
Relational Neighborhood Inverse Consistency
for Constraint Satisfaction

Robert J. Woodward1 Shant Karakashian1

Berthe Y. Choueiry1 Christian Bessiere2

1Constraint Systems Laboratory
University of Nebraska-Lincoln, USA

{rwoodwar|shantk|choueiry}@cse.unl.edu

2LIRMM-CNRS
University of Montpellier, France

bessiere@lirmm.fr

UNL-CSE-2011-0007

October 5, 2011

Abstract
Freuder and Elfe [1996] introduced Neighborhood Inverse Consis-

tency (NIC) as a new local consistency property for Constraint Sat-
isfaction Problems (CSPs) that filters the domains of variables. Two
advantages of the algorithm for enforcing NIC is that it automatically
adapts its filtering power to the local connectivity of the network and
has insignificant space overhead. In this document, we discuss Rela-
tional Neighborhood Inverse Consistency (RNIC), which is an exten-
sion of NIC to filter relations introduced in [Woodward et al., 2011a],
how we enhance the propagation effectiveness by reformulating the
dual graph of the CSP. We also describe an automated selection policy
that outperforms all approaches in a statistically significant manner.

1

2

Contents

1 Introduction 5

2 Background 6
2.1 Graphical representations . 6
2.2 Consistency properties & algorithms 7

3 Relational NIC 8
3.1 Defining RNIC . 8
3.2 Comparing RNIC and R(∗,m)C 9
3.3 Comparing RNIC and domain filtering 11

4 Enforcing RNIC 13
4.1 An algorithm for RNIC . 13
4.2 SearchSupport . 14
4.3 Complexity analysis . 15
4.4 Enforcing RNIC versus R(∗,m)C 16

5 Reformulating the Dual Graph 16
5.1 Removing redundant edges: wRNIC 18
5.2 Triangulating the dual graph: triRNIC 19
5.3 Triangulate a minimal dual graph: wtriRNIC 20
5.4 Select the appropriate RNIC: selRNIC 20

6 Related Work 21

7 Experimental Results 22
7.1 Global rankings . 24
7.2 Detailed analysis . 25

8 Future Work & Conclusions 29

3

4

1 Introduction

An important result in Constraint Processing (CP) ties the tractability1 of a
Constraint Satisfaction Problem to the level of consistency that it satisfies.
Solving difficult problems often requires enforcing higher order consistency,
which typically requires the use of more costly algorithms in time and/or in
space. Freuder and Elfe [1996] introduced Neighborhood Inverse Consistency
(NIC) for CSPs as a particularly promising consistency property because:
(1) Enforcing it is light in terms of space requirements (inverse consistency is
enforced by filtering the variables domains); and (2) It focuses the attention
on where a variable’s value most tightly interacts with the problem, namely
its neighborhood. Despite its promise and filtering effectiveness, NIC remains
relatively unexploited because the algorithm for enforcing it is too costly in
terms of processing time, which prevented its use on dense networks or in a
lookahead scheme during backtrack search.

In [Woodward et al., 2011a], we generalized NIC to Relational Neighbor-
hood Consistency (RNIC) for filtering relations. Although, Bacchus et al.
[2002] had already identified the same property as RNIC to hold when the
arc-consistency property holds in on the dual graph2 of the CSP, they do not
provide a practical algorithm for enforcing it, study its usefulness in practice,
or compare to any consistency properties other than arc consistency, all of
which we examine in this document.

This document is structured as follows. Section 2 reviews background
information about CSPs. Section 3 introduces RNIC and section 4 describes
an algorithm for enforcing it on the dual encoding of the CSP. Section 5
discusses three variations of RNIC obtained by removing redundant edges in
the dual graph and/or triangulating the considered graph, and a strategy for
deciding which of the four properties to enforce. The goal of this deliberation
is to reduce computational cost and/or strengthen propagation depending
on the topology of the dual graph. Section 6 reviews the state of the art
in relational consistency. Section 7 discusses our experimental results, we
compare the performance of the resulting mechanisms, on difficult benchmark
problems, with that of GAC2001 [Bessière et al., 2005] and the recently
introduced algorithms for m-wise consistency (i.e., wR(∗,m)C for m = 2, 3,
4 of [Karakashian et al., 2010]). Finally, Section 8 discusses the extension of

1The tractability of a problem is the ability to solve it in time polynomial in the size
of the input, which, in the case of the CSP, is the number of variables.

2The dual graph is defined in Section 2.

5

our approach to relations specified as conflicts or in intension and concludes
this document with directions for future research.

2 Background

A Constraint Satisfaction Problem (CSP) is defined by P = (V ,D, C) where
V is a set of variables, D is a set of domains, and C is a set of constraints.
Each variable Vi ∈ V has a finite domain Di ∈ D, and is constrained by
a subset of the constraints in C. Each constraint Ci ∈ C is specified by
a relation Ri defined on a subset of the variables, called the scope of the
relation and denoted scope(Ri). Given a relation Ri, a tuple τi ∈ Ri is a
vector of allowed values for the variables in the scope of Ri. Solving a CSP
corresponds to finding an assignment of a value to each variable such that
all the constraints are satisfied.

2.1 Graphical representations

A binary CSP is represented by its constraint graph where the vertices are
the variables of the CSP and the edges represent the constraints. A non-
binary CSP is similarly represented by its hypergraph where the hyperedges
represent the non-binary constraints. Another graphical representation of a
non-binary CSP is the primal graph where the vertices are the CSP variables
and edges connect every two vertices corresponding to variables in the scope
of a relation [Dechter, 2003]. Neigh(Vi) denotes the set of variables that are
adjacent to Vi in the constraint graph of a binary CSP and the primal graph
of a non-binary CSP.

The dual encoding of a CSP P , denoted PD, is a binary CSP whose vari-
ables are the relations of P , their domains are the tuples of those relations,
and the constraints enforce equalities over the shared variables. The repre-
sentation as a graph of this encoding is the dual graph of the CSP. Neigh(Ri)
denotes the set of relations adjacent to a relation Ri in the dual graph. Fig-
ure 1, illustrates the hyper, primal, and dual graphs of a small non-binary
CSP where V = {A, . . . , F} and the relations are R1, . . . , R6.

6

R3

A B

C D

E

F
R1

R4
R2 R5

R6

A B

C D
E
F

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	

A AD B

R5

R6

Figure 1: Hyper, primal, and dual graphs of a small CSP.

2.2 Consistency properties & algorithms

CSPs are in general NP-complete and solved by search. To reduce the
severity of the combinatorial explosion, they are usually ‘filtered’ by enforcing
a given local consistency property [Bessiere, 2006].

One common such property is Generalized Arc Consistency (GAC). A
CSP is GAC iff, for every relation, any value in the domain of any variable in
the scope of the relation can be extended to a tuple satisfying the relation.
Our work extends the local consistency property known as Neighborhood
Inverse Consistency (NIC) introduced in [Freuder and Elfe, 1996] to rela-
tion filtering. NIC ensures that every value in the domain of a variable can
be extended to a solution of the subproblem induced by the variable and
the variables in its neighborhood. Algorithms for enforcing GAC and NIC
typically operate by filtering the domains of the variables. Pairwise consis-
tency3 [Janssen et al., 1989], R(∗,m)C [Karakashian et al., 2010] and RNIC
are consistency properties of the dual graph of the CSP. The algorithms for
enforcing them typically operate by filtering the constraint definitions.

In order to compare the various consistency properties discussed in this
document we use the terminology introduced in [Debruyne and Bessière,
1997]. Given two consistency properties p and p′,

• p is stronger than p′ if, in any CSP where p holds, p′ also holds.

• p is strictly stronger than p′ if p is stronger than p′ and there exists at
least one CSP in which p′ holds but p does not.

• p and p′ are equivalent when p is stronger than p′ and vice versa.

3Pairwise consistency [Janssen et al., 1989] is equivalent to R(∗,2)C [Karakashian et
al., 2010].

7

• Finally, p and p′ are incomparable when there exists at least one CSP
in which p holds but p′ does not, and vice versa.

In practice, when a consistency property is stronger (respectively, weaker)
than another, enforcing the former never yields less (respectively, more) prun-
ing than enforcing the latter on the same problem.

3 Relational NIC

The algorithm for enforcing NIC on CSPs of [Freuder and Elfe, 1996] was
tested on binary CSPs in a preprocessing step to backtrack search on in-
stances whose constraint density4 did not exceed 4.25%. Despite its pruning
power and light space overhead, NIC received relatively little attention in the
literature, likely because of the prohibitive cost of the algorithm for enforcing
it. Below, we introduce RNIC as a generalization of NIC and characterize
this new property in terms of other known consistency properties. Indeed,
the former is a property that applies to the tuples of the relations of the CSP,
while the latter applies to the values in the variables’ domains (which are, in
fact, unary relations).

3.1 Defining RNIC

Definition 1 A relation Ri is said to be RNIC iff every tuple in Ri can be
extended to the variables in

⋃
Rj∈Neigh(Ri)

scope(Rj) \ scope(Ri) in an assign-

ment that simultaneously satisfies all the relations in Neigh(Ri). A network
is RNIC iff every relation is RNIC.

Informally, every tuple τi in every relation Ri can be extended to a tuple
τj in each Rj ∈ Neigh(R) such that together all those tuples are consistent
with all the relations in Neigh(Ri). Like R(∗,m)C, RNIC can be enforced
by filtering the existing relations and without introducing any new relations
to the CSP. A straightforward algorithm for enforcing RNIC applies the
following operation to every relation Ri in the problem until quiescence:

Ri ← πscope(Ri)(onRj∈{Ri}∪Neigh(Ri) Rj) (1)

4The constraint density of a binary CSP is equal to 2e
n(n−1) , where e is the number of

constraints and n the number of variables.

8

where π and on are the relational operators project and join, respectively.
The space requirement of this algorithm is prohibitive in practice because
it requires storing the join of Ri ∪ Neigh(Ri), which is not necessary as we
argue in Section 4. For the example of Figure 2, RNIC examines the six
subproblems induced on the dual graph by each relation and its neighborhood
as listed below:

1. For R1, Neigh(R1) = {R2, R3}.

2. For R2, Neigh(R2) = {R1, R4}.

3. For R3, Neigh(R3) = {R1, R4, R5, R6}.

4. For R4, Neigh(R4) = {R2, R3, R5, R6}.

5. For R5, Neigh(R5) = {R3, R4, R6}.

6. For R6, Neigh(R6) = {R3, R4, R5}.

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	

A AD B

R5

R6

Figure 2: The dual graph of a small CSP.

Generally speaking, the number of induced subproblems to be considered
is equal to e, where e is the number of relations in the CSP; and the size of
the largest subproblem is equal to δ + 1, where δ is the degree of the dual
graph.

3.2 Comparing RNIC and R(∗,m)C

In [Karakashian et al., 2010], we introduced the property R(∗,m)C with
m ≥ 2, which ensures that every tuple in every relation can be extended in a
consistent assignment to every combination of m−1 relations in the problem.
For the example shown in Figure 1, R(∗,2)C must verified on 9 combinations
of two relations. Generally speaking the number of induced subproblems to
be considered is O(em); and the size of the largest subproblem is equal to m.
We compare RNIC with R(∗,m)C, which is defined for m ≥ 2.

9

Theorem 1 RNIC is strictly stronger than R(∗,m)C, m ≤ 3.

Sketch of proof: For a relation Ri, RNIC requires that each tuple of Ri

and at least one tuple from each of the relations in Neigh(Ri) be consistent,
all together. R(∗,2)C requires that the tuple of Ri be consistent with some
tuple in each of the relations in Neigh(Ri), taken in separation. Thus, RNIC
is strictly stronger than R(∗,2)C. For R(∗,3)C, at least one relation in each
combination of three relations is such that its neighborhood encompasses at
least the other two relations. Thus, RNIC is strictly stronger than R(∗,3)C.
�

Theorem 2 R(∗,m)C with m ≥ δ + 1, where δ is the degree of the dual
graph, is strictly stronger than RNIC.

Sketch of proof: When m > δ, every set of relations considered by RNIC
is a subset of at least one set of relations on which R(∗,m)C is enforced. �

Theorem 3 For 4 ≤ m ≤ δ, R(∗,m)C and RNIC are not comparable.

Sketch of proof: If a dual graph has a chain of relations of length between
four and δ − 1, R(∗,m)C for 4 ≤ m ≤ δ can be stronger than RNIC. Con-
versely, if the dual graph is a star graph of five or more vertices, Si>4, RNIC
can be stronger than R(∗,m)C for 4 ≤ m ≤ δ. �

Figure 3 illustrates the above first three assertions. Two interesting struc-

R(*,3)C RNIC R(*,δ+1)C R(*,2)C

Figure 3: Comparing RNIC with R(∗,m)C.

tures of the dual graphs, trees and cycles, are such that several relational
consistency properties collapse to R(∗,2)C, which is the weakest of them all:

Theorem 4 RNIC, R(∗,2)C, and R(∗,m)C are equivalent on any dual graph
that is tree structured or is a cycle of length ≥ maximum(4, m + 1).

Proof: By straightforward generalization of Theorem 3. �
The theorem applies for a tree of any degree. As for the cycle, it must

be length at least m + 1 for m ≥ 3. Figure 4 shows two such configurations.
This last theorem is important because it identifies structural configurations
where the relational consistency properties RNIC and R(∗,m)C collapse to
their weakest version, that is R(∗,2)C. In Section 5 we propose reformulating
the dual graph of the CSP to allow RNIC to overcome this obstacle.

10

Figure 4: Configurations illustrating Theorem 4.

3.3 Comparing RNIC and domain filtering

In practice, after enforcing RNIC on a CSP (by filtering the relations), the
domains of the variables are updated accordingly in order to reduce the
search effort. It is important to note that variable domains can be updated
by simply projecting the filtered relations on the variables. Interestingly,
these domain reductions do not break the RNIC property.

Theorem 5 If a network is RNIC, domain filtering by GAC cannot enable
further constraint filtering by RNIC.

Proof: Similar to proof of Theorem 1 in [Karakashian et al., 2010]. �
Following the terminology of [Bessière et al., 2008], the property of a

CSP where RNIC holds and where the domains agree with the constraints
is denoted RNIC+GAC. Although formally correct, we find this notation
confusing because it may incorrectly suggest the need to enforce GAC, which
is in general more expensive than (simply and without looping) projecting
the relations on the domains. For that reason, we choose to denote this
property instead RNIC+DF (i.e., RNIC followed by domain filtering).

Theorem 6 NIC (on a binary CSP) and RNIC+DF (on the dual graph of
the same binary CSP) are not comparable.

Proof: In Figure 5, the CSP is NIC but not RNIC+DF. RNIC removes the
tuples in {(0, 2), (2, 2)} from R0, {(0, 0), (1, 2)} from R1, {(0, 2)} from R2,
{(0, 2)} from R3, and {(0, 1), (2, 1)} from R4. Therefore, RNIC+DF removes
the value 0 from A. In Figure 6, the CSP is RNIC+DF but not NIC. NIC
removes the value 0 from D. �

The singleton variant of a given consistency property guarantees that the
assignment of every value in the domain of a variable yields a CSP where the

11

0,1,2

0,1,2

0,1,2

0,1,2

R0 R1 R3

R2

R4 A

B

C

D

R1

B C

0 0
0 2
1 1
2 0
2 1

R0

A B

0 2
1 1
1 2
2 0
2 2

R2

B D

0 1
0 2
1 0
1 2
2 1

R3

C D

0 1
0 2
1 0
1 2
2 1

R4

A C

0 1
1 0
1 1
2 1
2 2

Figure 5: The binary CSP is NIC but not RNIC+DF.

0,1,2

0,1,2

0,1,2

0,1,2

B

C D

A

≠

≠

≠
r

r r

r = {0,1,2}2 – {(0,0)}

Figure 6: Binary CSP is
RNIC+DF but not NIC.

consistency property holds [Debruyne and Bessière, 2001]. Singleton consis-
tencies have been studied mainly for arc consistency (SAC) and generalized
arc consistency (SGAC).

Theorem 7 SGAC on a non-binary CSP and RNIC+DF on the correspond-
ing dual graph are not comparable.

Proof: In Figure 7, the CSP is RNIC+DF but not SGAC. SGAC empties all

1,2

1,2

1,2

1,2

C

B D

A

=

≠

=

=

Figure 7: The CSP
is RNIC+DF but not
SGAC.

1,2

R5

R1

R3

R4

A

C

B

D

1,2,3

1,2,3 1,2

R2

R1

A B

1 2
1 3
2 1
2 2
2 3

R2

B C

1 1
1 2
1 3
2 1
2 3
3 1
3 2

R3

B D

1 1
1 2
2 1
3 2

R4

C D

1 1
1 2
2 1
3 2

R5

A C

1 2
1 3
2 1
2 2
2 3

Figure 8: The CSP is SGAC but not RNIC+DF.

variables domains. In Figure 8, taken from [Debruyne and Bessière, 2001],
the CSP is SGAC but not RNIC+DF. RNIC removes {(2, 3), (3, 2)} from R2,
{(1, 2), (1, 3)} from R1, and {(1, 2), (1, 3)} from R5. Therefore, RNIC+DF
removes the value 1 from A. �

Figure 9 shows the relationships between the domain-filtering properties
discussed above.

12

GAC
R(*,2)C+DF
SGAC

RNIC+DF

Figure 9: Some domain filtering properties.

4 Enforcing RNIC

Below, we describe an algorithm for enforcing RNIC on a finite CSP, and
analyze its complexity. The algorithm has two main components: ProcessQ
(Algorithm 1) and SearchSupport.

4.1 An algorithm for RNIC

We define Sτ , the support of a tuple τ ∈ R, to be the set of tuples that
verify the condition: ∀R′ ∈ Neigh(R),∃(τ ′ ∈ R′), (τ ′ ∈ Sτ), and the tuples
in Sτ ∪{τ} agree on all shared variables. ProcessQ (Algorithm 1) enforces
RNIC on a CSP P ensuring that every tuple in every relation has a valid
support. Note that the Neigh(R) is determined by the topology of the dual
graph, which we will alter in Section 5.

ProcessQ operates on a queue of relations QR initialized with all the
relations of P . For each relation R of P , we maintain a queue of tuples Qt(R)
initialized with all the tuples in R. The function SearchSupport(τ, R)
computes Sτ as discussed below. The function Rel(τ) returns the relation
to which τ belongs. The data structure SupportedBy(τ) maintains the list of
tuples supported by τ .

ProcessQ removes from QR one relation R at a time. It iterates over
the tuples of R stored in Qt(R). For each tuple τ ∈ Qt(R), SearchSupport
seeks a support for τ . When a support is not found, τ is removed from R,
and all tuples τi supported by τ are added to the queue of their respective
relations, and the corresponding relations added to Qt. Finally, τ is removed
from Qt(R). Whenever a relation is empty, ProcessQ halts and returns
false indicating that P is not consistent. When QR is empty ProcessQ
terminates successfully indicating that P is RNIC.

13

Algorithm 1: ProcessQ enforces RNIC
Input: QR a queue of relations, {Qt(R)} a set of queues of tuples, one for

each relation
Output: true if the problem is RNIC, false otherwise
while (QR 6= ∅) do1

R← Pop(QR)2

foreach τ ∈ Qt(R) do3

support←SearchSupport(τ,R)4

if support = false then5

Delete(τ,R)6

if R = ∅ then return false7

forall τi ∈ SupportedBy(τ) do8

Ri ←Rel(τi)9

Qt(Ri)← Qt(Ri) ∪ {τi}10

QR ← QR ∪ {Ri}11

Qt(R)← Qt(R) \ {τ}12

return true13

4.2 SearchSupport

SearchSupport(τ, R) operates by conducting a backtrack search on PD
R

the subproblem induced by {R} ∪Neigh(R) on the dual encoding of P . The
variables of PD

R are the relations {R} ∪ Neigh(R). Their domains are the
tuples of the relations except for the variable corresponding to R, which is
assigned the tuple τ . A solution to PD

R is {τ} ∪ Sτ . The search stops at the
first solution, or returns false if no solution is found. The process uses for-
ward checking and dynamic variable ordering (domain/degree). Two major
mechanisms significantly contributed to the success of this search process by
improving its running time:

1. The use of the index-tree data structure to determine whether or not
two tuples of two relations adjacent in the dual graph are consistent.
This data structure was proposed in [Karakashian et al., 2010].

2. The dynamic identification, after each variable instantiation, of trees
in the graph of uninstantiated variables. The instantiation of a variable
eliminates, from the problem, the variable and the constraints that

14

link it to the uninstantiated variables, potentially breaking cycles in
the graph and yielding trees. We call those trees dangles , and apply
directional arc consistency on them to ensure that they are solvable. If
they are, we isolate them from the search process. Otherwise, we force
the search to backtrack. Dangle identification is linear in the number
of vertices and edges. Its overhead, if any, was largely compensated by
its benefits.

Note that dangle identification is a general mechanism for improving the
performance of any backtrack search. Obviously, it cannot be used in the
algorithm for enforcing GAC or R(∗,2)C (where there is no search). Further,
it is not particularly useful in the algorithm for enforcing R(∗, m)C because
the values of m are small in practice.

4.3 Complexity analysis

The time complexity is dominated by ProcessQ. Let d be the maximum
domain size, k the maximum constraint arity, e the number of relations, and
δ the degree of the dual graph. The maximum number of tuples t in a relation
is bounded by O(dk). The outer loop (Line 1) iterates over the relations in
QR. This loop runs e times, the initial size of QR, plus the number of times
a relation is added to QR (Line 11). Given that a relation is adjacent to
at most δ other relations, whenever a tuple is deleted, at most δ relations
are added to QR. There are O(te) tuples in P and each tuple is deleted at
most once. Thus, Line 6 is executed O(te) times, each time enqueuing O(δ)
relations. Consequently, the outer loop (Line 1) runs O(teδ) times.

The loop over the queued tuples (Line 3) executes O(t) times per relation.
To find the support of a tuple, SearchSupport first verifies the validity
of an existing support, then, if needed, it looks for a support by running a
backtrack search on the subproblem induced by the relation and its neighbors.
Verifying the validity of an existing support costs O(δ). To build a support
for a tuple, SearchSupport executes a backtrack search on a problem
with δ + 1 variables of maximum domain size t where the first variable is
instantiated. The complexity of this search is O(tδ). Thus, ProcessQ is
O(tδ+1eδ). The space complexity of ProcessQ is dominated by that of
the data structures. Supports require O(etδ) space. The index-trees require
O(ketδ) [Karakashian et al., 2010]. The time complexity of the obvious
algorithm based on Expression (1) is O(tδ+2eδ). When intermediate joins

15

are not stored, its space complexity is O(tδ+1), a major bottleneck for its
practical implementation. Thus, ProcessQ saves on both time and space.

4.4 Enforcing RNIC versus R(∗,m)C

The above summarized algorithm and that for enforcing R(∗,m)C [Karakashian
et al., 2010] are similar in that they both try to ‘complete’ [Freuder, 1991]

each tuple in each relation over one (or more) sets of relations.

The algorithm for R(∗,m)C considers every combination of m connected
relations. The number of those combinations is O(em). Further, each relation
needs to be ‘checked’ against m − 1 relations in each combination where it
appears.

The algorithm for enforcing RNIC does not suffer from the above draw-
backs. First, the number of combinations considered is equal to the number
of relations (e), and each relation is ‘checked’ against a unique set of re-
lations, which is determined by its neighborhood. Further, the size of the
neighborhood is determined locally by the connectivity of the relation in the
dual graph. Thus, the ‘level’ of consistency enforced is not necessarily the
same on all relations of the dual graph: Lower levels are enforced on sparser
portions of the dual graph, and higher levels on the denser portions. In
particular, on a cycle of length four or more, RNIC ‘naturally’ reduces to
R(∗,2)C, see Theorem 4.

5 Reformulating the Dual Graph

Two topological conditions of the dual graph can seriously hinder the per-
formance of ProcessQ (Algorithm 1):

1. High density of the dual graph. As the density of the dual graph in-
creases, the neighborhood of a given relation Ri grows, which increases
the cost of enforcing RNIC. To address this issue, we reformulate the
dual graph by removing redundant edges.

2. The existence of cycles of length four or more. On a cycle of length four
or more, the two adjacent relations of a given relation Ri in the cycle
are prevented from ‘communicating,’ thus reducing RNIC to R(∗,2)C
(see Theorem 4). To address this issue, we propose to reformulate the

16

dual graph by triangulation,5 which eliminates cycles of length four or
more.

The above two reformulations have the following effects:

• Removing redundant edges cannot strengthen the consistency property
enforced by the algorithm and cannot decrease the number of nodes
visited by search.

• Adding edges by graph triangulation cannot weaken the consistency
property enforced and cannot increase number of nodes visited by
search.

Applying ProcessQ on the dual graph reformulated by one or both of
the above reformulations enforces three variations of RNIC, namely wRNIC,
triRNIC, and wtriRNIC, where the prefixes ‘w’ and ‘tri’ denote the consis-
tency properties resulting from removing redundant edges and triangulating
the dual graph, respectively. Figure 10 illustrates those relationships in a
partial order. Naturally, the property enforced depends on the particular

wRNIC
RNIC

wtriRNIC
triRNIC

Figure 10: Variations of RNIC.

minimal and triangulated dual graph used.
While the set of solutions to the CSP is not affected by either reformation,

it is not straightforward to predict the effect of the above reformulations on
CPU time. To lay it out, we would like to remove enough edges from the
dual graph to reduce the running time of ProcessQ, which is O(tδ+1eδ).
However, we would also like to add enough edges to the dual graph in order
to boost propagation. Furthermore, we need a strategy to automatically se-
lect the appropriate reformulation. Below, we discuss the two reformulations
(Sections 5.1 and 5.2) and their combination (Section 5.3). In Section 5.4,
we propose a procedure to automatically select a reformulation in a prepro-
cessing step.

5Graph triangulation adds an edge (a chord) between two non-adjacent vertices in
every cycle of length four or more [Golumbic, 2004]. While minimizing the number of
edges added by the triangulation process is NP-hard, MinFill is an efficient heuristic
commonly used for this purpose [Kjærulff, 1990; Dechter, 2003].

17

5.1 Removing redundant edges: wRNIC

An edge between two vertices in the dual graph is redundant if there exists
an alternate path between the two vertices such that the shared variables
appear in every vertex in the path [Janssen et al., 1989; Dechter, 2003].
Redundant edges can be removed without affecting the set of solutions of the
CSP. Janssen et al. [1989] introduced an efficient algorithm for computing
the minimal dual graph by removing redundant edges. Many minimal graphs
may exist, but all are guaranteed to have the same number of edges. Figure 11
shows the dual graph (density 60%) and a minimal dual graph (density 40%)
of the example of Figure 1. Note that R(∗,2)C ≡ wR(∗,2)C [Janssen et al.,

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	

A AD B

R5

R6 R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

AD	

AD

R5

R6

Figure 11: A minimal dual graph.

1989]. Also, computing and storing the combinations of relations necessary
for enforcing R(∗,m)C is not possible in practice unless the redundant edges
are first removed from the dual graph [Karakashian et al., 2010].

Our experiments showed that RNIC is advantageous on dual graphs of
density up to around 15%.6 For higher density values, we propose to remove
the redundant edges in the dual graph before running ProcessQ. This op-
eration reduces the density of the original dual graph and the size of the
induced subproblems on which SearchSupport is executed. It also results
in a weakened consistency, denoted wRNIC, that depends of the particular
minimal graph used. Because wRNIC is enforced on a minimal dual graph
(i.e., a graph with no more edges than the original dual graph), wRNIC is
strictly weaker than wRNIC.

6In a related research, we studied the density of 1689 dual graphs of (binary and non-
binary) CSPs from the Solver Competition Benchmarks. We identified a sharp threshold
at 15% density. Indeed, 56.6% of the dual graphs (79.9% after redundancy removal)
considered had a density less than or equal to 15%. It is not yet clear to us how to
interpret the value of this threshold.

18

Figure 12 integrates the above discussion in the partial order of Figure 3.
Note that these results hold between the weakened properties provided they

R(*,3)C

wRNIC

R(*,4)C

RNIC
R(*,δ+1)C

R(*,2)C≡
wR(*,2)C wR(*,3)C

wR(*,4)C

wR(*,δ+1)C

Figure 12: Relating RNIC, wRNIC, R(∗,m)C, and wR(∗,m)C.

are enforced on the same minimal dual graph.

5.2 Triangulating the dual graph: triRNIC

When the dual graph has only cycles of size four or more, RNIC reduces to
R(∗,2)C (see Theorem 4), which significantly hampers filtering and propa-
gation. To remedy this situation, we propose to triangulate the dual graph.
This process creates loops in the dual graph and increases the size of the
induced subproblems on which SearchSupport is executed, boosting the
propagation process, but also raising the consistency level enforced on the
CSP. For example, in the dual graph of the example of Figure 1, Neigh(R1)
={R2, R3}. However, Neigh(R1)={R2, R3, R4} in the triangulated graph
(density 67%) of Figure 13. We denote the resulting consistency property

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	

A AD B

R5

R6 R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

AD	

R5

R6

Figure 13: Triangulating a dual graph.

triRNIC. Similarly to wRNIC, triRNIC depends on the particular triangula-
tion of the dual graph.

An important feature of the triangulation process is that it operates lo-
cally , adding edges only where cycles of length four or more need to be
shortened, irrespective of the degree of the vertices in the graph.

19

5.3 Triangulate a minimal dual graph: wtriRNIC

While using a minimal dual graph allows us to cope with the high density of
difficult benchmark instances, triangulating the minimal dual graph allows us
to boost propagation. We denote wtriRNIC the consistency resulting from
applying ProcessQ on the triangulated minimal dual graph. Figure 14
shows the dual graph (density 47%) resulting from applying both reformu-
lations in sequence for the example of Figure 1. As shown in Figure 10,

R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	

A AD B

R5

R6 R4

BCD	

ABDE	

CF	

EF	
 AB	

R3 R1

R2

AD	

R5

R6

Figure 14: Triangulating a minimal dual graph.

wtriRNIC is strictly stronger than wRNIC applied on the same minimal
dual graph, but strictly weaker than triRNIC. Further, it is not comparable
with RNIC, which is enforced on the original dual graph. Figure 15 summa-
rizes the relationships between RNIC, its reformulations, and R(∗,m)C based
properties.

R(*,3)C
wRNIC

R(*,4)C
RNIC

wtriRNIC
triRNIC

R(*,δ+1)C
wR(*,3)C

wR(*,4)C

wR(*,δ+1)C

R(*,2)C≡
wR(*,2)C

Figure 15: Relating RNIC, R(∗,m)C, and their studied variations.

5.4 Select the appropriate RNIC: selRNIC

The algorithm summarized in Section 4, ProcessQ, enforces any of the four
properties RNIC, triRNIC, wRNIC, and wtriRNIC on a CSP by operating
on the original dual graph or some modification of it.

20

• For RNIC, it uses the original dual graph (Go).

• For wRNIC, it uses a minimal dual graph (Gw).

• For triRNIC, it uses a triangulated dual graph (Gtri).

• Finally, for wtriRNIC, it uses a triangulated minimal dual graph (Gwtri).

The selection policy shown in Figure 16 automatically chooses the dual graph
on which to enforce RNIC by comparing the density dG of a given dual graph
G. The goal of this deliberation is to adjust the strength of propagation to
the topology of the dual graph. Paraphrasing the content of Figure 16, we

No Yes

No Yes Yes No

dGo ≥ 15%

dGtri ≤ 2 dGo dGwtri ≤ 2 dGw

Go Gwtri Gw Gtri

Start

Figure 16: Selecting a dual graph for selRNIC.

consider the dual graph of density greater than or equal 15% to be too dense
to be effectively processed by ProcessQ. For this reason, we choose to re-
formulate it by removing redundant edges. Whenever triangulation does not
increase the density of a dual graph more than two fold, then the advan-
tage of boosting propagation by creating loops and increasing neighborhood
sizes outweighs the drawback of increasing the cost of operating on larger
neighborhoods. For the example of Figure 1, this policy correctly chooses
the triangulated minimal dual graph (density 47%). While both operations
of triangulating a dual graph and computing a minimal dual graph can be
done efficiently and do not add any perceptible overhead in our experiments,
the policy of Figure 16 applies each operation at most once. The resulting
mechanism, which we denote selRNIC, nicely ties together our techniques in
a consistent and adaptive framework.

6 Related Work

NIC was proposed by Freuder and Elfe in [1996] and evaluated by them and
others on binary CSPs. Debruyne and Bessière [2001] showed that NIC is

21

ineffective on sparse graph and too costly on dense graphs. Below, we restrict
our discussion to non-binary CSPs.

In [Bacchus et al., 2002], nic(dual) denotes applying NIC to the dual
encoding of a CSP. As stated in the introduction, it is identical to RNIC.
However, the paper does not go beyond stating that nic(dual) is strictly
stronger than ac(dual) (i.e., RNIC is strictly stronger than R(∗,2)C). More
generally, relational consistency properties were formalized in [Dechter and
van Beek, 1997] as relational m-consistency and relational (i, m)-consistency .
Enforcing those properties may require adding constraints to the problem,
modifying its topology.

Beyond binary CSPs, most of the research on consistency for non-binary
CSPs has focused on filtering the variables’ domains, such as the study of
‘variable-based’ NIC [Gent et al., 2000; Stergiou, 2007]. In contrast, our
study focuses on the filtering of the relations (i.e., the constraints’ defini-
tions). As for relation-filtering properties, m-wise consistency was proposed
in relational databases [Gyssens, 1986]. Janssen et al. [1989] showed that
arc consistency on the dual encoding of a CSP enforces pairwise consistency.
Algorithms for R(∗,m)C, which is equivalent to m-wise consistency, were
proposed for arbitrary m ≥ 2 and evaluated in [Karakashian et al., 2010].
One limitation of the algorithm for R(∗,m)C is the need to manually se-
lect m and generate all combinations of m relations that form a connected
graph. The number of combinations grows exponentially with m, causing
space limitations. In comparison, RNIC requires storing for each relation
R a unique combination of constraints {R} ∪ Neigh(R) and the size of this
combination varies with the connectivity of R in the dual graph. Given the
space requirement for storing all combinations of m relations, Karakashian
et al. [2010] proposed to enforce R(∗,m)C on minimal dual graphs only,
namely wR(∗,2)C, wR(∗,3)C, and wR(∗,4)C. The support structures used in
ProcessQ are similar to those proposed in [Bessière et al., 2005].

Finally, the insight that breaking cycles yields trees in a search space (i.e.,
tree, or dangle, identification in SearchSupport, Section 4) can be related
to the Cycle-Cutset method [Dechter and Pearl, 1987].

7 Experimental Results

We evaluated and compared the performance of the following algorithms
for enforcing consistency when used for full lookahead in a backtrack search

22

procedure for finding the first solution of a CSP:

• GAC

• wR(∗,m)C for m = 2, 3, 4

• RNIC and its variants: wRNIC, triRNIC, wtriRNIC and selRNIC.

We ran our experiments on 570 benchmark instances from the CSP Solver
Competition7 with a time limit of one and a half hours per instance.

Below we report and discuss our results on 169 instances representa-
tive. The results reported here are quantitatively but not qualitatively dif-
ferent from the results described in [Woodward et al., 2011a; 2011b]. We
also conduct statistical tests to determine the significance of our results.
Since [Woodward et al., 2011a], we have slightly improved the code of all our
algorithms and enlarged the memory pool giving benefit to the wR(∗,m)C
algorithms. The justification for those changes is to focus the evaluation on
the performance of the algorithms rather than on their limitations.

In Section 7.1 (Table 1), we first present the global results of our ex-
periments. Then, in Section 7.2 , we discuss in detail the results for four
representative problems organized in three categories (Tables 2 3, and 4).
We measured the following parameters:

• Time: The CPU time in milliseconds. A ‘-’ entry in those columns
indicates that, even though the corresponding algorithm terminated on
some instances, it did not terminate on enough instances to yield an
accurate statistical mean.

• R: The rank of the CPU time each algorithm based on the probability of
the survival data analysis, breaking ties based on the time for reaching
that probability.

• S: The equivalence classes of CPU performance. To compute the statis-
tically significant categories, we perform a pairwise significance check
between every two algorithms for a significance level of 0.05. This com-
parison requires a normal distribution of the non-censored data. For
this analysis, we assume that all censored data points finished at the
maximum cutoff time.

7http://www.cril.univ-artois.fr/CPAI09/

23

• SB:8 Provides coarser equivalence classes based on termination only
while ignoring CPU time.

• #C: The number of instances that were completed by a given algo-
rithm.

• #F: The number of instances on which the given algorithm was the
fastest among all tested ones, where ties are awarded to all parties.

• #BF: The number of instances that were solved by a given algorithm
in a backtrack-free manner.

Section 7.1 is a global analysis ranking all tested algorithms. Section 7.2
discusses our results in detail.

7.1 Global rankings

Some data points are missing because some algorithms sometimes failed to
finish within the allocated time window (90 minutes). For this reason, we
consider the data to be right-censored and conduct a survival data analy-
sis [Lee, 1992]. The survival data analysis does not make any assumption
about the distribution of the data, and yields a calculated mean CPU time
for each algorithm, reported in column Time in Table 1.

In this table, note how GAC is the best ranking algorithm in terms of
the number of instances solved the fastest (column #F), although it is not
the best ranking algorithm according to any of the remaining criteria. This
result is not surprising when one notices that when GAC solves an instance,
the remaining algorithms are not far behind in terms of CPU time. When
looking at the statistical significance of CPU time in column S, GAC is
indeed in the slowest equivalent class (i.e., C) while selRNIC is in the fastest
equivalent class (i.e., A). Regarding the number of instances completed (#C
and SB), selRNIC shows the best performance (i.e, 159 instances) and is
significantly better than all other algorithms (the only algorithm in class A).
Finally, selRNIC exhibits the best performance in terms of the number of
instances completed in a backtrack-free manner (see column #BF, 142 out
of 169 instances).

8Even though the normality assumption may or may not hold for S and SB , all our
analyses yielded similar results, hinting that our conclusions are correct.

24

Table 1: Comparison over the 169 instances reported. In column R, ranks 1
and 9 indicate, respectively, the best and worst performances. In columns S and
SB, ranks A and C indicate, respectively, best and worst performances.

Algorithm Time #F R S #C SB #BF

wR(∗,2)C 944924 51 3 A 138 B 79
wR(∗,3)C 925004 7 4 B 134 B 92
wR(∗,4)C 1161261 2 5 B 132 B 108

GAC 1711511 84 7 C 119 C 33
RNIC 6161391 15 8 C 104 C 70

triRNIC 3017169 5 9 C 88 C 84
wRNIC 1184844 11 6 B 131 B 84

wtriRNIC 937904 9 2 B 145 B 128
selRNIC 751586 15 1 A 159 A 142

Benchmarks: aim-100, aim-200, lexVg, modifiedRenault, ssa

When comparing selRNIC with a random selection of the four RNIC-
based algorithms, within a 50ms error tolerance, selRNIC outperforms all
four RNIC-based algorithms in a statistically significant manner. This result
establishes that selRNIC is better than choosing any RNIC-based algorithm
in a random manner (i.e., selRNIC is better than ‘chance’).

7.2 Detailed analysis

The instances tested pertain to five benchmark problems, one of them ssa
is not reported in the results here because it has too few instances (only 8).
We organize our results on the 161 instances the four remaining benchmark
problems in three tables: Tables 2, 3, and 4. Each table gives the name of
problem, its number of instances, the number of instances completed by all
algorithms in parenthesis, and the range of the number of constraints e.

The tables also report the range of the density of the dual graph dD on
which a given algorithm operate and the average number of nodes visited by
the corresponding search (#NV).9 The averages are computed over only the

9Note that the values of nodes visited in all experiments comply with the partial order
shown in Figure 15.

25

instances completed by all tested algorithms, which is the number in paren-
thesis in the problem description. Thus, the values reported in #NV should
be considered in light of the number of completed instances. A ‘-’ entry in
this column indicates that, even if the corresponding search completed on
some instance, no instance completed by this algorithm was completed by all
others, and thus no average value can be reported. For each benchmark class,
we report the number of instances in the class, with the number completed
by all algorithms in parenthesis, and the range of the number of constraints
e.

Table 2 illustrates the usefulness of RNIC: it solves the largest number
of problems in this set, and solves, backtrack free, the largest number of
instances. In terms of significance ranking, GAC, triRNIC, and wRNIC
are not advantageous techniques for these problems that have low density,
and high density after triangulation. selRNIC was able to select the dual
graph that yielded the largest number of completions and backtrack free.
Despite not always being the fastest, it was not significantly different than
the algorithm that was the fastest.

Table 3 illustrates the usefulness of wRNIC and wtriRNIC. As stated
above, the sheer number of relations combined with the large density in the
dual graphs of the problems in this benchmark prevents us from executing
RNIC and triRNIC. This situation demonstrates the benefits of using wRNIC
and wtriRNIC, which were actually automatically chosen by selRNIC. Note
also that wtriRNIC solves, backtrack free, all instances in this category. We
cannot stress enough on the importance of this last fact: It is indicative of the
tractability of this class of problems. Notice, despite selRNIC not having the
smallest CPU time, there is not a statistically significant difference between
the mean CPU time of selRNIC and and the mean CPU time of wR(∗,2)C.
Once again, GAC was in a lower significance class than selRNIC, as with
RNIC and triRNIC, as was expected. Note, that only two instances were
completed by all algorithms, thus the nodes visited (#NV) reported in the
table is not that meaningful.

In both Tables 2 and 3, selRNIC largely outperforms GAC for all mea-
sures. Even if one was to use a high-performance GAC implementation such
as the one in [Cheng and Yap, 2010], the number of nodes visited by GAC
remains orders of magnitude larger than that by selRNIC, and the number
of instances solved backtrack-free significantly smaller. Only in Table 4 does
GAC outperform the other algorithms in terms of CPU time only. Interest-
ingly, however, on lexVg, and despite the high density ([57.6%,78.6%]) of the

26

Table 2: RNIC/selRNIC completes the largest number of instances, and solves,
backtrack free, the largest number of instances.

Algorithm dD Time R S #C #F #BF #NV
aim-100: 24(12) instances, e ∈[150,570]

wR(∗,2)C
[6.3%,8.1%]

412369 5 A 19 8 5 328
wR(∗,3)C 304816 3 A 20 1 7 157
wR(∗,4)C 140070 2 A 20 0 12 127

GAC N/A 1923579 7 B 17 4 1 4158286
RNIC/
selRNIC

[6.3%,8.1%] 94699 1 A 22 5 16 101

triRNIC [26.0%,70.5%] 2259986 8 B 14 0 14 100
wRNIC [0.7%,2.6%] 1009380 4 B 20 6 7 188

wtriRNIC [6.3%,8.1%] 1280885 6 A 20 6 7 151
aim-200: 24(0) instances, e ∈[302,1169]

wR(∗,2)C
[3.2%,4.2%]

132205 5 B 12 10 4 -
wR(∗,3)C 1006472 2 A 15 2 8 -
wR(∗,4)C 2015651 3 B 15 0 9 -

GAC N/A - 6 C 8 0 0 -
RNIC/

[3.2%,4.2%] 781596 1 A 19 6 13 -
selRNIC
triRNIC [21.2%,71.6%] - 8 C 1 0 1 -
wRNIC [0.4%, 1.4%] 244643 4 B 13 4 5 -

wtriRNIC [6.3%,11.6%] - 7 C 7 0 7 -

redundancy removed triangulated dual graph, wtriRNIC/selRNIC solves in
a backtrack-free manner all but one of the instances in this set, thus hinting
to the tractability of these instances. (The last instance hit the time thresh-
old.) Notice that even though GAC has a smaller CPU time than selRNIC,
the difference between the two algorithms is not statistically significantly
(see column S). There were not enough instances (8) for the ssa benchmark,
reported in [Woodward et al., 2011a], to report any statistically significant
conclusions.

The 169 instances reported above are representative of the results ob-
tained in our experiments, which were carried over 570 instances. Below, we
classify the non-reported test instances into one of three qualitative categories
identified by the above tables.

27

Table 3: RNIC is hindered by the high density of the dual graph, but its weakened
versions outperform all others.

Algorithm dD Time R S #C #F #BF #NV
modifiedRenault 50(2) instances, e ∈[147,159]

wR(∗,2)C
[35.4%,41.6%]

3078 6 A 46 30 41 111
wR(∗,3)C 8463 3 A 49 4 48 111
wR(∗,4)C 31157 1 A 50 2 50 111

GAC N/A 1678928 7 B 25 14 4 124
RNIC [35.4%,41.6%] - 8 B 11 0 11 111

triRNIC [36.4%, 43.8%] - 9 B 8 0 8 111
wRNIC [1.7%,1.9%] 8285 5 A 47 0 43 111

wtriRNIC [2.9%,3.9%] 166652 2 A 50 0 50 111
selRNIC [1.8%,3.6%] 166560 4 A 49 0 48 111

Table 4: GAC is best on CPU, triRNIC/selRNIC is best on #BF.
Algorithm dD Time R S #C #F #BF #NV

lexVg: 63(40) instances, e ∈[8,36]
wR(∗,2)C

[48.5%,57.1%]
809765 4 C 55 3 27 30

wR(∗,3)C 1384983 7 C 44 0 27 30
wR(∗,4)C 1525548 7 C 41 0 35 3

GAC N/A 114827 1 A 63 60 26 25
RNIC [48.5%,57.1%] 1647671 6 C 45 3 27 30

triRNIC [57.6%,78.6%] 1031882 3 B 59 5 59 3
wRNIC [48.5%,57.1%] 1464461 5 C 45 1 27 30

wtriRNIC/
selRNIC

[57.6%,78.6%] 580935 2 A 62 3 62 3

• Table 2: aim-50 (24 instances), rand-10-20-10 (20 instances), dubois
(13 instances), pret (8 instances).

• Table 3: renault (2 instances), travellingSalesman-20 (15 instances),
travellingSalesman-25 (15 instances), varDimacs (9 instances), rand-3-
20-20 (50 instances), rand-3-20-20-fcd (50 instances).

• Table 4: ssa (8 instances), ogdVg (65 instances), ukVg (65 instances),

28

and wordsVg (65 instances).

8 Future Work & Conclusions

Our approach opens the door to the investigation of a new type of singleton
consistency properties for CSPs. Instead of assigning the value of a single
variable before enforcing some level of consistency on the CSP, as it is usu-
ally the case for Singleton Arc Consistency (SAC) [Bessiere et al., 2011], we
should investigate the effectiveness of ‘assigning a tuple to a relation’ in the
dual problem. Such an approach would yield a new class of relational consis-
tency properties, which could be called relation-based singleton consistency
properties. Note however, that, unlike RNIC, maintaining such properties
during search is prohibitive in practice [Lecoutre and Prosser, 2006].

Our algorithm operates on relations defined in extension as consistent tu-
ples (supports). Relations defined in extension as conflicts (no-goods) could
be converted to supports, as we did here. Further, and also for constraints
defined in intension, we could generate support tuples after applying GAC
to the original CSP. For cases where it is important to keep all relation defi-
nitions in intension, we claim that a similar, albeit weaker, domain pruning
can be achieved by executing RNIC on combinations of domain values that
are consistent with the relations. We propose to mitigate the loss of infor-
mation by generating new (support) constraints of some judiciously chosen
scopes. We propose to investigate this approach in the future and evaluate
its effectiveness.

Consistency properties and their algorithms are central to CP, and per-
haps best distinguish this discipline from other fields that study the same
problems. Research has focused on:

• defining new properties,

• proposing new algorithms,

• improving the performance of known ones, and

• theoretically characterizing the relationship between the consistency
level and the tractability of the CSP.

Our contribution exploits and adds to the large body of literature on consis-
tency properties and their propagation algorithms. However, our long-term

29

goal is to design techniques that allow a constraint solver to identify tractable
problem classes and automatically select and apply the appropriate tools for
solving them. In that sense, the ability of our techniques to adapt to a prob-
lem’s structure and solve many difficult instances in a backtrack-free man-
ner10 is perhaps the most noteworthy contribution of the current research:
It indicates that we may be one step closer to achieving our goal.

Acknowledgments

We are grateful to Elizabeth Claassen and David B. Marx of the Depart-
ment of Statistics at the University of Nebraska-Lincoln (UNL) for their
help with designing the statistical analysis. Experiments were conducted on
the equipment of the Holland Computing Center at UNL. Robert Wood-
ward was partially supported by a B.M. Goldwater Scholarship and by a Na-
tional Science Foundation (NSF) Graduate Research Fellowship grant num-
ber 1041000. This research is supported by NSF Grant No. RI-111795.

References

[Bacchus et al., 2002] Fahiem Bacchus, Xinguang Chen, Peter Van Beek,
and Toby Walsh. Binary vs. Non-Binary Constraints. Artificial Intelli-
gence, 140:1–37, 2002.

[Bessière et al., 2005] Christian Bessière, Jean-Charles Régin, Roland H.C.
Yap, and Yuanlin Zhang. An Optimal Coarse-Grained Arc Consistency
Algorithm. Artificial Intelligence, 165(2):165–185, 2005.

[Bessière et al., 2008] Christian Bessière, Kostas Stergiou, and Toby Walsh.
Domain Filtering Consistencies for Non-Binary Constraints. Artificial In-
telligence, 172:800–822, 2008.

[Bessiere et al., 2011] Christian Bessiere, Stéphane Cardon, Romuald De-
bruyne, and Christophe Lecoutre. Efficient Algorithms for Singleton Arc
Consistency. Constraints, 16 (1):25–53, 2011.

10Note that the complexity of RNIC is exponential in the degree of the dual graph and
not in the number of variables.

30

[Bessiere, 2006] Christian Bessiere. Handbook of Constraint Programming,
chapter Constraint Propagation. Elsevier, 2006.

[Cheng and Yap, 2010] Kenil C.K. Cheng and Roland H.C. Yap. An MDD-
Based Generalized Arc Consistency Algorithm for Positive and Negative
Table Constraints and Some Global Constraints. Constraints, 15 (2):265–
304, 2010.

[Debruyne and Bessière, 1997] Romuald Debruyne and Christian Bessière.
Some Practicable Filtering Techniques for the Constraint Satisfaction
Problem. In Proceedings of the 15 th International Joint Conference on
Artificial Intelligence, pages 412–417, 1997.

[Debruyne and Bessière, 2001] Romuald Debruyne and Christian Bessière.
Domain Filtering Consistencies. Journal of Artificial Intelligence Research,
14:205–230, 2001.

[Dechter and Pearl, 1987] Rina Dechter and Judea Pearl. The Cycle-Cutset
Method for improving Search Performance in AI Applications. In Third
IEEE Conference on AI Applications, pages 224–230, Orlando, FL, 1987.

[Dechter and van Beek, 1997] R. Dechter and P. van Beek. Local and Global
Relational Consistency. Theor. Comput. Sci., 173(1):283–308, 1997.

[Dechter, 2003] Rina Dechter. Constraint Processing. Morgan Kaufmann,
2003.

[Freuder and Elfe, 1996] Eugene C. Freuder and Charles D. Elfe. Neighbor-
hood Inverse Consistency Preprocessing. In Proceedings of AAAI-96, pages
202–208, Portland, Oregon, 1996.

[Freuder, 1991] Eugene C. Freuder. Completable Representations of Con-
straint Satisfaction Problems. In Second International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 91), pages 186–
195, 1991.

[Gent et al., 2000] Ian Gent, Kostas Stergiou, and Toby Walsh. Decompos-
able Constraints. Artificial Intelligence, 123 (1-2):133–156, 2000.

[Golumbic, 2004] Martin C. Golumbic. Algorithmic Graph Theory and Per-
fect Graphs. Elsevier, 2004. Annals of Discrete Mathematics, Vol 75.

31

[Gyssens, 1986] M. Gyssens. On the Complexity of Join Dependencies. ACM
Trans. Database Systems, 11(1):81–108, 1986.

[Janssen et al., 1989] P. Janssen, Philippe Jégou, B. Nougier, and M.C. Vi-
larem. A Filtering Process for General Constraint-Satisfaction Problems:
Achieving Pairwise-Consistency Using an Associated Binary Representa-
tion. In IEEE Workshop on Tools for AI, pages 420–427, 1989.

[Karakashian et al., 2010] Shant Karakashian, Robert Woodward, Christo-
pher Reeson, Berthe Y. Choueiry, and Christian Bessiere. A First Prac-
tical Algorithm for High Levels of Relational Consistency. In 24th AAAI
Conference on Artificial Intelligence (AAAI 10), pages 101–107, 2010.

[Kjærulff, 1990] U. Kjærulff. Triagulation of Graphs - Algorithms Giving
Small Total State Space. Research Report R-90-09, Aalborg University,
Denmark, 1990.

[Lecoutre and Prosser, 2006] Christophe Lecoutre and Patrick Prosser.
Maintaining Singleton Arc Consistency. In CPAI 06 Workshop on Symme-
try in Constraint Satisfaction Problems (SymCon 10), pages 47–61, 2006.

[Lee, 1992] Elisa T. Lee. Statistical Methods for Survival Data Analysis. John
Wiley & Sons, New York, NY, second edition, 1992.

[Stergiou, 2007] Kostas Stergiou. Strong Inverse Consistencies for Non-
Binary CSPs. In Proceedings of the 19th IEEE International Conference
on Tools with Artificial Intelligence, volume 1 of ICTAI 07, pages 215–222,
2007.

[Woodward et al., 2011a] Robert Woodward, Shant Karakashian, Berthe Y.
Choueiry, and Christian Bessiere. Solving Difficult CSPs with Relational
Neighborhood Inverse Consistency. In 25th AAAI Conference on Artificial
Intelligence (AAAI 11), pages 1–8, 2011.

[Woodward et al., 2011b] Robert J. Woodward, Shant Karakashian,
Berthe Y. Choueiry, and Christian Bessiere. Reformulating the Dual
Graphs of CSPs to Improve the Performance of Relational Neighborhood
Inverse Consistency. In Ninth International Symposium on Abstraction,
Reformulation and Approximation (SARA 2011), pages 1–8. AAAI Press,
2011.

32

