Exploring Parameterized Relational
Consistency

Shant K. Karakashian, Robert J. Woodward and Berthe Y. Ghoue

Constraint Systems Laboratory
Department of Computer Science & Engineering
University of Nebraska-Lincoln
Email: {shant k|r woodwar [chouei ry}@se. unl . edu

TR-UNL-CSE-2009-0009
August 27, 2009

Abstract

Consistency properties and algorithms for achieving thenatthe heart
of the success of Constraint Programming. For non-binamns@aint Satis-
faction Problems (CSPs), the relational-consistencyqngpr (,;)C of [Dechter
and van Beek 1997] may add new non-binary constraints todhstaint
network, thus modifying its topology. The domain-filteripgpperties of [Bessiere
et al. 2008] filter the domains of the variables and leave the caim un-
changed but are restricted to combinations of two consgaive restate the
property ofm-wise consistency [Gyssens 1986; Jegou 1993] as relationa
(x,m)-consistency, R(m)C. R(x,m)C ensures that any tuple in a relation is
consistent in every combination of constraints. The main contributions
of this document are the design of an algorithm for enforédtgm)C and
the evaluation of its effectiveness in a search proceduuwngoCSPs. This
document thus establishes the usefulness in practice béhigpnsistency
levels in non-binary CSPs.

Contents

1 Introduction 4

2 Basic Definitions 5

3 Definition of R(*,m)C 6

4 An Algorithm for R(*,m)C 8
4.1 The set of combinations et constraints 8
4.2 Thelastdatastructure 8
4.3 Initializing the constraintsqueue 9
4.4 Processing the constraintqueue 9
4.5 Findingasupport 10
4.6 Matchingatupleinarelation. 11
4.7 Complexity Analysis 13
4.8 Integration with backtracksearch 14

5 Experimental Results 15
5.1 ExperimentalSetup, 15
5.2 RenaultBenchmarks 16
5.3 Positive Table Constraints. 17
54 DimacsBenchmarks 18
5.5 Randomly Generated Problems 19

6 Future Work & Conclusions 22

1 Introduction

Local consistency techniques are the heart of the succdéssradtraint Program-
ming and perhaps best distinguish this field from other siiemlisciplines that
study the same combinatorial problems. In continuatiorefdroperties and al-
gorithms introduced in [Waltz 1975; Montanari 1974; Mackthal977; Freuder
1985], Dechter and van Beek [1997] defined the conceplafional consistency
to address the consistency properties of non-binary Cainstgatisfaction Prob-
lems (CSPs). They defined the consistency property of oslakin-consistency
(RmC), involving every combination of. constraints in the CSP, and the more
relaxed property of relational,(m)-consistency (R(m)C), involving every com-
bination ofi variables. In practice, enforcing/kC or R{, m)C may require the
generation of0(n’) new non-binary constraints, wheneis the number of vari-
ables in the CSP.

Another research direction focused on the effect of comscst properties
on the domains of the variables [Mohr and Masini 1988; Basst al. 2005;
Lhomme and Régin 2005; Bessigtal. 2008; Cheng and Yap 2004Domain
filtering has the advantage of reducing the search space exploredl¥orgsthe
CSP. While most work considered constraimntdividually (GAC), Bessiere et al.
[2008] studied the effects of combinations of pairs of coaiats.

In this document we introduce a special form of relationalststency, which
we call R¢,m)C and which operates on every combinatiomo€onstraints. Un-
like RmC and R{, m)C, R(,m)C doesnotadd new constraints to the CSP and,
thus, keeps the topology and width of the network unchandyestead, it oper-
ates on the relations defining the constraints, filteringth@remove inconsistent
tuples. In comparison to R(r)C, the %’ in R(x,m)C is used to indicate that
the property affects only ‘those variables that are in tlmpeaf an existing con-
straint, whatever the size of the scope is.” More formallg, define R¢,m)C to
ensure that every tuple in a relation can be extended to mlpsotution over the
variables in every set af. constraints that is consistent with those constraints.
R(x,m)C is semantically equivalent to relationalwise consistency studied in
[Gyssens 1986; Jegou 1993However, neither paper evaluated or even proposed
practical algorithms for implementing relationatwise consistency. We choose
to use the notation R(m)C instead of the notatiom-wise consistency simply
and purely for the sake of situating this consistency pryparthe context of the

[Jansseret al. 1989] present relational pairwise consistency as requiitiat the ‘overlap’
of every pair of constraints can be ‘extended’ to the comnssan the pair. However, it is easy to
prove that relational pairwise consistency and,R)C are equivalent.

4

terminology R{, m)C familiar to the CP community. The contributions of our
document are as follows:

1. The (re-)definition of a new (parametric) relational detency property,
R(x,m)C, that does not modify the topology of the constraint nekwo

2. The design of an algorithm, along with its data structufes enforcing
R(x,m)C.

3. Similarly to [Bessiereet al. 2008], the integration of our algorithm in
a backtrack search procedure with full lookahead for sghnon-binary
CSPs.

4. The evaluation of the cost (in terms of CPU) and effecigsn(in terms
nodes visited as a measure of pruning power) of the reswudgagech proce-
dure on randomly generated and benchmark problems.

We also identify ways to improve our algorithm in the future.

In summary, we establish in this document that higher ctersty levels are
feasible and advantageous in practice.

This document is structured as follows. Section 2 revievesdéfinition of
non-binary CSPs. Section 3 defines<R{)C. Section 4 describes our algorithm
for enforcing R§,m)C. Section 5 discusses our experimental results. Section 6
discusses future work and concludes this report.

2 Basic Definitions

A Constraint Satisfaction Problem (CSP) is defined by théet@p, D, C) where
)V is a set of variablesD set of domains, and set of constraints. Each variable
V; € V has a finite domairD; € D, and is constrained by a subset of the con-
straints inC. For a given constraint’; € C, vars(C;) denotes the scope of the
constraint. Every constrairdt; is associated with a relatioR;, which gives the
allowed combinations of values for the variablesdms(C;). Such a combination
of values, said to be consistent with, is a tupler € R; of size|vars(C;)|. In this
report, we use constraint€’{) and relations R;) interchangeably. A solution for
the CSP is a tuple made of one value per variable such thditeatidnstraints are
satisfied, i.e. the projection of the solution tuple on thepscof each constraint
C; iIs consistent withR;.

In this report, we denote by@mbinationy of m constraintsa set ofm con-
straints such that primal graph induced by the constramtise set is connected.
Note that the primal graph of a non-binary CSP is the graphsemodes are the
variables in the scope of the constraints and whose edge®cbevery two vari-
ables that appear in the scope of one or more constrainth{&e2003]. Further,
we denote by is the set of all possible combinatiopf sizem in a given CSP.
Finally, 7 andX denote the relational operators project and join.

3 Definition of R(x,m)C

Although the definition of R{,,)C is intuitive and obvious, we state it below
using the definition format of R¢n)C of [Dechter 2003]:

Definition 3.1 A set ofm relationsR = {R;,---,R,,} is said to be R{,;m)C

iff every tuple in each relatiom?; € R can be extended to the variables in
Ur,er\r, vars(R;) in an assignment that satisfies all the relationsRnsimul-
taneously. A network is R(n)C iff every set ofn relations is R¢,m)C.

R(x,m)C can thus be enforced by filtering the existing relationagishe fol-

lowing operation on each combinationefrelations{ R;, - - - , R,,} and without
introducing to the CSP any relation whose scope was notdtreanstrained in
the original CSP:

\V/RZ- - {Rl, s ,Rm}, Rz’ C anTs(Ri)(N;'nzl R]) (l)

Expression (1) gives us an obvious algorithm for enforcigg®R)C. Even if each
joinis computed only once and thenits tuples filtered iteedy, the space require-
ment of such an operation is too prohibitive to be of any usefis in practice use.

Once R§,m)C is enforced on a constraint network, variable domainsscdn
sequently be filtered (i.e., domain filtering) by simple patjon of the filtered
relations on the domains of the variables. Unlike GAC, we dbreed to loop
between the filtering of the domains and that of the the caims because any
value for a variable that appears in any relation in the ndiweecessarily appears
in all of them. R§,m)C is related to other consistency properties as follows:

1. As stated in the introduction, R(n)C is equivalent to relationah-wise
consistency proposed in the area of Relational Databasgss@@s 1986;
Jégou 1993].

2. R(,m)C is obviously equivalent to (i3 — 1)-consistency on the dual CSP.

3. If all pairs of relations in the CSP overlap on exactly oreiable, then,
R(x,2)C and GAC have the same ‘domain-filtering power’ (prodfimilar
to that of Theorem 2 of [Bessiert al. 2008]). Furthermore, on a nor-
malized binary CSP, where the constraints on the same peaariables are
combined, R%,2)C and AC have the domain-filtering power (similarly to
what is stated in [Bessieet al. 2008]). Clearly, R¢,2)C cannot be bene-
ficial and should not be used in those two situations, as idvonly incur
computational overhead.

Below we discuss the relationship between relatiomalonsistency (R:.C) of
[Dechter and van Beek 1997] and«R()C. For a given sefR;,--- ,R,,} of m
relations RnC requires the projection of the joined relations on all etbsf size
|U~, vars(R;)|—10of A C |J~, vars(R;). Hence, every subsetintroduces a new
constraint, except those that have the same scope of excgiimstraints. Because
R(x,m)C projects the join on the scope of each of its original refet, no new
constraints are added. Although«R()C has the favorable property that no new
constraints are introduced, it is weaker, in terms prunioggy and consistency,
than relationai-consistency.

Theorem 3.1 R(x,m)C is a weaker consistency, in terms of pruning power and
consistency, than relationail-consistency

Proof: Consider a CSEP, and letP,,,. and P,.... be the same problem after
enforcing RnC and R¢,m)C onP, respectively. We consider a partial assignment
T over some of the variables &f, vars(7), that is consistent with the constraints
of P,... and prove that it must necessarily be consistent with thetcaints in
P.«me. LEL'S assume that is not consistent with the constraints.,.,... Thus,
there must be at least one relatiBp, in P,.,,,. such thatr & mq,5(r)(Ry). Given
the definitions of R:C and R§,m)C, there must exist one relation®),,.. (which
adds many new constraints to the problem) that has the sape sta relation in
Pr«me (Which does not add new constraints to the problem). TRus, must have

a relationR, such thatar(R,.)=var(R,). Given thatr is a consistent partial
solution iNPy.c, thent € Tyes(r) (Re). T € Toars(r) (Rz) @NAT &€ Tyars(r) (Ras)

is impossible because joining more relations?f,. and projecting them on the

’Note that relationakn-consistency of of [Dechter and van Beek 1997] and hyper-
consistency of [Jégou 1993] are most likely equivalerd, ghoof being outside the scope of this
document.

same scopears(T) cannot possibly introduce more tuples. Thus, we reach a
contradiction and R{m)C is not a stronger consistency thamR.

Below we provide an example that shows thab® can be stronger than
R(x,m)C. Let P be the following Boolean CSP with the four variables V5,
V3, andV, and the four constraints:

Cviv, = Cvyyy = Cyy vy = Oy vy = {(0,0),(1, 1) } (2

Let P,,.. andP,..... be the problems after enforcing:®C and R¢,m)C onP, re-
spectively. The partial assignmeit;, 0), (V3, 1)) is consistentirP,.,,.., because
it is consistent with the the constraints®y.,.., which are identical to the ones
P for all values ofm. However, this partial assignment violates the constraint
Cvivs = {(0,0),(1,1)} in P,,c. Inthis case, C is a stronger consistency than
R(x,m)C.
In conclusion, R¢,m)C is a weaker consistency thamie.
0

Corollary 3.1 R(x,m)C is sound and does not eliminate any solution.

Because R(m)C is a weaker consistency than relationaiconsistency, its
soundness follows from the soundness of relatiomalonsistency.

4 An Algorithm for R(*,m)C

In this section we describe our algorithm for enforcing ttfe,R)C property on a
CSP. The algorithm has three main components: initialii@gconstraint queue
(Algorithm 1), processing the constraint queue (AlgoritBin and finding and
maintaining the support structurel{fd SUPPORT). This last function is used in
both Algorithm 1 and Algorithm 2. Enforcing R{n)C is achieved by calling
Algorithm 2 on queue returned by Algorithm 1.

4.1 The set of combinations ofn constraints

Given a CSP problem, we first generate thedsef all combinationsy; of m
constraints, such that the graph induceddyis a connected graph. There is
potentially a factorial number of such combinations in astaaint network. We
have developed an algorithm, not reported here for lackatepthat computes all
the connected combinationsiafconstraints in CSP while exploiting the topology
of the dual graph of the CSP. That algorithm generates ewenyected component
once while not generating any non-connected component.

8

4.2 Thelast data structure

We achieve the R(m)C property when every tuplkeof every relationR; in every
combinationy of m relations can be ‘extended’ successfully to all the — 1)
remaining relations ip, that is all tuples have the same values for the common
variables. We say that the set(@f — 1) tuples that ‘extendst to the constraints

in ¢ is the ‘support’ ofR;’s 7 in . When, in at least one combination, no support
can be found for a tuple, then the tuple is deleted. In ordewvtnd repeatedly
rediscovering this support when enforcing the R()C property on the CSP, and
similarly to [Bessiéereet al. 2005; 2008], we use a data structdrest((7, R;), ¢),
which is a list of pointers to the tuples supporting R; in the(m — 1) remaining
constraints inp. This list is initialized toni | . When a support is first found for
7, this list points to thém — 1) supporting tuples. The supportvalid as long

as none of m — 1) supporting tuples is deleted. The algorithms below focus on
identifying, using, and updating such supports.

Note that the data structufeist((7, R;),) is used to remember the last cur-
rent solution that supports € R; in the combinationp. When any of the sup-
porting tuples is deleted, the search for a new supportiantes from the longest
consistent partial solution. Thukast() plays a different role than the data struc-
ture with the same name in GAC/AC-2001 algorithms. In faetrble of Last in
GAC/AC-2001 algorithms is fulfilled by our data structurel Treeintroduced in
Section 4.6.

4.3 Initializing the constraints queue

Algorithm 1 considers each tuplein each relationk in each combination of
constraintsy € ¢, and tries to extend the tuple to the remaining relationfién t
combinationy using AND SUPPORT. If no supportis found for, theniitis deleted
from R. (As we explain in Section 4.6, deleting a tuple is achievedidgging

it as such in the table that stores the tuples of the relatiéarther, the relations
that appear in any combinatiagri of m relations containingz and such thap'+£¢
are added to the constraint queue as their tuples may be segfy the deleted
tupler.

4.4 Processing the constraint queue

The initialization phase deletes some tuples from the caims$, but does not
fully enforce the R¢,m)C property. Some tuples deleted by Algorithm 1 could

9

Algorithm 1: INITIALIZE -Q, initializes the queue.
Input: ¢
Output: Q: queue of constraints
1 foreachp € (do
foreach R € p do
deleted «— false
foreachT € R do
support «—FINDSUPPORT(7, R), ¢)
if support = false then
DELETE(T)
if R = (thenreturn false
deleted < true
end
end
if deleted then foreachy’ € (¢ \ {¢}) do
| if Re ¢ then Q — QU (¢’ \{R})
end
end
end
return Q

© 00 N O O b~ W N

=
o

e
w N R

= e
(SIS

B
N o

have been in the support of some other tuples. Hence somi@dslenay leave
some tuples without any support. Therefore, we should seeksupports for
these tuples, and, if none is found, we should delete ther. pfbacedure Ro-
CESQUEUE given in Algorithm 2 revises every relation in the queue tslere
that all their tuples are properly supported in each contlwnaof . constraints
where the relation appears.

4.5 Finding a support

The predicate function AM.ID SUPPORT(7, R),) examines the data structure
Las{(7, R), ¢) to determine whether or not there is a ‘valid’ supportfoe R in
v. A valid support exists when the list of pointers is not emgatid when none of
them — 1 tuples supporting € R has been flagged ‘deleted.” If a valid support
is found, then the predicate returhs.e, otherwise it returngalse.

In order to find a support, ofm — 1) tuples, for a tupler of a relationR

10

Algorithm 2 : PROCESRQUEUE, delete tuples that have lost their support.

Input: 9O,C
Output: true is the problem is R(m)C, false otherwise
1 while Q # () do
2 R — PoP(Q)
3 deleted «— false
4 foreachyp s.t. R € p do
5 foreacht € R do
6 support «—FINDSUPPORT((7, R), ¢)
7 if support = false then
8 DELETE(T)
9 if R = () thenreturn false
10 deleted «— true
11 end
12 end
13 end
14 | if deleted then foreachy' € (¢ \ ¢) do
15 | if Re ¢’ then Q — QU (¢’ \{R})
16 end
17 end

18 return true

in a combinationy, we conduct a depth first search with partial look-ahead (a
la forward checking) on the dual CSP induced by theelations ing and in
which the assignmen® — 7 is made. A solution to that dual CSP provides a
support forr € R, which is used to initialize or updateast{((r, R;),). One
important functionality to implement the look ahead is tldity to determine
that a tupler; € R; can be matched with some tupleft), whereR; andR; are

two ‘variables’ in the dual CSP. In Section 4.6, we proposenaiex tree data-
structure IndTreeg to facilitate matching the tuple in R;.

One could further improve the runtime performance by updgtihe support
of each tupler; in Las{(r, R;), ¢) with the set of tuples returned by the search
procedure, from which; is removed and to which is added.

11

Algorithm 3 : FINDSuPPORT, finds a support for a tuple.
Input: (7, R;), ¢

1 if VALID SUPPORT((7, R),p) then return true else

2 ‘ Las{((7, R;), ¢) < SEARCH(p, R; < T)

3 end

4 return Last((, R;), ¢)

4.6 Matching a tuple in a relation

We say that; € R, is matched inR; if we can find a non-deleted tupte in R,
such that the variables imrs(R;) N vars(R;) have the same assignmentsrjn
andr;. The performance of matching (or finding a support) for aduple R;
in another relatiork; (wherevars(R;) Nwvars(R;) # 0) is important in practice.
Below, we introduce a new ‘index data-structure’ to faatkt this operation.

We assume that the relations are implemented as tables sistemt tuples
(i.e., supports) and that the order of the tuples is fixed. We assume that
each table includes a coluntel to indicate that the tuple is deleted (1) or not
(0). For each relatiorR, and for each subset of the scope Rf, scope,, for
which R, overlaps with another relation in the problem, we build & s&ucture
IndTredscope,,R;), Wherescope, is lexicographically sorted, as follows. The
root of the tree is a dummy node. Each level in the tree cooredpto a variable in
scope, following the lexicographic order. Each node in a given legresponds
to a value that the variable at that level has in the rela#dithe nodes at level 1
are connected to the root node. At any given level, a nodeneeaxied to a hode
at the preceding leveff the two corresponding variable-value pairs appear in a
tuple in the relation?,. Thus, we have a one-to-one correspondence between
a path in the tree and the projection of a tupleRn on scope,. Finally, each
leaf is annotated with a list of pointers to the originatingles inR,. At the
construction stage, those pointers reflect the order ofupkes in the relation.
Figure 1 illustrates such a structure. For a CSP witlon-binary constraints and
maximal constraint arity;, we have a maximum aP(e?) such structures. Each
structure ha®)(d*~V) nodes and take®(d*~V) effort to build (i.e., linear in
the number of tuples ik,).

In order to locate a support for a given tuplén a relationRz,,, we traverse the
treeIindTredscope,,R,), With scope,= vars(t) Nvars(R,), from the root down
to a leaf following the nodes corresponding to the values,ip,. (7). If, at any
level, no tree node can be found with the corresponding vialue we conclude

12

vy

a
cocoof

[l =N elled
RRPER RO
[e el el

—
N
RO OO W

Figure 1: Example of IndTre€scope,,R,;) where vars(R,)={ab,c,d and
scope,={a,b,q.

thatT does not have a support .. If we reach a leaf, the annotation at the leaf
gives a list of pointers to the tuples i, that match withr.

We implemented an additional (optional) feature for theadations. Every
time a tuple is deleted from a relation, all the annotatiohens it appears are
accessed, and the corresponding pointers are moved toiltbéttee annotation
list. In this context, whenever the first pointer in an antiotapoints to a deleted
tuple, it becomes obvious that no other tuple in the anratatan be ‘alive’ and
finding a support forr in R, returns failure. This optional feature has showed
improvements in some special instances in our experimei@sdtion 5. We refer
to this feature asndex updating Note that when index updating is enabled, our
data structure directly access the consistent tuple alimesrafficiently than the
data structuréastof in GAC/AC-2001 algorithms [Bessiert al. 2005].

4.7 Complexity Analysis

The time complexity of our algorithm is dominated by thedZESSUEUE,
hence we omit the initialization phase from the analysis. a&sume uniform
domain sized for all variables, uniform arityt for all constraints, and uniform
number of tupleg in each constraint. We denote byhe number of constraints
(e = |C]), and byd the number of combinations of constrainis|(|). The num-
ber of combinations is bounded by above(tj}), but this bound is reached only
for very dense problems (complete graphs). In practicentimaber of combi-
nations is much less than this upper bound, therefore wé.uge a reminder,
our algorithm for generating all connected combinationsiafonstraints exploits
the structure of the dual graph and doed generate combinations that are not
connected, thus, the upper limit.

13

Algorithm 2 has three nested loops: the first loop iterates all the relations
in the queue; the second loop iterates over each combinati@ne a relation
appears; and the third loop iterates over each tuple in thdae. The innermost
loop iteratesD(¢) times, and the middle loop at mastimes. As for the outermost
loop, every time a tuple is deleted, at m@Xk) relations are queued in Line 15 of
Algorithm 2. Since the condition in Line 14 is satisfied at tnmsce for any tuple
in arelation, and since there &re c tuples, then the loop in Line 1 of Algorithm 2
iterates at mos(t - e) times.

When ENDSUPPORTIS called for a tuple in Line 6 of Algorithm 2 and if the
tuple has not lost its support, then it costs oélym) to check the existence of a
valid support in Line 1 of Algorithm 3. Let be the cost of kb SuPPORTand
« be the number of timesIRD SuPPORTIs called in the case when the tuple has
lost its support. Multiplying the costs of the nested loomsget:

O(t*e*dm + af3) 3)

When a tuple does not have a support, Line 2 of Algorithm 3 &cated. Finding
a support for a tuple is finding a matching tuple from each efthl constraints
in the combination. The worst-case time complexity of thpsmtion isO(t™1).
Using the index-tree structure has the same complexityausex deleted tuples
must be discarded. However, in practice, the index-tragcttre exploits the
selectivity of the relations and demonstrates much impt@erformance. As the
arity of the relations increases, the selectivity of thatiehs also increases, and
we observe better performance of our algorithm for problesitis high constraint
arity in the experiments (see Section 5). Therefgre; O(t™1).

The number of times a tuple can lose a support is bounded by the number
of tuples that can participate in any support for There aren — 1 constraints
in a combination that make the support for a giverand each hasconstraints.
Hence the number of timesloses support isx = O(tm). Substitutingy and 3
in Expression (3) we getd(t2e26m + mt™).

The space complexity of the algorithm is dominated by thespaquirement
for the indexes constructed on the constraints. The spawpleaity of each index
is O(t), that is the number of tuples in the relation, since therepigiater to each
tuple in the constraint. The number of nodes in the tree cat b®std x scope,.
There areD(e) index trees, therefore the space complexityige - ¢).

14

4.8 Integration with backtrack search

Our backtrack search mechanism for non-binary CSPs impienaefull looka-
head schema that maintains+R¢)C. The algorithm proceeds by assigning a
value z to variableV; taken from its domain, it then removes from all the rela-
tions R; such thal/; € vars(R;) the tuples that do not hawefor V;. Then, each
relation R; that has lost any tuples is processed as follows. For evenpiwtion

¢ such thatR; € ¢, every relationR’ € ¢, R' # R, is added to the constraint
gueue. Then the queue is passed to Algorithm 2 to propagateffict of those
deletions. Finally, all updated relations are projectedt@variables’ domains
for domain filtering.

5 Experimental Results

Our approach was motivated by an online tool for playing Mimeepet where
the puzzle is modeled as a CSP and various propagationthlgsrare developed
to support the user in solving the puzzle [Bagtrl. 2006]. We have used this
puzzle as a tool to ‘demystify’ Constraint Programming te ¢feneral public and
to illustrate to Computer Science students the usefulfesmgistency properties
and the operation of propagation algorithms.

5.1 Experimental Setup

We evaluated our algorithm on several benchmark protflemd randomly gen-
erated instances using the Model B generator of [Stergi@9R@Regarding the
choice of benchmarks, Table 5.1, we make the following contme

e The Renault benchmarks are the hardest used in the literae solve 46
out of 50 instances. Prior publications reported only 2vesbinstances.

¢ Positive table constraints benchmarks have very largesabl

e Boolean benchmarks were chosen because the initial itigpifar our re-
search was Minesweeper.

3http://minesweeper.unl.edu
4Renault configuration, Positive Table Constraints, and I&wmo CSPs all taken from
http://www.cril.univ-artois.fr/ lecoutre/researchftmmarks

15

e Random instances were chosen to compare the performanbe algo-
rithms with increasing arity.

All benchmarks are hard, with large constraint arity and/varge relations.

Table 1:Benchmark problems.

| Name | V| |Domainsize |C] | Arity [Number of tuples
Renault [108, 111] [2,42] | [147, 159]|[2, 10]] [3, 48721]
r and- 8- 20-5 20 5 18 8 [77512, 78726]
rand- 10- 20- 10 20 10 5 10 10,000
ai m 50 50 2 [75, 279] | [2, 3] [2,7]
ai m 100 100 2 [155, 562]| [2, 3] [2,7]
ai m 200 200 2 [312, 1157] [2, 3] [2,7]
Random, Model B 20 10 5 [5, 12] 10000

All experiments were executed on a 2.4GHz Quad-Core AMD foptena-
chine with 32GB of memory. Below, we discuss the performaoiceolving
the CSPs with backtrack search while maintaining the ptgseGAC, maxR-
PWC [Bessiereet al. 2008], and R¢,m)C in a full-lookahead schema during
search. As a reminder:

Definition 5.1 (Max Restricted Pairwise Consistency [Bessie et al. 2008]) A
non-binary CSP is Max Restricted Pairwise Consistent (lRPAXR) iff YV, € V
andVz € Dy, VC; € C whereV; € vars(C;), 3t € C; such thatry, (1) = a,
7 is valid andVC; € C (C; # C)), s.t.vars(C;) Nwvars(Cy) # 0, 37" € C), s.t.
Tvars(C;)rwars(Cy) (T) = Toars(;)rwars(c;) (T") @and 7’ is valid. In this caser’ is said
to be pairwise-support of.

We implemented GAC2001/3.1 [Bessi@teal. 2005], maxRPWC-1 [Bessiere
et al. 2008], and our algorithms R(n)C and R,m)Ci, respectively without and
with the index updating scheme described in Section 4.6. $&&ynamic variable
ordering with thelom /deg ordering heuristic (with static degree). To measure the
performance of the search, we report the CPU time in secamithe number of
nodes visited (#NV) for finding the first solution.

16

5.2 Renault Benchmarks

Our first experiment compared GAC, maxRPWCx R()C, and R¢,m)Ci on the

Renault configuration problems. The set has 50 CSP instdinaekave between
108 and 111 variables, 147 and 159 constraints, largestid®iza 42, and max-
imum arity of 10. We set the time limit to 20 minutes. The résalre shown in
Table 2. ‘Completed’ gives the number of instances solvatiwi20 minutes.

Nodes visited (#NV) and CPU time (Time) in seconds are aveoagr those 18
instances that were completed by all of the algorithms. Th& mum time is

the largest time taken by an algorithm for the 18 instancegpteted by all algo-
rithms. ‘Fastest’ gives the number of times a given alganifmished first among
the four tested. As it can be seen from the results, R(*,2Q@iscantly improves

Table 2:Results on the Renault benchmark.

| Algorithm | #NV| Time|Maximum time | Completed| Fastes{
GAC 300,195.33 61.63 560.16 21 19
maxRPW(Q| 1,140.61118.01 253.24 29 0
R(*,2)C 100.28 11.60 15.85 46 28
R(*,2)Ci 100.28 16.96 29.43 46 0

the performance for solving the 18 instances solved by giirdhms and are able
to solve 46 out of the 50 instances of this difficult benchmark

R(x,2)C’s improved performance with respect to maxRPWC's & beplained
by considering the number of nodes visited. «RJC did more filtering than
maxRPWC, which allowed it to solve most of the problems alm@cktrack
free. Both R¢,2)C and maxRPWC consider combinations of two constraints,
and they only differ in that R(,2)C actually tightens the constraints. We conclude
that a slightly larger investment in the pruning effort isveeded by a significant
reduction of the exponential search effort, thus makinggsible to solve more
problems within the same time limit.

5.3 Positive Table Constraints

Our next experiment was the ‘Positive Table Constrainte’chenark, which has
two sets of problems. Here, we set the time limit to three sioliable 3 shows
the results on the first set, which has 20 unsatisfiable inetanf 20 variables,

17

domain size 10, with 5 constraints of arity 10. Table 4 shdvesresults on the

Table 3:Results on the Positive Table Constraintand- 8- 20- 5 (all unsatisfiable).

| Algorithm || #NV|Time|Maximum time | Completed| Fastes{

GAC 210.1Q 8.19 11.55 20 0
maxRPW(Q 0.00 1.70 451 20 0
R(*,2)C 0.00| 0.07 0.10 20 20
R(*,2)Ci 0.00] 0.09 0.13 20 0

second set, which has 20 satisfiable instances, of 20 vasiaddbmain size 5, with
18 constraints, and arity 8. The number of nodes visited (¢ah CPU time
(Time) in seconds are averaged over the 20 instances in Baldad over the
instances completed by both GAC and«R{C in Table 4. ‘Maximum time’ is
the largest time spent on any instance by an algorithm. éséigiives the number
of times a given algorithm finished first among the four testEdpty cells in the
tables below indicate that the experiment did not completihé allocated time
limit.

Table 4:Results of the Positive Table Constrain@nd- 10- 20- 10 (all satisfiable).

| Algorithm | #NV| Time [Maximum time [Completed| Fastesi
GAC 60,273.273,956.59 10,072.60 15 2
maxRPWQC - - - 0 0
R(*,2)C 1,552.112,901.71 7,210.45 18 2
R(*,2)Ci 1,552.112,161.172 7,756.12 18 14

Both R¢,2)C and maxRPWC solved the instances in the first set in atzagk

free manner. R(,2)C was faster than maxRPWC because of the huge size of the
relations in the problem instances.4&)C took advantage of the selectivity of the
tuples to tighten the constrains and simplify the probleime $ame phenomenon
appears to a larger extent in the second set. This set con$istoser instances,
hence backtracking is inevitable. Moreover, it has lardatiens (about 70,000
tuples) with high constraint arity (8). The high arity indisca high selectivity
among the tuples, which is exploited by:#)C. R,2)C deletes tuples, hence

18

simplifying the problem. As a consequence, although B visited about 1,500
nodes, it was visiting them with smaller relations.

5.4 Dimacs Benchmarks

Table 5.4 shows the results of the experiment on Boolean @®Rsthe Di-
macs benchmarksai m 50 with 50 variables,ai m 100 with 100 variables,
andai m 200 with 200 variables. Each problem class is divided into sads#s
according to the average number of constraints. We repartedch subclass,
the number of instances, number of variables, number oftints, percentage
of the instances solvable, the average time in secondsagwerumber of nodes
visited and the number of instances completed. Note thaatkeages for time
and nodes visited exclude instances that were not compbgtedy of the com-
pared algorithms. If an algorithm did not complete any ofititeances, then it is
not a compared algorithm in that subclass. If no instancesubelass was com-
pleted by all of the compared algorithms, then we do not tejberaverage time
and nodes visited. The last row shows the total number chmtsts completed.
Each problem was ran with a time limit of one hour, and notradtances were
completed within the time limit.

Table 5:Results on Dimacs benchmarksm 50, ai m 100, andai m 200.

| | GAC [maxRPWC | RG2DC] R(+3)C I
#inst.| |V| e |%solv|| Time| #NV |[comp|| Time| #NV |[comp|| Time| #NV |comp|[Time| #NV |[comp
8 50| 75| 0.50 1.31{112K| 8 0.71] 35K| 8 0.48| 5K| 8 9.05/816.75 8
8 50| 95| 0.50 1.42| 45K| 8 0.73] 28K| 8 0.48| 4K| 8 9.08/159.25 8
4 50| 159| 1.00 0.69| 225| 4 0.74/205.75| 4 0.48/90.25| 4 9.12| 53.50| 4
4 50| 279| 1.00 0.76| 80| 4 0.78| 61.25| 4 0.60/50.75| 4 9.16| 50.00| 4
8 |[100| 155| 0.50 1K| 77M| 5 |/504.81] 26M| 5 10.23] 86K| 5 2.05/128.20, 6
8 |[100| 194| 0.50 ||979.95 35M| 4 |/ 642.30, 15M| 4 [[104.12|175K| 4 1.01/100.00f 5
4 |100| 316| 1.00 0.86| 5K| 4 0.76| 3K.75| 4 271 378| 4 62.46| 106.50, 4
4 |100| 562| 1.00 3.81| 214| 4 3.80{143.25| 4 9.78| 108| 4 | 628.65/100.00 4
8 [200{ 312| 0.5 - -l o - -1 0 0.10[200 2 1.59(/200.00f 5
8 |[200{ 387| 0.5 - 0 - -1 0 1.07| 535| 2 4.05(200.000 3
8 |[200{ 642| 1.00 - -1 2 - -1 3 - -l 4 - -1 1
8 |[200{1,157| 1.00 |{|290.00] 96K| 4 |[[222.10, 54K| 4 |[[558.87| 4K| 4 2K|200.000 4
80 47 48 53 56

This problem set has neither high arity nor huge relationswéVer it has a
huge search space. GAC and maxRPWC visited in some instamtems of
nodes, while R{,3)C completed the search in an almost backtrack-free nmanne

19

The powerful filtering of R¢,3)C explains the high performance of#)C on
these problems, especially in terms of the number of insmnompleted.

5.5 Randomly Generated Problems

Finally, in our last experiment, we studied the effect ofyag the arity of the con-
straints while fixing the number of variables to 20, domagedb 10, number of
constraints to 5 and the number of support tuples in the caingt to 10,000. As
the arity increases, the problem becomes tighter, and gxttie ‘phase transition’
phenomenon. The results averages over on 50 instancesoave shFigure 2.

This final experiment clearly illustrates the relative atheges of the three dif-
ferent consistency algorithms. When the arity is lows,RJC and R¢,3)C have
poor performance. R(3)C suffers more than R2)C because of its higher com-
plexity and because it does not draw any remarkable advarfitaq its filtering
power. GAC and maxRPWC take advantage of their lower polyabcomplex-
ity and explore the search space quicker to find a solutiotichlthat the number
of nodes visited is almost the same for all algorithms up ity &

As the constraint arity increases and the problems becayhéetiand more
difficult, the advantages of R(3)C and R¢,2)C start showing up. R(m)C takes
advantage of the high constraint arity. Search visits femaggtes at arity eight
(8), and proceeds backtrack free for arity nine and aboves pgérformance of
maxRPWC improves when for constraint arity nine and abomd,is rewarded
by a sharp decline of the CPU time curve of maxRPWC after aigit. GAC is
clearly a ‘loser’ as the arity grows to eight: it is not ablefitteer as much as the
other algorithms and consequently is not able to reduce B¢ ne.

20

[y
o

(sec)

Time
_O
[EY

0.01

1000 -

“maxRPWC

100

>

—_—
*

Nodes visited
0, \
® === == Ny
| 4

o R(*,31C

.9 10 11 12
Arity

Figure 2:Random non-binary CSPs with 20 variables, domain size 106n5Strints and
10,000 (support) tuples per constraint. Constraint adtyes from 5 to 12.

21

6 Future Work & Conclusions

An anonymous reviewer of a previous version of this repodgssted the two
following avenues, which remain to be investigated:

e Compare the performance of our algorithm forxR)C with that of the
filtering algorithms on the dual and the double encodings af-binary
CSPs reported in [Stergiou and Walsh 1999; Stergiou and 3&mMa98].

e Demonstrate that, despite the recent advances with theemagitation of
GAC (e.g., the specialized algorithm for table constraynf®heng and Yap
2004]), many problems still benefit from the use of consisgaalgorithms
with stronger pruning power than GAC.

[Jansseret al. 1989] introduced an algorithm for removing redundant con-
straints in the dual graph of a non-binary CSP. This algorittan be of great
value to us as it can reduce the number of combinations oti@nts to be con-
sidered for R¢,m)C, and for a given combination of constraints, the number of
redundant checks. While our algorithms can still be impdywspecially by re-
moving redundant edges in the dual graph of a CSP as advisgthbgseret
al. 1989], our work establishes that the exploitation of higlegels of consis-
tency in non-binary CSPs can be advantageous in practicelesetves further
exploration.

While it seems that R(2)C is likely the most useful form of relational consis-
tency in the context of backtrack search, our tests on BadlzPs (see Table 5.4)
establish the usefulness ofsR§)C. The fact that R(m)C for m>3 does not seem
to be useful in the context afearchdoes not rule out its usefulness in contexts
where the number of constraint combinations consideregsisicted.

The goal of the document is to introduce the first algorithmdomputing
R(x,m)C. We believe that this algorithm must be quickly reportecgérve as a
foundation for further investigations. Note thatwise consistency was intro-
duced years ago in the database community without any #gigusior experi-
ments. To the best of our knowledge, our algorithm is the djesteral algorithm
for this purpose.

To summarize, we presented in this report an algorithm toreefgparametrized
relational consistency property. This property, unlikestrather well-studied con-
sistency properties, is enforced by tightening the exgstionstraints and without
introducing any additional ones. Importantly, we empilicavaluated our al-
gorithm on difficult benchmark problems and demonstratedignificance for
solving

22

1. Hard problems specially when the relations are large @ve high arity,
and also

2. Boolean CSPs which have small relations of arity.

We hope that these results encourage the community to igagsmore effi-
cient algorithms for enforcing higher levels of consistemcnon-binary CSPs.

Acknowledgments

We are grateful to Kostas Stergiou and Christian Bess@reduntless explana-
tions about their work and for generously sharing with usrthenchmarks and
their generator of random instances. Their responsiveares€ooperation have
been exemplary and inspiring. We also acknowledge the seddbf anonymous
reviewers of a previous version of this report. Experim&dse conducted on the
Research Computing Facility at UNL. Shant Karakashian veagahly supported
by NSF CAREER Award #0133568, and Robert Woodward by an gndéuate
research grant (UCARE) of University of Nebraska-Lincoln.

References

Ken Bayer, Josh Snyder, and Berthe Y. Choueiry. An Interadfionstraint-
Based Approach to Minesweeper.Rroceedings of the National Conference on
Artificial Intelligence (AAAI 2006)pages 1933-1934, Boston, Massachussets,
2006.

Christian Bessiere, Jean-Charles Régin, Roland H.C, &ag Yuanlin Zhang.
An Optimal Coarse-Grained Arc Consistency Algorithaatificial Intelligence
165(2):165-185, 2005.

Christian Bessiere, Kostas Stergiou, and Toby Walsh. Dofridtering Consis-
tencies for Non-Binary Constraintévtificial Intelligence 172:800-822, 2008.

Kenil CK. Cheng and Roland €. Yap. Maintaining Generalized Arc Consis-
tency on Ad Hoc r-Ary Constraints. Ib4th International Conference on Prin-
ciples and Practice of Constraint Programming (CP 0&lume LNCS 5202,
pages 509-523. Springer, 2004.

R. Dechter and P. van Beek. Local and Global Relational Gtersty. Theor.
Comput. Scj.173(1):283-308, 1997.

23

Rina DechterConstraint ProcessingMorgan Kaufmann, 2003.

Eugene C. Freuder. A Sufficient Condition for Backtrack-Boed Search.
JACM 32 (4):755-761, 1985.

M. Gyssens. On the Complexity of Join DependencleACM Trans. Database
Systemsl1 (1):81-108, 1986.

P. Janssen, Philippe Jégou, B. Nougier, and M.C. Vilarentk.ili#&ring Process
for General Constraint-Satisfaction Problems: Achievayrwise-Consistency
Using an Associated Binary RepresentationlHEE Workshop on Tools for Al
pages 420-427, 1989.

Philippe Jégou. On the Consistency of General Constfatisfaction Prob-
lems. INAAAI 1993 pages 114-119, 1993.

Olivier Lhomme and Jean-Charles Régin. A Fast Arc Consgstedlgorithm
For N-Ary Constraints. IPAAAI 2005 pages 405—-410, 2005.

Alan K. Mackworth. Consistency in Networks of RelationArtificial Intelli-
gence 8:99-118, 1977.

Roger Mohr and Gérald Masini. Good Old Discrete RelaxatibnEuropean
Conference on Artificial Intelligence (ECAI-88)ages 651-656, Munich, W.
Germany, 1988.

Ugo Montanari. Networks of Constraints: Fundamental Prtiggeand Applica-
tion to Picture Processindgnformation Science¥:95-132, 1974.

Kostas Stergiou and Nikos Samaras. Binary Encodings ofiNioary Constraint
Satisfaction Problems: Algorithms and Experimental Rssdburnal of Artifi-
cial Intelligence Researct24:641-684, 1998.

Kostas Stergiou and Toby Walsh. Encodings of Non-Binarystramt Satisfac-
tion Problems. IPAAAI 1999 pages 163-168, 1999.

Kostas Stergiou. Personal communication, 2009.

David Waltz. Understanding Line Drawings of Scenes withdgiwes. In P.H.
Winston, editor,The Psychology of Computer Visiopages 19-91. McGraw-
Hill, Inc., 1975.

24

Addendum To Technical Report on
“Exploring Parameterized Relational
Consistency”

(TR-UNL-CSE-2009-0009)

Shant K. Karakashian*, Robert J. Woodward*,
Berthe Y. Choueiry*, and Christian Bessiere™

*Constraint Systems Laboratory
Department of Computer Science & Engineering
University of Nebraska-Lincoln
Email: {shantk|rwoodwar|choueiry}@cse.unl.edu

“*LIRMM-CNRS
University Montpellier, France
Email: bessiere@lirmm.fr

November 6, 2009

In this document, we revise the pseudo-code of all three algorithms in the
technical report, improving on their performance.
Initializing the constraints queue

The initialization phase Algorithm 1 builds a queue of all combination-relation
pairs.

Algorithm 1: INITIALIZE-Q initializes the queue.

Input: (: set of all possible combinations

Output: Q: a queue of all combination-constraint pairs
1 foreach ¢ € (do
2 foreach R € ¢ do

3 | | Q= QU{(p,R)}
4 end
5 end

6 revision-time < 0

Processing the constraint queue

The procedure PROCESSQUEUE, described in Algorithm 2, revises every relation-
combination pair in the queue to ensure that all their tuples are supported in
each combination of m constraints where the relation appears.

We modified the queue of relations (as described in the technical report),
into a queue of combination-relation pairs for the following reason. Originally,
when a relation R; is popped from the queue for revision,

e It was revised in every combination where it appears, and

e When the revision modified R;, every other relation in every other com-
bination where the relation R; appears was inserted in the queue.

According to the new queue management strategy, when a pair of combination-
relation (¢, R;) is popped from the queue for revision,

e It is revised in only the paired combination¢, and

e When the revision modified R;, every other relation in every other combi-
nation where the relation R; appears is inserted in the queue paired with
the corresponding combination.

This mechanics saves in computational effort, while maintaining soundness and
completeness.

Algorithm 2: PROCESSQUEUE deletes tuples that have lost their support.

28

Input: 9, (,revisiouTime

Output: true is the problem is R(x,m)C, false otherwise
consistent < true

while (Q # () A (consistent = true) do

end

(¢, R) < Tor(Q)
revision-time <« revision-time —+1

foreach (p, R’) € Q do

REMOVE((p, R}, Q)
deleted < false
foreach 7 € R’ do
if REVISIONTIME(T) = revision-time then
| GoTo 8
end
support «—FINDSUPPORT((7, R'), ¢)
if support = false then
DELETE(T)
if " =0 then
consistent «— false
GoTo 29
deleted « true
end

end

end

if deleted then foreach ¢’ € ¢ do

if R € ¢’ then foreach R" € (¢’ \ {R'}) do
Q- QU R")

end

-

end

end

return consistent

To access all the combination-relation pairs in the queue pertaining to the
same combination, we implement a hash-table on the queue whose indices are
combinations and the values are the relations in the combinations.

Further, when we find the tuples {7’} that support the tuple 7 in a given com-
bination ¢, all those tuples are guaranteed ‘support’ and need not be rechecked
for support in the combination ¢. We use a ‘time stamp’ mechanism to record
this situation and save redundant checks, see Line 10.

revision-time is a global variable throughout the execution so that the time
stamp uniquely marks a revision of a combination. The time stamp remains
the same during the revision of all the relations in a given combination. For
that purpose, we need to revise, for a given same combination, all combination-
relation pairs in the queue sequentially.

Finding a support

The marking of the tuples with the time stamp is performed in the FIND-
SUPPORT algorithm. Every time a support is found (either by search or simply
retrieved from the data structure Last), all the tuples in the support are marked
with the time stamp in Line 10 of Algorithm 3.

Algorithm 3: FINDSUPPORT finds a support for a tuple in a combination.

Input: (7, R;), @, revision-time
support «— true
if Last((t, R;),) =) then
Last((t, R;),) «— SEARCH(yp, R; < T)
if Last((1,R;),¢) = () then
support «— false
GoTo 12
end
end
foreach 7' € Last((1,R;),¢) do
| REVISIONTIME(7') < revision-time
end
return support

© 0 N O A W N

[-
N = O

	TR-UNL-CSE-2009-0009
	Addendum

