
An Algorithm for Generating All Connected

Subgraphs with k Vertices of a Graph

Shant Karakashian1 Berthe Y. Choueiry1 Stephen G. Hartke2

1Constraint Systems Laboratory
Department of Computer Science & Engineering

2Department of Mathematics

University of Nebraska–Lincoln
Email: {shantk|choueiry}@cse.unl.edu, hartke@math.unl.edu

UNL-CSE-2013-0005

June 10, 2013

Abstract

In this paper, we introduce a new algorithm ConSubg(k,G) for com-
puting all the connected subgraphs of a fixed size k of a graph G. Con-
Subg exploits the structure of the graph to prevent the generation of
disconnected subgraphs, and is thus particularly advantageous for large
sparse graphs. The two main features of our approach are the construc-
tion of a combination tree and the definition of an operator ⊗t applied
to the nodes of the tree that allow us to generate without duplication
the connected subgraphs. We describe and analyze ConSubg(k,G), then
demonstrate its effectiveness on random graphs with a fixed degree, scale-
free networks, and dual graphs of constraint satisfaction problems.

1

Contents

1 Introduction 3

2 Alternative approaches 4

3 Description of the algorithm 6
3.1 ConSubg and CombinationsWithV 6
3.2 Building the combination tree . 7

3.2.1 Illustrating the execution of CombinationTree 9
3.2.2 Complexity of CombinationTree and BuildTree . . . 11
3.2.3 Soundness and completeness of combination trees 11

3.3 Extracting k-ConnVertices from a combination tree 13
3.3.1 Defining of the ⊗t operator 14
3.3.2 Pseudocode of CombinationsFromTree 15
3.3.3 Illustrating the execution of CombinationsFromTree . 15
3.3.4 Implementation of the ⊗t operator 19
3.3.5 Completeness and soundness of CombinationsFromTree 20

4 Memoization 22

5 Analysis of ConSubg 22

6 Empirical evaluations 23
6.1 Graphs of a fixed degree . 23
6.2 Scale-free graphs . 28
6.3 CSP graphs . 30

7 Conclusion 31

2

1 Introduction

Generating all subgraphs of a graph G that satisfy a given property has been
studied in many contexts, for example, finding all maximum or maximal cliques
[8, 1, 23, 47, 52, 4, 3, 36, 30, 35, 32, 43, 46, 9, 18, 12, 13], cycles [37, 56, 45, 53,
44, 22, 33, 5, 31, 39, 54, 6, 40, 19], and spanning trees [16, 14, 25, 34, 26, 41,
48, 42, 24]. In this paper, we describe an algorithm for generating all connected
subgraphs with a fixed number of vertices. As far as we are aware, identifying
all connected subgraphs has not been studied before. However, this problem
is a crucial step in enforcing higher consistency levels in Constraint Processing
[15, 49, 50, 51, 11, 29, 28].

This combinatorial problem is computationally challenging in practice be-
cause the number of connected subgraphs with k vertices in a graph of n vertices
may be as large as

(
n
k

)
. However, in sparse graphs, the number of connected sub-

graphs is significantly smaller than the number of k subsets of vertices. Thus,
it is important to design an algorithm that exploits the structure of the graph
when generating the connected subgraphs.

In this paper, we propose, discuss, and evaluate ConSubg, an algorithm for
this purpose. The two main features of our approach are the construction of
a combination tree T and the definition of an operator ⊗t. The combination
tree T rooted at a vertex v ∈ G has the property that the depth-first tree
rooted at v of every G′, where G′ is a connected subgraph induced on G by at
most k vertices including v, is isomorphic to a subgraph of T rooted at v. The
operator ⊗t generates from T , without duplication, all connected subgraphs
of G of size k including v. We evaluate it empirically on randomly generated
graphs, scale-free graphs commonly used to model social networks, and graphs
derived from constraint satisfaction problems. We use the simple example of
Figure 1 throughout the paper to illustrate the operation of ConSubg. For
example, the connected subgraphs of size k = 4 for the graph shown in Figure 1
are:

ConSubg(k,G) = {{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, d, c, e}}. (1)

Note that {b, c, d, e} is not a connected subgraph of G and is thus excluded from
the result.

Figure 1: Simple graph.

Definition 1.1. Given a graph G = (V,E) and a constant k, ConSubg(k,G)

3

returns all sets of V ′ vertices where V ′ ⊆ V , |V ′| = k, and the subgraph G′ of
G induced by V ′ is connected. We call such sets of k vertices k-ConnVertices.

The graph in Figure 1 represents the dual graph of a Constraint Satisfaction
Problem (CSP) [10]. A vertex in this graph represents a constraint, defined as
a relation on a set of variables, which is the scope of the constraint. An edge
connects two vertices whose scopes overlap (i.e., share a variable). Enforcing
the consistency properties R(i,k)C [11] and R(∗,k)C [29] on this CSP requires
computing all connected subgraphs of size k.1

This paper is structured as follows. Section 2 reviews alternative approaches.
Section 3 constitutes the bulk of this paper: It discusses in great detail Con-
Subg and its various components, introducing data structures that we designed
for this purpose and discussing the complexity, soundness and completeness of
the constituent components of ConSubg. Section 4 proposes to improve the
performance of the algorithm by memoization. Section 5 provides a proof of the
correctness of the algorithm. Section 6 demonstrates the practical usefulness
of our algorithm by comparing its performance on randomly generated graphs,
scale-free networks, and constraint satisfaction problems. Finally, Section 7
concludes this paper.

2 Alternative approaches

A straightforward algorithm for implementing ConSubg is to, first, generate all
k combinations of the V vertices of the graph G, then to remove those combina-
tions that are not connected subgraphs of G. A simple algorithm for generating
such a combination consists of k nested loops, which we call the ‘brute-force
algorithm’ and denote BF-ConSubg. BF-ConSubg (Algorithm 1), where
s = |V |, enumerates all possible combinations of k vertices storing only those
that correspond to connected subgraphs.

BF-ConSubg fails to exploit the connectivity of the graph: it may gener-
ate many subgraphs that are not connected and have to be discarded, which
is wasteful of computing resources. In contrast, ConSubg exploits the con-
nectivity of the graph and generates only connected subgraphs. At the risk of
significantly oversimplifying it, ConSubg operates as follows:

1. It considers an arbitrary node in the graph as a ‘root’ node.

2. It restricts itself to the nodes of a distance k from this root node.

3. It generates all k-ConnVertices that include the root node.

4. It removes the root node from the graph.

5. Finally, it iteratively applies the above process to the remaining nodes of
the graph.

1The graph in Figure 1 can also represent the constraint network of a binary CSP where
a vertex represent a variable and an edge represent a binary constraint. The connected
subgraphs of size k are useful for enforcing the consistency property k-consistency [15].

4

Algorithm 1: BF-ConSubg(k,G)

Input: k, G
Output: A list of all k-ConnVertices of G
pos: a vector of the vertices of G1

list← ∅2

for i1 ← pos[1] to pos[s− k + 1] do3

for i2 ← pos[i1] to pos[s− k + 2] do4

for i3 ← pos[i2] to pos[s− k + 3] do5

. . .6

for ik ← pos[ik−1] to pos[s] do7

if (i1, i2, . . . , ik) forms a connected subgraph of G then8

Push((i1, i2, i3, . . . , ik), list)9

end10

end11

end12

end13

end14

return list15

The strength of ConSubg stems from the particular structures and processes
implemented in the above mentioned Steps 2 and 3. In order to show that the
effectiveness of our approach is not limited to the above ‘decomposition’ strategy
but that we do exploit the topology of the graph in a much stronger sense, we
modify the brute-force algorithm BF-ConSubg (Algorithm 1) to apply it in a
localized manner similarly to the above-listed strategy, yielding LBF-ConSubg
(Algorithm 2).

Algorithm 2: LBF-ConSubg(k,G).

Input: k,G
Output: A list of all k-ConnVertices of G
list ← ∅1

queue← Vertices(G)2

foreach v ∈ queue do3

G′ ← the subgraph of G induced by vertices within distance k from v4

list← list ∪ BF-ConSubg(k,G′)5

Remove(v,G)6

end7

return list8

While the worst-case complexity of all algorithms remains exponential in k
(because the number of k-ConnVertices may be exponential in k), we conduct,
in Section 6, an extensive empirical evaluation to compare the performance of
ConSubg, BF-ConSubg and LBF-ConSubg on various types of graphs, and

5

empirically establish the advantages of ConSubg.

3 Description of the algorithm

For the sake of clarity and readability and to facilitate the analysis, we de-
compose the presentation of our algorithm into components shown in Table 1.
After the presentation of each component of the algorithm, we illustrate its op-

Table 1: A quick reference table to the proposed algorithms.

Algorithm Pseudocode Calls algorithm(s) Section

ConSubg Algorithm 3 CombinationsWithV Section 3.1

CombinationsWithV Algorithm 4 CombinationTree Section 3.1
CombinationsFromTree

CombinationTree Algorithm 5 BuildTree Section 3.2

BuildTree Algorithm 6 Self Section 3.2

CombinationsFromTree Algorithm 7 Self Section 3.3
k-combinations
k-compositions

eration on the simple example of Figure 1. When applicable, we also discuss
the complexity, soundness, and completeness of the proposed component.

3.1 ConSubg and CombinationsWithV

ConSubg (Algorithm 3) takes as input an integer k and a graph G and returns
all lists of k vertices inducing connected subgraphs of G. Starting from an
arbitrary node, it calls CombinationsWithV (Algorithm 4) on a vertex of G
to generate all k-ConnVertices that include that vertex. Then, it removes the
vertex from the graph and repeats the same operation on each of the remaining
vertices in the graph.

Algorithm 3: ConSubg(k,G).

Input: k,G
Output: A list of all k-ConnVertices of G
list ← ∅1

queue← Vertices(G)2

foreach v ∈ queue do3

list← list ∪ CombinationsWithV(v, k,G)4

Remove(v,G)5

end6

return list7

CombinationsWithV (Algorithm 4) calls:

6

• CombinationTree (Algorithm 5), which builds a combination tree rooted
at the vertex given as input, and

• CombinationsFromTree (Algorithm 7), which operates on the gener-
ated combination tree to compute the set of k-ConnVertices.

Algorithm 4: CombinationsWithV(v, k,G).

Input: v, k,G
Output: A list of all k-ConnVertices of G that include vertex v
tree←CombinationTree(v, k,G)1

ncombs← CombinationsFromTree(tree, k)2

return Labels(ncombs)3

Illustrating the execution of ConSubg and CombinationsWithV: Be-
low, we discuss the application of ConSubg (Algorithm 3) with k = 4 to the
graph of Figure 2. The queue is initialized in Line 2 to {a, b, c, d, e}, which is
the list of vertices of the graph. Calling CombinationsWithV (Algorithm 4)
with a and k = 4 on G returns the list of all sought k-ConnVertices that include
the vertex a. Thus, a can be removed from G (Line 5) for all subsequent calls
to CombinationsWithV. The process is repeated on the remaining vertices
(i.e., b, c, d, and e).

CombinationsWithV receives as input a vertex, the combination size, and
the graph. In Line 1, it generates a special tree structure, which we call combi-
nation tree and discuss in Section 3.2. The algorithm uses the tree in Line 2 to
collect the sought k-ConnVertices that include the vertex given as input. In the
following sections, we describe how the tree is built for the graph in Figure 2
with the selected node a and combination size 4.

3.2 Building the combination tree

In this section, we study the process of building a combination tree. We in-
troduce the algorithms, illustrate their application to a simple example, discuss
their complexity, and establish their soundness and completeness.

CombinationTree (Algorithm 5) calls BuildTree (Algorithm 6). To-
gether, these two algorithms yield a tree structure that we call the combination
tree. We refer to the vertices of the combination tree as “nodes” in order to dis-
tinguish them from the vertices of the graph. The combination tree, rooted at
a node n, is of maximum depth k. The node n corresponds to the graph vertex
given as input, and each node nt in the tree corresponds to some vertex of G,
denoted Vertex(nt). Two or more nodes in the generated tree may correspond
to the same vertex in G. Further, any two nodes that are connected in the tree
correspond to two connected vertices in the graph G. Figure 3 shows the tree
generated by calling CombinationTree with the parameters a, k = 4, and the
graph of Figure 2.

7

Algorithm 5: CombinationTree(v, k,G).

Input: v, k,G
Output: The root of a combination tree
root← a new tree node corresponding to v1

for i ← 0 to (k − 1) do list[i]← ∅2

list[0]← {v}3

BuildTree(root, 1, G, k)4

return root5

Figure 2: Simple graph. Figure 3: Combination tree for a, k = 4, and Fig. 2.

BuildTree proceeds in a depth-first manner. For each node nt at depth l
in the tree such that l < k, it adds, as children to nt, all nodes n′t that satisfy
the following two conditions:

Condition 1: Vertex(n′t) ∈ Neighbors(Vertex(nt)).

Condition 2: The vertex of n′t is not the vertex of an ancestor, sibling, or a
sibling of any ancestor of nt.

Notably, BuildTree may visit a given vertex of the graph more than once,
which occurs when the vertex can be reached through an alternative path from
the root. The goal of Condition 2 is to:

1. Limit the size of the generated tree by pruning subtrees as argued in
Proposition 3.6, and

2. Guarantee the existence of a subtree elsewhere in the combination tree
that contains the vertices of the pruned subtree.

Indeed, Condition 2 above yields the following two propositions:

Proposition 3.1. No two siblings of a tree node in the combination tree corre-
spond to the same vertex of the graph.

Proof. Follows directly from Condition 2.

Proposition 3.2. The maximum branching factor of the combination tree is
bounded by the degree d of the graph.

8

Proof. Given that the number of vertices in the graph is bounded and given
Proposition 3.1, each tree node has a bounded number of children.

In order to generate a tree that satisfies the two above-listed conditions, each
node nt in the tree maintains:

1. A list of the vertices of the ancestors of nt in the tree, and

2. A list of the vertices of the siblings of the ancestors of nt generated before
the node nt itself was generated.

A child for nt is generated only when the corresponding vertex does not appear
in the list of nt. When the condition is not met, we say that the subtree rooted
at this child is omitted .2 When adding n′t to the tree, the following operations
are performed in sequence:

1. The vertex corresponding to n′t is added to the list of nt.

2. The list of n′t is a copy of the list of nt.

The pseudocode of BuildTree (Algorithm 6) uses two marking functions:
MarkV for graph vertices and MarkN for tree nodes:

1. MarkV is used to mark a vertex of the graph as ‘visited.’ We assume
that all graph vertices are initially marked as ‘unvisited.’

2. MarkN is used to mark a node in the tree as ‘new,’ thus indicating that
the corresponding graph vertex has not yet been encountered. Otherwise,
the tree node is marked as ‘seen’ indicating that there already exists, in
the tree, another node corresponding to the same graph vertex.

3.2.1 Illustrating the execution of CombinationTree

Below, we illustrate the generation of the tree shown in Figure 5, obtained by
applying CombinationTree (Algorithm 5) on the vertex a, k = 4, and the
graph of Figure 4. Line 1 of Algorithm 5 generates the root of the tree, n1,
to correspond to the vertex a. Lines 2 and 3 initialize the vector array list[].
Line 4 calls BuildTree (Algorithm 6) with the two parameters n1 and 1 (for
the tree depth) to build the children of the root.

In Line 1 of Algorithm 6, the list of ‘ancestors’ is copied from that of the
parent. Thus, we have list[1] = {a}. Then, the subtrees corresponding to each
of the neighbors of a (i.e., b, d and e) are built, see Figure 5.

First the vertex b is considered. Because b /∈ list[1]={a}, a node n2 corre-
sponding vertex to b is added as a child to the root. The vertex b is added to
list[1] (i.e., list[1]={a,b}) for the sake of the descendants of n2. n2 is marked
as ‘new’ because b was not visited before. The vertex b is marked as ‘visited.’

2This terminology is used in several of the proofs below.

9

Algorithm 6: BuildTree(nt, depth,G, k)

Input: nt, depth,G, k
list[depth]← list[depth− 1]1

foreach v′ ∈ Neighbors(Vertex(nt)) do2

if v′ /∈ list[depth] then3

add n′t as a child to nt with Vertex(n′t) = v′4

list[depth]← list[depth] ∪ {v′}5

if MarkV(v′) 6= visited then6

MarkN(n′t)← new7

MarkV(v′)← visited8

else9

MarkN(n′t)← seen10

end11

if depth + 1 ≤ k then BuildTree(n′t, depth + 1, G, k)12

end13

end14

Figure 4: Simple example. Figure 5: Combination tree rooted at vertex a with
k = 4 for the graph in Figure 4.

Then, Line 12 calls Algorithm 6 recursively to generate the children of the node
n2 corresponding to vertex b.

In the new recursive call to Algorithm 6, the set of ancestors at depth 2 is
set to {a, b} (i.e., list[2]={a,b}). Vertices a, c, and d are adjacent to vertex
b. Because a ∈ list[2], it is skipped. The node n3 is created for vertex c and
added as a child of node n2. Then, the node n3 and the vertex c are appropri-
ately marked as ‘new’ and ‘visited,’ respectively. Now, list[2] = {a, b, c}. The
recursive call generates a child n4 for n3, where n4 corresponds to vertex d.

At this point, we have depth = 3. The condition in Line 12 is not satisfied,
which ends the recursion. Back to node n2 at the previous level in the recursion,
the second neighbor d of b is considered. The list of ancestors is list[2] = {a, b, c}
and d 6∈ list[2]. Therefore, a tree node n5 corresponding to the vertex d is added
as a child of n2. The list of ancestors at this level list[2] is updated to {a, b, c, d}.
Because vertex d was visited in a previous recursive call, the node n5 is marked
as ‘seen.’ Similarly the rest of the nodes are added to the tree resulting in the

10

tree shown in Figure 5.

3.2.2 Complexity of CombinationTree and BuildTree

We make the following observations about the combination tree. The depth of
the generated tree is (k − 1).

If the maximum degree of the graph is d, the size of the list at depth=1
can be at most 2d, and the size of the list at depth=(k− 1) inheriting from the
ancestors is bounded by O(d · k).

Because Algorithms 5 and 6 proceed in a depth-first manner, only the lists
along the current path are stored. Thus, the space complexity of the lists is
O(d · k2). These lists are stored in an 1×k array indexed by the depth of the
node in the tree.

Proposition 3.3 (Complexity of CombinationTree and BuildTree.). The
number of nodes in the tree is O(d(k−1)) assuming that the maximum degree
of G is d. Thus, the time and space complexity of CombinationTree and
BuildTree is O(d(k−1)).

3.2.3 Soundness and completeness of combination trees

Below, we prove that:

1. The combination trees generated by ConSubg partition the set of all
k-ConnVertices of the graph.

2. BuildTree terminates.

3. All connected subgraphs of size k including a given vertex are ‘represented’
in the combination tree built for this vertex.

Proposition 3.4 (Partitioning of combinations). No k-ConnVertices set can
be extracted from two different combination trees generated by Algorithm 5.

Proof. Every k-ConnVertices set extracted by CombinationsFromTree from
the combination tree includes the vertex of the root of the tree. Moreover, once
a combination tree has been processed, the vertex of the root is removed from
the graph. Hence, the same combination cannot be extracted from subsequent
combination trees.

Proposition 3.5. Let T be the combination tree generated by applying Combi-
nationTree on v and G. For every connected subgraph G′ induced on G by at
most k vertices including v, the depth-first tree of G′ rooted at v is isomorphic
to a subgraph of T rooted at v. Moreover, every node in T is necessary for this
property to hold.

Proof. Let T be the combination tree rooted at v resulting from applying
BuildTree on G, and let G′ be an induced connected subgraph of G of at
most k vertices including v. Let T ′ a depth-first traversal of G′ rooted at v.

11

We prove that T ′ is isomorphic to a subgraph of T . Because T visits G in a
depth-first manner without skipping already visited vertices except those vio-
lating Condition 2, a subgraph isomorphic to T ′ exists in T unless pruned by
Condition 2. We next show that even after the application of Condition 2, there
exists in T a subgraph T ′′ of T that is isomorphic to T ′.

Consider a node np of T such that (1) Vertex(np)∈ G′, (2) the vertices of
the ancestors of np in T are in G′, and (3) np is pruned by Condition 2. We
show that the path from the root of T to np cannot be isomorphic to a path
in T ′, but that there exists a path in T from the root to a node n′p such that
Vertex(np)=Vertex(n′p) that is isomorphic to a path in T ′. Because np is
pruned by Condition 2, then a node n′p where Vertex(np)=Vertex(n′p) must
exist in T where the ancestors of n′p are all in G′ (by Condition 2). Consequently,
there are two paths p and p′ in T where (1) p is the path from the root of T to
np, (2) p′ is the path from the root to n′p, and (3) the vertices of the nodes in
p and p′ are all in G′. Thus, there must exist two paths in G′ from v to v′ that
are isomorphic to p and p′. Further, only one of those two paths in G′ appears
in T ′, which is our depth-first traversal of G′. A path isomorphic to p cannot
appear in T ′ because of the canonical ordering of the vertices is used to build
the trees. Thus, there exists a path in T ′ that is isomorphic to p′, and p′ must
be isomorphic to a path in T ′. As a conclusion, the pruning by Condition 2 will
maintain in T a tree isomorphic to T ′.

Now, we prove that every node in T is necessary for the above property to
hold. Consider a node n ∈ T , and let p be the path in T from the root to n.
Let G′ be the subgraph in G induced by the vertices of the nodes in p. Given
the canonical ordering of the graph vertices, p is isomorphic to the depth-first
tree of G′. Because no two siblings in T have the same vertex label, p is the
only subgraph of T isomorphic to the depth-first tree of G′. Therefore, if n was
removed from T , there will not be a subgraph of T that is isomorphic to the
depth-first tree of G′, and the above property will be lost.

Figure 6: Simple example. Figure 7: The tree rooted at vertex a for k = 4 for
the graph in Figure 6.

Proposition 3.6. CombinationTree terminates.

Proof. BuildTree (Algorithm 6) traverses the graph in a depth-first manner
without skipping already visited vertices. Thus, the termination of BuildTree

12

is a legitimate concern. The algorithm stops proceeding down a path under two
conditions:

1. The condition in Line 12, which guarantees that the length of the ‘current’
path is always smaller than or equal to k, e.g. node n4 in Figure 7. Thus,
the depth of the tree generated by Algorithm 6 is never larger than k.

2. The condition in Line 3 fails, which enforces Condition 2 of Section 3.2.
Proposition 3.2 guarantees that the branching factor of the tree generated
by Algorithm 6 is bounded.

Consequently, the size of the tree generated by BuildTree is bounded, and
BuildTree terminates.

3.3 Extracting k-ConnVertices from a combination tree

CombinationsFromTree (Algorithm 7) is recursive and calls itself at Line 11.
It also calls the functions k-combinations and k-compositions, and uses a
new set operator ⊗t.

• k-combinations(i,s) generates all combinations of size i of the elements
of a set s. We assume that each element in the generated set is ordered.
For example,

k-combinations(2, {n2, n6, n8}) ={{n2,n6},{n2,n8},{n6,n8}}.

BF-ConSubg (after removing Line 8) is an obvious implementation for
k-combinations. Other implementations are reported in [38, 2]. Ours is
described in [27].

• k-compositions generates all strings of length size on the integer interval
[1,(Sum− size+ 1)] such that the sum of the elements of a string is equal
to Sum. For example,

k-compositions(3, 4) = {{1, 1, 2}, {1, 2, 1}, {2, 1, 1}}.

Because every element in the generated set is a string, the element is
considered to be ordered. A recursive algorithm for k-compositions is
attributed to Knuth [55]. Implementations are reported in [38, 2]. Our
implementation is tree based and described in [27].

• The binary operator ⊗t operates on sets of sets and is discussed in Sec-
tion 3.3.1.

Below, we formally define and analyze the operator ⊗t, provide the pseudocode
of 3.3, illustrate its execution on our running example, and discuss the imple-
mentation of the operator ⊗t.

13

3.3.1 Defining of the ⊗t operator

We introduce the following definition for an operator that operates on two sets:

Definition 3.7 (UnionProduct). We define the binary operator Union-
Product, denoted ⊗, as the operator that combines two sets of sets as follows:

S1 ⊗ S2 = { x | (x = s1 ∪ s2) ∧ (s1 ∈ S1) ∧ (s2 ∈ S2) } (2)

UnionProduct is a cross-product-like operator in which two elements are com-
bined by union instead of forming the usual tuple.

We refine the UnionProduct operator into a binary operator denoted ⊗t,
which we use in CombinationsFromTree (Line 15 of Algorithm 7). ⊗t oper-
ates on two sets of sets of nodes from a combination tree as follows:

S1⊗t S2 =

∅, if S1 = ∅
S1, if S2 = ∅
{x | (x = s1 ∪ s2) ∧ (s1 ∈ S1) ∧ (s2 ∈ S2)
∧ (∀i ∈ s1, j ∈ s2,Vertex(i) 6=Vertex(j))
∧ ((∃j ∈ s2 MarkN(j) =‘new’) ∨ (∀i ∈ s1, j ∈ s2, l ∈Children(i),

Vertex(j) 6=Vertex(l)))}, otherwise.
(3)

Let us explain the meaning of the two conditions in Expressions (3). The
first condition is:

∀i ∈ s1, j ∈ s2,Vertex(i) 6=Vertex(j). (4)

This condition guarantees that no two nodes in an element of S1⊗tS2 correspond
to the same graph vertex. The goal is to guarantee that every element of S1⊗tS2

has only nodes corresponding to distinct graph vertices. The second condition
is the disjunction of the two following conditions:

∃j ∈ s2 MarkN(j) = ‘new’ (5)

∀i ∈ s1, j ∈ s2, l ∈Children(i),Vertex(j) 6=Vertex(l). (6)

The condition in Expression (5) guarantees that an element is added to S1⊗tS2

when at least one of the tree nodes in s2 is ‘new,’ that is, it corresponds to a
vertex that had not been encountered before. The condition in Expression (5)
is thus to ensure that elements not encountered before are included in S1⊗t S2.

The intuition behind the condition in Expression (6) is as follows. When a
tree node j ∈ s2 corresponds to the same vertex as a child of a tree node i ∈ s1,
then the set of vertex labels obtained from the subtree rooted at j can also
be obtained from the subtree rooted at i and from subtrees rooted at siblings,
parents, and siblings of parents of i. Hence, s1 ∪ s2 is omitted from S1 ⊗t S2.

Note that, while the operator ⊗ is commutative, the operator ⊗t, by defini-
tion, is associative but not commutative.

Proposition 3.8 (Time complexity of S1 ⊗t S2.). The time complexity of S1

⊗t S2 is O (|S1| · |S2| · |s1| · |s2|), where |s1| and |s2| are the sizes of the largest
elements of |S1| and |S2| respectively.

14

3.3.2 Pseudocode of CombinationsFromTree

CombinationsFromTree (Algorithm 7) takes as parameters a combination
tree and a combination size k. It returns combinations of nodes of the tree that:

1. Include the root of the tree and

2. Correspond to the connected subgraphs of size k of the original graph.

Algorithm 7: CombinationsFromTree(tree, k)

Input: tree, k
Output: A list of sets of nodes of the tree including the root node
t← roottree1

lnodesets← ∅2

if k = 1 then return {t}3

for i← 1 to Min(|Children(t)|, (k − 1)) do4

foreach NodeComb ∈ k-combinations(i,Children(t)) do5

foreach string ∈ k-compositions(i, (k − 1)) do6

fail← false7

for pos← 1 to i do8

stRoot← element in position pos in NodeComb9

size← element in position pos in string10

S[pos]←CombinationsFromTree(stRoot, size)11

if S[pos] = ∅ then fail← true; break12

end13

if fail then continue14

foreach combProduct in S[1]⊗t · · · ⊗t S[i] do15

lnodesets← lnodesets ∪ {combProduct ∪ {t}}16

end17

end18

end19

end20

return lnodesets21

3.3.3 Illustrating the execution of CombinationsFromTree

Consider the graph in Figure 8 and its corresponding combination tree shown
in Figure 9. The tree is passed to Algorithm 7 with k = 4, yielding:

{{n1, n2, n3, n4}, {n1, n2, n3, n8}, {n1, n2, n5, n8}, {n1, n6, n7, n8}}, (7)

which is mapped in a straightforward manner to yield the following combinations
of vertices:

{{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, d, c, e}}. (8)

15

Figure 8: Simple graph. Figure 9: The tree rooted at vertex a for k = 4 for
the graph in Figure 8.

Below, we explain step by step how CombinationsFromTree reaches the
result in Expression (7). The call to CombinationsFromTree(n1,4) yields
three iterations for i=1, 2, and 3 in Line 4. Thus, in Line 5, NodeComb iterates
over the elements of the following sets:

• For i = 1, k-combinations(1,{n2, n6, n8})= {{n2}, {n6}, {n8}},

• For i = 2, k-combinations(2,{n2, n6, n8})= {{n2, n6}, {n2, n8}, {n6, n8}},
and

• For i = 3, k-combinations(3,{n2, n6, n8})= {{n2, n6, n8}}.

At Line 6, string iterates over the elements of the following sets:

• For i = 1, k-compositions(1,3)={{3}},

• For i = 2, k-compositions(2,3)={{1,2},{2,1}}, and

• For i = 3, k-compositions(3,3)={{1,1,1}}.

In order to continue our illustration of the operation of CombinationsFromTree,
we introduce the following definition:

Definition 3.9 (Configuration). We define a configuration to be a set of 3-tuple
〈j,Nj , Cj〉 where:

1. j is a positive integer denoting the number of subtrees of the combinations
tree to consider,

2. Nj is an ordered set of size j (|Nj | = j) of tree nodes that have the same
parent in the combination tree, and

3. Cj is an ordered set of positive integers (|Cj | = j). Each integer in Cj

specifies the size of the combination of tree nodes to be extracted from
the subtree rooted at the node at the same position in Nj .

16

Examples of configurations in Figure 9 are

〈1, {n2}, {3}〉, 〈2, {n2, n6}, {1, 2}〉, 〈3, {n2, n6, n8}, {1, 1, 1}〉. (9)

The three nested loops from Line 4 to Line 16 generate all configurations
for the children of a given root (Lines 4, 5, and 6), generate the combinations
of tree nodes from each configuration (Line 11), then combine the resulting
combinations within each configuration (Line 15). Below, we illustrate this
process for i=1, 2, and 3.

For i = 1, NodeComb ∈ {{n2}, {n6}, {n8}}, and string ∈ {{3}}. We have
three configurations at this point:

〈1, {n2}, {3}〉, 〈1, {n6}, {3}〉, 〈1, {n8}, {3}〉. (10)

For pos=1, Line 11 calls CombinationsFromTree on each node appear-
ing in a configuration as follows:

• CombinationsFromTree(n2,3) returns S[1]= {{n2, n3, n4}}.
• CombinationsFromTree(n6,3) returns S[1]= ∅.
• CombinationsFromTree(n8,3) returns S[1]= ∅.

Given that each configuration has only one node, the operator ⊗t is not
applied. Given that the first configuration yields one element and the
second and third configurations yield empty results, Line 15 is called only
once for i = 1, yielding:

combProduct = {{n2, n3, n4}} (11)

For i = 2, NodeComb ∈ {{n2, n6}, {n2, n8}, {n6, n8}}, and string ∈ {{1,2},
{2,1}}. We have six configurations at this point:

〈2, {n2, n6}, {1, 2}〉, 〈2, {n2, n6}, {2, 1}〉,
〈2, {n2, n8}, {1, 2}〉, 〈2, {n2, n8}, {2, 1}〉, (12)

〈2, {n6, n8}, {1, 2}〉, 〈2, {n6, n8}, {2, 1}〉.

Line 11 calls CombinationsFromTree on each node appearing in a con-
figuration as follows:

1. For configuration 〈2, {n2, n6}, {1, 2}〉, we have the following calls:

• pos=1, CombinationsFromTree(n2,1) returns S[1]={{n2}}.
• pos=2, CombinationsFromTree(n6,2) returns S[2]={{n6,n7}}.

2. For configuration 〈2, {n2, n6}, {2, 1}〉, we have the following calls:

• pos=1, CombinationsFromTree(n2,2) returns S[1]={{n2,n3},
{n2, n5}}.

• pos=2, CombinationsFromTree(n6,1) returns S[2]={{n6}}.

17

3. For configuration 〈2, {n2, n8}, {1, 2}〉, we have the following calls:

• pos=1, CombinationsFromTree(n2,1) returns S[1]={{n2}}.
• pos=2, CombinationsFromTree(n8,2) returns S[2]= ∅.

4. For configuration 〈2, {n2, n8}, {2, 1}〉, we have the following calls:

• pos=1, CombinationsFromTree(n2,2) returns S[1]={{n2,n3},
{n2,n5}}.

• pos=2, CombinationsFromTree(n8,1) returns S[2]= {{n8}}.
5. For configuration 〈2, {n6, n8}, {1, 2}〉, we have the following calls:

• pos=1, CombinationsFromTree(n6,1) returns S[1]={{n6}}.
• pos=2, CombinationsFromTree(n8,2) returns S[2]= ∅.

6. For configuration 〈2, {n6, n8}, {2, 1}〉, we have the following calls:

• pos=1, CombinationsFromTree(n6,2) returns S[1]={{n6,n7}}.
• pos=2, CombinationsFromTree(n8,1) returns S[2]= {{n8}}.

Hence, Line 15 is called only four times because two of the above results
for pos = 2 are empty:

combProduct = {{n2}} ⊗t {{n6, n7}}
= ∅ (13)

combProduct = {{n2, n3}, {n2, n5}} ⊗t {{n6}}
= ∅ (14)

combProduct = {{n2, n3}, {n2, n5}} ⊗t {{n8}}
= {{n2, n3, n8}, {n2, n5, n8}} (15)

combProduct = {{n6, n7}} ⊗t {{n8}}
= {{n6, n7, n8}} (16)

For i = 3, NodeComb ∈ {{n2, n6, n8}} and string ∈ {{1, 1, 1}}. We have
one configuration at this point: 〈3, {n2, n6, n8}, {1, 1, 1}〉. Line 11 calls
CombinationsFromTree on each node in this unique configuration with
the corresponding results:

• pos=1, CombinationsFromTree is called with (n2,1), which re-
turns S[1]= {{n2}}.
• pos=2, CombinationsFromTree is called with (n6,1), which re-

turns S[2]= {{n6}}.
• pos=3, CombinationsFromTree is called with (n8,1), which re-

turns S[3]= {{n8}}.

Hence, Line 15 is called only once to combine the results of the above
calls, yielding:

combProduct = ({{n2}} ⊗t {{n6}})⊗t {{n8}}
= ∅ (17)

18

At the end, adding the root node n1, we have

lnodesets = {{n1, n2, n3, n4}, {n1, n2, n3, n8}, {n1, n2, n5, n8}, {n1, n6, n7, n8}}.

Thus, the set of combinations of four vertices extracted from the combination
tree of Figure 9 is {{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, d, c, e}}.

3.3.4 Implementation of the ⊗t operator

In general, the process of computing S1⊗tS2, where S1 and S2 are sets of sets,
can be executed in two steps:

1. The computation of S1 ⊗ S2 as specified in Expression (2), and

2. The removal from the resulting set of those elements that do not satisfy
the conditions of ⊗t specified in Expression (3).

We propose to compute S1 ⊗t S2 ⊗t . . . ⊗t Sn by modeling the problem as
a Constraint Satisfaction Problem (CSP) [10]. A CSP, P=(V,D, C), is fully
defined by specifying the set of variables V, the set of their respective domains
D, and the set of constraints C that restrict the allowed combinations of values to
variables. A solution to a CSP is an assignment of a value to each variable such
that all constraints are simultaneously satisfied. In general, the task is to find
one or all solutions to the CSP. CSPs are commonly used to model combinatorial
problems and solve using advanced search techniques and constraint propagation
algorithms [10]. We model the execution of the operator ⊗t over a sequence of
sets S1, S2, . . . , Sn as a CSP as follows. A variable Vi of the CSP is (the ‘name’
of) the set Si ∈ {S1, S2, . . . , Sn}. The domain of the variable Vi is the definition
of the corresponding set. A binary constraint is applied to every two variables
Vi and Vj such that i < j. It constrains the acceptable combinations of values
for Vi and Vj to satisfy the conditions3 specified by Expression (3). We solve
the CSP using exhaustive backtrack search [10], which yields all solutions to the
problem, thus the set S1⊗t S2⊗t . . .⊗t Sn. The ordering of the variables in the
search is fixed and static, and follows that of the sets Si. We use a standard
partial-lookahead technique to improve the performance of the search known as
forward checking (FC) [17]. In summary, backtrack search with FC operates as
follows:

1. A variable Vi is assigned a value from its domain. Initially i = 1.

2. All variables Vj>i are ‘revised’ given Vi. To revise a variable Vj given a
variable Vi, we remove all values in the domain of Vj that do not have at
least one consistent value in the domain of Vi.

The search process is repeated by assigning any unassigned variable, until
all the variables have been assigned. When all the variables are assigned,
the assignment is a solution to the CSP, and consequently a valid element of

3These conditions are discussed in the proof of Theorem 3.11.

19

S1 ⊗t S2 ⊗t . . .⊗t Sn. If, at some point during search, the domain of any of the
unassigned variables is empty or after a solution is found, we backtrack chrono-
logically to consider alternative assignments to the variables. The process ends
when all the values for the first variable have been considered.

3.3.5 Completeness and soundness of CombinationsFromTree

We first establish that CombinationsFromTree generates only connected
subgraphs, then use this result to prove its soundness and completeness.

Proposition 3.10. Every combination of tree nodes generated by Combina-
tionsFromTree induces a connected subgraph of the combination tree and
corresponds to a set of vertices that induce a connected subgraph in the graph.

Proof. We first prove that every combination generated by Combinations-
FromTree induces a connected subgraph in the combination tree. Then, we
prove that the vertices corresponding to the generated combination of tree nodes
form a connected subgraph of the original graph.

The proof is by induction. When Algorithm 7 is called on a tree of depth
zero, the only combination returned is the root, which induces a connected
subgraph in the tree. Thus, we established the base case. We form the inductive
hypothesis as follows: all generated combinations from tree of depth (d − 1)
are connected. Then, we state and prove the inductive step: If all generated
combinations from tree of depth (d − 1) are connected, then the combinations
returned from the tree of depth d are also connected. When Algorithm 7 is called
on a tree of depth d rooted at root, it is recursively called on the children of the
root. Each combination generated from the tree is formed of combinations of
nodes obtained from calls to Algorithm 7 on subtrees of depth at most (d− 1).
Each of those subtrees are rooted at a child of root, hence each combination
returned from the subtrees includes a child of root, and is connected. When
these combinations are combined, and root is added to them, the result is a
combination of nodes that induces a connected subgraph in the combination
tree.

An edge between two nodes in the combination tree exists when the graph
vertices to which the tree nodes correspond are adjacent. Thus, every edge in the
combination tree corresponds to an edge in the original graph. Consequently, the
set of vertices corresponding to a combination of connected tree nodes are also
connected in the graph. Thus, the proof holds by the principle of mathematical
induction.

Theorem 3.11 (CombinationsFromTree is sound and complete.). Given
a combination tree generated from a graph G with vertex v and the parameter
k, CombinationsFromTree generates all unique k-ConnVertices sets that in-
clude the vertex v.

Proof. First, we prove that CombinationsFromTree (Algorithm 7) generates
all k-ConnVertices sets that include v. Consider a combination of k vertices of

20

G that includes vertex v and induces a connected subgraph of G. Consider
also the combination tree T generated from G with vertex v and the parameter
k. Proposition 3.5 insures that, for every connected subgraph G′ induced on
G by at most k vertices including v, the depth-first tree of G′ rooted at v is
isomorphic to a subgraph of T rooted at v. Therefore, considering all possible
connected subgraphs of T of size k rooted at v guarantees that all connected
subgraphs in G that include vertex v are considered.

The argument now shifts to showing that all possible induced subtrees in the
combination tree including the root are considered in Line 15 of Algorithm 7.
Let root be the root of the combination tree considered. The three loops in
Lines 4, 5, and 6 ensure that Algorithm 7 systematically enumerates all the
configurations4 that lead to combinations of size (k − 1). Using these configu-
rations, Algorithm 7 is recursively called in Line 11 on subtrees rooted at the
children of root, and then the results are passed to the operator ⊗t to generate
combinations of tree nodes of size (k − 1). The task is thus now to prove that
Line 15 produces all k-ConnVertices sets.

The operator ⊗t is applied to the sets S[pos], where pos varies from one
to the number of subtrees in the considered configuration. The sets S[pos] are
produced by Algorithm 7 (see Line 11) from subtrees ti rooted at children of
root. Further, each element in S[pos] is a combination of tree nodes and induces
a connected subgraph in the tree by Proposition 3.10. Each element in the set
produced at Line 11 by the application of the ⊗t operator is a set of tree nodes
of size (k−1). The set produced at Line 15 is, by the definition5 of operator ⊗t,
a subset of the cross-product-like operation of the sets to which it is applied.
The elements that are not removed from the ‘complete’ cross-product are those
that verify the conditions specified in Expression (3). The task is now to prove
that:

• The elements ‘ruled out’ by the Expression (3) yield combinations of tree
nodes that are already in the set (i.e., they are ‘duplicate’ elements).

• No ‘duplicate’ elements are present in the resulting set.

Let us return to the application of the operator ⊗t in Algorithm 7. Let
S[pos] and S[pos + 1] be two sets of tree-nodes combinations obtained from
recursive calls to Algorithm 7 and to which Algorithm 7 applies the operator
⊗t. At the lowest level of the recursive calls, the tree roots given as arguments
to CombinationsFromTree in Line 11 of Algorithm 7 are single tree nodes.
In Line 15, the result from subtrees that have the same parent are combined
using the operation ⊗t. Hence, the Expression (6) must hold for every pair of
nodes in an element of S[pos]⊗t S[pos + 1],

Let comb and comb′ be two combinations generated from a combination
tree such that the set of tree nodes in comb is different from that in comb′,
but such that comb and comb′ correspond to the same set of graph vertices.
Given a combination of tree nodes, which is element of S[pos] ⊗t S[pos + 1],

4See Definition 3.9.
5See Definition 3.7.

21

we showed in Proposition 3.10 that the nodes in the combination are connected
in the tree. By construction, the root of the combination tree is one of the
nodes in the combination. Hence, both comb and comb′ induce connected sets
of nodes in the tree, and include the root node of the combination tree. Given
that comb 6= comb′, there must necessarily exist a tree node n that has a child
nc, such that n ∈ comb, n ∈ comb′, nc ∈ comb and nc /∈ comb′. Because comb
and comb′ both correspond to the same set of graph vertices, there must be
a node n′c ∈ comb′ such that Vertex(n′c) =Vertex(nc), which is impossible
because it violates Expression (6). Indeed, we have the nodes n, n′c ∈ comb′ such
that ∃nc ∈Children(n) such that Vertex(nc)=Vertex(n′c). Because of this
impossibility, we conclude that no two combinations of tree nodes in S[pos]⊗t

S[pos + 1] can correspond to the same set of graph vertices. In conclusion, no
two elements in S[pos]⊗t S[pos + 1] are the same.

4 Memoization

At a node n at depth depth in the combination tree, CombinationsFromTree
(Algorithm 7) recursively calls itself (Line 11) at most the following number of
times:

k−depth−1∑
i=1

(
idi(k − depth− i− 1)(i−1)

)
, (18)

where d denotes the degree of the graph. At each call, the arguments passed to
CombinationsFromTree are a child of n and a value of size ranging from 1
to (k − depth − 1). Hence, there are at most d · (k − depth − 1) distinct calls
that can be made from a single node at depth in the combination tree.

To avoid executing the redundant calls CombinationsFromTree, the first
time Algorithm 7 is called on a tree node with a given combination size, the
result is stored in the node. The next time the call is made on the same node
with the same combination size, the stored result is retrieved and used, which
avoids re-executing the call. Hence we store at most (k − depth − 1) sets of
k-ConnVertices sets at each node. These k-ConnVertices sets are stored in an
array indexed by the size of the combination.

Likewise, the results of the calls to k-compositions are also memoized in
a data structure that is global to ConSubg (Algorithm 3). The former memo-
ization (i.e., in CombinationsFromTree) proved to be extremely effective in
reducing running time. The latter (i.e., in k-compositions) was also quite ef-
fective but to a lesser extent than the former. Neither introduced running-time
overhead. The memory overhead of the former dominates that of the latter.

5 Analysis of ConSubg

Because there can be an exponential number in k of connected subgraphs with
k vertices, the worst-case time and space complexities remain prohibitive. For

22

this reason, we forego a formal complexity analysis and rely on an empirical
evaluation of our algorithm for classes of graphs of interest.

Below, we prove the correctness of our algorithm.

Theorem 5.1 (Soundness and completeness of ConSubg). ConSubg (Algo-
rithm 3) generates all unique k-ConnVertices sets from the combination trees.

Proof. Let v be the first vertex considered in Algorithm 3. Algorithm 7 returns
all unique combinations of vertices including v, as established by Theorem 3.11.
Therefore, any k-ConnVertices set that includes v is generated from the combi-
nation tree with a root node labeled with vertex v.

After removing vertex v from the graph, Algorithm 3 repeats the same pro-
cess for a vertex v′ chosen arbitrarily from the graph. All k-ConnVertices sets
starting at v′ in the updated graph are generated in a similar manner. Thus,
all k-ConnVertices sets in the graph that include v′ are generated either when
Algorithm 3 processes v (and those combinations would thus include v) or when
it processes v′. Hence, no k-ConnVertices set that includes v′ can be missed.
Finally, all k-ConnVertices sets for each of the remaining graph vertices are gen-
erated in a similar manner. Indeed, the k-ConnVertices sets for a given vertex
are generated by Algorithm 3 at any point either before the vertex is considered
or when it is processed (at the latest).

Proposition 3.4 asserts that no k-ConnVertices set can be generated from two
distinct combination trees. Theorem 3.11 guarantees that all k-ConnVertices
sets generated from a combination tree are unique. Therefore, all k-ConnVertices
sets generated by Algorithm 3 are also unique.

6 Empirical evaluations

Below, we compare the performance of the proposed algorithm, ConSubg, to
that of the brute-force algorithm, BF-ConSubg, and its localized variant, LBF-
ConSubg. We measured the CPU time of executing the algorithms on graphs
with a fixed degree (Section 6.1), scale-free graphs (Section 6.2), and graphs of
constraint satisfaction benchmarks (Section 6.3). For random graphs (i.e., fixed
degree and scale-free graphs), we generated 30 instances per data point. In all
cases, we averaged the results on the instances that completed within one hour
of CPU time. A missing data point corresponds to an experiment that did not
terminate within the one-hour time limit.

6.1 Graphs of a fixed degree

Because ConSubg is designed to exploit the structure of the graph, one would
expect that its performance would be worse on graphs where all vertices have
the same degree (i.e., graphs lacking structure). For this purpose, we wrote
a generator to generate connected random graphs where all vertices have the
same degree. Given the number of vertices of a graph and the degree of the
graph (which is a constant less than the number of vertices), we first determine

23

the number of edges in the graph using the hand-shaking theorem. Then, we
repeat the following steps until each edge is connected to two vertices. We
select an edge that has not been connected to any vertices. Then, we select two
random vertices, and connect them with the edge only if the two vertices are
not already adjacent and if the degree of each of them is less than the specified
degree entered as input. If the resulting graph is not connected, we discard it
and repeat the process.

To test our algorithms on the graphs generated as described above, we con-
ducted the experiments summarized in Table 2. In those experiments, we in-

Table 2: Experiments on random graphs of a fixed degree.

Experiment |V | Degree Size of subgraphs Figure

I 100 10 k = 3, 4, 5, 6, 7 Figure 10
100 40 k = 3, 4, 5, 6 Figure 11

II {100,150,. . .,900} 10 k = 4 Figure 12
{100,150,. . .,900} 40 k = 4 Figure 13

III 100 {5,10,. . .,40} k = 4 Figure 14
300 {5,10,. . .,40} k = 4 Figure 15
400 {5,10,. . .,40} k = 4 Figure 16

vestigated the effect of increasing the size of the subgraph on sparse and dense
graphs of 100 vertices (Experiment I), the effect of increasing the number of ver-
tices for a fixed size of the subgraph on sparse and dense graphs (Experiment II),
and the effect of increasing the density of the graph for a fixed subgraph size
and on graphs with 100, 300, and 400 vertices.

Experiment I Figure 10 shows the performance of the three algorithms on
sparse graphs for increasing combination values k. On those graphs, Con-
Subg clearly outperforms BF-ConSubg and LBF-ConSubg. Notably, BF-
ConSubg and LBF-ConSubg fail to terminate within the CPU time limit
for k = 7 while ConSubg succeeds. Figure 11 shows the only experiment
where ConSubg fails to terminate because of the memory limitation while BF-
ConSubg and LBF-ConSubg do. This situation occurs for k = 6. Note
that the graph density in this experiment is 40.40%. Clearly, ConSubg fails
to handle large values of k on dense graphs because of its memory require-
ments. However, note that large dense graphs are not of much use in practice
because they have a prohibitively large number of connected subgraphs, which
are challenging to store and operate on even if we were able to generate them.

Experiment II Figures 12 and 13 show that our new algorithm ConSubg
vastly outperforms the brute-force algorithm BF-ConSubg and its localized
version LBF-ConSubg as the size of the network increases. Indeed, on graphs
of degree 10, BF-ConSubg and LBF-ConSubg cannot handle graphs beyond

24

0

100

200

300

400

500

600

700

800

900

3 4 5 6 7

Ti
m

e
 (

se
c)

k

Random: 100 vertices, degree=10

ConSubg

LBF-ConSubg

BF-ConSubg

Figure 10: Increasing k with |V |=100 and of degree 10.

0

500

1,000

1,500

2,000

2,500

3 4 5 6

Ti
m

e
 (

se
c)

k

Random: 100 vertices, degree=40

ConSubg

LBF-ConSubg

BF-ConSubg

Figure 11: Increasing k on graphs with |V |=100 and of degree 40.

650 vertices. On graphs of degree 40, they both stop at graphs with 600 ver-
tices. ConSubg easily scales to larger graphs in both cases and its cost remains
relatively negligible.

Experiment III Figures 14, 15, and 16 show the performance of the algo-
rithms as the degree of the graph grows on graphs with 100, 300, and 500 vertices
respectively and for a fixed combination size k = 4. Here again, we see that
the performance of our new algorithm ConSubg deteriorates as the density of
the graph increases, again reaffirming that ConSubg is not suitable for dense

25

0

500

1,000

1,500

2,000

2,500

3,000

3,500

100 200 300 400 500 600 700 800 900

Ti
m

e
 (

se
c)

Number of Vertices

Random: degree=10, k=4

ConSubg

LBF-ConSubg

BF-ConSubg

Figure 12: Increasing the number of vertices for k = 4 and graphs of degree 10.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

100 200 300 400 500 600 700 800 900

Ti
m

e
 (

se
c)

Number of Vertices

Random: degree=40, k=4

ConSubg

LBF-ConSubg

BF-ConSubg

Figure 13: Increasing the number of vertices for k = 4 and graphs of degree 40.

graphs (see Figure 14). However, as the number of vertices increases, the brute-
force algorithms BF-ConSubg and its localized version LBF-ConSubg are
an order of magnitude more costly than ConSubg (see Figures 15 and 16).
The main drawback of BF-ConSubg and LBF-ConSubg is that they gener-
ate many subgraphs that are not connected and, thus, must be discarded after
they are generated, which ConSubg is designed to not do. Incidentally, in Fig-
ures 14, 15, and 16 the number of combinations generated by LBF-ConSubg
and BF-ConSubg is constant for all degree values. However the corresponding
curves present a slight positive slope. This slight slope can be attributed to the
cost of testing the connectivity of the generated combinations.

26

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40

Ti
m

e
 (

se
c)

Degree

Random: 100 vertices, k=4

ConSubg

LBF-ConSubg

BF-ConSubg

Figure 14: Increasing the degree of the vertices for |V |=100 and k = 4.

0

50

100

150

200

250

5 10 15 20 25 30 35 40

Ti
m

e
 (

se
c)

Degree

Random: 300 vertices, k=4

ConSubg

LBF-ConSubg

BF-ConSubg

Figure 15: Increasing the degree of the vertices for |V |=300 and k = 4.

In summary and in all our experiments on randomly generated graphs of a
fixed degree, ConSubg usually and largely outperforms LBF-ConSubg, which
always outperforms BF-ConSubg. In particular:

1. The performances of LBF-ConSubg and BF-ConSubg are notably sim-
ilar, while the localized version is always slightly quicker than, or at least
as quick as, the original brute-force algorithm.

2. As the density of the graph increases, the likelihood that a given combina-
tion of k vertices induces a connected subgraph increases, and the benefit
of exploiting the structure of the graph obviously decreases. At some

27

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

5 10 15 20 25 30 35 40

Ti
m

e
 (

se
c)

Degree

Random: 500 vertices, k=4

ConSubg

LBF-ConSubg

BF-ConSubg

Figure 16: Increasing the degree of the vertices for |V |=500 and k = 4.

point, the cost of building the data structures necessary for ConSubg be-
comes detrimental. Note that, of all the experiments we conducted, this
problem is visible only in the experiments shown in Figures 11 and 16
where the graph density is 40.40%, which is considered a high-density
graph in practice.

6.2 Scale-free graphs

Scale-free graphs are commonly thought to model social networks and have
received an increased attention in recent years. To Generate Scale-Free Net-
works, we used the procedure scale free graph from the open-source soft-
ware NetworkX.6 The procedure is based on the model proposed in [7]. We
chose the default parameters for scale free graph (alpha=0.41, beta=0.54,
gamma=0.05, delta in=0.2, and delta out=0) to generate the directed graph,
and used the procedure to undirected in NetworkX to obtain the correspond-
ing undirected graph. We generated undirected graphs of 100, 200, . . ., 900
vertices.

Increasing the number of vertices Figure 17 shows the CPU time needed
to generate all subgraphs of size four (i.e., k = 4) by each of the three al-
gorithms compared. We see that both our algorithms ConSubg and LBF-
ConSubg scale significantly better with increasing number of vertices than
the brute-force algorithm BF-ConSubg. Also, ConSubg clearly outperforms
LBF-ConSubg.

6NetworkX 1.3 http://networkx.lanl.gov/.

28

0

500

1000

1500

2000

2500

3000

3500

50 150 250 350 450 550 650 750 850

Ti
m

e
 (

se
c)

Number of Vertices

Scale Free: k=4

ConSubg

LBF-ConSubg

BF-ConSubg

Figure 17: Increasing the number of vertices with k = 4 in scale-free networks.

Increasing k, the combination size Figure 18 compares the performance of
the three algorithms on scale-free networks of 100 vertices as k grows. The brute-
force algorithm, BF-ConSubg, does not terminate within the time limit of one
hour for k = 7, and the performance of its localized version, LBF-ConSubg,
is an order of magnitude worse than that of ConSubg.

0

500

1000

1500

2000

3 4 5 6 7

Ti
m

e
 (

se
c)

k

Scale Free: 100 vertices

ConSubg

LBF-ConSubg

BF-ConSubg

Figure 18: Increasing k in scale-free networks of 100 vertices.

In summary, ConSubg clearly outperforms its competitors on scale-free
graphs, which are of practical importance. Interestingly, the performance of the
localized variant of the brute-force algorithm, LBF-ConSubg, is significantly
better than that of the original algorithm, albeit it is not as good as that of

29

ConSubg. Thus, while localization helps, it does not take full advantage of the
problem structure.

6.3 CSP graphs

We examined the benchmarks of constraint satisfaction problems (CSPs) used
in the 2009 Constraint Solver Competition,7 and considered the dual graphs of
1689 CSP instances. Given that our algorithm is best suited for sparse graphs,
it is appropriate to report the density of those benchmarks. 56.5% of the dual
graphs of the 1689 benchmark instances have density less than or equal to
15%. The dual graphs can be reformulated, without loss of information, into
equivalent graphs by removing redundant edges [10]. We applied the algorithm
proposed in [20, 21] to remove redundant edges. The resulting minimal dual
graphs that have density less than or equal to 11% constitute 79.7% of all
tested instances. Consequently, it is fair to say that most benchmark problems,
including the most challenging ones, have sparse dual graphs.

We executed ConSubg, LBF-ConSubg, and BF-ConSubg with k = 5
on the dual graphs of those 1689 instances after removing redundancies. Each
experiment on a single instance was limited to a one hour. Table 3 shows a
summary of the results. Below we relate some observations:

Table 3: Summary of results on 1689 CSP benchmark instances.

Number of instances ConSubg LBF-ConSubg BF-ConSubg

Completed 1633 1602 918

Not completed 56 87 771

Algorithm performs best 1296 35 0

Completed by no algorithm 21

Missed by only ConSubg 35

• ConSubg is clearly the champion, both in terms of the number of in-
stances it solves (1633 for ConSubg versus 1602 for LBF-ConSubg and
918 for BF-ConSubg) and the number of instances on which it performs
as good as, or better than, the other two algorithms (1296 for ConSubg
versus 35 for LBF-ConSubg and 0 for BF-ConSubg).

• ConSubg failed to complete the 56 instances because it ran out of memory
space well before the one-hour time limit imposed on the experiments.
However, LBF-ConSubg and BF-ConSubg failed to complete 87 and
771 instances respectively only because of the time limitation.

• ConSubg does not terminate within one hour processing time on 35 in-
stances that were completed by both LBF-ConSubg and BF-ConSubg.
A quick examination of those 35 instances shows that they all come from

7http://www.cril.univ-artois.fr/CSC09/benchs/CSC09.tar.

30

a single problem class (called bddSmall). They have high density (av-
erage 31.59%) and relatively few vertices (exactly 133 vertices), which
means that most of the combinations enumerated by LBF-ConSubg and
BF-ConSubg are connected. Such problems are not suited for Con-
Subg, which is intended for large problems with small density where LBF-
ConSubg and BF-ConSubg would fail. Further, those 35 instances yield
a huge number of k-ConnVertices (from 65,848,590 to 102,891,308), which
is one to two orders of magnitude the number of k-ConnVertices of all 1654
other instances. Thus, that constraint propagation algorithms intended
to be applied on such problems become totally impractical. In conclusion,
this class of problems is not relevant to the techniques targeted by our
approach.

• Excluding the 35 bddSmall instances discussed above, we notice that the
set of 21 instances not completed by ConSubg is a strict subset of the
set of 87 instances not completed by LBF-ConSubg, which is in turn a
strict subset of the 771 instances not completed by BF-ConSubg. Thus,
except for the 35 bddSmall instances, ConSubg terminates on more in-
stances than LBF-ConSubg, which terminates on more instances than
BF-ConSubg.

Tables 4, 5, and 6 provide condensed information on 1617 instances pertain-
ing to 123 classes of problems (the remaining 72 instances tested were too simple
to be reported). For each class, the tables provide the number of instances, the
average number of vertices of the dual graphs after removing redundant edges
and the average density of the resulting graphs. The tables provide also the
average CPU time and the number of instances solved by ConSubg, LBF-
ConSubg, and BF-ConSubg. The average CPU time is computed over the
number of completed instances by the algorithm. Finally, those tables give the
average number of connected subgraphs of size 5. Entries shown in boldface in
the table correspond to the best values found. The dash character (-) indicates
that the algorithm did not terminate on any instance in the class. ConSubg
runs out of memory, and LBF-ConSubg and BF-ConSubg run out of time.

Tables 4 and 5 show instances where ConSubg clearly outperforms the other
two algorithms, frequently solving instances that resisted other algorithms and
always reducing the CPU by often several orders of magnitude.

Table 6 shows seven problem classes where the performance of ConSubg
was the least spectacular. As one can clearly see, the graphs of those instances
have relatively few vertices but high density. However, except for the class
bddSmall, ConSubg solves all instances solved by the other algorithms and
CPU time does not exceed half a second.

7 Conclusion

In this paper, we proposed a new algorithm, ConSubg, for computing all con-
nected subgraphs of a graph that have a fixed size. This problem is particularly

31

Table 4: Results of experiments on CSP benchmarks for k = 5 (Part 1).

Benchmark ConSub LBF BF

#
In

s
t
a
n
c
e
s

#
V
e
r
t
ic
e
s

(
a
v
e
r
a
g
e
)

D
e
n
s
it
y

%
(
a
v
e
r
a
g
e
)

T
im

e
[m

s
]

(
a
v
e
r
a
g
e
)

#
In

s
t
a
n
c
e
s

s
o
lv

e
d

T
im

e
[m

s
]

(
a
v
e
r
a
g
e
)

#
In

s
t
a
n
c
e
s

s
o
lv

e
d

T
im

e
[m

s
]

(
a
v
e
r
a
g
e
)

#
In

s
t
a
n
c
e
s

s
o
lv

e
d

#
C
o
m

b
in

a
t
io

n
s

(
a
v
e
r
a
g
e
)

aim-100 24 262.58 1.82 126.67 24 292,679.38 16 740,320.63 16 42,677.21
aim-200 24 532.75 0.94 419.17 24 1,765,608.57 7 - 0 134,159.83
aim-50 24 129.58 3.55 41.67 24 229,633.33 24 99,642.50 20 14,076.46
allIntervalSeries 14 563.43 2.58 172.86 14 16,051.43 14 387,881.25 8 33,688.64
BH-4-4 10 431.00 0.86 110.00 10 22,413.00 10 - 0 26,673.60
BH-4-7 15 1,261.00 0.30 417.33 15 89,696.67 15 - 0 89,585.80
bqwh-15-106 10 592.30 0.62 129.00 10 247,296.00 10 - 0 30,528.40
bqwh-18-141 10 876.90 0.42 207.00 10 485,233.00 10 - 0 47,419.70
chessbdColor 6 405.67 3.04 1,486.67 6 896,425.00 4 859,603.33 3 369,164.67
coloring 11 198.73 3.34 39.09 11 468,465.45 11 12,216.67 9 9,603.55
composed-25-1-2 6 224.00 1.66 50.00 6 14,581.67 6 2,347,030.00 6 12,398.83
composed-25-1-25 5 247.00 1.52 58.00 5 23,394.00 5 - 0 14,528.00
composed-25-1-40 5 262.00 1.44 62.00 5 31,174.00 5 - 0 15,795.80
composed-25-1-80 6 302.00 1.26 66.67 6 40,040.00 6 - 0 19,014.67
composed-25-10-20 5 620.00 0.59 144.00 5 328,602.00 5 - 0 34,134.20
composed-75-1-2 5 624.00 0.60 156.00 5 1,317,028.00 5 - 0 41,653.00
composed-75-1-25 5 647.00 0.58 168.00 5 1,383,910.00 5 - 0 43,806.40
composed-75-1-40 5 662.00 0.57 170.00 5 1,475,066.00 5 - 0 45,147.60
composed-75-1-80 5 702.00 0.54 184.00 5 1,754,266.00 5 - 0 48,667.80
dag-half 15 56.00 21.68 1,595.33 15 2,490.67 15 2,576.00 15 343,818.73
driver 2 2,136.00 0.82 845.00 2 1,430.00 1 1,993,930.00 1 136,263.50
dubois 13 65.38 5.47 3.08 13 14.62 13 103,950.77 13 597.85
ehi-85 5 4,108.40 0.09 1,740.00 5 - 0 - 0 310,019.40
ehi-90 5 4,368.00 0.09 1,910.00 5 - 0 - 0 329,943.00
frb30-15 5 225.40 1.65 50.00 5 52,640.00 5 1,696,837.50 4 13,743.00
frb35-17 5 312.00 1.15 70.00 5 179,202.00 5 - 0 20,030.80
frb40-19 5 371.80 0.97 86.00 5 232,160.00 5 - 0 24,209.20
frb45-21 5 436.60 0.83 100.00 5 348,554.00 5 - 0 28,827.00
frb50-23 5 480.40 0.77 120.00 5 479,054.00 5 - 0 32,679.80
frb53-24 5 540.40 0.67 134.00 5 605,546.00 5 - 0 36,977.20
frb56-25 5 558.80 0.66 148.00 5 691,146.00 5 - 0 38,599.20
frb59-26 5 596.60 0.62 164.00 5 868,088.00 5 - 0 41,594.80
geom 10 422.80 0.90 99.00 10 73,799.00 10 - 0 24,598.40
golombRlrArity3 11 751.00 0.90 233.64 11 39,200.00 11 180,920.00 1 47,821.55
golombRlrArity4 5 238.40 1.39 136.00 5 517,702.00 5 792,390.00 3 46,421.60
hanoi 5 46.60 13.43 0.00 5 0.00 5 24,966.00 5 42.60
haystacks 5 1,539.20 0.38 454.00 5 11,812.00 5 - 0 65,296.60
jobShop-e0ddr1 10 265.00 1.37 54.00 10 17,356.00 10 - 0 11,570.00
jobShop-e0ddr2 10 265.00 1.37 51.00 10 15,673.00 10 - 0 11,555.70
jobShop-enddr1 10 265.00 1.37 51.00 10 17,593.00 10 - 0 11,570.00
jobShop-enddr2 6 265.00 1.37 50.00 6 14,650.00 6 - 0 11,571.50
jobShop-ewddr2 10 265.00 1.37 48.00 10 15,849.00 10 - 0 11,555.70
js-taillard-15 10 1,785.00 0.21 505.00 10 234,190.00 10 - 0 88,542.80
js-taillard-20 10 4,180.00 0.09 1,677.00 10 519,587.00 10 - 0 220,239.10
js-taillard-20-15 10 3,130.00 0.12 1,113.00 10 357,110.00 10 - 0 165,069.40
knights 10 52.00 18.46 9.00 10 266.00 10 114.44 9 2,009.00
langford 4 380.75 3.21 97.50 4 3,905.00 4 110.00 1 19,725.50
langford2 14 446.71 2.94 122.14 14 4,650.71 14 327,998.33 6 23,874.36
langford3 11 948.82 1.09 300.00 11 11,165.45 11 44,445.00 2 53,292.36
langford4 10 999.00 1.10 321.00 10 11,833.00 10 86,395.00 2 56,382.60
lexHerald 10 487.90 8.34 8,895.00 10 110.00 4 115.00 4 2,502,517.60
lexPuzzle 14 289.00 7.87 2,211.54 13 414,564.00 10 106,602.22 9 657,299.38
modifiedRenault 40 151.58 1.78 16.50 40 8,893.00 40 323,745.25 40 6,036.60
nengfa 2 976.50 1.40 145.00 2 33,065.00 2 217,290.00 1 40,707.00
ogdPuzzle 15 263.60 14.88 2,164.29 14 365,969.09 11 88,025.00 10 598,629.64
os-gp 15 1,000.00 0.38 270.67 15 108,932.67 15 - 0 52,697.00
os-taillard-10 10 900.00 0.42 236.00 10 256,556.00 10 - 0 51,909.80
os-taillard-15 10 3,150.00 0.12 1,151.00 10 901,699.00 10 - 0 191,352.40
Results continue in next table.

32

Table 5: Results of experiments on CSP benchmarks for k = 5 (Part 2).

Benchmark ConSub LBF BF

#
In

s
t
a
n
c
e
s

#
V
e
r
t
ic
e
s

(
a
v
e
r
a
g
e
)

D
e
n
s
it
y

%
(
a
v
e
r
a
g
e
)

T
im

e
[m

s
]

(
a
v
e
r
a
g
e
)

#
In

s
t
a
n
c
e
s

s
o
lv

e
d

T
im

e
[m

s
]

(
a
v
e
r
a
g
e
)

#
In

s
t
a
n
c
e
s

s
o
lv

e
d

T
im

e
[m

s
]

(
a
v
e
r
a
g
e
)

#
In

s
t
a
n
c
e
s

s
o
lv

e
d

#
C
o
m

b
in

a
t
io

n
s

(
a
v
e
r
a
g
e
)

os-taillard-4 10 48.00 7.09 7.00 10 388.00 10 914.00 10 1,563.90
os-taillard-5 10 100.00 3.54 18.00 10 4,112.00 10 39,267.00 10 4,203.00
os-taillard-7 10 294.00 1.25 60.00 10 48,247.00 10 - 0 15,300.80
pigeons 10 309.20 3.90 79.00 10 3,756.00 10 88,726.00 5 16,210.60
pret 8 70.00 5.36 2.50 8 35.00 8 19,972.50 8 497.00
primes-10 15 44.00 11.01 28.00 15 2,839.33 15 3,246.00 15 9,520.73
primes-15 16 46.25 10.39 80.63 16 2,403.13 16 3,223.75 16 25,388.38
primes-20 15 48.00 10.81 103.33 15 3,601.33 15 4,612.00 15 32,392.33
primes-25 15 48.00 11.81 99.33 15 2,928.67 15 3,838.67 15 31,125.33
primes-30 15 60.00 8.96 121.33 15 5,952.67 15 6,198.00 15 38,786.40
QCP-10 15 822.00 0.46 213.33 15 281,187.33 15 - 0 47,558.87
QCP-15 15 2,519.27 0.15 853.33 15 1,306,854.67 15 - 0 155,672.87
queenAttacking 6 723.50 2.39 235.00 6 17,148.33 6 65,610.00 2 40,884.00
queens 6 141.17 12.25 31.67 6 971.67 6 212,408.00 5 6,536.67
queensKnights 8 426.38 3.59 127.50 8 4,282.50 8 29,032.00 5 22,682.25
QWH-10 10 756.00 0.49 195.00 10 309,081.00 10 - 0 43,646.00
QWH-15 10 2,324.00 0.16 760.00 10 1,324,365.00 10 - 0 142,604.00
ramsey3 8 794.63 1.35 1,188.75 8 468,151.43 7 101,260.00 1 287,281.25
ramsey4 1 2,300.00 0.25 4,000.00 1 - 0 - 0 921,557.00
rand-2-23 10 253.00 1.52 60.00 10 1,877.00 10 - 0 12,194.00
rand-2-24 10 276.00 1.39 66.00 10 2,127.00 10 - 0 13,466.00
rand-2-25 10 300.00 1.28 68.00 10 2,351.00 10 - 0 14,801.00
rand-2-26 10 325.00 1.19 79.00 10 2,610.00 10 - 0 16,199.00
rand-2-27 10 351.00 1.10 83.00 10 2,872.00 10 - 0 17,660.00
rand-2-30-15 20 220.90 1.70 48.50 20 45,228.00 20 2,184,997.00 20 13,641.25
rand-2-30-15-fcd 20 221.55 1.69 50.50 20 48,451.00 20 2,223,963.50 20 13,700.70
rand-2-40-19 25 337.88 1.12 83.60 25 148,037.20 25 - 0 22,288.68
rand-2-40-19-fcd 25 338.60 1.12 79.60 25 157,371.60 25 - 0 22,361.60
rand-2-50-23 25 467.44 0.81 121.20 25 374,346.40 25 - 0 32,173.88
rand-2-50-23-fcd 25 466.72 0.81 117.60 25 370,328.80 25 - 0 32,116.40
rand-3-20-20 25 58.44 6.07 13.20 25 2,000.80 25 2,563.20 25 4,122.32
rand-3-20-20-fcd 25 58.72 6.02 11.20 25 2,045.60 25 2,619.60 25 4,109.84
rand-3-24-24 25 74.44 4.95 20.00 25 6,536.80 25 8,828.00 25 6,766.32
rand-3-24-24-fcd 25 74.76 4.95 18.80 25 6,652.00 25 8,943.60 25 7,066.68
rand-3-28-28 30 93.00 4.08 30.67 30 19,161.00 30 27,041.67 30 10,964.03
rand-3-28-28-fcd 29 93.00 4.08 31.38 29 19,083.10 29 27,315.17 29 10,855.48
renault 2 123.50 2.06 15.00 2 2,530.00 2 121,715.00 2 3,918.00
rlfapGraphs 10 2,638.00 0.18 767.00 10 480,292.00 10 - 0 125,167.30
rlfapGraphsMod 10 2,680.20 0.11 774.00 10 468,671.00 10 - 0 115,128.20
rlfapScens 10 3,702.60 0.12 1,238.00 10 458,117.00 10 - 0 175,810.00
rlfapScens11 10 4,103.00 0.09 1,343.00 10 440,730.00 10 - 0 188,087.00
rlfapScensMod 10 1,975.10 0.33 607.00 10 207,821.00 10 - 0 86,347.10
schurrLemma 9 375.22 3.64 168.89 9 622,366.67 9 325,518.33 6 44,669.67
ssa 7 1,505.71 0.22 135.71 7 48,061.43 7 694,430.00 1 28,497.00
subs 9 385.00 1.05 92.22 9 10,845.56 9 2,307,540.00 1 19,848.78
super-queens 5 211.80 4.93 54.00 5 9,212.00 5 493,927.50 4 13,722.20
tightness0.1 15 752.07 0.52 214.00 15 11,058.67 15 - 0 42,869.33
tightness0.2 15 414.00 0.92 106.00 15 119,200.67 15 - 0 27,847.67
tightness0.35 15 250.00 1.48 54.00 15 133,288.00 15 - 0 15,384.33
tightness0.5 15 180.00 1.99 32.00 15 67,550.00 15 768,524.00 15 9,522.47
tightness0.65 15 135.00 2.54 20.00 15 26,266.00 15 178,738.67 15 5,952.00
tightness0.8 25 103.00 3.16 10.40 25 7,806.80 25 45,634.40 25 3,498.24
tightness0.9 25 84.00 3.67 7.20 25 2,733.60 25 16,226.80 25 2,192.64
TSP-20 15 230.00 1.59 45.33 15 1,572.00 15 2,643,796.67 15 10,168.00
TSP-25 15 350.00 1.06 78.67 15 2,800.67 15 - 0 16,613.00
ukPuzzle 13 234.00 13.69 1,497.50 12 76,992.00 10 95,790.00 10 456,936.25
varDimacs 9 810.56 0.95 113.33 9 116,662.22 9 821,695.00 2 29,054.44
wordsPuzzle 14 253.21 14.20 2,252.86 14 352,576.00 10 17,054.44 9 631,028.36

Tally 1377 1374 1316 639

33

Table 6: Results of experiments on CSP benchmarks for k = 5 (Part 3).

Benchmark ConSub LBF BF

#
In

s
t
a
n
c
e
s

#
V
e
r
t
ic
e
s

(
a
v
e
r
a
g
e
)

D
e
n
s
it
y

%
(
a
v
e
r
a
g
e
)

T
im

e
[m

s
]

(
a
v
e
r
a
g
e
)

#
In

s
t
a
n
c
e
s

s
o
lv

e
d

T
im

e
[m

s
]

(
a
v
e
r
a
g
e
)

#
In

s
t
a
n
c
e
s

s
o
lv

e
d

T
im

e
[m

s
]

(
a
v
e
r
a
g
e
)

#
In

s
t
a
n
c
e
s

s
o
lv

e
d

#
C
o
m

b
in

a
t
io

n
s

(
a
v
e
r
a
g
e
)

bddSmall 35 133.00 31.59 - 0 386,073.43 35 435,296.00 35 80,665,957.60
dag-rand 15 16.00 94.17 66.67 15 4.00 15 4.67 15 4,367.13
ogdVg 45 21.62 51.85 460.22 45 59.56 45 64.67 45 65,490.60
rand-8-20-5 20 18.00 52.58 41.00 20 7.00 20 7.00 20 6,549.05
ukVg 45 21.20 51.91 425.78 45 56.22 45 61.11 45 61,197.53
lexVg 40 21.35 51.92 427.00 40 56.50 40 60.50 40 60,771.28
wordsVg 40 21.53 52.32 413.50 40 54.75 40 57.50 40 58,599.68

Tally 240 205 240 240

important for enforcing high levels of consistency on Constraint Satisfaction
Problems. We compared the performance of ConSubg to that a brute-force al-
gorithm, BF-ConSubg, that generates all subgraphs then discards those that
are not connected and also to a localized version of the brute-force algorithm,
LBF-ConSubg, which we also proposed. We showed that ConSubg outper-
forms all other algorithms on structured graphs but is not suited for dense
graphs when k is relatively large.

Our contributions are: (1) the posing of the problem of generating all con-
nected subgraphs of a graph that have a fixed size, (2) the identification of
an application where it is needed, and (3) the design and evaluation of a new
algorithm for solving it. We are currently investigating how to reduce, or elim-
inate, the memory requirements while maintaining the processing time within
practical limits.

Acknowledgments

Experiments were conducted on the equipment of the Holland Computing Cen-
ter at UNL. This research was supported by the following grants from the Na-
tional Science Foundation RI-111795, 0811250, and DMS-0914815.

References

[1] E. A. Akkoyunlu. The Enumeration of Maximal Cliques of Large Graphs.
SIAM J. Comput., 2:1–6, 1973.

[2] Jörg Arndt. Matters Computational: Ideas, Algorithms, Source Code, chap-
ter Compositions. Academic Press, London, UK, 2010.

[3] L. Babel. Finding Maximum Cliques in Arbitrary and in Special Graphs.
Computing, 46(4):321–341, 1991.

34

[4] L. Babel and G. Tinhofer. A Branch and Bound Algorithm for the Maxi-
mum Clique Problem. Z. Oper. Res., 34(3):207–217, 1990.

[5] Eric T. Bax. Algorithms to Count Paths and Cycles. Inform. Process.
Lett., 52(5):249–252, 1994.

[6] Etienne Birmelé, Rui Ferreira, Roberto Grossi, Andrea Marino, Nadia
Pisanti, Romeo Rizzi, Gustavo Sacomoto, and Marie-France Sagot. Op-
timal Listing of Cycles and st-Paths in Undirected Graphs. Arxiv preprint
arXiv:1205.2766, 2012.

[7] Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver Riordan. Di-
rected Scale-Free Graphs. In Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 03), pages 132–139. Society for
Industrial and Applied Mathematics, 2003.

[8] C. Bron and J. Kerbosch. Algorithm 457: Finding All Cliques of an Undi-
rected Graph. Comm. ACM, 16(9):575–577, 1973.

[9] F. Cazals and C. Karande. A Note on the Problem of Reporting Maximal
Cliques. Theoret. Comput. Sci., 407(1-3):564–568, 2008.

[10] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[11] Rina Dechter and Peter van Beek. Local and Global Relational Consistency.
Theor. Comput. Sci., 173(1):283–308, 1997.

[12] David Eppstein, Maarten Lffler, and Darren Strash. Listing All Maxi-
mal Cliques in Sparse Graphs in Near-Optimal Time. In Otfried Cheong,
Kyung-Yong Chwa, and Kunsoo Park, editors, Algorithms and Computa-
tion, volume 6506 of Lecture Notes in Computer Science, pages 403–414.
Springer Berlin Heidelberg, 2010.

[13] David Eppstein and Darren Strash. Listing All Maximal Cliques in Large
Sparse Real-World Graphs. In Proceedings of the 10th International Con-
ference on Experimental Algorithms, SEA’11, pages 364–375, Berlin, Hei-
delberg, 2011. Springer-Verlag.

[14] Da Zhong Fang. Enumeration of All Spanning Trees of an Undirected
Graph. J. Tianjin Univ., (4):108–116, 1988.

[15] Eugene C. Freuder. Synthesizing Constraint Expressions. Communications
of the ACM, 21 (11):958–966, 1978.

[16] Harold N. Gabow and Eugene W. Myers. Finding All Spanning Trees of
Directed and Undirected Graphs. SIAM J. Comput., 7(3):280–287, 1978.

[17] Robert M. Haralick and Gordon L. Elliott. Increasing Tree Search Efficiency
for Constraint Satisfaction Problems. Artificial Intelligence, 14:263–313,
1980.

35

[18] William Hendrix, Matthew C. Schmidt, Paul Breimyer, and Nagiza F. Sam-
atova. Theoretical underpinnings for maximal clique enumeration on per-
turbed graphs. Theoret. Comput. Sci., 411(26-28):2520–2536, 2010.

[19] Ch́ınh T. Hoàng, Marcin Kamiński, Joe Sawada, and R. Sritharan. Finding
and Listing Induced Paths and Cycles. Discrete Appl. Math., 161(4-5):633–
641, 2013.

[20] P. Janssen, Philippe Jégou, B. Nougier, and M.C. Vilarem. A Filtering
Process for General Constraint-Satisfaction Problems: Achieving Pairwise-
Consistency Using an Associated Binary Representation. In IEEE Work-
shop on Tools for AI, pages 420–427, 1989.

[21] Philippe Jégou and Marie-Catherine Vilarem. On Some Partial Line
Graphs of a Hypergraph and the Associated Matroid. Discrete Mathe-
matics, 111(1-3):333–344, 1993.

[22] Donald B. Johnson. Finding all the Elementary Circuits of a Directed
Graph. SIAM J. Comput., 4:77–84, 1975.

[23] H. C. Johnston. Cliques of a Graph–Variations on the Bron-Kerbosch
Algorithm. Internat. J. Comput. Information Sci., 5(3):209–238, 1976.

[24] S. Kapoor and H. Ramesh. An Algorithm for Enumerating All Spanning
Trees of a Directed Graph. Algorithmica, 27(2):120–130, 2000.

[25] Sanjiv Kapoor and H. Ramesh. Algorithms for Generating All Spanning
Trees of Undirected, Directed and Weighted Graphs. In Algorithms and
data structures (Ottawa, ON, 1991), volume 519 of Lecture Notes in Com-
put. Sci., pages 461–472. Springer, Berlin, 1991.

[26] Sanjiv Kapoor and H. Ramesh. Algorithms for Enumerating All Spanning
Trees of Undirected and Weighted Graphs. SIAM J. Comput., 24(2):247–
265, 1995.

[27] Shant Karakashian and Berthe Y. Choueiry. Tree-Based Algorithms
for Computing k-Combinations and k-Compositions. Technical Report
TR-UNL-CSE-2010-0009, Constraint Systems Laboratory, University of
Nebraska-Lincoln, Lincoln, NE, 2010.

[28] Shant Karakashian, Robert Woodward, and Berthe Y. Choueiry. Improving
the Performance of Consistency Algorithms by Localizing and Bolstering
Propagation in a Tree Decomposition. In Proceedings of the 27th Conference
on Artificial Intelligence (AAAI 2013), page 8 pages, 2013.

[29] Shant Karakashian, Robert J. Woodward, Christopher Reeson, Berthe Y.
Choueiry, and Christian Bessiere. A First Practical Algorithm for High
Levels of Relational Consistency. In Proceedings of the 24th Conference on
Artificial Intelligence (AAAI 10), pages 101–107, 2010.

36

[30] Ina Koch. Fundamental Study: Enumerating All Connected Maximal Com-
mon Subgraphs in Two Graphs. Theoretical Comp. Sc., 250(1–2):1–30,
2001.

[31] Hongbo Liu and Jiaxin Wang. A New Way to Enumerate Cycles in Graph.
In Proceedings of the Advanced Int’l Conference on Telecommunications and
Int’l Conference on Internet and Web Applications and Services, AICT-
ICIW ’06, pages 57–, Washington, DC, USA, 2006. IEEE Computer Society.

[32] Kazuhisa Makino and Takeaki Uno. New Algorithms for Enumerating
All Maximal Cliques. In Algorithm theory—SWAT 2004, volume 3111 of
Lecture Notes in Comput. Sci., pages 260–272. Springer, Berlin, 2004.

[33] Prabhaker Mateti and Narsingh Deo. On Algorithms for Enumerating All
Circuits of a Graph. SIAM J. Comput., 5(1):90–99, 1976.

[34] Ladislav Novak, Žarko Karadžić, and Dragan M. Acketa. A Space Optimal
Algorithm for Enumerating Spanning Trees of a Connected Graph. Zb.
Rad. Prirod.-Mat. Fak. Ser. Mat., 21(1):39–56, 1991.

[35] Patric R. J. Österg̊ard. A Fast Algorithm for the Maximum Clique Problem.
Discrete Appl. Math., 120(1-3):197–207, 2002. Sixth Twente Workshop on
Graphs and Combinatorial Optimization (Enschede, 1999).

[36] Panos M. Pardalos and Jue Xue. The Maximum Clique Problem. J. Global
Optim., 4(3):301–328, 1994.

[37] J. Ponstein. Self-Avoiding Paths and the Adjacency Matrix of a Graph.
SIAM J. Appl. Math., 14:600–609, 1966.

[38] Frank Ruskey. Combinatorial Generation. Unpublished manuscript from
Citeseer, 2010.

[39] K. Sankar and A.V. Sarad. A Time and Memory Efficient Way to Enu-
merate Cycles in a Graph. In International Conference on Intelligent and
Advanced Systems (ICIAS 2007), pages 498–500, 2007.

[40] René Schott and G. Stacey Staples. Complexity of Counting Cycles Using
Zeons. Computers & Mathematics with Applications, 62(4):1828 – 1837,
2011.

[41] Akiyoshi Shioura and Akihisa Tamura. PEfficiently Scanning All Spanning
Trees of an Undirected Graph. J. Oper. Res. Soc. Japan, 38(3):331–344,
1995.

[42] Akiyoshi Shioura, Akihisa Tamura, and Takeaki Uno. An Optimal Algo-
rithm for Scanning All Spanning Trees of Undirected Graphs. SIAM J.
Comput., 26(3):678–692, 1997.

[43] Volker Stix. Finding all maximal cliques in dynamic graphs. Comput.
Optim. Appl., 27(2):173–186, 2004.

37

[44] Robert Tarjan. Enumeration of the Elementary Circuits of a Directed
Graph. SIAM J. Comput., 2:211–216, 1973.

[45] James C. Tiernan. An Efficient Search Algorithm to Find the Elementary
Circuits of a Graph. Comm. ACM, 13:722–726, 1970.

[46] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The Worst-Case
Time Complexity for Generating All Maximal Cliques and Computational
Experiments. Theoret. Comput. Sci., 363(1):28–42, 2006.

[47] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A
new algorithm for generating all the maximal independent sets. SIAM J.
Comput., 6(3):505–517, 1977.

[48] Takeaki Uno. An Algorithm for Enumerating All Directed Spanning Trees
in a Directed Graph. In Algorithms and computation (Osaka, 1996), volume
1178 of Lecture Notes in Comput. Sci., pages 166–173. Springer, Berlin,
1996.

[49] Peter van Beek and Rina Dechter. Constraint Tightness versus Global
Consistency. In Proceedings of the Fourth International Conference on
Principles of Knowledge Representation and Reasoning (KR 1994), pages
572–582, 1994.

[50] Peter van Beek and Rina Dechter. On the Minimality and Global Consis-
tency of Row-Convex Constraint Networks. Journal of the ACM (JACM),
42 (3):543–561, 1995.

[51] Peter van Beek and Rina Dechter. Constraint Tightness and Looseness
versus Local and Global Consistency. Journal of the ACM (JACM),
44 (4):549–566, 1997.

[52] Jie Sheng Wang. A General Algorithm for Enumerating Some Subgraphs
of a Simple Graph. Chinese J. Comput., 9(1):37–43, 1986.

[53] Herbert Weinblatt. A New Search Algorithm for Finding the Simple Cycles
of a Finite Directed Graph. J. Assoc. Comput. Mach., 19:43–56, 1972.

[54] Marcel Wild. Generating All Cycles, Chordless Cycles, and HAmiltonian
Cycles with the Principle of Exclusion. J. Discrete Algorithms, 6(1):93–102,
2008.

[55] Herbert S. Wilf. Combinatorial Algorithms: An Update. SIAM CBMS-NSF
55, 1989.

[56] S. S. Yau. Generation of All Hamiltonian Circuits, Paths, and Centers of a
Graph, and Related Problems. IEEE Trans. Circuit Theory, CT-14:79–81,
1967.

38

