Recent Advances in High-Level Relational Consistency

- Joint work with
 - Shant Karakashian, Daniel Geschwender, Christopher Reeson, and Berthe Y. Choueiry @ UNL
 - Christian Bessiere @ LIRMM-CNRS
- Support
 - Experiments conducted at UNL's Holland Computing Center
 - NSF Graduate Research Fellowship & NSF Grant No. RI-111795

Publications

 Relational m-wise consistency, R(*,r 	m)(C
--	-----	---

Relational Consistency by Constraint Filtering

[SAC 10] [AAAI 10]

- A First Practical Algorithm for High Levels of Relational Consistency
- Improving the Performance of Consistency Algorithms by Localizing and Bolstering Propagation in a Tree
 Decomposition

Relational Neighborhood Inverse Consistency, RNIC

Solving Difficult CSPs with Relational Neighborhood Inverse Consistency

[AAAI 11]

Adaptive Neighborhood Inverse Consistency as Lookahead for Non-Binary CSPs

[AAAI-SA 11]

 Reformulating the Dual Graphs of CSPs to Improve the Performance of Relational Neighborhood Inverse Consistency

[SARA 11]

Revisiting Neighborhood Inverse Consistency on Binary CSPs

[CP 12]

- Selecting the Appropriate Consistency Algorithm for CSPs Using Machine Learning Classifiers [AAAI-SA13]
- MS thesis, Woodward, Dec 2011
- PhD thesis, Karakashian, May 2013
- Papers and slides available on lab website, <u>consystlab.unl.edu</u>

Constraint Systems Laboratory

Overview

- Background
- Relational m-wise consistency, R(*,m)C

[SAC10, AAAI10]

- Property, Algorithm, Weakening
- Characterization, Evaluating
- Relational Neighborhood Inverse Consistency (RNIC) [AAAI11,SARA11]
 - Property, Algorithm
 - Dual-graph reformulation, Characterization, Selection strategy
 - Evaluating
- Dual Graphs of Binary CSPs

[CP2012]

- Complete constraint network, Non-complete constraint network
- RNIC on binary CSPs
- Characterization, Evaluating
- Conclusions

Constraint Satisfaction Problem

- CSP
 - Variables, Domains
 - Constraints: Relations & scopes
- Representation
 - Hypergraph
 - Dual graph
- Solved with
 - Search
 - Enforcing consistency
 - Lookahead = Search + enforcing consistency
- Key to our research
 - Operate on the dual graph

Hypergraph ppes

Relational *m*-wise consistency, R(*,*m*)C

[SAC 2010, AAAI 2010]

- A parameterized relational consistency property
- Definition
 - For every set of m constraints
 - every tuple in a relation can be extended to an assignment
 - of variables in the scopes of the other *m*-1 relations
- $R(*,m)C \equiv \text{every } m \text{ relations form a minimal CSP}$

Nebraska Lincoln

Algorithms for Enforcing R(*,m)C

PERTUPLE

- For each tuple find a solution for the variables in the *m-1* relations
- Many satisfiability searches
 - Effective when there are many solutions
 - Each search is quick & easy

- Find all solutions of problem induced by m relations, & keep their tuples
- A single exhaustive search
 - Effective when there are few or no solutions
- Hybrid Solvers (portfolio based)

[+Scott]

Index-Tree Data Structure

- Goal: quickly find matching tuples in other relations
- Given two relations, R₁ & R₂
- For a given tuple in R₁, find matching tuples in R₂

R_2							
	Α	В	С	D			
t₁	0	0	1	0			
t_2	0	1	1	0			
t_3	0	1	1	1			
t ₄	1	1	1	1			

Constraint Systems Laboratory

Weakening R(*,m)C

Weaken R(*,m)C by removing redundant edges [Jégou 89]

Characterizing R(*,m)C

• GAC [Waltz 75]

maxRPWC

[Bessiere+ 08]

RmC: Relational m Consistency [Dechter+ 97]

 $p \longrightarrow p'$: p is strictly weaker than p'

Nebraska Lincoln

Constraint Systems Laboratory

Empirical Evaluations (1)

Algorithm	Avg. #Nodes	Avg. Time sec	#Completed	#Fastest	#BF	
SAT aim-100 (instances: 16, vars: 100, dom: 2, rels: 307, arity: 3)						
GAC	9,459,773.0	759.7	15	4	1	
wR(*,2)C	234,526.7	125.6	16	7	5	
wR(*,3)C	3,979.1	19.4	16	3	7	
wR(*,4)C	559.1	26.3	16	2	9	
SAT modifiedR	enault (instan	ces: 19, vars: 1	110, dom: 42, r	els: 128, ar	ity: 10)	
GAC	1,171,458.4	108.5	17	14	5	
wR(*,2)C	211.5	5.0	19	5	7	
wR(*,3)C	110.4	13.3	19	0	14	
wR(*,4)C	110.2	81.3	19	0	16	

Empirical Evaluations (2)

Algorithm	Avg. #Nodes			#Fastest	#BF			
UNSAT aim-100 (instances: 8, vars: 100, dom: 2, rels: 173, arity: 3)								
GAC	-	-	0	0	0			
wR(*,2)C	4,619,373.0	2,016.8	3	1	0			
wR(*,3)C	18,766.6	97.4	4	3	0			
wR(*,4)C	18,685.3	944.2	4	1	1			
UNSAT modified	dRenault (inst	ances: 31, vars	s: 111, dom: 42	, rels: 130, a	rity: 10)			
GAC	1,171,458.4	782.3	9	2	0			
wR(*,2)C	487.0	5.2	28	20	25			
wR(*,3)C	0.0	9.6	30	2	28			
wR(*,4)C	0.0	44.2	31	2	31			

Nebraska Lincoln

Overview

- Background
- Relational Consistency R(*,m)C

[SAC10, AAAI10]

- Property, Algorithm, Weakening
- Characterization, Evaluating
- Relational Neighborhood Inverse Consistency (RNIC) [AAAI11,SARA11]
 - Property, Algorithm
 - Dual-graph reformulation, Characterization, Selection strategy
 - Evaluating
- Dual Graphs of Binary CSPs

[CP2012]

- Complete constraint network, Non-complete constraint network
- RNIC on binary CSPs
- Characterization, Evaluating
- Conclusions

Neighborhood Inverse Consistency

Property

- [Freuder+ 96]
- → Domain-based property
- Algorithm
 - No space overhead
 - + Adapts to graph connectivity
- Binary CSPs

- [Debruyene+ 01]
- Not effective on sparse problems
- Too costly on dense problems
- Non-binary CSPs?
 - Neighborhoods likely too large

Relational NIC

- Property
 - Every tuple can be extended to a solution in its relation's neighborhood
 - Relation-based property
- Algorithm
 - Operates on dual graph
 - Filters relations
 - Does not alter topology of graphs
- Domain filtering
 - Property: RNIC+DF
 - Algorithm: Projection

Hypergraph

Dual graph

From NIC to RNIC

- Neighborhood Inverse Consistency (NIC)
- [Freuder+ 96]

- Proposed for binary CSPs
- Operates on constraint graph
- Filters domain of variables
- Relational Neighborhood Inverse Consistency (RNIC)
 - Proposed for both binary & non-binary CSPs
 - Operates on dual graph
 - Filters relations; last step projects updated relations on domains
- Both
 - Adapt consistency level to local topology of constraint network
 - Add no new relations (no constraint synthesis)

Algorithm for Enforcing RNIC

- Two queues
 - 1. Q: relations to be updated
 - 2. $Q_t(R)$: The tuples of relation R whose supports must be verified
- SEARCHSUPPORT(τ,R)
 - Backtrack search on Neigh(R)
- Loop until all $Q_t(\cdot)$ are empty
- Complexity
 - Space: $O(ket\delta)$
 - Time: $O(t^{\delta+1}e\delta)$
 - Efficient for a fixed δ

Improving Algorithm's Performance

Dynamically detect dangles

- Tree structures may show in subproblem @ each instantiation
- Apply directional arc consistency

Note that exploiting dangles is

- Not useful in R(*,m)C: small value of m, subproblem size
- Not applicable to GAC: does not operate on dual graph

Reformulation: Removing Redundant Edges

High density

Constraint Systems Laboratory

- Large neighborhoods
- Higher cost of RNIC
- Minimal dual graph
 - Equivalent CSP
 - Computed efficiently

[Janssen+89]

$$d^{Go} = 60\%$$

$$d^{Gw} = 40\%$$

- Run algorithm on a minimal dual graph
 - Smaller neighborhoods, solution set not affected
 - wRNIC: a strictly weaker property

18 Oct. 2013 Coconut Talk 18

Reformulation: Triangulation

- Cycles of length ≥ 4
 - Hampers propagation
- Triangulating dual graph
 - Equivalent CSP
 - Min-fill heuristic

 Run algorithm on a triangulated dual graph

$$d^{Go} = 60\%$$
 $d^{Gtri} = 67\%$

- Created loops enhance propagation
- triRNIC: a strictly stronger property wRNIC → RNIC → triRNIC

Reformulation: RR & Triangulation

- Fixing the dual graph
 - RR copes with high density
 - Triangulation boosts propagation
- RR+Tri
 - Both operate locally
 - Are complementary, do not 'clash'
- Run algorithm on a RR+tri dual graph
 - CSP solution set is not affected
 - wtriRNIC is not comparable with RNIC

 $d^{Go} = 60\%$

Selection Strategy: Which? When?

- Density of dual graph ≥ 15% is too dense
 - Remove redundant edges
- Triangulation increases density no more than two fold
 - Reformulate by triangulation
- Each reformulation executed at most once

Nebraska Lincoln

Characterizing RNIC

R(*,m)C

Relation-based property

$$R(*,2)C \rightarrow R(*,3)C \rightarrow RNIC \rightarrow R(*,\delta+1)C$$

GAC, SGAC

Variable-based properties

$$\begin{array}{c} R(*,2)C+DF \longrightarrow \hline RNIC+DF \\ \hline SGAC \\ \end{array}$$

 $p \longrightarrow p'$: p is strictly weaker than p'

Nebraska Lincoln

Constraint Systems Laboratory

Characterizing RNIC

The fuller picture

- w: Property weakened by redundancy removal
- tri: Property strengthened by triangulation
- δ : Degree of dual network

Experimental Setup

- Backtrack search with full lookahead
- We compare
 - wR(*,m)C for m = 2,3,4
 - GAC
 - RNIC and its variations
- General conclusion
 - GAC best on random problems
 - RNIC-based best on structured/quasistructued problems
- We focus on non-binary results (960 instances)
 - triRNIC theoretically has the least number of nodes visited
 - selRNIC solves most instances backtrack free (652 instances)

Category	#Binary	#Non-binary
Academic	31	0
Assignment	7	50
Boolean	0	160
Crossword	0	258
Latin square	50	0
Quasi-random	390	25
Random	980	290
TSP	0	30
Unsolvable		
Memory	10	60
All timed out	447	87

Experimental Results

- Statistical analysis on CP benchmarks [·]_{CPU}: Equivalence classes based on CPU
- **Time**: Censored data calculated mean •
- [·]_{Completion}: Equivalence classes based on completion
- Rank: Censored data rank based on probability of survival data analysis
- #C: Number of instances completed
- #BT-free: # instances solved backtrack free
- #F: Number of instances fastest

Algorithm	Time	Rank	#F	[·] _{CPU}	#C	[·] _{Completion}	#BT-free		
	169 instances: aim-100,aim-200,lexVg,modifiedRenault,ssa								
wR(*,2)C	944,924	3	52	A	138	В	79		
wR(*,3)C	925,004	4	8	В	134	В	92		
wR(*,4)C	1,161,261	5	2	В	132	В	108		
GAC	1,711,511	7	83	С	119	С	33		
RNIC	6,161,391	8	19	С	100	С	66		
triRNIC	3,017,169	9	9	С	84	С	80		
wRNIC	1,184,844	6	8	В	131	В	84		
wtriRNIC	937,904	2	3	В	144	В	129		
selRNIC	751,586	1	17	A	159	A	142		

Overview

- Background
- Relational Consistency R(*,m)C

[SAC10, AAAI10]

- Property, Algorithm, Weakening
- Characterization, Evaluating
- Relational Neighborhood Inverse Consistency (RNIC) [AAAI11,SARA11]
 - Property, Algorithm
 - Dual-graph reformulation, Characterization, Selection strategy
 - Evaluating
- Dual Graphs of Binary CSPs

[CP2012]

- Complete constraint network, Non-complete constraint network
- RNIC on binary CSPs
- Characterization, Evaluating
- Conclusions

Neighborhood Inverse Consistency

Relational NIC

[Woodward+ AAAI 11]

Reformulation of NIC

[Freuder & Elfe, AAAI 96]

- Defined for dual graph
- Algorithm operates on dual graph & filter relations (not domains!)
- Initially designed for non-binary CSPs
- How about RNIC on binary CSPs?
 - Impact of the structure of the dual graph

Complete Constraint Graph

Constraint Systems Laboratory

Minimal Dual Graph

Constraint Systems Laboratory

Minimal Dual Graph

... can be a triangle-

 $C_{1,2}$ V_1 $C_{1,5}$ $C_{1,5}$ $C_{2,4}$ $C_{2,5}$ $C_{3,5}$ $C_{4,5}$ $C_{4,5}$

but does not have to be

– Star on V_2

- Cycle of size 6

Non-Complete Constraint Graph

- Can still be a triangle-shaped grid
 - Have a chain of vertices
 - of length ≤ *n*-1

wRNIC on Binary CSPs

- On a binary CSP, RNIC enforced on the minimal dual graph (wRNIC) is never strictly stronger than R(*,3)C.
- wRNIC can never consider more than 3 relations

• In either case, it is not possible to have an edge between $C_3 \& C_4$ (a common variable to $C_3 \& C_4$) while keeping C_3 as a binary constraint

Constraint Systems Laboratory

NIC, sCDC, and RNIC not comparable

NIC Property

[Freuder & Elfe, AAAI 96]

sCDC Property

[Lecoutre+, JAIR 11]

- An instantiation $\{(x,a),(y,b)\}$ is DC iff (y,b) holds in SAC when x=a and (x,a) holds in SAC when y=b and (x,y) in scope of some constraint. Further, the problem is also AC.
- RNIC Property

[Woodward+, AAAI 11]

- Every tuple can be extended to a solution in its relation's neighborhood
- → wRNIC, triRNIC, wtriRNIC enforce RNIC on a minimal, triangulated, and minimal triangulated dual graph, respectively
- → selRNIC automatically selects the RNIC variant based on the density of the dual graph

Experimental Results (CPU Time)

Benchmark	# inst.	AC3.1	selRNIC					
		CPU Time (msec)						
		NIC Quickest						
bqwh-16-106	100/100	3,505	3,860	1,470	3,608			
hawh-18-141	100/100	68 629	82 772	38 877	77 981			
coloring-sgb-queen	12/50	680,140	(+3) -	(+9) 57,545	634,029			
coloring-sgb-games	3/4	41,317	33,307	(+1) 860	41,747			
rand-2-23	10/10	1,467,246	1,460,089	987,312	1,171,444			
rand-2-24	3/10	567,620	677,253	(+7) 3,456,437	677,883			
			sCDC	Quickest				
driver	2/7	(+5) 70,990	(+5) 17,070	358,790	(+4) 185,220			
ehi-85	87/100	(+13) 27,304	(+13) 573	513,459	(+13) 75,847			
ehi-90	89/100	(+11) 34,687	(+11) 605	713,045	(+11) 90,891			
frb35-17	10/10	41,249	38,927	179,763	73,119			
			RNIC	Quickest				
composed-25-1-25	10/10	226	335	1,457	114			
composed-25-1-2	10/10	223	283	1,450	88			
composed-25-1-40	9/10	(+1) 288	(+1) 357	120,544	(+1) 137			
composed-25-1-80	10/10	223	417	(+1) -	190			
composed-75-1-25	10/10	2,701	1,444	363,785	305			
composed-75-1-2	10/10	2,349	1,733	48,249	292			
composed-75-1-40	7/10	(+1) 1,924	(+3) 1,647	631,040	(+3) 286			
composed-75-1-80	10/10	1,484	1,473	(+1) -	397			

Constraint Systems Laboratory

Lincoln

Experimental Results (BT-free, #NV)

Benchmark	# inst.	AC3.1	sCDC1	NIC	selRNIC	AC3.1	sCDC1	NIC	selRNIC
		BT-Free					#N	V	
					NIC	Quickest			
bqwh-16-106	100/100	0	3	8	5	1,807	1,881	739	1,310
bqwh-18-141	100/100	0	0	1	0	25,283	25,998	12,490	22,518
coloring-sgb-queen	12/50	1	-	16	1	91,853	-	15,798	91,853
coloring-sgb-games	3/4	1	1	4	1	14,368	14,368	40	14,368
rand-2-23	10/10	0	0	10	0	471,111	471,111	12	471,111
rand-2-24	3/10	0	0	10	0	222,085	222,085	24	222,085
					sCDC	Quickest			
driver	2/7	1	2	1	1	3,893	409	3,763	3,763
ehi-85	87/100	0	100	87	100	1,425	0	0	0
ehi-90	89/100	0	100	89	100	1,298	0	0	0
frb35-17	10/10	0	0	0	0	24,491	24,491	24,491	24,346
					RNIC	Quickest			
composed-25-1-25	10/10	0	10	10	10	153	0	0	0
composed-25-1-2	10/10	0	10	10	10	162	0	0	0
composed-25-1-40	9/10	0	10	9	10	172	0	0	0
composed-25-1-80	10/10	0	10	-	10	112	0	-	0
composed-75-1-25	10/10	0	10	10	10	345	0	0	0
composed-75-1-2	10/10	0	10	10	10	346	0	0	0
composed-75-1-40	7/10	0	10	7	10	335	0	0	0
composed-75-1-80	10/10	0	10	-	10	199	0	-	0

Constraint Systems Laboratory

Lincoln

18 Oct. 2013 Coconut Talk 35

Conclusions

- Introduced R(*,m)C, RNIC
- Algorithm for enforcing R(*,m)C and RNIC
 - BT-free search: hints to problem tractability
- Various reformulations of the dual graph
- Adaptive, unifying, self-regulatory, automatic strategy for RNIC
- Structure of binary dual graph
- Empirical evidence, supported by statistics

18 Oct. 2013 Coconut Talk 36

Thank You!

Questions?

Enforcing R(*,m)C on the Induced Dual CSP P_{ω}

