Algorithm for Removing Redundant Edges in the
Dual Graph of a Non-Binary CSP
Shant Karakashian
Constraint Systems Laboratory

University of Nebraska-Lincoln
Email: shantk@cse.unl.edu

Working Note 1-2008
November 10, 2008

1 Background

Below we describe the algorithm for finding the miminal dual graph of a non-
binary CSP proposed in [1], because the pseudocode in the original paper is
hard to parse.

2 DMotivating Example

Figure 1: Dual graph of a CSP.

Consider the dual graph, G = (C, E), of a non-binary CSP shown in Figure 1,

where C' is the set of non-binary constraints
C = {ci | ¢ is a constraint} (1)
and F is the set of edges between every two constraints with intersecting scopes.
E = {(ci,¢;) | Scope(ci) N Seope(c;) # 0} 2)
In the above example, we have:
C = {Cabed; Cabes Cacy Ches Cb}

E = {(Cabcd7 Cabc)7 (Cabcd7 cac); (Cabcd7 Cbc)7 (cabcdu cb)7

(Cabca Cac)a (Cabca Cbc)a (Cabca Cb)7 (Cacv Cbc)a (Cbca Cb)}

The goal of the process is to find the minimal dual graph G’ = (E’,C), where
E' C E, and G’ is equivalent to G and is obtained by removing as many redun-
dancies from G as possible.

We assume that the original network is connected, othewise, we treat each
connected component separately.

2.1 The set of overlaps

We denote O the set of ‘overlaps’ between the constraints as defined below:

O = {o|o = Scope(c;) N Scope(c;), ¢i,c; € C} (3)

In the example above, we have: O={{c}, {b}, {b, c},{a,c},{a,b,c}}.

2.2 Inducing a total ordering on the elements of O

We then sort the elements of O in decreasing size and denote them sorted
elements as A; where

In the example above, we have:

A = {a,b,c}
Ay = Ha,c}
As = {b,c}
Ay = {b}

A5 = {c}

Naturally, the ordering is not unique. Note that the ordering can be obtained
by topological sorting using the partial order C relation on the set O. However
applying topological sorting would be more costly than simply sorting by the
size of the elements of O.

2.3 Identifying the relations with identical overlaps
To each A;, we associate the set a4,, which is the set of relations whose scope
include the variables in A;. a4, is defined as follows:

ag, = {c; | Ai C Scope(c;)} (5)

Note that the subgrapgh induced by a4, in the dual graph is necessarily com-
plete.
In our running example, we have:

as, = {Cabeds Cabe}

@, = {Cabed; Cabes Cac}
aa, = {Cabed;Cabe,Coe}
@A, = {CabedsCabesChes Cb}
@a; = {Cabed; Cabes Cacs Che

2.4 Building the equivalent minimal graph

We now present the iterative process that builds the set E,,;, of the minimal
graph. We start with the set v = (), and grow the set v at a step k until we
reach E,,;,. We proceed as follows.

1. Given the dual graph G = (C, E), extract the set O defined in Expres-
sion (3). The sets A; and a4, are given in Expressions (4) and (5).

2. Let v« 0
3. For k — 1 to |O], do

e Construct the graph G = (aa,,7)

e Construct the set ConnectComp = {n;|n;is a connected component of Gy}
of connected components of Gy,

e While |ConnectComp| > 1, do

— Add any edge e. that connects some 7., 719 € ConnectComp to
each other

-y yU{et
— Replace 7. and 74 in ConnectComp with the combined compo-
nent

e Return ConnectComp

Applying the above algorithm to the example in Figure 1 proceeds as follows.
We set 7 — 0 and O={{c}, {b}, {b,c}, {a, c}, {a,b, c}}.

1. ° Gl = (041,/\)

® (xyq, = {cabcdacabc}

y=10
o ConnectComp = {{caped}, {Cabe }}
— Ne = {Cabed }Md = {Cabe}s €c = (Cabeds Cabe)
— 7 = {(Cabed, Cabe) }
— ConnectComp = {{cabed, Cabe } }
2. o Gy = (ag,\)
® a4, = {Cabed; Cabes Cac}
o v = {(Cabed Cabe) }
o ConnectComp = {{Cabed; Cabe }» {Cact}
— Ne = {Cabeds Cabe }Md = {Cac}s €c = (Cabeds Cac)
— v = {(Cabed, Cabe); (Cabed; Cac) }
— ConnectComp = {{cabed, Cabes Cact}
3. e G3=(as,N)
® aa, = {Cabed; Cabes Coc
o v = {(Cabed; Cabe), (Cabed, Cac) }
e ConnectComp = {{Cabed, Cabe }> {Cbc}}
— Ne = {Cabeds Cabe }> Nd = {Cbe }s €c = (Cabeds Coe)
— v = {(Cabed, Cabe); (Cabeds Cac)s (Cabed; Coe) ¥
— ConnectComp = {{Cabed, Cabe, Coe } }
4. o Gy = (ag,)
® aa, = {Cabed; Cabes Coes Cb }
o v = {(Cabed> Cabe); (Cabed; Cac)s (Cabed, Che) }
o ConnectComp = {{Cabed, Cabes Coc }, {Cb}}
— Ne = {Cabeds Cabes Coe }>Nd = {Cb}s €c = (Coes Cb)
- 7= {(Cabcd, Cabc), (Cabcd,cac), (Cabcdacbc)7 (Cbmcb)}
— ConnectComp = {{Cabed, Cabe, Coes Cb } }
5. e G5=(as,A)
® aa, = {Cabed; Cabes Cacy Coe }
o v = {(Cabed> Cabe); (Cabed, Cac)s (Cabed, Che)s (Coes Cb) }
o ConnectComp = {{Cabed; Cabes Cac, Coe} }}

Erin —

References

[1] B. Nougier P. Jassen, Philippe Jégou and M.C. Vilarem. A filtering process
for general constraint-satisfaction problems: Achieving pairwise-consistency
using an associate binary representation. IEEE Workshop on Tools for Ar-
tificial Intelligence, pages 420-427, 1989.

