
Tree-Based Algorithms for Computing
k-Combinations and k-Compositions

Shant Karakashian and Berthe Y. Choueiry

Constraint Systems Laboratory
Department of Computer Science & Engineering

University of Nebraska-Lincoln
Email: {shantk|choueiry}@cse.unl.edu

TR-UNL-CSE-2010-0009

November 4, 2010

Abstract

In this document, we describe two tree-based algorithms for computing
all k-combinations and k-compositions of a finite set.

Contents
1 Introduction 2

2 Generating k-Combinations 2
2.1 Illustrating the execution of COMBINATIONS 4
2.2 Correctness of COMBINATIONS 4

3 Generating k-Compositions 5
3.1 Illustrating the execution of FIXEDSUMKSTRINGS 6
3.2 Correctness of FIXEDSUMKSTRINGS 7
3.3 Complexity of FIXEDSUMKSTRINGS 7

1

1 Introduction
We have developed two algorithms for solving the following combinatorial tasks:

• Given a finite set S and a natural number k, find all subsets of S of size k.
In the literature, this problem is called k-subsets and k-combinations.

• Given two natural numbers k, n where k ≤ n, find all k-compositions of
n where a k-composition is an ordered combination of k nonzero natural
numbers whose sum is n. Note that in the literature, a k-composition of n
can have null numbers. Further, some authors require that the sum of the k
numbers to be less or equal to n.

Both algorithms are based on building an intermediary tree data-structure. Using
similar tree structures for generating various combinatorial objects under con-
straints is a “reasonably standard approach” [Hartke 2010]. Algorithms exist in
the literature for k-combinations and k-compositions. For example, Wilf [1989]
discusses combinatorial Gray codes, and attributes an algorithm for k-compositions
to Knuth. Ruskey [1993] shows a bijection between the compositions of Knuth
and the combinations of Eades and McKay [1984]. Algorithm pseudocode for
those combinatorial problems is reported in Google1, Section 4.3 and 5.7 of [Ruskey
2010], and [Arndt 2010a; 2010b].

The goal of this document is to report the pseudocode of the algorithms im-
plemented in our software [Karakashian 2010].

2 Generating k-Combinations
Given a non-negative integer c and a set S, COMBINATIONS (Algorithms 1) gen-
erates all combinations of size c of the elements of S by calling COMBINATION-
SREC (Algorithm 2) on c and s=|S|. We implicitly consider that the elements of
S are stored in an array and that each (non-negative integer) position of the array
corresponds to an element of S.

In particular, Algorithm 2 is a divide-and-conquer algorithm that solves the
problem by generating a tree. Given a root node and two non-negative integers
c and s, it divides the problem into (s − c − rest + 1) subproblems in Line 2.
Each subproblem has a root element that is added as a child to the root of the
current problem in Line 4. All solutions in a subproblem include this root element.

1Google answers: http://answers.google.com/answers/threadview/id/780070.html.

2

Algorithm 1: COMBINATIONS(c, S)
Input: c, S
Output: All subsets of size c of S
root← ∅1

s← |S|2

COMBINATIONSREC(c, 0, root, s)3

icombinations←EXTRACTFROMTREE(root)4

combinations←MAPPOSITIONSTOELEMENTS(icombinations)5

return combinations6

The combination size of each subproblem is set to (c − 1), and the subset of
the original set with all elements occurring after the root element is assigned as
the set of the subproblem. The subproblem is solved by calling the algorithm
recursively in Line 4. The recursion ends when c=0 in Line 1. The solution to
a subproblem is constructed by adding to each solution from a subproblem the
root element of the current problem. The final solution is constructed by calling
EXTRACTFROMTREE in Line 4 of Algorithm 1, then mapping back the integers
to the corresponding elements of S.

Algorithm 2: COMBINATIONSREC(c, rest, root, s)
Input: c, rest, root, s
if c = 0 then return1

for x← rest to (s− c) do2

node← x3

add node as a child to root4

COMBINATIONSREC((c− 1), (x + 1), node, s)5

end6

The output of COMBINATIONSREC and that of an algorithm for generating
k-combinations are identical.

The time and space complexity of COMBINATIONS are
(

s
k

)
for a set of s ele-

ments. For a graph of |V | vertices, the time complexity is Θ(|V |k).

3

2.1 Illustrating the execution of COMBINATIONS

Figure 1 illustrates the operation of Algorithms 1 and 2 in the call COMBINA-
TIONS(3,{a,b,c,d,e}). The nodes are generated in the lexicographical order of

Figure 1: Tree generated by Algorithms 1 and 2 for COMBINATIONS(3,{a,b,c,d,e}).

tree-node labels displayed in Figure 1. The combinations of integers extracted by
EXTRACTFROMTREE lie on the paths from the root to leaves of the tree:

{{0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 2, 3}, {0, 2, 4},
{0, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} (1)

which yields the following combinations:

{{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e},
{a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}}

2.2 Correctness of COMBINATIONS

Theorem 2.1. COMBINATIONS is sound and complete.

Proof. Every generated combination has exactly c distinct elements. The size of
the combination is guaranteed by adding to a path in the tree one node at each
recursive call and making c recursive calls. At every recursive call, the desig-
nated element of the current problem that is added to all solutions of the current
problem is excluded from the sets passed to the subproblems. Hence the same
element cannot be added more than once to the same set. Moreover, for every
element other than the designated element in a problem, a subproblem is gener-
ated, such that the first subproblem returns all combinations with the designated

4

element d1 for the first subproblem, the second subproblem returns all combina-
tions with the designated element d2 for the second subproblem excluding the d1,
the nth subproblem returns all combinations with designated element dn exclud-
ing the elements {di|i < n}. Consequently no two subproblems return the same
combination. Algorithm 2 does not exclude any combination because for every
element e in the original set, a subproblem is generated that returns all combina-
tions with the elements ordered after e in the set. The only elements for which no
subproblem is generated are the last (c − 1) elements of the original set because
no combination of size c exists with fewer than c elements.

Therefore, Algorithm 2 generates all possible combinations of size c from the
set given as input to Algorithm 1.

3 Generating k-Compositions
FIXEDSUMKSTRINGS (Algorithm 3) generates a string of nonzero positive inte-
gers of length size such that the sum of the integers in the string is Sum. Algo-
rithm 3 simply creates the root node of a tree structure and passes it to FIXED-
SUMKSTRINGSREC (Algorithm 4) with size and Sum as arguments.

Algorithm 3: FIXEDSUMKSTRINGS(size, Sum)
Input: size, Sum
Output: All strings of strictly positive integers of length size that sum up

to Sum
root← ∅1

FIXEDSUMKSTRINGSREC(size, Sum, root)2

strings← EXTRACTFROMTREE(root)3

return strings4

Algorithm 4 constructs a tree at the root, such that every path from a child of
the root to a leaf in the tree is a string of integers with length size and sum equal
to Sum. EXTRACTFROMTREE (not presented here because straightforward) re-
trieves these strings from the tree in Line 3 and returns them at the end.

Algorithm 4 is a divide-and-conquer algorithm, constructing a tree data-structure.
Given a root node and values for size and Sum, it divides the problem into
(size − Sum + 1) subproblems each of size (size − 1), see Line 6. For each
subproblem, an integer x is assigned as the integer at the first position of the

5

Algorithm 4: FIXEDSUMKSTRINGSREC(size, Sum, root)
Input: size, Sum, root
if size = 1 then1

node← Sum2

add node as a child to root3

return4

end5

for x← 1 to (Sum− size + 1) do6

node← x7

add node as a child to root8

FIXEDSUMKSTRINGSREC((size− 1), (Sum− x), node)9

end10

string in the corresponding subproblem. This fact is achieved by adding, for each
subproblem, a tree node to the root of the current problem with value x in Line 8,
which becomes the root of the subproblem. The subproblem is solved by recur-
sively calling the algorithm in Line 9 with the arguments (size− 1), (Sum− x),
and the new node. There are (size − Sum + 1) subproblems because only the
numbers 1 to (size−Sum+1) can be used at the current position to form a string
of size size and that sums up to Sum. Further, all possible numbers from 1 to
(size− Sum + 1) are considered at Line 6 each time Algorithm 4 is called.

The recursion ends when size=1 in Line 1, which corresponds to the last po-
sition of the string in the original problem. A leaf node with value Sum is added
to the root of the current problem in Line 3.

3.1 Illustrating the execution of FIXEDSUMKSTRINGS

Figure 2 illustrates the operation of Algorithm 3 in the call FIXEDSUMKSTRINGS(3,5).
Line 6 of Algorithm 4 is called with the values of 1, 2 then 3 for x, as shown in
the first level of the tree in Figure 2. The recursive calls in Line 9 yield the tree
shown in Figure 2.

EXTRACTFROMTREE extracts the strings by traversing the tree, yielding the
strings:

{{1, 1, 3}, {1, 2, 2}, {1, 3, 1}, {2, 1, 2}, {2, 2, 1}, {3, 1, 1}}. (2)

6

Figure 2: Tree generated by Algorithms 3 and 4 for FIXEDSUMKSTRINGS(3, 5).

3.2 Correctness of FIXEDSUMKSTRINGS

Theorem 3.1. FIXEDSUMKSTRINGS is sound and complete.

Proof. Let Sumo be the original value of Sum given as input to Algorithm 3.
We consider that the root of the tree is at depth zero and that its children are at
depth one. When the recursive call is made on a node at a depth d in the tree
(see Line 9), the value of the second argument in the call is equal to (Sumo −∑(d−1)

i=1 xi), where xi is the value of the node at depth i in the path from root to the
current node. This fact guarantees that the sum of the integers in each generated
string does not exceed Sumo. Moreover, when size = 1, the value stored in the
leaf is xd = Sumo−

∑(d−1)
i=1 xi. Consequently, the sum of the values stored in the

nodes along a path from the root to a leaf is
∑d

i=1 xi =
∑(d−1)

i=1 xi + xd = Sumo,
which is the required sum for the original problem.

The algorithm enumerates all possible strings with size and Sum given as
input by considering all possible values for each position in the string. Therefore,
the algorithm returns all possible strings of the given size and sum.

3.3 Complexity of FIXEDSUMKSTRINGS

Proposition 3.2 (Number of strings returned by FIXEDSUMKSTRINGS.). The
number of strings returned by FIXEDSUMKSTRINGS(size, Sum) is

O
(
(Sum− size)(size−1)

)
. (3)

Proof. Each string is given by a path from the root to a leaf. Hence, the number
of strings is equal to the number of leaves in the tree. The depth of the tree

7

generated by Algorithm 4 is size. The maximum branching factor of the tree is
(Sum−size+1) for all nodes except the nodes at depth (size−1), which have a
single child. Hence, there are at most (Sum− size)(size−1) leaves in the tree.

Proposition 3.3. Assuming that a node is added in constant time, it follows from
Proposition 3.2 that the time complexity of FIXEDSUMKSTRINGS is

O
(
(sum− size)(size−1)

)
. (4)

References
Jörg Arndt. Matters Computational: Ideas, Algorithms, Source Code, chapter
Combinations. Academic Press, London, UK, 2010.

Jörg Arndt. Matters Computational: Ideas, Algorithms, Source Code, chapter
Compositions. Academic Press, London, UK, 2010.

Peter Eades and Brendan McKay. An Algorithm for Generating Subsets of Fixed
Size with a Strong Minimal Change Property. Information Processing Letters,
19:131–133, 1984.

Stephen G. Hartke. Personal communication, 2010.

Shant Karakashian. An Implementation of An Algorithm for Generating All
Connected Subgraphs of a Fixed Size. Software (Version Oct2010), Constraint
Systems Laboratory, University of Nebraska-Lincoln, Lincoln, NE, 2010.

Frank Ruskey. Simple Combinatorial Gray Codes Constructed by Reversing
Sublists. In Fourth International Symposium on Algorithms and Computation
(ISSAC 93), pages 201–208, 1993.

Frank Ruskey. Combinatorial Generation. Unpublished manuscript from Cite-
seer, 2010.

Herbert S. Wilf. Combinatorial Algorithms: An Update. SIAM CBMS-NSF 55,
1989.

8

