
CSP Solving by Constraint Joining

Shant Karakashian∗ José Luis Ambite∗∗

Berthe Y. Choueiry∗

∗Constraint Systems Laboratory
University of Nebraska-Lincoln

∗∗Information Sciences Institute
University of Southern California

Email: shantk@cse.unl.edu

Working Note 2-2008

December 10, 2008

1 Experimental set up

Experiments were conducted on:

• CSPs with 30 variables, domain size 8, density varying from 30 to 70
(n = 30, a=8, d=30% to 70%).

• CSPs with 20 variables, domain size 8, density varying from 20 to 70
(n = 20, a=8, d=20% to 70%).

• For all instances, tightness is adjusted to place the instance at the phase
transition.

• For each instance, we ran the below algorithms with the joining algorithm
being with sort-merge then hash-join. For each algorithm we display the
numerical results as listed below:

1. Forward Checking (FC): finding one solution (1 sol) and all solutions
(All sol).

2. Bushy join (Bsh): CPU time to complete the join (up), the number
of tuples in the result (#Sol).

3. Left-deep join (LftD): CPU time to complete the join (up), the num-
ber of tuples in the result (#Sol).

1



4. Bushy join with projection (Bsh Prj): CPU time to go up (up), the
number of tuples in the partial result (#Sol), the total CPU time to
compute the join (up+down), which includes the time to go up and
to reconstruct the result.

5. Left-deep join with projection (LftD Prj): CPU time to go up (up),
the number of tuples in the partial result (#Sol), the total CPU time
to compute the join (up+down), which includes the time to go up
and to reconstruct the result.

6. Bushy join with projection and F1 filtering (Bsh Prj F1): The numer-
ical values are as the previous. The filtering F1 operates by keeping
up to date the domains of the variables (i.e., columns) and filtering
any two relations accordingly before joining them.

7. Left-deep join with projection and F1 filtering (LftD Prj F1): same
as previous but for left-deep join.

8. Bushy join with projection and F2 filtering (Bsh Prj F2): The numer-
ical values are as the previous. The filtering F2 operates by filtering
all ‘future’ relations to remove tuples that are inconsistent with the
current ‘joins’, but does not filter the current join.

9. Left-deep join with projection and F2 filtering (LftD Prj F2): same
as previous but for left-deep join.

10. Bushy join with projection and F3 filtering (Bsh Prj F3): The numer-
ical values are as the previous. The filtering F3 operates by filtering
all ‘future’ relations and the current joins to remove tuples that are
inconsistent with the current ‘joins’, doing only one loop.

In general, filtering is executed by joining the relations using hashing and
projecting the resulting join on the respective scopes

• Instances for each problem size were separated in solvable and unsolvable
instances, resulting in 4 files as Excel spreadsheets. Each Excel file has
two sheets, one giving the results with sort-merge and the second with
hash-join.

• When an execution could not finish, it is indicated with ‘-’ in the result
table. This situation may occur for any of two reasons: the relation size
or the execution time exceeds a given threshold.

2 Observations

We make the following observations.

2.1 General comments

• Hash-join versus sort-merge: Hash-join-based algorithms are systemat-
ically less good than sort-merge-based algorithms, except when joining

2



two very large tables. We restrict our comments below on the sort-merge
join algorithm.

• To examine the results, we recommend to study the experiments for

– for n=30 variables, at 10% density.
– For all other experiments, examine only n=20 variables.

• For all join-based algorithms using projection, the resulting join has to
reconstructed after projection. Thus, we distinguish two phases going-
up and going-down. The going-up phase uses a greedy by sophisticated
heuristic for choosing the next relation to join with. This phase is thus
fairly optimized. The going-down phase, however, follows the order chosen
by the previous phase and does not exploit the greedy heuristic. For this
reason, the reconstruction phase is much slower than the going-up phase.
It is far from being optimized and should not been used in the analysis.

2.2 The champion is FC

• For all algorithm instances and for CSP instances, FC is significantly faster
then any other algorithm tested.

• Only bushy-type algorithms become competitive with FC for very sparse
problems (i.e., density is 10%). Indeed, bushy-type algorithms with pro-
jection become comparable to FC. Further, with filtering, they become
comparable with FC.

• On unsolvable instances, the performance of FC is not matched, even
remotely, by any algorithm.

• As density increases, the performance of all join-based techniques deteri-
orates orders of magnitude with respect to that of FC. Very quickly, they
are not able to terminate, which affects more quickly bushy than left-deep
strategies. (Interpretation: The size of the tables in bushy grow pro-
hibitively large and bushy has the challenge of joining many large tables
whereas left-deep is dealing with only one large table.)

2.3 Analyzing join-based algorithms

• Bushy exhibits a search-like performance: it does more steps, but is less
costly in terms of CPU cycles.

• Left-deep is like computing higher levels of consistency. It does fewer
steps, but costs more time.

• Bushy plans tend to improve as we add projection, filtering, and more
aggressive filtering.

• The advantage of filtering is not visible for left-deep plans. More aggressive
filtering increases the cost. Only project improves the left-deep plans.

3



2.4 Bushy versus left-deep

• On average, bushy plans demonstrate better performance than left-deep
plans. Exceptions exist, but are outliers.

• Bushy plans seems quicker than left-deep plans, but they seem to be more
costly in terms of space. So, in terms of time, bushy plans are better than
left-deep plans; in terms of space, the inverse seems to hold.

• Bushy plans benefit from filtering better than left-deep plans.

Increasingly powerful filtering dramatically benefit Bushy while they slow
left deep. Interpretation: filtering in bushy is not costly because the
number of relations to filter against is smaller than in left-deep, to the
point that left-deep performance is hindered by the filtering.

Lesson: if you are doing bushy, you should definitely filter as aggressively
as you can, regardless of the density. If you are using left-deep, filtering
is useful for low density problems. As density grows, filtering hinders
performance.

• On unsolvable instances: Left-deep plans discover unsolvability earlier
than bushy plans. (Interpretation: left-plans achieve higher consistency
earlier than Bushy plans.) Best case of left-deep is better than best case
of bushy.

4


