
REVISED: Implementation of the Minfill

Heuristic

Christopher Reeson
Constraint Systems Laboratory
University of Nebraska-Lincoln

Email: creeson@cse.unl.edu

Working Note 1-2015

March 11, 2016

We update Algorithm 2 and Algorithm 3 of the original working note on the
topic, which was written by Shant Karakashian.

1 Related Work

The Karypis Lab has developed a large library1 of graph partinionning algorithm
(MeETIS, ParMETIS, hMETIS). This library is particularly well suited for large
graphs. It is commonly used by the UAI community for tree decomposition, and
should be checked before doing any implementation work.

[1] presents a linear time algorithm for minimal elimination ordering approx-
imation in planar graphs.

2 O(n4) Algorithm

Below we store in fcount[x] the number of fill edges that need to be added to
the graph when the vertex x is removed.

Complexity Analysis

The complexity of Algorithm 1 depends on the complexity of

• Line 1 in Algorithm 1 (FillCount). The complexity of FillCount is
determined by the three nested loops: O(n3).

1http://glaros.dtc.umn.edu/gkhome/views/metis

1

Algorithm 1: MinFill(G)

Input: A graph G = (V,E), where |V | = n.
Output: Perfect elimination order σ[]
FillCount(G)1

for i = 1 to n do2

v ← the vertex in G with the smallest value of fcount3

σ[i]← v4

AddFillEdgesAndRemoveNode(G, v)5

return σ6

Algorithm 2: FillCount(G)

Input: A graph G = (V,E).
Output: Vertices labeled with the fill count, which is the number of

edges that need to be added to make the vertex simplicial
foreach v ∈ V do1

neigh[]← Neighbors(v) /* Array storing neighbors of v */2

count← 03

for i← 1 to Size(neigh[]) do4

foreach j ← i+ 1 to Size(neigh[]) do5

if (neigh[i], neigh[j]) /∈ E then6

count← count+ 17

fcount(v)← count8

• Line 3 in Algorithm 1. The complexity of this step is×(n) (list) orO(log n)
(heap).

• Line 5 in Algorithm 1 (AddFillEdgesAndRemoveNode). AddFillEdge-
sAndRemoveNode has three nested loops, each looping over at most all
the vertices of the graph. Thus, the complexity of AddFillEdgesAn-
dRemoveNode is O(n3).

The complexity of MinFill is dominated by n times the complexity of
AddFillEdgesAndRemoveNode, and is thus O(n4).

References

[1] Elias Dahlhaus. An improved linear time algorithm for minimal elimination
ordering in planar graphs that is parallelizable, 1999.

2

Algorithm 3: AddFillEdgesAndRemoveNode(G,v)

Input: A graph G = (V,E), a vertex v ∈ V .
Output: A graph from which v is eliminated and where the fill counts of

the remaining vertices are updated.
neigh[]← Neighbors(v) /* Array storing neighbors of v */1

for i← 1 to Size(neigh[]) do2

if fcount(v) = 0 then break3

v′ ← neigh[i]4

for j ← i+ 1 to Size(neigh[]) do5

if fcount(v) = 0 then break6

v′′ ← neigh[j]7

if (v′, v′′) /∈ E then8

foreach x ∈ Neighbors(v′) do9

if (x, v′′) ∈ E then10

fcount(x)← fcount(x)− 111

else12

fcount(v′)← fcount(v′) + 113

foreach x ∈ Neighbors(v′′) ∧ x 6= v do14

if (x, v′) /∈ E then fcount(v′′)← fcount(v′′) + 115

E ← E ∪ {(v′, v′′)}16

foreach v′ ∈ Neighbors(v) do17

if fcount(v′) = 0 then continue18

foreach y ∈ Neighbors(v′) ∧ y 6= v do19

if (y, v) /∈ E then20

fcount(v′)← fcount(v′)− 121

if fcount(v′) = 0 then break22

V ← V \ {v}23

3

