
Algorithm for Removing Redundant Edges in the

Dual Graph of a Non-Binary CSP

Shant Karakashian
Constraint Systems Laboratory
University of Nebraska-Lincoln
Email: shantk@cse.unl.edu

Working Note 1-2008

November 10, 2008

1 Background

Below we describe the algorithm for finding the miminal dual graph of a non-
binary CSP proposed in [1], because the pseudocode in the original paper is
hard to parse.

2 Motivating Example

Figure 1: Dual graph of a CSP.

Consider the dual graph, G = (C,E), of a non-binary CSP shown in Figure 1,

1

where C is the set of non-binary constraints

C = {ci | ci is a constraint} (1)

and E is the set of edges between every two constraints with intersecting scopes.

E = {(ci, cj) | Scope(ci) ∩ Scope(cj) 6= φ} (2)

In the above example, we have:

C = {cabcd, cabc, cac, cbc, cb}
E = {(cabcd, cabc), (cabcd, cac), (cabcd, cbc), (cabcd, cb),

(cabc, cac), (cabc, cbc), (cabc, cb), (cac, cbc), (cbc, cb)}

The goal of the process is to find the minimal dual graph G′ = (E′, C), where
E′ ⊆ E, and G′ is equivalent to G and is obtained by removing as many redun-
dancies from G as possible.
We assume that the original network is connected, othewise, we treat each
connected component separately.

2.1 The set of overlaps

We denote O the set of ‘overlaps’ between the constraints as defined below:

O = {o | o = Scope(ci) ∩ Scope(cj), ci, cj ∈ C} (3)

In the example above, we have: O={{c}, {b}, {b, c}, {a, c}, {a, b, c}}.

2.2 Inducing a total ordering on the elements of O

We then sort the elements of O in decreasing size and denote them sorted
elements as Ai where

Ai ⊆ Aj ⇒ |Ai| ≤ |Aj | ⇒ j < i (4)

In the example above, we have:

A1 = {a, b, c}
A2 = {a, c}
A3 = {b, c}
A4 = {b}
A5 = {c}

Naturally, the ordering is not unique. Note that the ordering can be obtained
by topological sorting using the partial order ⊆ relation on the set O. However
applying topological sorting would be more costly than simply sorting by the
size of the elements of O.

2

2.3 Identifying the relations with identical overlaps

To each Ai, we associate the set αAi , which is the set of relations whose scope
include the variables in Ai. αAi is defined as follows:

αAi = {ci |Ai ⊆ Scope(ci)} (5)

Note that the subgrapgh induced by αAi in the dual graph is necessarily com-
plete.
In our running example, we have:

αA1 = {cabcd, cabc}
αA2 = {cabcd, cabc, cac}
αA3 = {cabcd, cabc, cbc}
αA4 = {cabcd, cabc, cbc, cb}
αA5 = {cabcd, cabc, cac, cbc}

2.4 Building the equivalent minimal graph

We now present the iterative process that builds the set Emin of the minimal
graph. We start with the set γ = ∅, and grow the set γk at a step k until we
reach Emin. We proceed as follows.

1. Given the dual graph G = (C,E), extract the set O defined in Expres-
sion (3). The sets Ai and αAi

are given in Expressions (4) and (5).

2. Let γ ← ∅

3. For k ← 1 to |O|, do

• Construct the graph Gk = (αAk
, γ)

• Construct the set ConnectComp = {ηi|ηiis a connected component of Gk}
of connected components of Gk

• While |ConnectComp| > 1, do

– Add any edge ec that connects some ηc, ηd ∈ ConnectComp to
each other

– γ ← γ ∪ {ec}
– Replace ηc and ηd in ConnectComp with the combined compo-

nent

• Return ConnectComp

Applying the above algorithm to the example in Figure 1 proceeds as follows.
We set γ ← ∅ and O={{c}, {b}, {b, c}, {a, c}, {a, b, c}}.

1. • G1 = (α1, λ)

• αA1 = {cabcd, cabc}

3

• γ = ∅
• ConnectComp = {{cabcd}, {cabc}}

– ηc = {cabcd}, ηd = {cabc}, ec = (cabcd, cabc)
– γ = {(cabcd, cabc)}
– ConnectComp = {{cabcd, cabc}}

2. • G2 = (α2, λ)
• αA2 = {cabcd, cabc, cac}
• γ = {(cabcd, cabc)}
• ConnectComp = {{cabcd, cabc}, {Cac}}

– ηc = {cabcd, cabc}, ηd = {cac}, ec = (cabcd, cac)
– γ = {(cabcd, cabc), (cabcd, cac)}
– ConnectComp = {{cabcd, cabc, cac}}

3. • G3 = (α3, λ)
• αA3 = {cabcd, cabc, cbc}
• γ = {(cabcd, cabc), (cabcd, cac)}
• ConnectComp = {{cabcd, cabc}, {cbc}}

– ηc = {cabcd, cabc}, ηd = {cbc}, ec = (cabcd, cbc)
– γ = {(cabcd, cabc), (cabcd, cac), (cabcd, cbc)}
– ConnectComp = {{cabcd, cabc, cbc}}

4. • G4 = (α4, λ)
• αA4 = {cabcd, cabc, cbc, cb}
• γ = {(cabcd, cabc), (cabcd, cac), (cabcd, cbc)}
• ConnectComp = {{cabcd, cabc, cbc}, {cb}}

– ηc = {cabcd, cabc, cbc}, ηd = {cb}, ec = (cbc, cb)
– γ = {(cabcd, cabc), (cabcd, cac), (cabcd, cbc), (cbc, cb)}
– ConnectComp = {{cabcd, cabc, cbc, cb}}

5. • G5 = (α5, λ)
• αA5 = {cabcd, cabc, cac, cbc}
• γ = {(cabcd, cabc), (cabcd, cac), (cabcd, cbc), (cbc, cb)}
• ConnectComp = {{cabcd, cabc, Cac, cbc}}}

Emin ← γ

References

[1] B. Nougier P. Jassen, Philippe Jégou and M.C. Vilarem. A filtering process
for general constraint-satisfaction problems: Achieving pairwise-consistency
using an associate binary representation. IEEE Workshop on Tools for Ar-
tificial Intelligence, pages 420–427, 1989.

4

