Tractable Combinations of Global Constraints

CP 2013, pp 230—246

Authors: Cohen, Jeavons, Thornstensen, Zivny Presented by Robert Woodward

Disclaimer:

Some slides and images borrowed from the authors own slides at CP 2013

Main Contributions

- Addresses tractability (of intersection) of global constraints
- Identifies tractability conditions for arbitrary constraints
 - Polynomial size of assignments of constraints intersections
 - Bounded sizes of constraints
- Shows that property holds for constraints of
 - 1. Extended Global Cardinality (EGC) of bounded domains
 - 2. Positive Tables
 - 3. Negative Tables

Overview

- Motivating Example
- Restricted Classes of CSPs
 - Acyclic hypergraph
 - Treewidth & constraint catalogue
- Further Constraint Restrictions
 - Extensional equivalence
 - Operations on sets of global constraints
 - Cooperating constraint catalogues
- Polynomial-Time Reductions
 - Take the dual of the dual
 - Tractability results
- Conclusion

Motivating Example

• Boolean vars: $\{x_1, x_2, ..., x_{3n}\}$

• 5 constraints:

$$- C_1: (x_1 \lor x_{2n+1})$$

C₂: Exactly one literal is true

- C₃: Exactly one literal is true

C₄: Exactly n+1 literals are true

 $- C_5: (\neg x_{n+1} \lor \neg x_{n+2} \lor \cdots \lor \neg x_{2n})$

Extended Global Cardinality Constraint

- For every domain element a
 - K(a) a finite set of natural numbers
 - Cardinality set of a
- Requires number of variables assigned to a to be in the set K(a)

- Example: Timetabling
 - 6 workers {u,v,w,x,y,z}
 - 5 tasks {a,b,c,d,e}
 - Restrictions on how many people have to work on a task

Example from [Samer+ Constraints 11]

Motivating Example

All constraints are instances of Extended Global Cardinality (EGC) constraints

-
$$C_1$$
: $(x_1 \lor x_{2n+1})$
 $K(1) = \{1,2\}, K(0) = \{0,1\}$

- C_2 : Exactly one literal is true $K(1)=\{1\}, K(0)=\{n-1\}$
- C_3 : Exactly one literal is true $K(1)=\{1\}$, $K(0)=\{n-1\}$
- C₄: Exactly n+1 literals are true

$$K(1)=\{n+1\}, K(0)=\{2n-3\}$$

/-
$$C_5$$
: $(\neg x_{n+1} \lor \neg x_{n+2} \lor \dots \lor \neg x_{2n})$
 $K(1) = \{0,1,...,n-1\}, K(0) = \{1,2,...,n\}$

Restricted Classes of CSPs

- Structural restrictions (e.g., treewidth)
- Hypergraph is acyclic when
 - Repeatedly removing
 - all hyperedges contained in other hyperedges, and
 - all vertices contained in only a single hyperedge
 - Eventually deletes all vertices
- Acyclic hypergraph
 - Tractable for table constraints
- Alert
 - Hypergraph of a global constraint has a single edge, is acyclic
 - However, not every global constraint is tractable
 - Two examples: An EGC constraint with unbounded & bounded domains

Example (I): EGC constraint with unbounded domain

- EGC constraint with unbounded domain is NP-complete
 - Reduction from SAT
 - Example: $(x_1 \lor x_2) \land (\overline{x}_1 \lor x_2)$ $C_{1,1} C_{1,2} C_{2,1} C_{2,2}$

Consider assignment:

$$x_1 = false$$

 $x_2 = true$

– Full proof in [Quimper+ CP04]

Example (II): EGC constraint with bounded domain

- EGC constraint with bounded domain is NP-complete
 - Reduction from 3-coloring G=(V,E)

- V set of variables
- Domains {r,g,b}
- For every edge create EGC constraint

$$- K(r)=K(g)=K(b)=\{0,1\}$$

- Make hypergraph acyclic
 - EGC constraint with scope V and
 - $K'(r)=K'(g)=K'(b)=\{0,...,|V|\}$

Review of Acyclic Hypergraphs

- Guarantee tractability for table constraints
- Do not guarantee tractability for global constraints
- Structural restrictions alone do not guarantee tractability in general!
- Need hybrid restrictions that restrict both
 - structure &
 - nature of the constraints

Tree Decomposition

- A tree decomposition: $\langle \mathsf{T}, \chi, \psi \rangle$
 - T: a tree of clusters
 - $-\chi$: maps variables to clusters
 - ψ : maps constraints to clusters

Conditions

- Each constraint appears in at least one cluster with all the variables in the constraint's scope
- For every variable, the clusters where the variable appears induce a connected subtree

Tree decomposition

Treewidth

- Width of a tree decomposition
 - $max(\{|\chi(t)|-1 | t \text{ node of T}\})$
- Treewidth tw(G) of a hypergraph G
 - minimum width over all its tree decompositions
- Great, but we are not interested in individual hypergraphs
 - $\mathcal{H} = class of hypergraphs$
 - $tw(\mathcal{H})$ = maximum treewidth over the hypergraphs in \mathcal{H}
- If $tw(\mathcal{H})$ is unbounded, $tw(\mathcal{H}) = \infty$
- Otherwise tw(ℋ)<∞
- Recall, I said we wanted to restrict both structure & constraints

Width of tree decomposition: 3

Constraint Catalogue

- Constraint catalogue \mathcal{C} is a set of global constraints
- CSP instance is over a constraint catalog if every constraint in the instance is in the catalog
- Restricted CSP class
 - -C a constraint catalog
 - \mathcal{H} be a class of hypergraphs

- CSP(\mathcal{H},\mathcal{C}) the class of CSP instances over \mathcal{C} whose hypergraphs are in \mathcal{H}

- CSP(ℋ,C) is tractable if tw(ℋ)<∞
- Does not help us with our example

$$- tw(\mathcal{H})=∞$$

Overview

- Motivating Example
- Restricted Classes of CSPs
 - Acyclic hypergraph
 - Treewidth & constraint catalogue
- Further Constraint Restrictions
 - Extensional equivalence
 - Operations on sets of global constraints
 - Cooperating constraint catalogues
- Polynomial-Time Reductions
 - Take the dual of the dual
 - Tractability results
- Conclusion

Extension Equivalence

- Global constraint e[δ] to X⊆vars(δ)
- ext(μ,e[δ]) [Selection & Projection]
 - Set of assignments of vars(δ)-X that extend μ to a satisfying assignment for e[δ]
- Two assignments θ_1 , θ_2 to X
 - are extension equivalent on X w.r.t. e[δ]
 - if ext(θ_1 ,e[δ])=ext(θ_2 ,e[δ])
- Denoted equiv[e[δ],X]

$$(A=0,B=1)&(A=1,B=0)$$
 are equivalent

Example: Extension Equivalence

- For any clause e[δ] & non-empty X⊆vars(δ)
- Any assignment to X will either
 - Satisfies at least one
 - Any extension will satisfy the clause
 - All such assignments are extension equivalent
 - Falsifies all of them
 - An extension will satisfy the clause iff it satisfies one of the other literals
- equiv[e[δ],X] has 2 equivalence classes

Operations on Sets of Global Constraints

- S a set of global constraints
- $iv(S) = \bigcap_{c \in S} vars(c)$
 - Intersection of scopes of the constraints in S
- join(S) = a global constraint e'[δ']
 - Operates as you imagine a join should

Cooperating Constraint Catalogues

- Constraint catalogue $\mathcal C$ is cooperating if
 - For any finite set of global constraints $S \subseteq C$
 - We can compute a set of assignments of the variables iv(S)
 - Containing at least one representative of each equivalence class of equiv[join(S),iv(S)]
 - In polynomial time in
 - the size of iv(S) and
 - the total size of the constraints in S

Example: Cooperating Constraint Catalogue

- Constraint catalogue consisting entirely of clauses
- equiv[join(S),iv(S)] has at most |S|+1 classes
 - Similar argument to equiv[e[δ],X] has 2 equivalent classes
 - All other assignments that satisfy at least one literal in each clause (at most 1)
 - Single assignment of variables in iv(S) that falsify (at most |S|)
- Equivalence classes in equiv[join(S),iv(S)] increases linearly with S

 $(A \lor B \lor C) \land (\overline{A} \lor B \lor D)$

iv(S)	A	В	С	D	
ext(A=0,B=0)	0	0	1	0	1
	0	0	1	1	1
	0	1	0	0	1
ext(A=0,B=1)	0	1	0	1	1
	0	1	1	0	1
ext(A=1,B=0)	0	1	1	1	1
	1	0	0	1	1
	1	0	1	1	1
ext(A=1,B=1)	1	1	0	0	1
	1	1	0	1	1
	1	1	1	0	1
	4				

Are EGC Constraints Cooperating?

- In general, no
- Theorem

Any constraint catalogue that contains only

- counting constraints with bounded domain size,
- table constraints, and
- negative constraints,

is a cooperating catalogue

- An EGC constraint is a counting constraint
 - Thus, it is tractable when it has bounded domain size
- Proof of theorem is not presented for lack of time

Overview

- Motivating Example
- Restricted Classes of CSPs
 - Acyclic hypergraph
 - Treewidth & constraint catalogue
- Further Constraint Restrictions
 - Extensional equivalence
 - Operations on sets of global constraints
 - Cooperating constraint catalogues
- Polynomial-Time Reductions
 - Take the dual of the dual
 - Tractability results
- Conclusion

Polynomial-Time Reductions

- Goal is to show for any constraint problem over a cooperating catalogue, give a polynomial-time reduction to a smaller problem
 - Consider a set of variables that all occur in exactly the same set of constraint scopes
 - Replace them by a single new variable with an appropriate domain
- How? Using the dual of a hypergraph

Dual of a Hypergraph

- G=(V,H) a hypergraph
- The dual of G, G* is a hypergraph with
 - Vertex set: H
 - For every v ∈ V, a hyperedge $\{h ∈ H | v ∈ h\}$

• For a class of hypergraphs \mathcal{H} , $\mathcal{H}^* = \{G^* | G \in \mathcal{H}\}$

The Dual, in Pictures

Note: The dual of the dual of a hypergraph is not necessarily the original hypergraph

The Dual and Treewidth

- twDD: Treewidth of the dual of the dual of G
 - $twDD(G)=tw(G^{**})$
 - For class of hypergraphs \mathcal{H} , twDD(\mathcal{H})=tw(\mathcal{H}^{**})
- For our example
 - $twDD(\mathcal{H})=3$

Tractability Result

- Constraint catalogue $\mathcal C$ and class of hypergraphs $\mathcal H$
- CSP(\mathcal{H}, \mathcal{C}) is tractable if \mathcal{C} is a cooperating catalogue and twDD(\mathcal{H})< ∞

- I can sketch the definitions/ideas for the proof
 - The proof gives justification for why we can take the dual of the dual
 - See the paper for the full rigorous proof

Conclusions

- Cannot achieve tractability by structural restrictions alone
- Introduce cooperating constraint catalogue
 - Sufficiently restricted to ensure that an individual constraint is always tractable
 - Not all structures are tractable even with cooperating constraint catalogue (twDD(¾)=∞ NP-Complete)
- However, $twDD(\mathcal{H}) < \infty$ is tractable

Thank You

- Any Questions?
 - Don't ask me. I didn't write the paper
 - Centact the authors ©
 - Just kidding... I'll try to answer them!

Quotient of a CSP Instance

- Let P=(V,C) be a CSP instance
- X⊆V non-empty subset of variables
 - all occur in the scope of the same set S of constraints
- The quotient of P w.r.t. X, P^X, defined:
 - Variables of P^X are given by $V^X=(V-X) \cup \{v_x\}$
 - v_x is a fresh variable
 - Domain of v_X is equiv[join(S),X]
 - Constraints of P^X are unchanged, except
 - each constraint $e[\delta] \subseteq S$ is replaced by a new constraint $e^{x}[\delta^{x}]$
 - $\operatorname{vars}(\delta^{X}) = (\operatorname{vars}(\delta) X) \cup \{v_{X}\}\$
 - assignment θ true iff the equiv[join(S),X] is true

Using the Dual of the Dual

- CSP P can be converted to P'
 - With hyp(P')=hyp(P)**
 - Such that P' has a solution iff P does
 - If P is over a cooperating catalogue, this conversion can be done in polynomial time
- CSP(\mathcal{H}, \mathcal{C}) is tractable if \mathcal{C} is a cooperating catalogue and twDD(\mathcal{H})< ∞