during search. Finally, we showed that all maximum matchings in a bipartite graph

can be derived by symmetry, providing a more compact representation of the set of

all maximum matchings, and sketched a strategy for exploiting this knowledge in

practice.
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Chapter 4

A Constraint Model and Solver for

the BID

In this chapter, we describe the constraint model we designed for the BID problem and

the custom solver we built for solving it. Our model is based on the one described in

[Michalowski and Knoblock, 2005], but we introduce various improvements that allow

our model to accurately reflect the inherent structure of a BID instance, which is then

exploited in our custom solver to improve the performance of problem solving. We first

specify the constraint model: the variables, their domains, and the constraint that

apply to the variables. Then, we discuss a number of special layout configurations that

our model can naturally handle. Finally, we discuss our custom solver and highlight

its advantages.

To illustrate the various components of our model, we use the simple BID instance

shown in Figure 4.1 and give the corresponding constraint network in Figure 4.17.
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Figure 4.1: A simple instance of the BID problem.

4.1 Variables

Our constraint model has three types of variables: orientation variables (called global

variables in [Michalowski and Knoblock, 2005]), building variables, and corner vari-

ables.

1. The orientation variables describe the overall layout of the map, such as the

direction in which the numbers appear.

2. The building variables store the numeric address assignments to a specific build-

ing.

3. The corner variables store the street assignments to corner buildings.

4.1.1 Orientation variables

There are four orientation variables, exactly like the ones described by Michalowski

and Knoblock [2005]. We use different names for them to make them more descriptive.

Each of these variables is a Boolean variable:

1. OddOnNorthSide: If this variable is true, then odd addresses lie on the north

side of the street; otherwise, they lie on the south side of the street.
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2. OddOnEastSide: If this variable is true, then odd addresses lie on the east side

of the street; otherwise, they lie on the west side of the street.

3. IncreasingNorth: If this variable is true, then numbers increase when moving

toward the north on north-south running streets; otherwise, they increase when

moving toward the south.

4. IncreasingEast: If this variable is true, then numbers increase when moving

toward the east on east-west running streets; otherwise, they increase when

moving toward the west.

Normally, the model has exactly one of each of the four orientation variables. This

fact reflects that street numbering schemas are homogeneous over the considered

geographical area. However, there are real-world situations where the number schemas

differ between streets, as is the case for the city of Belgrade. Our model can easily

accommodate such non-homogeneous numbering schemas by generating additional

orientation variables for those streets that do not follow the regular pattern.

We assume that the street numbering schema for the BID instance shown in Fig-

ure 4.1 is homogeneous across the streets, and include only four orientation variables

in the corresponding constraint model.

4.1.2 Building variables

The model includes a building variable for every building on the map. The domain of

each such variable is the set of all addresses (a combination of a street and a number)

that the building can take.

To populate the domain for a building on a given street, Michalowski and Knoblock

[2005] enumerated all addresses from 1 to the largest number that appears in the

phone-book for that street. However, choosing the largest phone-book address is
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an arbitrary limit, and leads to incorrect results when the correct solution contains

addresses larger than the largest phone-book address. To address this issue, in our

model the range of possible addresses is specified as the (0,∞), unless the largest value

is known. Note that the domains contain values that are not in the phone-book, and

thus the solutions that we find contain inferred values for the missing addresses.

The BID instance of Figure 4.1 has 10 buildings. Our model includes the building

variables {B1, B2, B3, B4, B5, B6, B7, B8, B9, B10}. The domains for the variables

are as follows:

DB1 = {S1#1, S1#2, . . ., S1#∞, S3#1, S3#2, . . ., S3#∞},

DB2 = {S1#1, S1#2,. . ., S1#∞},

DB3 = {S2#1, S2#2, . . ., S2#∞, S3#1, S3#2, . . ., S3#∞},

DB5 = {S1#1, S1#2, . . ., S1#∞},

DB4 = {S3#1, S3#2, . . ., S3#∞},

DB6 = {S1#1, S1#2, . . ., S1#∞, S3#1, S3#2, . . ., S3#∞},

DB7 = {S3#1, S3#2,. . ., S3#∞},

DB8 = {S2#1, S2#2, . . ., S2#∞},

DB9 = {S2#1, S2#2, . . ., S2#∞}, and

DB10 = {S3#1, S3#2, . . ., S3#∞}.

Section 4.4.3 describes how we implement the domains as sets of intervals, and Sec-

tion 5.3.1 discusses how we reformulate these intervals to reduce their size.

4.1.3 Corner variables

We include a corner variable in the constraint model for every corner building on the

map. The domain of a corner variable is the set of streets to which the building is

adjacent.

We use separate variables for the assignment of an address and a street, where an



56

address is a combination of a street and a number, for the following reason. Deter-

mining the streets on which corner buildings lie before we assign numbers to them

decomposes the constraint network into chains, as we discuss in Section 4.4. Note

that the corner variables are hidden variables, in the sense that they are not part of

the solution reported to the user. They are variables that only exist to facilitate the

decomposition of the problem.

The BID instance in Figure 4.1 has 3 corner buildings. Our model has the following

set of corner variables {B1-corner, B3-corner, B6-corner}. The domains for these

variables are as follows:

DB1−corner = {S1,S3},

DB3−corner = {S2, S3}, and

DB6−corner = {S1, S3}.

4.2 Constraints

Our current model contains five types of constraints, which can be enriched with

constraints to reflect street-numbering strategies used around the world [Michalowski

et al., 2007a]:

1. Parity constraints.

2. Ordering constraints.

3. Phone-book constraints.

4. Corner constraints.

5. Grid constraints.

The first four constraints already existed in the original model proposed in [Michalowski

and Knoblock, 2005], although they were implemented and propagated differently.
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The grid constraint is a new constraint that was not accounted for in the original

model. Interestingly, we show, in Corollary 1 in Section 5.4.1, that the BID prob-

lem defined in [Michalowski and Knoblock, 2005] is tractable and can efficiently be

solved without search. The tractability of the BID problem in the presence of grid

constraints remains an open question. Thus, modeling the BID problem as a CSP

as advocated in [Michalowski and Knoblock, 2005] is a pertinent approach because it

gives us the flexibility to represent arbitrary constraints such as grid constraints and

other street-addressing schemas used around the world.

Below we discuss and illustrate each of the above five constraints.

4.2.1 Parity constraints

A parity constraint is a binary constraint that exists between each building variable b

and the appropriate orientation variable (i.e., OddOnEastSide or OddOnNorthSide).

This constraint ensures that the parity of the building’s number matches what the

orientation variable dictates.

If b is a corner-building on streets s1, s2, ..., sk, we create a parity constraint be-

tween b and the orientation variables corresponding to each street si. The constraint

for each street si requires that if we assign an address on street si to building b,

the parity of that address must match that of the specified orientation variable. In

general, k ≤ 2. However, it is possible for a corner building to be adjacent to more

than two buildings, such as the example shown in Figure 4.2, where building B3 is

adjacent to streets S1, S2, and S3. In Figure 4.2, parity constraints exist between

the following pairs of variables: (B1, OddOnNorthSide), (B1, OddOnEastSide), (B2,

OddOnNorthSide), (B2, OddOnEastSide), (B3, OddOnNorthSide), (B3, OddOnEast-

Side), and (B4, OddOnEastSide). Figure 4.3 shows these parity constraints in the

constraint network.
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Figure 4.2: Simple BID instance.
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Figure 4.3: Parity constraints for Figure 4.2.

4.2.2 Ordering constraints

An ordering constraint is a ternary constraint over an orientation variable (i.e., In-

creasingNorth or IncreasingEast) and pairs of adjacent buildings whose number must

respect a numeric ordering (increasing or decreasing). We distinguish four interesting

configurations of increasing complexity for imposing a set of ordering constraints:

1. Between adjacent buildings.

2. Around a corner building.

3. Around multiple corner buildings.

4. Across multiple blocks.

After describing each of these situations, we describe the general rule that defines

where ordering constraints exist. To improve the readability of the diagrams in this

section, we simply draw an edge between any two buildings that are subject to an

ordering constraint, thus abstracting away the orientation variable from the represen-

tation.

4.2.2.1 Adjacent buildings

The first situation where an ordering constraint exists is the simplest and most com-

mon one. There exists an ordering constraint between any two adjacent non-corner
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buildings. Thus, in Figure 4.4, there are two ordering constraints: one between B1

and B2, and one between B2 and B3.

Figure 4.4: Ordering constraints for 3 non-corner buildings.

4.2.2.2 Around a corner building

When creating ordering constraints for a corner building, we do not know a priori on

which street the corner building lies. If the corner building is on a different street

than the two buildings adjacent to it on the map, then we need to make sure that the

adjacent buildings still respect their ordering. Consequently, we add an additional

ordering constraint between those two buildings. In the example of Figure 4.5, we

add an ordering constraint between B1 and B3. The two ordering constraints between

{B1,B2} and {B2,B3} are declared as activation constraints [Mittal and Falkenhainer,

1990]: If B2 is on street S1, then they are deactivated; otherwise, they are active.

When B2 is on street S1, the constraint {B1,B3} maintains the correct sequencing of

the buildings. If B2 is on street S2, then the constraint {B1,B3} becomes redundant

in the sense that it can be inferred from the two existing ones. Generally speaking,

redundant constraints are useful to speed-up search when partial look-ahead is used,

although they do not affect the number of solutions.

Figure 4.5: Ordering constraints around a corner building.
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4.2.2.3 Around multiple corner buildings

When there are two corner buildings in a row, we add an ordering constraint between

every pair of buildings, because we cannot predict which of the buildings on the

corners will end up on different streets. Figure 4.6 illustrates this situation. Note

that the (simplified) graph is a clique.

Figure 4.6: Ordering constraints around 2 corner buildings.

In the extreme case of this, we have four corner buildings, and end up with a

clique of constraints for each row of buildings, as illustrated in Figure 4.7.

Figure 4.7: Ordering constraints around 4 corner buildings.

4.2.2.4 Across multiple blocks

When a block along a street S has no buildings between two corner buildings, it

is possible that neither building on the block appears on street S. Thus, we must

have an ordering constraint between the buildings on the adjacent blocks, across the

block in question. Figure 4.8 shows such a situation. In this case, we have a clique
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of constraints containing each corner building and the non-corner buildings at an

extremity. If we have multiple consecutive blocks with only corner buildings, this

clique extends across the buildings along all the blocks in the sequence.

Figure 4.8: Ordering constraints across multiple blocks.

4.2.2.5 General case for ordering constraints

The general rule for creating ordering constraints is as follows. For any sequence of

buildings 〈B1, B2, . . . , Bk〉 along a street where B1 and Bk are not corner building,

but Bi, with 1 < i < k, is a corner building, every pair of buildings in the sequence

must be connected by an ordering constraint.

Thus, the model may have a large number of ordering constraints. However,

once we know on which street a building lies, most of the ordering constraints are

deactivated or become redundant, and thus can be ignored. Figure 4.9 shows a

situation where we have determined that B2, B3, B6, and B7 are on street S1. As a

result, the constraint network is decomposed into four independent chains.

4.2.3 Phone-book constraint

For each street S, there exists a phone-book constraint Cph,s whose scope is all build-

ings adjacent to street S. The constraint requires that we assign each address on S

appearing in the phone-book to exactly one building in the scope of Cph,s.

In the example Figure 4.10, a phone-book constraint Cph,S1 exists for street S1

where the scope of Cph,S1 is the set of variables {B1, B2, B4, B6, B7}. Cph,S1 requires
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Figure 4.9: Constraints deactivated after street side is known for corner buildings.

that the buildings in its scope use all of the addresses 5, 6, and 11. Similarly, Cph,S2

exists for street S2 whose scope is {B1, B2, B3, B4, B5}. Cph,S2 requires that the

buildings in its scope use all of the addresses 2, 4, and 6. Figure 4.11 shows the

constraint graph for this example.

S1

B1

S2

B2 B3

B4 B5
B6

B7

Phone−book:
S1 #5
S1 #6 
S1 #11
S2 #2
S2 #4
S2 #6

Figure 4.10: Simple BID instance.

B3Constraint
Variable

C(ph,s1)

C(ph,s2)

B1 B2

B4 B5
B6

B7

Figure 4.11: Phone-books constraints for Figure 4.10.

4.2.4 Corner constraint

The constraint model has one corner constraint for each corner building on the map.

The corner constraint is a binary constraint and is declared over the corner variable Bi-

corner and building variable Bi corresponding to a given corner building. The corner

constraint is different from the other constraints in that it does not model a property

of the underlying building-identification problem. Instead, it is an internal constraint



63

that ensures that the values assigned to the building variables in the solution are

consistent with the values assigned to the hidden corner variables.

In Figure 4.12, three corner constraints exist with the following scopes, where

Bi is a building variable and Bi-corner is the corresponding corner variable: {B1,

B1-corner}, {B2, B2-corner}, and {B4, B4-corner}. Figure 4.13 shows the constraint

graph for this example.

S1

B1

S2

B2 B3

B4 B5
B6

B7

Figure 4.12: A simple BID instance.

B2−corner

B2

B4−corner

B1−corner

B1 B3

B5

B7
B6

B4

Figure 4.13: Corner constraints for Figure 4.12.

4.2.5 Grid constraint

A grid constraint is a binary constraint that ensures the buildings on different sides

of certain grid lines lie in different increments. If the region contains gridlines, we

must create a grid constraint for any adjacent buildings that are on opposite sides of

a gridline. The grid constraint requires that we assign addresses to the buildings that

are in different numeric increments of some value k.

There are two levels of grid constraints: un-instantiated gridlines and instantiated

gridlines. An un-instantiated grid constraint is less restrictive and simply states that

addresses increment across gridlines. However, we may known in advance to which

numeric increment each gridline corresponds. This information may be available

from street-vector data, for example. When we have this information that further

specializes the constraint, we call it an instantiated gridline.



64

Note that if a building adjacent to the gridline is a corner building, we must

create redundant grid constraints following the same technique described for ordering

constraints in Section 4.2.2.

Grid constraints do not exist in the constraint model of every BID instance. If

the region that the CSP models does not contain gridlines, we do not create these

constraints.

Assume that there are two grid lines in Figure 4.14 across streets S1 and S2. The

constraint model will include four grid constraints with the respective scopes: (B1,B2,

IncreasingEast), (B1, B3, IncreasingEast), (B4, B2, IncreasingNorth), and (B5, B2,

IncreasingNorth). Figure 4.15 shows the constraint graph for this example.

Corner building
Building
Gridline

S1

B5

B4

B1 B3B2

S2

Figure 4.14: Simple BID instance.

Constraint
Variable

B5

B4

IncreasingEast

B2 B3B1

IncreasingNorth

Figure 4.15: Grid constraint for Figure 4.14.

4.2.6 Example constraint network

Figure 4.16 shows a simple instance of the BID problem, and Figure 4.17 shows the

corresponding constraint network.
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B6

B3
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B4

B9

B1 S1#1, S1#4,
S1#8, S2#7,
S2#8, S3#1,
S3#2, S3#3,

S3#15
= Corner building
= Building

Si = Street

B2

B5
B7 B10

S3

S1 S2

Figure 4.16: A simple instance of the BID problem.
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Ordering Constraint

Variable

Phone−book Constraint

B1

B9

IncreasingEast

B7B6 B8B5

B6−corner

OddOnNorthSide

B10

B3
B4

B3−corner
B1−corner B2

IncreasingNorth OddOnEastSide

Figure 4.17: Constraint network for Figure 4.1.
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4.3 Special configurations

In addition to the basic cases presented above, there are other interesting configura-

tion that occur in real-world problems. It is important for our model to represent

those situations correctly. In this section, we identify and describe three such situ-

ations. The first situation occurs when a building spans the width of a block, the

second situation occurs when a building is adjacent to more than two streets, and the

third situation occurs when orientation varies from street to street.

Figure 4.18 illustrates the first case we consider. In this situation, building B5

Figure 4.18: Building B5 spans the width of a block.

is not a corner building in the proper sense, because it is not at the intersection of

two streets. However, the building is adjacent to multiple streets. Thus, we must

determine on which street its address lies, and, in our model, we handle it as a corner

building. We use the rules described in Section 4.2.2 for generating the ordering

constraints, shown as lines between buildings in Figure 4.18.

Figure 4.19 illustrates the second configuration we identified. In this case, building

B6 is adjacent to street S1, S2, and S3, showing how a corner building can be adjacent

to more than two streets. This situation is gracefully modeled by including the

addresses on all three streets in the domain of the corner variable for building B6.

The third situation that arises is when numbering schemas are not homogeneous

across the considered geographical region, as is the case in Belgrade. In most regions,

all street sides in a given cardinal direction have the same parity. That is, if odd
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Figure 4.19: Building B6 is adjacent to 3 streets.

numbers appear on the north side of one street, it is likely that they appear on

the north side of all streets. Exceptions occur, especially in old-world cities. For

example, in Belgrade, each street has its own parity values. Thus, we cannot use a

single orientation variable for the parity orientation for the whole region. Rather, we

must create a parity orientation variable for each street.

We encountered all cases described in this section in the real-world case studies

we investigated. Our solver, which we describe next, is capable of handling each of

these situations.

Our preliminary investigations of cities across the US (e.g., Boulder, San Francisco,

and Los Angeles) indicate that our model is able to handle most situations. However,

as we validate it in other contexts across the world1, the ‘basic’ constraint model will

have to be enhanced with additional constraints that accurately reflect the numbering

schemas adopted around the world. Identifying those constraints and dynamically

compiling them into an appropriate constraint model are discussed in [Michalowski et

al., 2007a], and constitute the topic of the doctoral research of Martin Michalowski.

1For example, to handle the red-black numbering schemas used in Italy [Michalowski, 2006].
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4.4 A custom backtrack-search solver (BT)

We implement a custom backtrack-search solver in Java. This solver uses backtrack

search (BT) with nFC3, a look-ahead strategy for non-binary CSPs [Bessière et al.,

1999], and Conflict-Directed Backjumping [Prosser, 1995]. We call this combination

nFC3-CBJ.

Our solver exploits the topology of the problem to improve the performance of

search. After we assign streets to the corner buildings, any ordering constraint be-

tween a corner building and a building on a different street are deactivated. Thus,

once the orientation and corner variables have been assigned, the constraint network

becomes a forest. Figure 4.20 illustrates a BID instance after assigning the orienta-

tion variables, but before assigning the corner variables. Figure 4.21 shows the same

instance after assigning the following streets to corner variables: B1 ← S1, B3← S2,

B4← S3, B6← S3, B8← S2, and B10← S3. The arcs in Figures 4.21 and 4.20 corre-

spond to the ordering constraints, which are binary because the orientation variables

have been instantiated.

B3

B9

B1 B2

B5
B7

S3
B8 B10

B4

B6

S1 S2

Figure 4.20: BID instance before assigning
corner variables.

B3

B9

B1 B2

B5
B7

S3
B8 B10

B4

B6

S1 S2

Figure 4.21: BID instance after assigning
corner variables.

Freuder [1982] showed that tree-structured constraint graphs can be solved in

polynomial time. We first apply arc-consistency directionally from the leaves of the

tree to the root, chosen arbitrarily. Then, when no domain is wiped out by directional
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arc-consistency, we can instantiate the nodes of the tree in a backtrack-free manner

(i.e., in linear time in the number of the nodes). Consequently, in our solver, as

long as nFC3 does not cause a domain wipe-out, we can stop search and guarantee

solvability without instantiating the remaining variables. In this sense, the corner

variables are backdoor variables of the CSP2 as defined by [Kilby et al., 2005].

In our experiments in Chapter 5, we extend this solver in different ways to test

the effectiveness of the different techniques we propose.

4.4.1 Variable ordering

The variables are instantiated in the following order: variables corresponding to land-

mark buildings, orientation variables, corner variables, and building variables.

When the problem has one or more landmarks (with correct addresses), the cor-

responding corner and building variables are instantiated immediately and the effect

is propagated.

The next step in the search is to instantiate the orientation variables. These

variables determine the numbering scheme of the region and their assignment signif-

icantly constrains the problem. This intuition is supported by the popular heuristic

known as the domain-degree variable-ordering heuristic [Tsang, 1993], which consists

in instantiating first the variable whose ratio of domain size to degree (in the graph) is

smallest. Indeed, the orientation variables are Boolean. Further, each of the ordering

and parity variable pairs is connected to all the building variables. Thus, the degrees

of the orientation variables are high.

The third set of variables to be instantiated are the corner variables. They are

instantiated before the building variables because their assignment decomposes the

2Backdoor variables are those variables whose instantiation reduce the CSP into a tractable
problem [Kilby et al., 2005].
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problem into independent sub-problems each of which is a chain, one for each side of

each street.

Finally, the last stage of search assigns values to each building variable. These

values are the numeric addresses assigned to each building. Note that, for the reasons

discussed above, we can determine the satisfiability of the problem without instanti-

ating any of these variables.

4.4.2 Implementing and checking the constraints

We implement all the constraints in intension. This implementation makes constraint

checking more efficient. However, it prevents us from easily enforcing higher levels of

consistency in the network. Our implementation of nFC3, which is standard, operates

on each constraint individually and does not propagation the join multiple constraints.

Below we describe how we propagate each constraint. We discuss constraint check-

ing in general, regardless of the variable ordering chosen during search. Note that the

filtering mechanism depends on which variables in the scope, if any, are instantiated.

Parity constraint: If search has instantiated the orientation variable, we filter all

values from the building variable’s domain that do not match the parity specified by

the orientation variable.

If neither the orientation variable nor the building variable in the scope of a parity

constraint is instantiated, we iterate through the domain of the building variable to

determine whether all remaining values have the same parity. If they all have the

same parity, we force the orientation variable to the corresponding value. Otherwise,

we perform no filtering.
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Ordering constraint: If the orientation variable has been instantiated, the order-

ing constraint becomes a Greater-Than constraint: Bi > Bj where Bi, Bj are two

building variables in the scope of an ordering constraint. We propagate this constraint

only on the boundaries of each interval, as in bound or box consistency [Benhamou et

al., 1994]. Thus, we remove all values di from the domain of Bi where di ≤ min(Bj)

and all values dj from the domain of Bj where dj ≥ max(Bi).

If the orientation variable is not instantiated, we check whether all values in the

domain of Bi are uniformly either less than or greater than all values in the domain

of Bj. If they are, then we can filter the ordering variable’s domain to only contain

the orientation reflecting the ordering relation that holds between the domains of Bi

and Bj.

Phone-book constraint: The phone-book constraint for street S computes the

following parameters:

pu = the number of phone-book addresses assigned to building variables along

street S

pr = the number of addresses for street S in the phone book

ba= the total number of un-instantiated buildings along street S.

We distinguish three possibilities:

1. ba < pr − ps: There are not enough buildings to use all required phone-book

addresses, and search must backtrack.

2. ba = pr − ps: There are exactly enough buildings left along street S to use the

required addresses. All remaining buildings along street S must have an address

from the phone-book. We filter the domains of these buildings to only contain

phone-book addresses.
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3. ba > pr − ps: There are more than enough buildings to use all required phone-

book addresses. The constraint cannot perform any filtering.

Corner constraint: When a corner variable is instantiated, we remove all values

from the domain of the building variables that do not correspond to addresses on the

street specified by the corner variable.

When a building variable is instantiated, we filter the domain of the corresponding

corner variable to contain only the value of the street assigned to the building variable.

Grid constraint: The implementation of the grid constraint is similar to that of the

ordering constraint, except that we must account for the numeric increment k across

grid lines. The street addresses ai, aj of two building variables Bi, Bj connected by a

grid constraint must satisfy exactly one of the two relations:

ai − ki < aj − kj (4.1)

ai − ki > aj − kj (4.2)

where ai ≡ ki (mod k), and aj ≡ kj (mod k).

4.4.3 Domain representation

The domains for the building variables are stored as follows:

• Every domain is a set of intervals, one interval for each street to which the

building is adjacent.

• Every interval is stored as a sorted list of values.

• We propagate ordering and grid constraints only on the bounds of an interval,

as in box consistency. This operation is possible because each interval is stored
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in a sorted list.

• If a constraint does not operate on the endpoints of an interval, such as the

phone-book constraints, we filter the set of values directly. Any filtering must

maintain the ordering of the remaining values. That operation does not require

any extra effort, because the values are already sorted, and removing values

does not disrupt the sorting of the remaining values.

• In Section 3.2 we introduced a new constraint, the AllDiff-Atmost con-

straint. In Section 5.3, we argue that each phone-book constraint entails a set

of AllDiff-Atmost constraints, which we add to the constraint model. We

reformulate the domains of the variables in the scope of these new constraints

to reduce their size. This domain reformulation has no effect on the way we

store and propagate domains, because the reformulated domains still respect

the total ordering of the numeric values.

4.5 Building the constraint model of the BID prob-

lem

The solver reads problem instances from a set of XML files. These XML files describe

the basic description of a problem instance and information about landmarks or

additional constraints that hold in the region. A problem instance is described with

the following XML files:

1. Layout: The layout file describes layout of the buildings and streets on the map.

2. Phone-book: The phone-book file lists the known phone-book addresses for the

problem instance.
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3. Grid: The grid XML file describes any gridlines in the problem instance.

4. Landmark: The landmark XML file describes any landmarks with known ad-

dresses.

Appendix A describes the schema for each XML file. Note that the landmark files

and grid files are optional. For example, depending on the information available, a

problem instance may or may not have grid constraints.

4.6 Improvements over the previous model

Our new model improves the original one proposed in [Michalowski and Knoblock,

2005] as follows.

• The number of variables for non-corner buildings is reduced by half, reducing

number of variables between 37% and 43% in our test cases.

• Domains of the building variables in [Michalowski and Knoblock, 2005] were

enumerated and upper bounds chosen arbitrary. We represent them as intervals

with potentially infinite bounds in the new model.

• We reduced constraint arity from four to two for parity constraints, and from

six to three for ordering constraints.

• Corner constraints are new and allow early decomposition of the problem.

• Grid constraints are also new and allow a more precise modeling of the real

world. Interestingly, we show, in Section 3.3, that in the absence of grid con-

straints, the BID problem is tractable. The tractability of the BID problem in

the presence of grid constraints remains an open question.
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Summary

In this chapter, we presented a CSP model for the BID problem. We described our

custom solver that uses backtrack search to find solutions to BID instances mod-

eled as CSPs. We also described how our model improves over the model described

in [Michalowski and Knoblock, 2005]. We use this model and solver as the basis for

our experiments in Chapter 5



76

Chapter 5

Reformulating the BID problem

In this chapter, we discuss the application of the reformulation techniques introduced

in Chapter 3 to the BID problem defined in Chapter 4. First, we describe the BID

case studies. Then, we describe the application of each of the three reformulations to

the BID problem, and report experimental results that demonstrate the benefits of

each reformulation in terms of improved runtime performance. We also briefly discuss

the use of the fourth technique in this context. Finally, we discuss the quality of the

solutions we found to the BID instances.

5.1 Description of the case studies of the BID prob-

lem

We test and validate our approach on several different regions of the city of El Se-

gundo, CA. These cases vary in size and which regions of the city they cover. Table 5.1

describes the properties of the regions on which we ran our experiments, listed in in-

creasing number of corner buildings. The largest region tested by [Michalowski and

Knoblock, 2005] contained 34 buildings and a single city block. All of the areas we



77

test represent an increased problem size over their work. The completeness of the

phone book indicates what percent of the buildings on the map have a corresponding

address in the phone book. We created the complete phone books using property-tax

data, and the incomplete phone books using the real-world phone-book. The number

Table 5.1: Case studies used in experiments.

Case study Phone-book Number of. . .
completeness bldgs corner bldgs blocks building-address

combinations
NSeg125-c 100.0% 4160
NSeg125-i 45.6%

125 17 4
1857

NSeg206-c 100.0% 4879
NSeg206-i 50.5%

206 28 7
10009

SSeg131-c 100.0% 3833
SSeg131-i 60.3%

131 36 8
2375

SSeg178-c 100.0% 4852
SSeg178-i 65.6%

178 46 12
2477

of building-address combinations is the number of possible combinations of buildings

and phone-book addresses and corresponds to the number of vvps tested in the loop

at Line 10 in Algorithm 1. Note that this number is smaller when the phone book is

incomplete than when it is complete. Each call to Line 11 was timed out after one

hour. We report the number of timed out executions in our results.

In our experiments, we assume that we know the values of the orientation variables

in advance. If we do not know these values, the number of vvps we must test would be

multiplied by 16, because we would have to test each building-address combination

for each possible combination of assignments to the orientation variables. When

grid constraints are not present, we do not need to test all values for the ordering

orientation variables, because any solution with one set of assignments to the ordering

variables has a symmetric solution with the opposite assignments to the ordering
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variables.

5.2 Query reformulation in the BID problem

The straightforward approach taken by [Michalowski and Knoblock, 2005] consisted

in enumerating all possible solutions to the CSP, which is prohibitively expensive

in practice. After all solutions are enumerated, they iterated through the set of

solutions to collect, for each building, the set of addresses to which it is assigned in

some solution. A significant challenge when solving the BID problem is the large

number of possible solutions. The problem is often under-constrained, leading to

a large number of consistent solutions. This fact is true especially in cases where

the phone book is incomplete. The large number of solutions makes enumeration

impractical in most cases. By reformulating the query as proposed in Section 3.1, we

can use Algorithm 1 to obtain the same result at a much cheaper cost. In summary,

we replace the query: “Enumerate all solutions and collect the addresses taken by

the buildings in these solutions” with the query “Find all the addresses that a given

building can take.”

For a CSP with with n variables of domain size d, Algorithm 1 tests O(nd) CSPs

for solvability. This operation appears costly, but in cases where the original CSP

has significantly more than nd solutions, Algorithm 1 can perform significantly better

than enumerating all solutions to the CSP. Further, because the corner variables are

hidden, Line 10 iterates over only all vvps for the building variables. Thus, n is the

number of buildings, which is smaller than the number of variables in the CSP, and

d is the number of phone book addresses.

Note that, for the reasons described in Section 4.4, our BT solver needs to in-

stantiate only the corner variables to determine satisfiability. However, the vvps we
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consider in the loop at Line 10 in Algorithm 1 are the vvps for the building vari-

ables. Our solver never instantiates any vvp that we could remove from the vvp

list for future iterations, and thus we cannot take advantage of the improvement to

Algorithm 1 described in Section 3.1.

Table 5.2 shows the results of experiments comparing an exhaustive BT solver

(exh-BT), which enumerates all solutions, with Algorithm 1 using our BT solver in

Line 11 (Alg1+BT). The ∗ values indicate that the results could not be obtained

because exh-BT did not terminate within a week of CPU time. We report results on

instances both with and without grid constraints.

Table 5.2: Exhaustive BT (exh-BT) vs. Algorithm 1 using BT in Line 11 (Alg1+BT).
Note that the runtimes would be higher by a constant factor if we did not assume
that we knew the correct values for the orientation variables.

Case study Model without grid constraints Model with grid constraints
Runtime [sec] #CSP Runtime [sec] #CSP

exh-BT Alg1+BT Solutions exh-BT Alg1+BT Solutions

Case studies with an incomplete phone book

NSeg125-i > 1 week 744.7 ∗ > 1 week 1232.5 *

NSeg206-i > 1 week 14818.9 ∗ > 1 week 4052.8 *

SSeg131-i > 1 week 66901.1 ∗ > 1 week 114405.9 *

SSeg178-i > 1 week 119002.4 ∗ > 1 week 138404.2 *

Case studies with a complete phone book

NSeg125-c 1.5 139.2 1 1.1 100.8 1

NSeg206-c 20.2 4971.2 7 4.3 2277.5 1

SSeg131-c 1123.4 38618.4 2117 220.9 17063.3 299

SSeg178-c 3291.2 117279.1 3751 115.2 78528.6 19

In cases with incomplete phone books, Alg1+BT allows us to solve instances that

exh-BT cannot handle in a reasonable amount of time. However, with a complete

phone book, the CSP has only a small number of solutions, and the overhead of

the additional backtrack searches performed by Algorithm 1 causes an increase in

runtime. Obviously, adding grid constraints to a case study reduces the number of
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solutions. Interestingly, this reduction directly translates into runtime improvement

for both exh-BT and Alg1+BT when the phone book is complete (e.g., the CSP

is highly constrained), however, the effect is unpredictable when the phone book

is incomplete. While in the case studies with a complete phone book Alg1+BT

performed significantly worse than exh-BT, the performance improvement in the in-

complete phone-book cases is substantial. Unless otherwise noted, in all remaining

experiments, we use solvers based on Algorithm 1.

5.3 Using AllDiff-Atmost in the BID problem

When the number of buildings on the map is equal to the number of addresses in

the phone book, the phone book is complete. If the phone book is incomplete, we

must infer the missing numbers to add to the variables’ domains. [Michalowski and

Knoblock, 2005] proposed to enumerate all numbers between 1 and the largest address

that appears on the street. Their approach has two problems:

1. The choice of the upper limit is arbitrary. When the largest address is not in

the phone book, this approach may yield incorrect solutions. As a result of

this problem, Michalowski and Knoblock reported the elimination of correct

solutions as a drop in recall, where recall is the percent of buildings whose

solution contains the correct address.

2. The size of the domains becomes prohibitively large on real-world data. We

propose to infer from the phone-book constraint a set of AllDiff-Atmost

constraints, which we add to the constraint model. We then reformulate the

domains of the variables in the scope of the AllDiff-Atmost constraints to

reduce their size by using symbolic values as explained in Section 3.2.
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In this section we first describe how to add AllDiff-Atmost constraints to

the constraint model of a BID instance. Then, we present results that show the

benefits of the domain reformulation on AllDiff-Atmost constraints in terms of

both domain-size reduction and improved runtime performance.

5.3.1 Modeling the BID problem with AllDiff-Atmost

First, we assume that the BID instance does not have any grid constraints. We then

describe how to adapt the reformulation in the presence of grid constraints.

Let S be a street, PS = {a1, . . . , an} its set of phone-book addresses of a given

parity, BS the set of buildings on the side of S of that parity, and [min,max] the

range of address numbers on that side of S. The address numbers in PS partition

[min,max] into consecutive convex intervals. For any pair of addresses ai,aj ∈ PS, we

cannot use more than |BS|−|PS| addresses in the interval (ai,aj), which we express as

AllDiff-Atmost(BS ,ka,(ai,aj)) with ka=minimum(|BS |-|PS|,b
(aj−ai)−1

2
c). We also

create the corresponding constraints for the boundary intervals [min, a1) and (a|PS |,

max]. We reduce the variables’ domains using the reformulation of Section 3.2 on

each of these intervals.

For example, assume we have, on the even side of S, BS={B1, B2, . . ., B6},

PS={S#112, S#118, S#316}, min=2, and max=624. An assignment cannot use

more than 3 numbers in each of the intervals:

[2,112), (112,118), (118,316), and (316,624],

yielding four AllDiff-Atmost constraints with the following arguments:

(BS,3,[2,112)), (BS,2,(112,118)), (BS,3,(118,316)), and (BS,3,(316,624]).

We replace the domain [2,624] of each variable with the significantly smaller set:

{s1, s2, s3, 112, s4, s5, 118, s6, s7, s8, 316, s9, s10, s11},

where s1,s2,s3∈ [2,112), s4,s5∈ (112,118), s6,s7,s8∈ (118,316), s9,s10,s11∈ (316,624],
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and si<sj for i<j. This process allows us to choose an arbitrarily large, even infinite,

upper bound (max) on a given street. Figure 5.1 illustrates this reformulation.

6 7 8, s , ss
9s 10, s 11, s1 2 3, s , s s , 112, 4 5, ss , 118, , 316, {

{2, 4, ..., 8, 110, 112, 114, 116, 118, 120, 122, ..., 314, 316, 318, ..., 622, 624 }

}

Original domain

Reformulated domain

Figure 5.1: Domain reformulation for the BID problem.

When grid constraints are present, the reformulation is slightly different. We

define S, PS, BS and [min, max] as above. Additionally, we define G as the set of

numbers corresponding to the increments of the grid lines. The elements of G are

defined as follows. Let k be the increment of address values and n be the numbers of

elements of G. We have:

n = b
max

k
c − b

min

k
c (5.1)

and

G = {(i + b
min

k
c)k | 1 ≤ i ≤ n} (5.2)

The numbers in PS ∪ G partition [min,max] into consecutive convex intervals. The

reformulation continues as above, with one change. For a pair of consecutive addresses

ai, aj ∈ (PS ∪ G) with ai ∈ G, we create an AllDiff-Atmost constraint for the

interval [ai, aj) instead of using the interval (ai, aj). We close the lower bound of the

interval in this case, because ai does not correspond to a phone-book address, and

should be included in the set of numeric values replaced by symbolic values.

For example, suppose our example above has grid lines with an increment value

k=100. We have n=6 and G={100,200,300,400,500,600}. We specify the domain as

the set of intervals:

[2,100), [100,112), (112,118), (118, 200), [200,300),

[300,316), (316, 400), [400,500), [500,600), and [600,624],
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and generate an AllDiff-Atmost constraint for each interval.

5.3.2 Evaluating the effects of domain reformulation

Table 5.3 shows the benefit of domain reformulation by comparing the use of origi-

nal enumerated domains and the reformulated ones. The experiment uses the search

solver (BT) of Section 4.4. We report the results on problems with (top) and without

(bottom) grid constraints. The assumption that we know the correct values for the

orientation variables does not affect the domain size reduction. When the phone book

Table 5.3: BT runtime using numeric and symbolic values.

Case study Avg. domain size Runtime [sec] Timeouts
Orig. Ref. % Improved Orig. Ref. % Improved Orig. Ref.

Model without grid constraints

NSeg125-i 1103.1 236.1 78.6% 2943.7 744.7 74.7% 0 0
NSeg206-i 1102.0 438.8 60.2% 14818.9 5533.8 62.7% 0 0
SSeg131-i 792.9 192.9 75.7% 67910.1 66901.1 1.5% 18 17
SSeg178-i 785.5 186.3 76.3% 119002.4 117826.7 1.0% 32 29

Model with grid constraints

NSeg125-i 1103.1 266.8 75.8% 2176.5 1232.5 43.3% 0 0
NSeg206-i 1102.0 490.8 55.5% 19948.3 4052.8 79.7% 2 0
SSeg131-i 792.9 222.3 72.0% 131008.5 114405.9 12.7% 36 30
SSeg178-i 785.5 223.0 71.6% 153140.0 138404.2 9.6% 42 35

is complete, no AllDiff-Atmost constraints exist, and the original and reformu-

lated representations are identical. We report results on the incomplete phone-book

cases in terms of CPU time, number of timeouts, and domain size. The number

of timeouts indicates the number of times the call to Line 11 in Algorithm 1 could

not be completed within an hour. In the case of the incomplete phone-book, the

advantage of the reformulation is clear, and increases with the incompleteness of the

phone-book. We use the domain reformulation in all the experiments reported in the

remainder of this chapter.



84

5.4 Reformulating the BID problem as a matching

problem

The constraint model of Michalowski and Knoblock [2005] included the constraints

listed in Chapter 4 except for the grid constraint. We show below that, without

the grid constraint, the BID problem can be modeled as a matching in a bipartite

graph, and is thus tractable. Note that the CSP approach remains relevant in that

it allows one to represent arbitrary street-addressing schemas used around the world,

such as the grid constraints. We propose the removal of grid constraints as a tractable

relaxation of the BID problem.

In this section, we first describe the reformulation of the BID problem as a match-

ing problem. We then present results that use this reformulation both to solve the

problem directly (when no grid constraints exist) and as a tool before and during

search (when grid constraints exist).

5.4.1 Ignoring the grid constraints in the BID problem

Given an instance of this problem without grid constraints, we construct a bipartite

graph G = (B ∪ S, E) as follows. First, assume an assignment to the orientation

variables (there are 24 such assignments). For each building β in the problem, add a

vertex b to B. For each street σ in the problem, add two vertices sodd and seven to

S, one for each side of the street. For each building β, add an edge between vertex b

and the street vertex corresponding to the street side on which β may be. (Note that

corner buildings are on two streets.) Assuming odd numbers appear on the North

and West sides of the street, Figure 5.3 shows the construction of G for the map in

Figure 5.2. Theorem 1 uses this construction to determine solvability of the problem.
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S1#8, S2#7,
S2#8, S3#1,
S3#2, S3#3,

S3#15
= Corner building
= Building

Si = Street

B2

B5
B7 B10

S3

S1 S2

Figure 5.2: A BID instance .

B5 B6 B7 B8 B9 B10B4B3B2B1

S2_evenS2_odd S3_odd S3_evenS1_evenS1_odd

Figure 5.3: Graph construction for the example of Figure 5.2.

Theorem 1 ∀ b ∈ B, let m(b) = 1. ∀s ∈ S, let m(s) = |Pσ|, where Pσ is the set of

phone-book addresses that correspond to σ’s street and parity. There exists a solution

to the relaxed BID problem represented by G iff there exists a matching that saturates

S.

Proof 1 (⇒) Given a solution to the relaxed BID problem, we construct a matching

M as follows. ∀β, α such that the solution assigns address α to building β, let b ∈ B

be the vertex corresponding to building β, and let si ∈ S be the vertex corresponding

the street and parity of α. Add edge e = (b, s) to M . A solution to the problem

assigns exactly 1 address to every building, therefore e is the only edge incident to b

in the matching M . Because a solution assigns all the addresses in the phone book to

some building, the number of edges incident to si in M is equal to m(si). Therefore,

M is a matching that saturates S.

(⇐) Given a matching M , we will construct a solution to the relaxed BID problem.

We can represent each edge e ∈ M as e = (b, s), where b ∈ B and s ∈ S. ∀e ∈ M ,
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assign the building β corresponding to b to the street and parity specified by s. When

the phone book is incomplete, M does not saturate B. In this case, for any remaining

vertex b′ ∈ B assign the street and parity to which the b′ is adjacent to the building

β ′ represented by b′ in G. Every building now has a street and parity, it only needs a

street number. Starting from the street’s end with smaller addresses (depending on

the orientation chosen), assign numbers to buildings by taking the numbers from the

phone book for that street and parity in increasing order. After assigning all numbers

from the phone book, continue assigning arbitrary numbers of increasing value. The

addresses are thus assigned to satisfy the ordering and parity constraints. The match

counts of vertices in S guarantee that each street has at least as many buildings

assigned to it as it has phone-book addresses. Hence, the phone-book constraint is

satisfied. 2

Figure 5.4 shows a satisfying matching for the graph from Figure 5.3, where the

edges included in the matching are darkened. The numbers in parentheses indicate

the match count of the vertex.

S2_odd
(1)

S2_even
(1)

S3_odd
(3)

S3_even
(2)

S1_odd
(1)

S1_even
(2)

B2
(1)

B3
(1)

B4
(1)

B5
(1)

B6
(1)

B7
(1)

B8
(1)

B9
(1)(1)

B1 B10
(1)

Figure 5.4: Satisfying matching for Figure 5.2.

A maximum matching in the graph described above corresponds to an assignment

of streets to buildings that is guaranteed to satisfy the phone-book constraint. Given

an assignment of streets to all buildings, we can assign numbers to the buildings as

a post-processing step. Thus, while the matching reformulation does not provide a
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complete solution to the BID problem, we can easily generate a complete solution

using a construction such as the one described in Proof 1.

Note that the set of vertices that the matching must saturate corresponds to the

phone-book addresses. In the matching relaxation, the ‘tasks’ are the phone-book

addresses, and the goal is to assign a building to each address, whereas in the CSP

model we assign addresses to buildings. Thus, this reformulation constitutes a dual

viewpoint of the problem, as described in [Geelen, 1992].

While the matching reformulation is powerful, it does not take into account grid

constraints. Nevertheless, Theorem 1 allows us to state that the problem proposed

in [Michalowski and Knoblock, 2005] is tractable.

Corollary 1 The BID problem with parity, ordering, corner, and phone-book con-

straints, but without the grid constraints, can be solved in polynomial time.

To compute a maximum matching, we use the O(n5/2) algorithm by Hopcroft and

Karp [1973]. Whether or not the BID problem with the grid constraints can be solved

efficiently remains an open question.

5.4.2 Exploiting the matching reformulations in the BID

We propose to use the matching relaxation in four different ways: one when a problem

instance has no grid constraints, and three when it does.

5.4.2.1 In the absence of grid constraints

When a problem instance has no grid constraints, we use the matching as an exact

approximation of the BID problem. We efficiently solve the problem with Algorithm 1

while using the bipartite-matching algorithm (which we call the matching solver) in
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Line 11, instead of backtrack search. Figure 5.5 shows the flowchart for the matching

solver, which implements Line 11 in Algorithm 1.

No solution exists

saturating matching
Does a

exist?

Build the matching model

BID instance + vvp

Find a maximum matching using
the Hopcroft−Karp algorithm

Yes No

Solution exists

Figure 5.5: Flowchart for the matching solver.

To illustrate the effectiveness of this reformulation, we evaluate the performance

improvement obtained by replacing the BT solver in Line 11 of Algorithm 1 (Alg1+BT)

with the matching solver (Alg1+matching). Because Line 11 is called O(nd) times,

and each execution of the matching solver runs in O(n5/2) time, Alg1+matching

runs in polynomial time while Alg1+BT runs in exponential time. Table 5.4 gives

the runtime for both algorithms. As expected, the polynomial-time matching solver

has significantly better performance than the exponential-time BT solver. Note that

Alg1+matching is quicker when the phone book is incomplete than when it is com-

plete because fewer vvps (i.e., building-address combinations) are tested.

5.4.2.2 In the presence of grid constraints

When an instance has grid constraints, we can use the matching as a sufficient approx-

imation of the relaxed problem (i.e., ignoring the grid constraints). This relaxation

can in turn be used in three different ways: two for pre-processing and one for looka-

head. Below, we explain these mechanisms and evaluate them on our case studies.



89

Table 5.4: In the absence of grid constraints, Alg1+matching efficiently solves the BID
problem.

Case study Runtime [sec]
Alg1+BT Alg1+matching

NSeg125-c 139.2 4.8
NSeg125-i 744.7 2.5
NSeg206-c 4971.2 16.3
NSeg206-i 5533.8 8.5
SSeg131-c 38618.3 7.3
SSeg131-i 66901.1 3.1
SSeg178-c 117279.1 22.5
SSeg178-i 117826.7 4.9

Preproc1. Line 3 in Algorithm 3 is a pre-processing step, which we call Preproc1.

It eliminates some vvps that cannot possibly appear in a solution. We implement this

pre-processing step by adapting the Régin [1994] algorithm for all-diff constraints to

operate on our matching model. Figure 5.6 shows the flowchart for Preproc1.

the edges appearing in maximum matchings

Build the matching model

BID instance

Enumerate all edges that appear in at least one
maximum matching using Regin’s algorithm

List of vvps

Create the list of vvps corresponding to

Figure 5.6: Flowchart for Preproc1.

Preproc2. Line 6 in Algorithm 3 is another pre-processing step, which we call

Preproc2. It determines whether or not the sufficient approximation of a BID problem

where a vvp has been assigned is solvable. We implement this line using the matching

solver shown in Figure 5.5. If no solution exists to the relaxed problem, we can avoid
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performing the costly operation at Line 7 of Algorithm 3, which must be implemented

by backtrack search as the problem has grid constraints.

Lookahead. Line 7 of Algorithm 3 executes our backtrack-search solver introduced

in Section 4.4, which is enhanced with domain reformulation. Figure 5.7 shows the

flowchart for the BT solver.

−Domain reformulation

satisfiable?
Is the CSP

Build the CSP model

Execute backtrack search

only orientation and corner buildings
−Special variable ordering: instantiates
−Lookahead with nFC3

−Domains implemented as a list of intervals

−nFC3−CBJ

−*Lookahead using matching relaxation

BID instance + vvp

No solution existsSolution exists

Yes No

Figure 5.7: Flowchart for the BT solver.

In addition to nFC3, Figure 5.7 includes a second lookahead mechanism1 that is

based on the matching relaxation of the BID problem, as suggested in Section 3.3.3.

In the CSP model, a partial solution corresponds to a set of assignments to orientation

and corner variables, but not to building variables. Thus, using the matching as a

lookahead mechanism filters the domains of the corner variables, but not those of the

building variables.

1Marked with an * in Figure 5.7.
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Filtered CSP

appear in any maximum matching

Filter the domains of uninstantiated corner

Build the matching model for the
uninstantiated variables

Enumerate all edges that appear in at least one
maximum matching using Regin’s algorithm

(optionally) some instantiated corner variables

BID instance + 
instantiated orientation variables +

variables to remove any values that did not

Figure 5.8: Flowchart for the matching relaxation as a lookahead mechanism.

Evaluation of matching relaxation on the BID problem The experiments

in this section are conducted over case studies that include grid constraints. Con-

sequently, the reformulation of the BID problem as a matching is only a necessary

approximation. The goal of the evaluation is to assess the benefits of Preproc1,

Preproc2, and the lookahead based on the matching relaxation when integrated in

Algorithm 3. Figure 5.9 shows the flowchart for our implementation of Algorithm 3,

and asterisks indicate components that were included or removed for sake of compar-

ison. We consider the following combinations of techniques, all of which yield exactly

the same solutions: BT, BT+Lookahead, Preproc2+BT, Preproc2+BT+Lookahead,

and Preproc1&2+BT+Lookahead.
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Pop a vvp from the list

*  Execute Preproc1

test?
* Preproc2

Yes

No

No

No

Yes

the list contain
Does

more vvps?

CSP solvable?
Is the

List of vvps

BID instance

Yes

Solution to the BID instance

the BID instance + the given vvp

Record the vvp

the BID instance + the given vvp
Execute the BT solver on

Execute the matching solver on

Figure 5.9: Flowchart for Algorithm 3 adapted to BID.
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Note that the matching reformulation requires an assignment to the orientation

variables. Thus, all experiments that use the matching reformulation assume we know

the correct values for the orientation variables. Table 5.5 shows the results of these

experiments. These results indicate that, in general, the integration of the matching

with BT improves performance. There are some exceptions.

• While Preproc2 avoids a large number of calls to BT, in cases such as SSeg131-i,

marked with a *, those calls corresponded to searches that terminated quickly.

Thus, the overhead of computing the matching for the pre-processing step ex-

ceeded the time saved by avoiding these searches.

• We see a similar problem in all cases for Preproc1, except those marked with **,

where the pre-processing either did not filter any vvps or the benefit did not

significantly exceed the overhead. Preproc1 can filter an assignment to a cor-

ner variable only when corresponding building cannot be placed on a street to

which it is adjacent in any solution. This situation is not common, so Preproc1

improved performance significantly only in the two cases marked with **.

• Similarly, when using the matching as a lookahead mechanism, there were cases

such as NSeg125-c, marked with ***, where the overhead of running the algo-

rithm of [Régin, 1994] exceeded the performance improvement gained by the

additional filtering.
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Table 5.5: Improvements due to pre-processing and lookahead.

NSeg125-c + grid CPU [sec] #Timeouts %Calls saved
BT 100.8 0 -

Preproc2+BT 33.2 0 97.0%
BT+Lookahead *** 140.2 0 -

Preproc2+BT+Lookahead 39.6 0 97.0%
Preproc1&2+BT+Lookahead ** 29.8 0 99.3%

NSeg125-i + grid CPU [sec] #Timeouts %Calls saved
BT 1232.5 0 -

Preproc2+BT 1159.1 0 62.6%
BT+Lookahead 726.6 0 -

Preproc2+BT+Lookahead 701.1 0 62.6%
Preproc1&2+BT+Lookahead 701.2 0 62.6%

NSeg206-c + grid CPU [sec] #Timeouts %Calls saved
BT 2277.5 0 -

Preproc2+BT 614.2 0 97.0%
BT+Lookahead 1559.2 0 -

Preproc2+BT+Lookahead 443.8 0 97.0%
Preproc1&2+BT+Lookahead ** 309.9 0 97.9%

NSeg206-i + grid CPU [sec] #Timeouts %Calls saved
BT 4052.8 0 -

Preproc2+BT 3806.7 0 87.8%
BT+Lookahead 3499.5 0 -

Preproc2+BT+Lookahead 3510.0 0 87.8%
Preproc1&2+BT+Lookahead 3509.9 0 87.7%

SSeg131-c + grid CPU [sec] #Timeouts %Calls saved
BT 17063.3 0 -

Preproc2+BT 5997.9 0 92.5%
BT+Lookahead 9745.8 0 -

Preproc2+BT+Lookahead 4256.0 0 92.5%
Preproc1&2+BT+Lookahead 4256.1 0 92.5%

SSeg131-i + grid CPU [sec] #Timeouts %Calls saved
BT 114405.9 30 -

Preproc2+BT * 114141.3 29 74.2%
BT+Lookahead 107896.3 30 -

Preproc2+BT+Lookahead 108646.5 30 74.2%
Preproc1&2+BT+Lookahead 108646.6 30 74.2%

SSeg178-c + grid CPU [sec] #Timeouts %Calls saved
BT 78528.6 14 -

Preproc2+BT 15717.9 1 91.9%
BT+Lookahead 74172.0 14 -

Preproc2+BT+Lookahead 13961.1 1 91.9%
Preproc1&2+BT+Lookahead 13961.6 1 91.9%

SSeg178-i + grid CPU [sec] #Timeouts %Calls saved
BT 138404.2 35 -

Preproc2+BT 103244.7 25 72.7%
BT+Lookahead 121492.4 32 -

Preproc2+BT+Lookahead 85185.9 22 72.7%
Preproc1&2+BT+Lookahead 85185.7 22 71.4%
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5.5 Symmetric maximum matchings in the BID

problem

We identify two types of symmetries in the BID problem. The first symmetry is

present when the problem has no grid constraints. In this case, any solution with one

set of assignments to the ordering orientation variables has a symmetric solution with

the opposite set of assignments. The second type of symmetry uses the technique

discussed in Section 3.4 that identifies all maximum matchings in a bipartite graph

as symmetries of a single base matching. Using this technique, we can identify such

symmetries in the matching relaxation of the BID problem. A maximum matching in

the relaxed BID problem corresponds to a set of assignments of streets to buildings.

Thus, a symmetric maximum matching corresponds to a different set of assignments

of streets to buildings.

Figure 5.10 shows an example BID instance with four corner buildings B1, B2, B3,

and B4. Each corner building is assigned to a street: B1 ← S1, B2 ← S2, B3 ← S2,

and B4 ← S1. Assume that the phone book contains exactly one odd and one even

address for each street. After vertex replication, the corresponding bipartite graph,

shown in Figure 5.11, has a symmetric maximum matching, shown in Figure 5.13.

The second maximum matching corresponds to the set of corner building assignments

B1 ← S2, B2 ← S1, B3 ← S1, and B4 ← S2 shown in Figure 5.12.

While we can easily use the matching construction to identify symmetric sets of

assignments to the corner variables, it is not clear how we can take advantage of this

symmetry when finding complete solutions to the BID problem where we still need

to instantiate the building variables corresponding to the corner buildings. Further,

while some of these symmetries, such as the one shown in Figure 5.10 and 5.13, hold

when the model includes grid constraints, the grid constraints may break others.
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Figure 5.10: BID instance with streets as-
signed to corner buildings.
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Figure 5.11: Bipartite graph for Fig-
ure 5.10.
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Figure 5.12: Symmetric maximum
matching to Figure 5.11.

S1

B3 B4

B2B1

S2

Figure 5.13: Street assignments correspond-
ing to the matching in Figure 5.12.

Identifying symmetries that are not broken by grid constraints and determining how

to exploit such symmetries is an interesting area for future investigations.

5.6 Solution quality

While the primary goal of our work is to enhance the scalability of problem solving, it

is important to discuss the quality of the solutions we find. Michalowski and Knoblock

[2005] proposed a CSP model for the BID problem and tested it on small instances,

thus establishing the feasibility of the approach. Further, they measured the quality

of solutions using precision and recall with respect to the ground truth. Precision is

defined as the percentage of solutions returned by the solver that are correct. Recall
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is defined as the percentage of building that were assigned the correct address in at

least one solution.

Table 5.6 shows the precision and recall for the case studies used in our experi-

ments2. The values for precision would be lower if we did not assume that we knew

the correct values for the orientation variables.

Table 5.6: Solution quality.

Case study Phone-book Precision Recall
completeness W/o grid With grid W/o grid With grid

Case studies with an complete phone book
NSeg125-c 100.0% 100.0% 100.0% 100.0% 100.0%
NSeg206-c 100.0% 73.6% 100.0% 100.0% 100.0%
SSeg131-c 100.0% 60.8% 78.6% 100.0% 100.0%
SSeg178-c 100.0% 59.8% 81.7% 100.0% 100.0%

Case studies with an incomplete phone book
NSeg125-i 45.6% 13.9% 14.5% 100.0% 100.0%
NSeg206-i 50.5% 7.0% 11.2% 100.0% 100.0%
SSeg131-i 60.3% 10.3% 11.1% 100.0% 100.0%
SSeg178-i 65.6% 13.3% 15.3% 100.0% 100.0%

Our approach is ‘conservative’ in that it never rejects an assignment that satisfy

the constraints included in the model. Thus, the value of recall is always 100%. As far

as precision is concerned, the situation is more complex and deserves some discussion.

Even when the phone book is complete, there may be several solutions that are

consistent with the numbering schema such as the symmetric solutions discussed

in Section 5.5. The knowledge of known landmarks, such as 10 Downing Street

in London or 1600 Pennsylvania Avenue in Washington D.C., allow the solver to

eliminate solutions that do not hold in the real world. When the phone book is

incomplete or when some numbers are skipped in addresses along a street, the solver

will find multiple solutions. Such situations naturally yield a drop of precision values.

2All our solvers return exactly the same solutions.
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Generally speaking, the way precision is measured in our context causes its value to

deteriorate as the range of addresses increases, which, in turn, increases with the size

of the problem. The drop of precision in the experiment of Michalowski and Knoblock

in [2005] is smaller than the drop in our experiments because our experiments are

significantly larger.

The addition of further constraints, such as the grid constraint, improves precision

in all cases. Of particular interest is NSeg206-c, shown in bold in Table 5.6, where

the addition of grid constraints increased the precision to 100%. Thus, the more

information we can infer about a region from various data sources, the more we can

improve the precision and quality of the solutions to the BID problem. Michalowski

and Knoblock are currently investigating the development of constraint inference

techniques from traditional and non-traditional data sources for the BID problem.

Summary

In this chapter, we applied three of the reformulation techniques introduced in Chap-

ter 3, and evaluated their benefit on real-world case studies. We briefly discussed

the application of the fourth reformulation to the BID problem, and argued that it

deserves deeper investigations. Finally, we discussed the quality of the solutions to

the BID problem produced by our approach.
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Chapter 6

Concluding Notes

In this thesis, we introduced four reformulation techniques that operate on Constraint

Satisfaction Problems (CSPs) and discussed the advantages of these techniques on

general CSPs. Our investigations were initially motivated by our study of the Building

Identification Problem (BID) introduced by Michalowski and Knoblock in [2005]. We

then applied our reformulation techniques to the BID problem and evaluated their

benefits on real-world case studies.

This chapter concludes this document by summarizing our contributions and dis-

cussing possible directions for future work.

6.1 Summary of contributions

We introduced four reformulations that improve the performance of solving constraint

satisfaction problems:

1. We described a query reformulation technique that reduces a counting problem

into a polynomial number of satisfiability problems. We also discussed how

to exploit the query reformulation to reduce the space complexity of enforcing
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higher levels of relational consistency in a constraint network.

2. We introduced the new AllDiff-Atmost global constraint, and illustrated

its usefulness in general resource allocation problems. We also described a

reformulation technique that reduces the sizes of the domains the variables in

the scope this global constraint.

3. We argued that many resource allocation problems can be relaxed into is a

matching problem in a bipartite graph. We described multiple opportunities to

exploit this relaxation both an exact and a necessary approximation.

4. We described how to characterize all maximum matchings in a bipartite graph

as symmetries of a single base matching.

We introduced a constraint for the BID problem that improves on the model given

in [Michalowski and Knoblock, 2005] and allows the local addition of new constraints

to represent numbering schemas used around the word. We also designed and imple-

mented a custom backtrack-search solver that exploits the structure of the constraint

graph to improve the performance of search.

Finally, we applied our first three of our reformulation techniques to the BID

problem, and discussed how the fourth reformulation could be used. We evaluated

the three reformulation techniques on real-world instances of the BID problem and

demonstrated their benefits in terms of scalability.

6.2 Directions for future research

There remain multiple directions for research that builds on our results. We describe

a few such directions below:
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1. Relational consistency: Algorithm 2 for enforcing relational (i, m)-consistency

described in Section 3.1.3 improves the space complexity of RC(i,m), the only

known algorithm for enforcing this property. It is to empirically compare the

runtime and space performance of RC(i,m) and our Algorithm 2.

2. Constraint-model relaxation: The constraint-model relaxation described in Sec-

tion 3.3 is powerful when we can relax the problem into a matching problem.

We believe that many resource allocation problems may be amenable to such

a relaxation. It would be useful to identify such situations to test the value of

our technique in other application domains.

3. Symmetry detection: The symmetry-detection techniques described in Section 3.4

are particularly promising. Most current work on symmetry in CSPs has fo-

cused on breaking symmetries during search and ignored the difficult task of

detecting them. Exceptions exist and include notably interchangeability detec-

tion [Freuder, 1991; Choueiry and Noubir, 1998] and using graph isomorphism

[Puget, 2005]. We strongly suspect that our technique for identifying all so-

lutions to a maximum matching problem as symmetric of a single maximum

matching can be exploited to improve the performance of problem solving. We

believe that this issue deserves more careful and deeper investigations.

4. Solution probability: Currently, we return lists of buildings or addresses as so-

lutions to BID problem instances. Thus, for a single building, we return a set

of addresses that it might have. However, by counting the number of solutions

in which each vvp appears, we could associate with each vvp a probability that

it is the correct solution. This approach would allow to better ‘qualify’ the

solutions returned for the BID problem.
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5. Solution precision: The results on solution quality discussed in Section 5.6

show that it is important to include in the constraint model as much informa-

tion about the particular numbering schema in an area (e.g., existence of grid

constraints) in to order to improve the precision of the results. An important

characteristic of our constraint model is that it can incorporate additional con-

straints (both locally on particular streets or subareas, and globally across the

problem) in order to seamlessly accommodate variations of numbering schemas

around the world. The work on constraint inference is a parallel branch of

research being conducted by Michalowski et al. [2007b] at the Information Sci-

ences Institute of the University of Southern California.

As a final note, our investigations are one more demonstration of the power of

abstraction and reformulation as effective tools for breaking down the complexity

barrier.
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Appendix A

Problem Definition: XML Schema

This appendix describes the XML schema for all XML files that compose a problem

instance. We show the XSD schema definition, followed by an example XML file for

the problem instance shown in Figure A.1.

Figure A.1: Two-street example.

Section A.1 describes the layout file. Section A.2 describes the phone-book file.

Section A.3 describes the grid file. Section A.4 describes the landmark file.



104

A.1 Layout XML file

The schema for the layout XML file is the following.

<xs:schema xmlns:xs=’’http://www.w3.org/2001/XMLSchema’’>

<xs:simpleType name=’’commaSeparatedList’’>

<xs:restriction base=’’xs:string’’>

<xs:whiteSpace value=’’collapse’’ />

<xs:pattern value=’’[0-9a-zA-z ]+(,[0-9a-zA-z ]+)*’’ />

<xs:pattern value=’’’’ />

</xs:restriction>

</xs:simpleType>

<xs:element name=’’layout’’>

<xs:complexType>

<xs:sequence>

<xs:element name=’’building’’ minOccurs=’’0’’ maxOccurs=

’’unbounded’’>

<xs:complexType>

<xs:sequence>

<xs:element name=’’street’’ minOccurs=’’0’’ maxOccurs=

’’unbounded’’>

<xs:complexType>

<xs:attribute name=’’streetname’’ type=’’xs:string’’

use=’’required’’ />

<xs:attribute name=’’side’’ use=’’required’’>

<xs:simpleType>

<xs:restriction base=’’xs:string’’>

<xs:enumeration value=’’N’’ />

<xs:enumeration value=’’S’’ />

<xs:enumeration value=’’E’’ />

<xs:enumeration value=’’W’’ />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name=’’buildingid’’ type=’’xs:integer’’

use=’’required’’ />

<xs:attribute name=’’lat’’ type=’’xs:double’’ use=’’required’’ />

<xs:attribute name=’’lon’’ type=’’xs:double’’ use=’’required’’ />

</xs:complexType>

</xs:element>
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<xs:element name=’’street’’ minOccurs=’’0’’ maxOccurs=’’unbounded’’>

<xs:complexType>

<xs:simpleContent>

<xs:extension base=’’commaSeparatedList’’>

<xs:attribute name=’’streetname’’ type=’’xs:string’’

use=’’required’’ />

<xs:attribute name=’’orientation’’ type=’’xs:string’’

use=’’required’’ />

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

The layout file has two elements:

1. building: The file contains a building element for each building on the map.

Every building has a buildingid attribute that provides a unique identifier for the

building. Every building node has one or more children that are street elements.

Each street element represents a street to which the building is adjacent. Each

street element contains a streetname, which is the name of the street, and a

side, which is a single character that indicates on which side of the street the

building lies (N,S,E, or W).

2. street: The file contains a street element for each street on the map. Each street

element has a streetname attribute, which stores the name of the street, and an

orientation attribute, which indicates the orientation of the street (NS or EW).

The content of the street element is a comma separated list of the buildings on

the street. The order of the buildings in this list indicate the order in which the

buildings lie along the street, starting with the southmost (respectively, west-

most) building and ending with the northmost (respectively, eastmost) building.



106

The sequence contains buildings from both sides of the street, even though the

addresses for the opposite sides of the street may not be interdependent.

The layout XML file for Figure A.1 is the following.

<boundarylayout districtid=’’1’’>

<building buildingid=’’B1’’>

<street streetname=’’S2’’ side=’’S’’ />

</building>

<building buildingid=’’B2’’>

<street streetname=’’S1’’ side=’’E’’ />

<street streetname=’’S2’’ side=’’S’’ />

</building>

<building buildingid=’’B3’’>

<street streetname=’’S2’’ side=’’S’’ />

</building>

<building buildingid=’’B4’’>

<street streetname=’’S1’’ side=’’E’’ />

</building>

<street streetname=’’S1’’ orientation=’’NS’’>B4, B2</street>

<street streetname=’’S2’’ orientation=’’EW’’>B1, B2, B3</street>

</boundarylayout>

A.2 Phone-book XML file

The schema for the phone-book XML file is the following.

<xs:schema xmlns:xs=’’http://www.w3.org/2001/XMLSchema’’>

<xs:simpleType name=’’commaSeparatedList’’>

<xs:restriction base=’’xs:string’’>

<xs:whiteSpace value=’’collapse’’/>

<xs:pattern value=’’[0-9]+(,[0-9]+)*’’ />

<xs:pattern value=’’’’ />

</xs:restriction>

</xs:simpleType>

<xs:element name=’’phonebook’’>

<xs:complexType>

<xs:sequence>

<xs:element name=’’street’’ minOccurs=’’0’’ maxOccurs=’’unbounded’’>
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<xs:complexType>

<xs:simpleContent>

<xs:extension base=’’commaSeparatedList’’>

<xs:attribute name=’’streetname’’ type=’’xs:string’’ />

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name=’’districtid’’ type=’’xs:int’’

use=’’required’’ />

</xs:complexType>

</xs:element>

</xs:schema>

The phone-book xml file contains multiple street elements. Each street element

has a streetname attribute which indicates the name of the street corresponding to

the phone-book entries. The content of the street element is a comma separated list

of all phone-book addresses for that street.

The phone-book XML file for Figure A.1 is the following.

<phonebook districtid=’’1’’>

<street streetname=’’S1’’>105</street>

<street streetname=’’S2’’>111, 213</street>

</phonebook>

A.3 Grid XML file

The schema for the grid XML file is the following.

<xs:schema xmlns:xs=’’http://www.w3.org/2001/XMLSchema’’>

<xs:element name=’’constraint’’>

<xs:complexType>

<xs:sequence>

<xs:element name=’’grid’’>

<xs:complexType>

<xs:sequence>

<xs:element name=’’street’’ minOccurs=’’0’’ maxOccurs=

’’unbounded’’>
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<xs:complexType>

<xs:sequence>

<xs:element name=’’incrementalpoint’’ minOccurs=’’0’’

maxOccurs=’’unbounded’’>

<xs:complexType>

<xs:sequence>

<xs:element name=’’buildingPreceding’’ type=

’’xs:int’’ />

<xs:element name=’’buildingFollowing’’ type=

’’xs:int’’ />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name=’’streetname’’ type=’’xs:string’’

use=’’required’’ />

<xs:attribute name=’’value’’ type=’’xs:int’’

use= ’’required’’ />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name=’’districtid’’ type=’’xs:int’’ use=’’required’’/>

</xs:complexType>

</xs:element>

</xs:schema>

The grid xml file contains multiple street elements. Each street element has a

streetname attribute, which indicates the name of the street along which the gridlines

occur, and a value attribute, which indicates the increment size for the gridlines.

Each street element has multiple incrementalpoint children, which each have both

a buildingpreceding and a buildingfollowing child. Each incrementalpoint node cor-

responds to a point where a grid line crosses the street. The buildingpreceding and

buildingfollowing nodes indicate the buildings that lie on either side of the grid line.
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A possible grid XML file for Figure A.1 is the following, assuming there are grid

lines at each cross street.

<constraint districtid=’’1’’>

<grid>

<street streetname=’’S2’’ value=’’100’’>

<incrementalpoint>

<buildingPreceding>B1</buildingPreceding>

<buildingFollowing>B2</buildingFollowing>

</incrementalpoint>

</street>

</grid>

</constraint>

A.4 Landmark XML file

The schema for the landmark XML file is the following.

<xs:schema xmlns:xs=’’http://www.w3.org/2001/XMLSchema’’>

<xs:element name=’’constraint’’>

<xs:complexType>

<xs:sequence>

<xs:element name=’’landmarks’’>

<xs:complexType>

<xs:sequence>

<xs:element name=’’point’’ minOccurs=’’0’’ maxOccurs=

’’unbounded’’>

<xs:complexType>

<xs:sequence>

<xs:element name=’’address’’ type=’’xs:int’’ />

<xs:element name=’’street’’ type=’’xs:string’’ />

</xs:sequence>

<xs:attribute name=’’name’’ type=’’xs:string’’

use=’’required’’ />

<xs:attribute name=’’buildingid’’ type=’’xs:int’’

use=’’required’’ />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>
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</xs:sequence>

<xs:attribute name=’’districtid’’ type=’’xs:int’’ use=’’required’’ />

</xs:complexType>

</xs:element>

</xs:schema>

In a landmark XML file, the landmarks node contains multiple point children.

Each point has a name attribute, which indicates the common name for the building,

and a buildingid attribute, which indicates the specific identifier from the layout that

corresponds to this building. The point node has an address and street child, which

indicate the known number and street assignment for the landmark.

A possible landmark XML file for Figure A.1 is the following, assuming we know

that the address of building B4 is S1#105.

<constraint districtid=’’1’’>

<landmarks>

<point name=’’Apartment Building’’ buildingid=’’B4’’>

<address>105</address>

<street>S1</street>

</point>

</landmarks>

</constraint>
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Appendix B

Java Documentation

This appendix has the code documenation for the Java implementation of our CSP

model and solver for the BID problem.

B.1 Package Matching
Package Contents Page

Classes

BipartiteGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

This is a bipartite graph with 2 partitions - U and V.

Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Represents a component (set of vertices) in a graph

Edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

An edge in a graph

MatchingSolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Solve an address assignment problem by reformulating it as a matching

Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Represents an assignment to the orientation variables

Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A path in a graph
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Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

A vertex in a graph

VertexLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A label for a vertex; stores problem specific information

VertexLabel.IncDec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

In the address assignment problem, a vertex can correspond to values
on the increasing or decreasing side of some known value.

B.2 Classes

B.2.1 Class BipartiteGraph

This is a bipartite graph with 2 partitions - U and V.

B.2.1.1 Declaration

public class BipartiteGraph

extends Object

B.2.1.2 Fields

• public HashMap U

– The first partition of the graph

• public HashMap V

– The second partition of the graph
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B.2.1.3 Constructors

• public BipartiteGraph( )

B.2.1.4 Methods

• public void addVertexToU( Vertex v )

– Usage

∗ Adds a vertex to partition U

– Parameters

∗ v - The vertex to add

• public void addVertexToV( Vertex v )

– Usage

∗ Adds a vertex to partition V

– Parameters

∗ v - The vertex to add

• public static void addVerticesToHashMap( HashMap vertices,

LinkedList allNewVertices )

– Usage

∗ Adds vertices to a hashmap indexed by the vertex label

– Parameters

∗ vertices - Hashmap to add to

∗ allNewVertices - Vertices to add to the hashmap
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• public BipartiteGraph createDigraphForHopcroftKarp(

LinkedList matching )

– Usage

∗ This clones the graph and directs all of the edges: If e is in the match-

ing, then it goes from v to u. If it is not in the matching, it goes from

u to v. From Hopcroft, Karp (1973)

– Parameters

∗ matching - Matching to direct the graph with

– Returns - The graph, directed as described above

• public BipartiteGraph DeepClone( )

– Usage

∗ Performs a deep clone of the graph

– Returns - A deep copy of the graph

• public void duplicateVertices( )

– Usage

∗ This function takes the matchcount for each vertex in the graph and

removes it if it is 0, and creates multiple copies if it is >1

• public static void duplicateVertices( HashMap vertices )

– Usage

∗ This function takes the matchcount for each vertex in vertices and

removes it if it is 0, and creates multiple copies if it is >1

– Parameters

∗ vertices - The set of vertices to duplicate

• public Collection GetEdgesInAllMatchings( )
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– Usage

∗ Returns the set of edges that exist in at least one matching. Uses the

algorithm from Regin 94

– Returns - Collection of edges that appear in at least one maximum match-

ing

• public LinkedList getMaximalSetOfDisjointAugmentingPaths(

LinkedList matching )

– Usage

∗ Gets a maximal set of disjoint augmenting paths in G, relative to a

given matching. Also from Hopcroft-Karp 1973

– Parameters

∗ matching - The matching relative to which we find augmenting paths

– Returns - A set of augmenting paths

• public LinkedList GetMaximumMatching( )

– Usage

∗ Finds a maximum matching in the graph This is the algorithm de-

scribed in Hopcraft, Karp (1973)

– Returns - A maximum matching in the graph

• public Vertex GetVertexInUWithLabel( VertexLabel label )

– Usage

∗ Gets the vertex in partition U that matches the given label

– Parameters

∗ label - The label to match

– Returns - The desired vertex
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• public Vertex GetVertexInVWithLabel( VertexLabel label )

– Usage

∗ Gets the vertex in partition V that matches the given label

– Parameters

∗ label - The label to match

– Returns - The desired vertex

• public Vertex GetVertexWithLabel( VertexLabel label )

– Usage

∗ Gets the vertex in either partition that matches the given label

– Parameters

∗ label - The label to match

– Returns - The desired vertex

• public boolean HasMatchingCoveringV( )

– Usage

∗ Determines whether the graph has a matching saturating partition V

– Returns - True, if the graph has a matching that saturates V

• public boolean IsValidMatching( LinkedList matching )

– Usage

∗ Used internally to verify whether a matching is valid; ie, whether it

contains the same vertex multiple times

– Parameters

∗ matching - The matching to check

– Returns - True, if the matching is valid
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• public boolean MatchingCoversV( LinkedList matching )

– Usage

∗ Given a matching, determines whether it covers partition V

– Parameters

∗ matching - The matching to check

– Returns - True, if the matching covers V

• public String toString( )

• public void Transpose( )

– Usage

∗ Transposes the graph

B.2.2 Class Component

Represents a component (set of vertices) in a graph

B.2.2.1 Declaration

public class Component

extends Object

B.2.2.2 Fields

• public LinkedList vertices

– The vertices in the component
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B.2.2.3 Constructors

• public Component( )

B.2.3 Class Edge

An edge in a graph

B.2.3.1 Declaration

public class Edge

extends Object

B.2.3.2 Fields

• public Vertex End1

– The start point of the edge

• public Vertex End2

– The end point of the edge

B.2.3.3 Constructors

• public Edge( )

– Usage

∗ Create an edge
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• public Edge( Vertex e1, Vertex e2 )

– Usage

∗ Create an edge with the specified endpoints

– Parameters

∗ e1 - First endpoint

∗ e2 - Second endpoint

B.2.3.4 Methods

• public static boolean ContainsEdgeMatchingLabels Directed(

Collection edges, Edge targetEdge )

– Usage

∗ Returns true if edges contains edge

– Parameters

∗ edges - The set of edges to search through

∗ targetEdge - The edge to look for

– Returns - True, if the list of edges contains edge

• public static boolean ContainsEdgeMatchingLabels Undirected(

LinkedList edges, VertexLabel label1,

VertexLabel label2 )

– Parameters

∗ edges - The set of edges to search through

∗ label1 - Label of one end of the edge

∗ label2 - Label of other end of the edge

– Returns - True, if the list of edges contains a matching edge
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• public static boolean ContainsVertex( LinkedList edges,

Vertex v )

– Usage

∗ Determines whether the set of edges contains the given vertex

– Parameters

∗ edges - The set of edges to search through

∗ v - The target vertex

– Returns - True, if some edge in edges contains vertex v

• public static boolean ContainsVertexWithLabel(

LinkedList edges, VertexLabel label )

– Usage

∗ Determines whether the set of edges contains a vertex matching the

givel label

– Parameters

∗ edges - The set of edges to search through

∗ label - The label to search for

– Returns - True, if some edge in edges contains a vertex with label

• public boolean equals( Object target )

• public int hashCode( )

• public void Reverse( )

– Usage

∗ Reverses the direction of an edge

• public static LinkedList SymmetricDifference(

LinkedList matching1, LinkedList matching2 )
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– Usage

∗ Finds the symmetric difference of two matchings

– Parameters

∗ matching1 - First matching

∗ matching2 - Second matching

– Returns - The symmetric difference of the two matchings

• public String toString( )

B.2.4 Class MatchingSolver

Solve an address assignment problem by reformulating it as a matching

B.2.4.1 Declaration

public class MatchingSolver

extends Object

B.2.4.2 Constructors

• public MatchingSolver( )

B.2.4.3 Methods

• public static void addBuildingVerticesToGraph(

BipartiteGraph graph, Map map, LinkedList buildings )

– Usage

∗ Adds vertices for the buildings to the graph
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– Parameters

∗ graph - Target graph

∗ map - Problem instance

∗ buildings - Known buildings

• public static void addEdgesToGraph( BipartiteGraph

graph, Map map, Orientation orientation, LinkedList buildings,

LinkedList addresses )

– Usage

∗ Adds the necessary edges to the graph

– Parameters

∗ graph - The graph of the problem

∗ map - The problem instance

∗ orientation - The values of the orientation varables

∗ addresses - The set of known addresses

∗ buildings - The set of known buildings
• public static void addStreetVerticesToGraph(

BipartiteGraph graph, Map map, LinkedList addresses )

– Usage

∗ Adds vertices for the streets to the graph

– Parameters

∗ graph - Target graph

∗ map - Problem instance

∗ addresses - Known addresses

• public static BipartiteGraph GenerateGraph( Map map,

Orientation orientation, LinkedList buildings,

LinkedList addresses )
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– Usage

∗ Generates a bipartite graph for an address-assignment problem in-

stance

– Parameters

∗ map - The problem instance

∗ orientation - The values of the orientation variables

∗ buildings - The set of known buidlings

∗ addresses - The set of known addresses

– Returns - A bipartite graph generated using the construction from my

thesis

• public static Parity getBuildingParity( Building building, String

street, Orientation orientation )

– Usage

∗ Gets the parity of a building for a given orientation and street assign-

ment

– Parameters

∗ building - The target building

∗ street - The assigned street for the building

∗ orientation - The current orientation

– Returns - The parity of the building

• public static void setMatchingCountsInGraph(

BipartiteGraph graph, Map map, Orientation orientation,

LinkedList addresses )

– Usage
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∗ Sets the matching counts for the street vertices based on the number

of phone book addresses for the corresponding street.

– Parameters

∗ graph - The graph of the problem

∗ map - The problem instance

∗ orientation - The values of the orientation varables

∗ addresses - The set of known addresses

B.2.5 Class Orientation

Represents an assignment to the orientation variables

B.2.5.1 Declaration

public class Orientation

extends Object

B.2.5.2 Fields

• public boolean IncreasingEast

– If true, addresses increase when moving east along a street

• public boolean IncreasingNorth

– If true, addresses increase when moving north along a street

• public boolean OddOnNorthSide

– If true, odd numbers appear on the north sides of streets
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• public boolean OddOnEastSide

– If true, odd numbers appear on the east sides of streets

B.2.5.3 Constructors

• public Orientation( )

– Usage

∗ Creates an orientation

• public Orientation( boolean increasingEast, boolean increasingNorth,

boolean oddOnEastSide, boolean oddOnNorthSide )

– Usage

∗ Creates an orientation

– Parameters

∗ increasingEast - Addresses increase to the east

∗ increasingNorth - Addresses increase to the north

∗ oddOnEastSide - Odd addresses are on the east side

∗ oddOnNorthSide - Odd addresses are on the north side

B.2.5.4 Methods

• public boolean equals( Object target )

• public static LinkedList GenerateAllOrientations( boolean assumeDi-

rections )

– Usage
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∗ Generates a list of all possible orientations. If assumeDirections is

true, only one value is generated for each directional variable

– Parameters

∗ assumeDirections - If this is true, assume some value for the increas-

ing variables

– Returns - The set of all possible orientations (at most, 16)

• public static LinkedList GenerateSegundoOrientations( )

– Usage

∗ Generates the orientation for the city of El Segundo

– Returns - The orientation for the city of El Segundo

• public String toString( )

B.2.6 Class Path

A path in a graph

B.2.6.1 Declaration

public class Path

extends Object

B.2.6.2 Fields

• public LinkedList Edges

– The set of edges in the path
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B.2.6.3 Constructors

• public Path( )

B.2.7 Class Vertex

A vertex in a graph

B.2.7.1 Declaration

public class Vertex

extends Object

B.2.7.2 Fields

• public LinkedList Neighbors

– The set of vertices adjacent to this vertex

• public int MatchCount

– This is the minimum number of edges that must be adjacent to this vertex

in order for a matching to saturate it

• public VertexLabel Label

– Used to identify problem specific data for a vertex

• public boolean Visited

– Used by searches to avoid revisiting vertices
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• public int FinishTime

– Used by searches to track the order we finish vertices

• public int Partition

– Which partitition in a bipartite graph contains this vertex

• public Vertex Parent

– Used by searches to track the parent of each node

• public LinkedList ChildrenAlreadyVisited

– Used by searches to track which children have been visited

B.2.7.3 Constructors

• public Vertex( )

– Usage

∗ Create a vertex

• public Vertex( String streetName )

– Usage

∗ Create a vertex

– Parameters

∗ streetName - The streetname for the vertex’s label

• public Vertex( String streetName, Map.Parity parity )

– Usage

∗ Create a vertex

– Parameters



129

∗ streetName - The streetname for the vertex’s label

∗ parity - The parity for the vertex’s label

• public Vertex( String streetName, Map.Parity parity,

VertexLabel.IncDec incOrDec )

– Usage

∗ Create a vertex

– Parameters

∗ streetName - The streetname for the vertex’s label

∗ parity - The parity for the vertex’s label

∗ incOrDec - The incOrDec for the vertex’s label

• public Vertex( VertexLabel label )

– Usage

∗ Create a vertex

– Parameters

∗ label - The label for the vertex

B.2.7.4 Methods

• public boolean ContainsNeighborWithLabel( VertexLabel label )

– Usage

∗ Determines whether this vertex has a neighbor with a given label

– Parameters

∗ label - Label to search for

– Returns - True, if vertex has a neighbor with the specified label
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• public static boolean ContainsVertexWithLabel( LinkedList list,

VertexLabel label )

– Usage

∗ Determines whether any vertex in a list has a given label

– Parameters

∗ list - List of vertices

∗ label - Label to search for

– Returns - True, if list contains a vertex with the given label

• public boolean equals( Object target )

• public Vertex GetNextUnvisitedChild( )

• public static Vertex GetVertexWithHighestFinishTime(

LinkedList vertices )

– Usage

∗ Finds the vertex in the list with the highest finish time

– Parameters

∗ vertices - Vertices to look through

– Returns - Vertex with highest finish time

• public int hashCode( )

• public boolean MostlyMatches( Vertex vertex )

– Usage

∗ Two vertices mostly match if they have the same label, except for the

duplicateId

– Parameters

∗ vertex - Target vertex
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– Returns - True, if this vertex label and the target vertex label match on

all values other than duplicateId

• public static void RemoveVertexWithLabel( LinkedList list,

VertexLabel label )

– Usage

∗ Removes that has the given label from the given list

– Parameters

∗ list - List of vertices

∗ label - Label of vertex to remove

• public void SortNeighborsByFinishTime Increasing( )

– Usage

∗ Sorts this vertex’s neighbors in order of increasing finish time

• public String toString( )

B.2.8 Class VertexLabel

A label for a vertex; stores problem specific information

B.2.8.1 Declaration

public class VertexLabel

extends Object

B.2.8.2 Fields

• public String Name
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– The name of the problem element that this vertex represents - a building

name, or a street name

• public Map.Parity Parity

– The parity assigned to this problem element

• public VertexLabel.IncDec IncOrDec

– The numeric range assigned to this vertex

• public int DuplicateId

– When we create multiple copies of the same vertex, we increment the

duplicateId to differentiate between these vertices

B.2.8.3 Constructors

• public VertexLabel( String street )

– Usage

∗ Creates a VertexLabel

– Parameters

∗ street - Street for the vertex

• public VertexLabel( String streetName, int duplicateId )

– Usage

∗ Creates a VertexLabel

– Parameters

∗ streetName - Street for label

∗ duplicateId - duplicateId for label
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• public VertexLabel( String street, Map.Parity parity )

– Usage

∗ Creates a VertexLabel

– Parameters

∗ street - Street for the vertex

∗ parity - Parity of the vertex

• public VertexLabel( String street, M ap.Parity parity,

VertexLabel.IncDec incOrDec )

– Usage

∗ Creates a VertexLabel

– Parameters

∗ street - Street for the vertex

∗ parity - Parity for the vertex

∗ incOrDec - IncOrDec range for the vertex

• public VertexLabel( VertexLabel originalLabel, int duplicateId )

– Usage

∗ Creates a duplicated copy of a vertex with the given duplicateId

– Parameters

∗ originalLabel - Label of the vertex to copy

∗ duplicateId - DuplicateId of the new vertex

B.2.8.4 Methods

• public boolean equals( Object target )
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• public int hashCode( )

• public String toString( )

B.2.9 Class VertexLabel.IncDec

In the address assignment problem, a vertex can correspond to values on the increasing

or decreasing side of some known value. This enumeration indicates which category this

vertex belongs to, if any

B.2.9.1 Declaration

public static final class VertexLabel.IncDec

extends Enum

B.2.9.2 Fields

• public static final VertexLabel.IncDec Increasing

– Vertex corresponds to values greater than some fixed address

• public static final VertexLabel.IncDec Decreasing

– Vertex corresponds to values less than some fixed address

• public static final VertexLabel.IncDec Neither

– This vertex does not correspond to a specific numeric range

B.2.9.3 Methods

• public static VertexLabel.IncDec valueOf( String name )
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• public static final VertexLabel.IncDec values( )
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B.4 Classes

B.4.1 Class AddressInterval

An AddressInterval is a domain for a building variable. It is an ordered set of values,

both numeric and symbolic. Thus, certain constraints can operate on the endpoints of the

interval. This class manages that dual definition: discrete set and interval.

B.4.1.1 Declaration

public class AddressInterval

extends Object

implements Iterable

B.4.1.2 Fields

• public LinkedList values

– This is a SORTED (by PositionInOrdering) list of all values allowed in the

street

• public String Street
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– Street that corresponds to this AddressInterval

B.4.1.3 Constructors

• public AddressInterval( )

– Usage

∗ Create an AddressInterval

B.4.1.4 Methods

• public void ClearAllValues( )

– Usage

∗ Removes all values from the interval

• public AddressInterval Clone( )

– Usage

∗ Clones the interval

– Returns - A clone of the interval

• public boolean equals( Object target )

• public Map.Parity GetAllowedParity( )

– Usage

∗ Gets the parity allowed in this interval

– Returns - This interval’s parity

• public Value GetMax( )

– Usage
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∗ Gets the greatest value in the interval

– Returns - The greatest value in the interval

• public Value GetMin( )

– Usage

∗ Gets the least value in the interval

– Returns - The least value in the interval

• public int GetNumValues( )

– Usage

∗ Gets the number of values in the interval

– Returns - The number of values in the interval

• public boolean IsEmpty( )

– Usage

∗ Determines whether the interval is empty

– Returns - True, if the interval is empty

• public Iterator iterator( )

• public boolean SetAllowedAddresses( LinkedList unusedAddresses )

– Usage

∗ Explicitly sets the list of addresses allowed on this street. Removes all

other addresses from the interval

– Parameters

∗ unusedAddresses - Address to keep

– Returns - True, if any values are removed
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• public boolean SetAllowedParity( Map.Parity parity )

– Usage

∗ Sets the parity of this interval and filters the values accordingly

– Parameters

∗ parity - The parity for the interval

– Returns - True, if any values are filtered

• public boolean SetMaxExclusive( Value newMax )

– Usage

∗ We set the minimum value by removing any value from the end of

the list that are greater than newMax’s position. Returns true if any

values were removed.

– Parameters

∗ newMax - The new maximum value for the interval

– Returns - True, if any values were removed

• public boolean SetMaxInclusive( Value newMax )

– Usage

∗ We set the minimum value by removing any value from the end of

the list that are greater than newMax’s position. Returns true if any

values were removed.

– Parameters

∗ newMax - The new maximum value for the interval

– Returns - True, if any values were removed

• public boolean SetMaxIncrementExclusive( Value newMax )

– Usage
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∗ Sets the maximumincrement value. This is used to enforce the grid

constraints; we remove all values from increments greater than the

increment of the given value.

– Parameters

∗ newMax - The minim increment value

– Returns - True, if any values were removed

• public boolean SetMinExclusive( Value newMin )

– Usage

∗ We set the minimum value by removing any value from the beginning

of the list that are less than newMin’s position. Returns true if any

values were removed.

– Parameters

∗ newMin - The new minimum value for the interval

– Returns - True, if any values were removed

• public boolean SetMinInclusive( Value newMin )

– Usage

∗ We set the minimum value by removing any value from the beginning

of the list that are less than newMin’s position. Returns true if any

values were removed.

– Parameters

∗ newMin - The new minimum value for the interval

– Returns - True, if any values were removed

• public boolean SetMinIncrementExclusive( Value newMin )

– Usage



141

∗ Sets the minimum increment value. This is used to enforce the grid

constraints; we remove all values from increments less than the incre-

ment of the given value.

– Parameters

∗ newMin - The minim increment value

– Returns - True, if any values were removed

• public String toString( )

B.4.2 Class CornerConstraint

The corner constraint for our CSP model of the address assignment problem

B.4.2.1 Declaration

public class CornerConstraint

extends Csp.Constraint

B.4.2.2 Fields

• public String BuildingVar

– The building variable for the constraint

• public String CornerVar

– The corner variable for the building

B.4.2.3 Constructors

• public CornerConstraint( )
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B.4.3 Class CornerVariable

A corner variable. Represents the street assignment for a building

B.4.3.1 Declaration

public class CornerVariable

extends DiscreteVariable

B.4.3.2 Constructors

• public CornerVariable( )

B.4.3.3 Methods

• public Variable CloneWithoutConflictSet( )

B.4.4 Class CSPMapLoader

Creates a CSP instance from a Map problem instance

B.4.4.1 Declaration

public class CSPMapLoader

extends Object
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B.4.4.2 Fields

• public static boolean EnforceCrossStreetOrdering

– Set this to true if you want to enforce building ordering across the two

sides of the street. In reality, ordering is often only enforced along each

side of the street independantly

B.4.4.3 Constructors

• public CSPMapLoader( )

B.4.4.4 Methods

• public static Csp CreateIntervalCspFromFile( String folder, String

mapFile, String phoneBookFile,

String constraintFile )

– Usage

∗ Creates an interval CSP for an address-assignment problem defined by

a set of XML files

– Parameters

∗ folder - Folder containing problem files

∗ mapFile - Layout XML file

∗ phoneBookFile - Phone-book XML file

∗ constraintFile - Additional constraint XML file

– Returns - A CSP instance for the problem specified in the files
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• public static Csp CreateIntervalCspFromMap( Map map )

– Parameters

∗ map -

– Returns -

B.4.5 Class DiscreteVariable

A DiscreteVariable is a variable whose domain is a set of discrete values, rather than an

interval

B.4.5.1 Declaration

public class DiscreteVariable

extends Csp.Variable

B.4.5.2 Constructors

• public DiscreteVariable( )

– Usage

∗ Creates a variable

• public DiscreteVariable( String name, Object [] domain )

– Usage

∗ Creates a variable

– Parameters

∗ name - Variable name

∗ domain - Variable domain



145

B.4.5.3 Methods

• public void AddFilteredValue( Csp.Constraint filteringConstraint,

String filterVar, Object value,

HashMap vars, HashMap solution )

– Usage

∗ Filters a value from the domain of the variable

– Parameters

∗ filteringConstraint - Constraint that caused the filtering

∗ filterVar - Variable that caused the filtering

∗ value - The value to be filtered

∗ vars - The variables in the problem

∗ solution - The current partial solution

• public void AddFilteredValues( Csp.Constraint filteringConstraint,

String filterVar, LinkedList values,

HashMap vars, HashMap solution )

– Usage

∗ Filters values from the domain of the variable

– Parameters

∗ filteringConstraint - Constraint that caused the filtering

∗ filterVar - Variable that caused the filtering

∗ values - The values to be filtered

∗ vars - The variables in the problem

∗ solution - The current partial solution

• public Variable CloneWithoutConflictSet( )
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• public Iterator GetDomainIterator( )

• public void InitializeFilteredValues( HashMap vars )

• public void RestoreFilteredValues( String varInstantiated )

B.4.6 Class GridConstraint

Represents a grid constraint in the address-assignment problem

B.4.6.1 Declaration

public class GridConstraint

extends Csp.Constraint

B.4.6.2 Fields

• public String booleanOrderingVariable

– The orientation variable that determines the increasing direction

• public String Buildings

– The buildings on either side of the grid line

• public String Street

– The street on which the buildings lie

B.4.7 Class IntervalIterator

An iterator over an AddressInterval
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B.4.7.1 Declaration

public class IntervalIterator

extends Object

implements Iterator

B.4.7.2 Constructors

• public IntervalIterator( LinkedList domain )

– Usage

∗ Initialize an IntervalIterator

– Parameters

∗ domain - The AddressIntervals to iterate over

B.4.7.3 Methods

• public boolean hasNext( )

• public Object next( )

• public void remove( )

B.4.8 Class IntervalVariable

An IntervalVariable is a variable whose domain is a set of AddressIntervals, such as a

building variable
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B.4.8.1 Declaration

public class IntervalVariable

extends Csp.Variable

B.4.8.2 Constructors

• public IntervalVariable( )

– Usage

∗ Creates an interval variable

• public IntervalVariable( String name, Object [] domain )

– Usage

∗ Creates an interval variable

– Parameters

∗ name - Variable Name

∗ domain - Set of AddressIntervals in the domain

B.4.8.3 Methods

• public boolean AllDomainsEmpty( )

– Usage

∗ Determines whether the domain is empty

– Returns - True, if all intervals in the domain are empty

• public Variable CloneWithoutConflictSet( )
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• public boolean DomainContainsAddress( Address address )

– Usage

∗ This checks to see if a domain contains a given address (the address

does not contain position information, so we have this function that

ignores the position.)

– Parameters

∗ address - The address to search for

– Returns - True, if some value in the domain matches the address

• public boolean DomainContainsValue( Value value )

– Usage

∗ Determines whether the domain of this variable contains a given value

– Parameters

∗ value - Value to search for

– Returns - True, if the domain contains the value

• public Iterator GetDomainIterator( )

• public AddressInterval GetIntervalForStreet( String street )

– Usage

∗ Gets the AddressInterval corresponding to the given street

– Parameters

∗ street - Target street

– Returns - The AddressInterval for a given street.

• public void InitializeFilteredValues( HashMap vars )

• public boolean OnlyContainsAddressesOnStreet( String street )

– Usage
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∗ Determines whether this variable’s domain only contains addresses on

a single given street

– Parameters

∗ street - Target street

– Returns - True, if all values in the domain are on the given street

• public void RestoreFilteredValues( String varInstantiated )

• public void SetFilteredInterval( Csp.Constraint filteringConstraint,

String filterVar, AddressInterval interval,

HashMap vars, HashMap solution )

– Usage

∗ Replaces an AddressInterval in the domain with a filtered version.

– Parameters

∗ filteringConstraint - Constraint causing the filtering

∗ filterVar - Variable causing the filtering

∗ interval - Filtered interval

∗ vars - All variables in the CSP

∗ solution - Current partial solution

• public HashMap testGetfilteredValues( )

– Returns -

B.4.9 Class MatchingConstraint

This constraint implements lookahead using the matching relaxation
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B.4.9.1 Declaration

public class MatchingConstraint

extends Csp.Constraint

B.4.9.2 Constructors

• public MatchingConstraint( Map map, LinkedList cornerBuildings

)

– Usage

∗ Initializes that matching lookahead mechanism

– Parameters

∗ map - The problem instance

∗ cornerBuildings - The set of corner buildings in the problem instance

B.4.10 Class OrderingConstraint

The ordering constraint for the address assignment problem

B.4.10.1 Declaration

public class OrderingConstraint

extends Csp.Constraint

B.4.10.2 Fields
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• public String booleanOrderingVariable

– The orientation variable that determines the direction addresses increase

in

• public String Buildings

– The building ordered by this constraint

• public String Street

– The street along which this buildings lie

B.4.10.3 Constructors

• public OrderingConstraint( )

B.4.11 Class ParityConstraint

The parity constraint for the address assignment problem

B.4.11.1 Declaration

public class ParityConstraint

extends Csp.Constraint

B.4.11.2 Fields

• public String booleanVariable

– The orientation variable that determines parity for this building
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• public String BuildingVariable

– The building whose parity is determined by this constraint

• public boolean MustBeOddIfTrue

– If this value is true, then the building variable must be odd

• public String ExpectedStreet

– The building’s street on which this constraint applies

B.4.12 Class StreetConstraint

The phone-book constraint for the address assignment problem

B.4.12.1 Declaration

public class StreetConstraint

extends Csp.Constraint

B.4.12.2 Fields

• public Street TargetStreet

– The street for which this constraint applies

• public LinkedList RequiredAddresses

– The phone-book addresses for this street

• public static Map map

– The problem instance
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B.4.13 Class Value

A value for a building variable. This may be either a numeric or symbolic value

B.4.13.1 Declaration

public class Value

extends Object

B.4.13.2 Fields

• public int PositionInOrdering

– The position of this value in the total ordering of all values

• public String Street

– The street to which this value corresponds

• public int Increment

– The increment corresponding to this value. If a street has incremental

points, we create a new increment for each such point. this stores which

increment this value belongs to, so we can make constraints that jump to

the next increment.

B.4.13.3 Constructors

• public Value( int position )

– Usage
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∗ Creates a value

– Parameters

∗ position - The position in the relative ordering for this value

• public Value( int position, int number, String street )

– Usage

∗ Creates a value

– Parameters

∗ position - The position in the relative ordering for this value

∗ number - The numeric value

∗ street - The street on which this value lies

• public Value( int position, int number, String street, Map.Parity

parity )

– Usage

∗ Creates a value

– Parameters

∗ position - The position in the relative ordering for this value

∗ number - The numeric value

∗ street - The street on which this value lies

∗ parity - The parity of the value

• public Value( int position, int number, String street, Map.Parity

parity, int increment )

– Usage

∗ Creates a value

– Parameters
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∗ position - The position in the relative ordering for this value

∗ number - The numeric value

∗ street - The street on which this value lies

∗ parity - The parity of the value

∗ increment - The increment of the value

B.4.13.4 Methods

• public boolean equals( Object target )

• public int getNumber( )

– Usage

∗ The numeric value of this value; -1 means symbolic value

– Returns - The numeric value of this Value

• public Parity GetParity( )

– Usage

∗ Gets the parity of this value

– Returns - The parity of the value

• public static boolean GreaterThan( Value v1, Value v2 )

– Usage

∗ Compares two values

– Parameters

∗ v1 - First value

∗ v2 - Second value

– Returns - True, if v1 >v2

• public static boolean GTE( Value v1, Value v2 )
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– Usage

∗ Compares two values

– Parameters

∗ v1 - First value

∗ v2 - Second value

– Returns - True, if v1 >= v2

• public int hashCode( )

• public static boolean LessThan( Value v1, Value v2 )

– Usage

∗ Compares two values

– Parameters

∗ v1 - First value

∗ v2 - Second value

– Returns - True, if v1 <v2

• public static boolean LTE( Value v1, Value v2 )

– Usage

∗ Compares two values

– Parameters

∗ v1 - First value

∗ v2 - Second value

– Returns - True, if v1 <= v2

• public boolean MatchesAddress( Address address )

– Usage

∗ Determines whether an address matches this value
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– Parameters

∗ address - The address to check

– Returns - True, if the address matches the value’s street and number

• public void setNumber( int value )

– Usage

∗ Sets the numeric value

– Parameters

∗ value - Numeric value

• public Address ToAddress( )

– Usage

∗ Converts a value to an address

– Returns - The equivalent address

• public String toString( )
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A variable in the CSP.

B.6 Classes

B.6.1 Class Assignment

An assignment of a value to a variable

B.6.1.1 Declaration

public class Assignment

extends Object

B.6.1.2 Fields

• public String Name

– Variable name

• public Object Value

– Value to assign to the variable

B.6.1.3 Constructors

• public Assignment( )

– Usage

∗ Create an assignment
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• public Assignment( String name, Object value )

– Usage

∗ Create an assignment

– Parameters

∗ name - Variable name

∗ value - Value to assign to the variable

B.6.1.4 Methods

• public boolean equals( Object target )

• public int hashCode( )

• public String toString( )

B.6.2 Class Constraint

All constraints subclass this class. It provides some common constraint functionality,

as well as acting as an interface of required methods for all constraints

B.6.2.1 Declaration

public abstract class Constraint

extends Object

B.6.2.2 Fields

• public static int ConsistencyChecks
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– The number of consistency checks performed by search

• public static boolean ChangeWasMadeByLastFiltering

– Used by the BT solver. True, if the last filtering removed some value from

some variable’s domain

• public LinkedList Scope

– The scope of this constraint

B.6.2.3 Constructors

• public Constraint( )

B.6.2.4 Methods

• public abstract boolean Check( HashMap vars )

– Usage

∗ Checks a constraint against a partial solution

– Parameters

∗ vars - A partial solution

– Returns - True, if the partial solution does not violate the constraint

• public abstract boolean FilterDomains( HashMap solution,

HashMap vars, String filterVar, Set outVarsWhoseDomainsChanged

)

– Usage

∗ Filters domains of variables in this constraint’s scope
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– Parameters

∗ solution - Current partial solution

∗ vars - All variables in the CSP

∗ filterVar - Variable whose instantiation triggered this filtering

∗ outVarsWhoseDomainsChanged - The set of variables whose domains

were changed by this filtering

– Returns - True, if no domain wipeout occrs

• public Set GetInstantiatedVarsInScope( HashMap solution )

– Usage

∗ Gets the set of variables in this constraint’s scope that are already

instantiated.

– Parameters

∗ solution - Current partial solution

– Returns - The set of variables in this constraint’s scope that are instan-

tiated in the given partial solution

• public boolean IntersectsWith( Set vars )

– Usage

∗ Determines whether this constraint’s scope intersects a set of variables

– Parameters

∗ vars - The variables to check against

– Returns - True, if this constraint’s scope intersects with the given set of

variables

B.6.3 Class Csp

A CSP problem instance
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B.6.3.1 Declaration

public class Csp

extends Object

B.6.3.2 Fields

• public HashMap Variables

– The variables in the CSP

• public LinkedList Constraints

– The constraints in the CSP

• public LinkedList CornerBuildings

– The corner buildings in the underlying address assignment problem

• public LinkedList PhoneBook

– The phone-book for the underlying address assignment problem

• public LinkedList KnownBuildings

– The known buildings in the problem

• public Map SourceMap

– The base problem instance

• public SymbolicIntervalGenerator IntervalGenerator

– The interval generator that creates the domains for this problem
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B.6.3.3 Constructors

• public Csp( )

B.6.3.4 Methods

• public float GetAverageDomainSizeForBuildings( )

– Usage

∗ Used to measure the statistics of the problem. Returns the average

domain sizes of the building variables

– Returns - The average domain sizes of the building variables

• public void PrintConstraintCounts( )

– Usage

∗ For debug purposes, it prints the number of constraints generated, by

type.

• public void SetAddressForBuilding( String buildingName, Address

address )

– Usage

∗ Sets the domain of a known building to a given address

– Parameters

∗ buildingName - Building with the known address

∗ address - The address

• public void SetOrientationValues( Orientation orientation )

– Usage
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∗ Sets the orientation variables in the CSP to given values

– Parameters

∗ orientation - The orientation to use

• public void SetStreetForCornerBuilding( String buildingName,

String streetName )

– Usage

∗ Sets the domain of a known corner building to a given street

– Parameters

∗ buildingName - Building with the known street

∗ streetName - Name of street

• public String toString( )

B.6.4 Class Variable

A variable in the CSP. All variables must subclass this variable

B.6.4.1 Declaration

public abstract class Variable

extends Object

B.6.4.2 Fields

• public String Name

– The name of the variable.
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• public LinkedList Domain

– The domain of the variable

• public Set ConflictSet

– Used by CBJ; stores the conflict set of the variable

• public Set PastFC

– Used by CBJ; stores the past variables that filtered this variable

B.6.4.3 Constructors

• public Variable( )

– Usage

∗ Creates a variable

• public Variable( String name, Object [] domain )

– Usage

∗ Creates a variable

– Parameters

∗ name - Name of the variable

∗ domain - Domain of the variable

B.6.4.4 Methods

• public abstract Variable CloneWithoutConflictSet( )

– Usage
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∗ Clones the variable, but resets the conflict set. Used when creating a

subproblem for a cSP

– Returns - A clone of the variable, without the conflict sets.

• public abstract Iterator GetDomainIterator( )

– Usage

∗ Gets an iterator over this variable’s domain

– Returns - An iterator over this variable’s domain

• public abstract void InitializeFilteredValues( HashMap vars )

– Usage

∗ Initializes the sets filtered values to nothing

– Parameters

∗ vars - The set of all variables in the csp

• public abstract void RestoreFilteredValues( String varInstantiated

)

– Usage

∗ Restores values filtered by the instantiation of the given variable

– Parameters

∗ varInstantiated - Variable whose filtering should be undone

• public String toString( )
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Stores an instance of an address

Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Stores an instance of a building

GridPoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Stores information necessary to identify a grid point, which is simply
the buildings that precede and follow the point

Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Contains an instance of the map and phone book for the address as-
signment problem

Map.Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Possible number parities

MapReader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Reads a problem instance from XML files into a Map object

Street . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A street, defined by the set of buildings and gridpoints along it

Street.StreetDirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Possible directions which a street may run

SymbolicIntervalGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Generates the intervals used as domains for the CSP variables.

B.8 Classes

B.8.1 Class Address

Stores an instance of an address
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B.8.1.1 Declaration

public class Address

extends Object

implements Comparable

B.8.1.2 Fields

• public String Street

– The street portion of the address

• public int Number

– The numeric portion of the address

B.8.1.3 Constructors

• public Address( )

– Usage

∗ Creates an address

• public Address( String street, int number )

– Usage

∗ Creates an address from a given street and number

– Parameters

∗ street - Street Name

∗ number - Number
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B.8.1.4 Methods

• public Object clone( )

• public int compareTo( Address target )

• public boolean equals( Object target )

• public int hashCode( )

• public boolean MatchesParity( Map.Parity parity )

– Usage

∗ Returns true if the address matches the parity passed in (Odd or Even)

– Parameters

∗ parity - The parity to check against

– Returns - True, if the address matches the given parity. False otherwise

• public String toString( )

B.8.2 Class Building

Stores an instance of a building

B.8.2.1 Declaration

public class Building

extends Object

B.8.2.2 Fields

• public String Name
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– The identifying name of the building

• public LinkedList Street

– The list of streets to which the building is adjacent

• public LinkedList Side

– The list of which side of the street the building is on for each street to

which it is adjacent. Possible values are N,S,E, or W

B.8.2.3 Constructors

• public Building( )

– Usage

∗ Create a building

• public Building( String name )

– Usage

∗ Create a building

– Parameters

∗ name - Building’s name

B.8.2.4 Methods

• public Object clone( )

• public boolean equals( Object target )

• public Character GetSideOnStreet( String streetName )

– Usage
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∗ Returns which side of a given street this building is on

– Parameters

∗ streetName - Target street

– Returns - The side of the target street on which this building lies

• public int hashCode( )

• public boolean IsAdjacentToStreet( String street )

– Usage

∗ Determines whether a building is adjacent to a street

– Parameters

∗ street - Target street name

– Returns - True, if the building is adjacent to street

• public boolean IsCorner( )

– Returns - True, if the building is a corner building

• public String toString( )

B.8.3 Class GridPoint

Stores information necessary to identify a grid point, which is simply the buildings that

precede and follow the point

B.8.3.1 Declaration

public class GridPoint

extends Object
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B.8.3.2 Fields

• public Building BuildingPreceding

– Building preceding this grid point

• public Building BuildingFollowing

– Building following this grid point

B.8.3.3 Constructors

• public GridPoint( )

– Usage

∗ Create a new grid point

• public GridPoint( Building buildingPreceding, Building building-

Following )

– Usage

∗ Create a new grid point

– Parameters

∗ buildingPreceding - Building preceding grid point

∗ buildingFollowing - Building following grid point

B.8.3.4 Methods

• public boolean equals( Object target )

• public int hashCode( )
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B.8.4 Class Map

Contains an instance of the map and phone book for the address assignment problem

B.8.4.1 Declaration

public class Map

extends Object

B.8.4.2 Fields

• public LinkedList Buildings

– All buildings on the map

• public LinkedList PhoneBook

– All known addresses in the phone-book

• public LinkedList Streets

– All streets on the map

• public LinkedList StreetNames

– The names of all streets on the map

• public HashMap KnownBuildings

– All known buildings (landmarks)

• public boolean ParityConstraintsIndependentForEachStreet

– If true, then parities are different for each street, rather than being global

to the entire problem
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B.8.4.3 Constructors

• public Map( )

B.8.4.4 Methods

• public void AddGridPoint( String street, String buildingPreced-

ing, String buildingFollowing )

– Usage

∗ Adds a grid point for the given street, between the two given buildings

– Parameters

∗ street - The street on which to add the grid point

∗ buildingPreceding - The building preceding the grid point

∗ buildingFollowing - The building following the grid point

• public static boolean BuildingsAreOnSameSideOfStreet(

String streetName, Building b1, Building b2 )

– Usage

∗ Determines whether two buildings are on the same side of the street

– Parameters

∗ streetName - The street to check

∗ b1 - First building to check

∗ b2 - Second building to check

– Returns - True if b1 and b2 are on the same side of street streetName

• public Map Clone( )

– Returns - A copy of the problem instance
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• public int GetAddressCount Greater( String streetName,

int value, Map.Parity parity )

– Usage

∗ Gets the number of addresses on a given street and parity greater than

a given value

– Parameters

∗ streetName - Target street

∗ parity - Target parity

∗ value - Minimum address to count

– Returns - Number of phone-book addresses matching street and parity

• public int GetAddressCount Less( String streetName, int value,

Map.Parity parity )

– Usage

∗ Gets the number of addresses on a given street and parity less than a

given value

– Parameters

∗ streetName - Target street

∗ parity - Target parity

∗ value - Maximum address to count

– Returns - Number of phone-book addresses matching street and parity

• public int GetAddressCount( String streetName, Map.Parity par-

ity )

– Usage

∗ Gets the number of addresses on a given street and parity
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– Parameters

∗ streetName - Target street

∗ parity - Target parity

– Returns - Number of phone-book addresses matching street and parity

• public Building GetBuildingByName( String buildingName )

– Usage

∗ Given a name, finds the corresponding building

– Parameters

∗ buildingName - Name of building to find

– Returns - The desired building

• public int GetHighestAddress( )

– Usage

∗ Finds the highest address appearing in the phone-book

– Returns - The highest address in the phone-book

• public int GetHighestAddress( String streetName )

– Usage

∗ Searches all known addresses on a street to find the lowest one

– Parameters

∗ streetName - Target street

– Returns - The highest number of any address on that street

• public int GetLowestAddress( String streetName )

– Usage

∗ Searches all known addresses on a street to find the lowest one
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– Parameters

∗ streetName - Target street

– Returns - The lowest number of any address on that street

• public static Map.Parity GetParity( int num )

– Usage

∗ Gets the parity of a given number

– Parameters

∗ num - Number to get the parity of

– Returns - The parity of num

• public LinkedList GetPhoneBookEntriesForStreet( String street )

– Usage

∗ Gets the phone book entries for a given street

– Parameters

∗ street - Street to get phone-book entries for

– Returns - The phone book entries for street

• public Street GetStreetByName( String streetName )

– Usage

∗ Given a name, finds the corresponding street

– Parameters

∗ streetName - Name of the street to find

– Returns - The desired street

• public static Map.Parity InvertParity( Map.Parity original )
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– Usage

∗ Inverts the parity given; Odd becomes Even, Even becomes Odd, and

Unknown remains unknown

– Parameters

∗ original - The original parity

– Returns - The opposite parity

• public String toString( )

B.8.5 Class Map.Parity

Possible number parities

B.8.5.1 Declaration

public static final class Map.Parity

extends Enum

B.8.5.2 Fields

• public static final Map.Parity Odd

– Odd

• public static final Map.Parity Even

– Even

• public static final Map.Parity Unknown

– Unknown Parity
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B.8.5.3 Methods

• public static Map.Parity valueOf( String name )

• public static final Map.Parity values( )

B.8.6 Class MapReader

Reads a problem instance from XML files into a Map object

B.8.6.1 Declaration

public class MapReader

extends Object

B.8.6.2 Methods

• public static Map ReadMap( String folder, String mapFile, String

phoneBookFile, String constraintFile )

– Usage

∗ Reads a problem instance from xml files into a Map object

– Parameters

∗ folder - The folder containing the problem files

∗ mapFile - The name of the map file

∗ phoneBookFile - The name of the phone-book file

∗ constraintFile - The name of the additional constraints file

– Returns - The map object for the problem instance
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B.8.7 Class Street

A street, defined by the set of buildings and gridpoints along it

B.8.7.1 Declaration

public class Street

extends Object

B.8.7.2 Fields

• public String Name

– The identifying name of the street

• public Building Buildings

– The buildings along the street

• public Street.StreetDirection Orientation

– The orientation of the street

• public LinkedList GridPoints

– The set of grid points along the street

B.8.7.3 Constructors

• public Street( )

– Usage
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∗ Create a street

• public Street( String name, Map.Building [] buildings )

– Usage

∗ Create a street

– Parameters

∗ name - Street name

∗ buildings - Buildings along the street

B.8.7.4 Methods

• public void AddGridPoint( Map.Building buildingPreceding, Building

buildingFollowing )

– Usage

∗ Adds a grid point between the specified buildings

– Parameters

∗ buildingPreceding - Building preceding the grid point

∗ buildingFollowing - Building following the grid point

• public boolean Building1IsBeforeBuilding2( Building building1,

Building building2 )

– Usage

∗ Used internally; returns true if building1 is north or east of building 2

– Parameters

∗ building1 - First building to consider

∗ building2 - Second building to consider

– Returns - True, if building1 is north or east of building2
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• public Object clone( )

• public boolean ContainMatchingIncrementalPoint( Building firstBuild-

ing, Building secondBuilding )

– Usage

∗ Determines whether the street contains a grid point between two given

buildings

– Parameters

∗ firstBuilding - Building preceding the grid point

∗ secondBuilding - Building following the grid point

– Returns - True, if the street contains a matching grid point

• public boolean ContainsIncrementalPoint( )

– Usage

∗ Determines whether the street contains any grid points

– Returns - True, if the street contains any grid points

• public String toString( )

B.8.8 Class Street.StreetDirection

Possible directions which a street may run

B.8.8.1 Declaration

public static final class Street.StreetDirection

extends Enum
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B.8.8.2 Fields

• public static final Street.StreetDirection NorthSouth

– Indicates a street that runs from north to south

• public static final Street.StreetDirection EastWest

– Indicates a street that runs from east to west

B.8.8.3 Methods

• public static Street.StreetDirection valueOf( String name )

• public static final Street.StreetDirection values( )

B.8.9 Class SymbolicIntervalGenerator

Generates the intervals used as domains for the CSP variables. These intervals may

contain symbolic values, if we are using the AllDiff-Atmost reformulation

B.8.9.1 Declaration

public class SymbolicIntervalGenerator

extends Object

B.8.9.2 Fields

• public static boolean EnumerateAllValues
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– If this flag is true, we always enumerate all values in the domain. If it

is false, we use the AllDiff-Atmost reformulation and generate symbolic

values where necessary

B.8.9.3 Constructors

• public SymbolicIntervalGenerator( Map map )

– Usage

∗ Initializes the generator

– Parameters

∗ map - The map that the generator creates intervals for

B.8.9.4 Methods

• public AddressInterval GetIntervalContainingSingleAddress( int num-

ber, String street )

– Usage

∗ Gets an interval containing just a single address. Useful when we want

to assign a specific value to a building, but still want to be able to order

it relative to other symbolic values

– Parameters

∗ number - Number portion of the address

∗ street - Street portion of the address

– Returns - An addressinterval just containing the value corresponding to

street and number



186

• public AddressInterval GetIntervalForStreet( String street )

– Usage

∗ Gets the interval (domain) for a given street

– Parameters

∗ street - Target street

– Returns - The interval for the target street

• public Value GetValueFromAddress( Address address )

– Usage

∗ Gets the Value for a given Address. Useful, because the value contains

information that allows us to order an address relative to symbolic

values

– Parameters

∗ address - Target address

– Returns - The value corresponding to address

B.9 Package Solvers
Package Contents Page

Classes

AggregateSolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

CSP solver that enumerates all solutions and stores the per-variable
solution

BaseSolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

This base BT solver provides functionality used by all BT solvers

Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

This base solver provides functionality used by all solvers
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VerifySolutionExistsSolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

This solver simply determines whether a solution exists.

B.10 Classes

B.10.1 Class AggregateSolver

CSP solver that enumerates all solutions and stores the per-variable solution

B.10.1.1 Declaration

public class AggregateSolver

extends Solvers.BaseSolver

B.10.1.2 Constructors

• public AggregateSolver( Csp.Csp csp )

– Usage

∗ Create the solver

– Parameters

∗ csp - Csp to solve

B.10.1.3 Methods

• public HashMap SolveAggregate( )

– Usage
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∗ Solve the problem by enumerating all solutions

– Returns - The per-variable solution

B.10.2 Class BaseSolver

This base BT solver provides functionality used by all BT solvers

B.10.2.1 Declaration

public class BaseSolver

extends Solvers.Solver

B.10.2.2 Fields

• public int TotalSolutions

– The total number of solutions found

B.10.2.3 Constructors

• public BaseSolver( Csp.Csp csp )

– Usage

∗ Initialize the solver

– Parameters

∗ csp - Csp instance to solve
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B.10.2.4 Methods

• public void findSolutions( )

– Usage

∗ Performs the actual BT search to find solutions

• public static Orientation GetCurrentOrientation( HashMap solution

)

– Usage

∗ Returns the currently instantiated orientation, or null if the orientation

is not completely instantiated

– Parameters

∗ solution - Current partial solution

– Returns - Instantiated orientation

B.10.3 Class Solver

This base solver provides functionality used by all solvers

B.10.3.1 Declaration

public abstract class Solver

extends Object

B.10.3.2 Fields
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• public static boolean PerformGAC

– Determine how to perform the backtrack search; if true, we perform GAC

at certain stages

• public static boolean MaintainGac

– Determine how to perform the backtrack search; if true, we perform GAC

at all instantiations

• public static boolean EnableCBJ

– Determine how to perform the backtrack search; if true, we use conflict

directed backjumping

• public static boolean UseMatchingConstraint

– Determine how to perform the backtrack search; if true, we use the match-

ing as a lookahead mechanism

• public static boolean PreFilterUsingMatching

– Use the matching only as a prefilter mechanism; only makes sense if Use-

MatchingConstraint == true

• public boolean UseSpecialVariableOrder

– Determine how to perform the backtrack search; if true, we use a static

variable order that instantiates corner buildings first

• public LinkedList VariableOrder

– The order to instantiate variables in

• public HashMap VariableDepths

– Stores what depth each variable is instatiated at
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• public static int NumberOfBackTracks

– The number of backtracks performed by search

• public double RunTime

– Runtime of search, in ms

• public Csp TargetCsp

– Csp instance to solve

B.10.3.3 Constructors

• public Solver( )

B.10.3.4 Methods

• public boolean ForwardCheck( HashMap solution,

Csp.Variable varToCheckAgainst )

– Usage

∗ Performs nFC3

– Parameters

∗ solution - Current partial solution

∗ varToCheckAgainst - Variable to filter against

– Returns - True, if no domain wipeout occurs

• public boolean GAC1( HashMap solution, Csp.Variable filteringVari-

able )

– Usage
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∗ Performs GAC1

– Parameters

∗ solution - Current partial solution

∗ filteringVariable - Variable most recently instantiated

– Returns - True, if no domain wipeout occurs

• public void PrintVariableOrderAndWidth( )

– Usage

∗ For debug purposes; prints the variable instantiation order and width

of the ordering

B.10.4 Class VerifySolutionExistsSolver

This solver simply determines whether a solution exists. It terminates search as soon

as the problem is decomposed into a consistent forest

B.10.4.1 Declaration

public class VerifySolutionExistsSolver

extends Solvers.BaseSolver

B.10.4.2 Constructors

• public VerifySolutionExistsSolver( Csp.Csp csp )

– Usage

∗ Instantiate the solver

– Parameters
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∗ csp - Csp problem instance

B.10.4.3 Methods

• public boolean SolveVerifySolutionExists( )

– Usage

∗ Determine the solvability of the CSP

– Returns - True, if the CSP has at least 1 solution
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