Evaluating Consistency Algorithms for Temporal Metric Constraints

Yang Shi, Anagh Lal, and Berthe Y. Choueiry

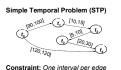
Constraint Systems Laboratory • Computer Science & Engineering • University of Nebraska-Lincoln • yshi, alal, choueiry@cse.unl.edu

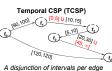
Summary

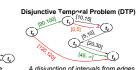
Focus: Networks of temporal metric constraints

Task: Evaluating the performance of algorithms for

Determining the consistency of the Simple Temporal Problem (STP)


• Finding the minimal network of the Temporal Constraint Satisfaction Problem (TCSP)


Future: Enhance triangulation-based algorithms with incrementality


Networks of Temporal Metric Constraints

Temporal constraint network: a graph G=(V, E, I) where

- V: set of vertices representing time points t_i
- E: set of directed edges representing constraints between two time points t_i & t_i
- I: set of constraint labels for the edges. A label is a set of intervals and an interval [a, b] denotes a constraint of bounded differences ($a \le t_i - t_i \le b$)

Minimal network: Make labels of binary constraints as tight as possible

Solution: Find a value for each variable satisfying al temporal constraints

Consistency: Determine whether a solution exists

		STP	TCSP	DTP
l	Minimal network	P	NP-hard	NP-hard
	Consistency	P	NP-complete	NP-complete

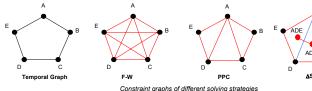
Algorithms for the STP

[Cesta & Oddi, TIME 96]

Determining consistency

- Directional Path Consistency (DPC)
- Bellman-Ford (BF), single-source shortest paths
- Incremental version of Bellman-Ford (incBF)

Determining consistency & finding minimal network


- Floyd-Warshall (F-W), all-pairs shortest paths
- Partial Path Consistency (PPC)

ΔSTP: an improvement of PPC

[Bliek & Haroud, IJCAI 99]

Properties & advantages of ASTP

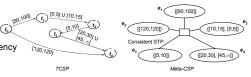
ΔSTP considers the temporal graph as composed of triangles instead of edges

- 1. A finer version of PPC.
- 2. Cheaper than PPC and F-W.
- 3. Guarantees the minimal network
- 4. Automatically decomposes the graph into its bi-connected components:
- binds effort in size of largest component.
- allows parallellization.
- 5. Best known algorithm for computing the minimal network of an STP

An incremental version of BF (incBF):

When adding a constraint, incBF visits only nodes whose distance to origin is modified:

- 1. Allows dynamic updates for both constraint posting & retraction.
- Localizes effects of change.
- 3. Determines consistency of STP by does not yield the minimal network.
- 4. Can detect inconsistency much earlier than BF by detecting negative cycles $(d_{oi} + d_{in} < 0)$.
- 5. Is useful for TCSP: incrementality is useful for checking the consistency of STPs in the search tree of the meta-CSP.


Comparing the above strategies:

Graph	Complexity	Consistency	Minimality
Complete	$\Theta(n^3)$	Yes	Yes
Triangulated	$O(nW(d)^2)$	Yes	No
	very cheap		
Triangulated	O (n³)	Yes	Yes
	Usually cheaper than F-W/PC		
Triangulated	Always cheaper than PPC	Yes	Yes
Source point is added	O (en)	Yes	No
	Complete Triangulated Triangulated Triangulated		$ \begin{array}{c cccc} Complete & \mathcal{O}(n^3) & \text{Yes} \\ \hline Triangulated & \mathcal{O}\left(nW(d)^2\right) & \text{Yes} \\ \hline Very cheap & \\ \hline Triangulated & \mathcal{O}\left(n^3\right) & \text{Yes} \\ \hline Usually cheaper than F-W/PC} \\ \hline Triangulated & Always cheaper than PPC & \text{Yes} \\ \hline \end{array} $

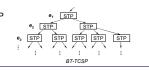
Solving the TCSP [Dechter et al. AlJ 91]

TCSP is formulated as a meta-CSP

- Variables: edges of the constraint network
- Domains of variables: edge labels in the constraint network
- A unique global constraint: checking consistency

[Choueiry & Xu, AlCom 04]

£000....


000000

00000

The minimal network of the TCSP can be found by computing all the solutions to the meta-CSP

When using backtrack search for finding all the solutions to the meta-CSP (BT-TCSP), every node in the search tree is an STP to be checked for

→ An exponential number of STPs to be considered!

Filtering is polyno

000000

@ · · · · ·

×

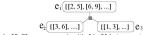
Polynomial number of polynomial-size

0.4 0.6 0.8

Reduction of problem size of the TCSP

Improving Search for the TCSP [Xu & Choueiry CP 03]

Improve the performance of BT-TCSP:


- ΔAC: a consistency filtering algorithm for reducing the size of TCSP
- Exploit the topology of the constraint graph:
- AP: using articulation points
- NewCyc: a heuristic for avoiding unnecessary checking of STPs at every node.
- EdgeOrd: a variable ordering heuristic.

ΔAC: A new algorithm for filtering TCSP

ΔAC removes inconsistent intervals from the domain of the variables of the meta-CSP to reduce the size of meta-CSP:

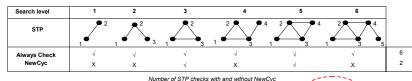
- In a pre-processing step (implemented) In a look-ahead strategy (to be tested)

ΔAC checks combinations of 3 intervals:

- ✓ [2,5] composed with [1, 3] intersects with [3, 6] ✓ [1.3] composed with [3.6] intersects with [2.5]
- ★ [3,6] composed with [2, 5] does not intersect with [1, 3]

 \triangle AC removes [1, 3] from domain of e₃.

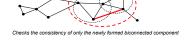
Advantages of **△AC**:


- It is effective, especially under high density.
- It is sound, cheap O (n |E |k3), may be optimal.
- It uncovers a phase transition in TCSP.

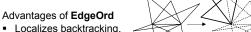
Articulation Points (AP) exploits the topology of the graph

- Decomposes the graph into bi-connected components.
- Solves each of them independently
- Binds the total cost by the size of largest component.

New cycle check (NewCyc) eliminates unnecessary STP-consistency checks


- Checks presence of new cycles O (|E|).
- · Checks consistency only when a new cycle is added.
- Does not affect number of nodes visited in BT-TCSP.

Advantages of NewCyc:


Reduces effort of consistency checking.

• Restricts effort to new bi-connected component.

Edge Ordering (EdgeOrd): a variable ordering heuristic in BT-TCSP

 Orders the edges using "triangle adjacency". Priority list is a by-product of triangulation

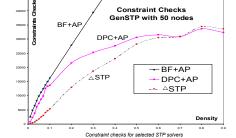
Automatically decomposes

Experiments

We tested the following combinations:

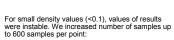
Random generators of STP & TCSP:

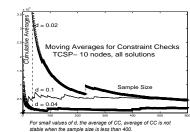
- Generators take as input:
- 1. Number of time points of the TCSP
- 2. Constraint density
- 3. (Number of intervals per edge)
- 4. Percentage of problems guaranteed consistent
- Note that size of meta-CSP is exponential in the number of time points

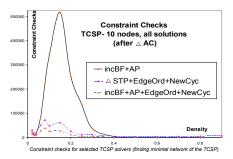

Measured:

CPU time, NV number of nodes visited (for TCSP), & CC number of constraint checks

Results of Empirical Evaluations


Experiments on the STP:


- 50-node STP, density in [2%, 90%], 100 samples per point
- ΔSTP results in the minimal network & dominates all others
- · Cost of BF increases linearly with density (bounded by O(en), where n and e are respectively the number of nodes and the number of edges in the graph).



Experiments on TCSP (all solutions):

- 10-node TCSP, density in [2%, 90%], 600 samples per point
- Search enhanced with ΔAC , AP, NewCyc, EdgeOrd

d	∆ STP	incBF	Gain CCx103			
	CCx10 ³	CCx10 ³	LL	Average	UL	
0.02	45.61	14.77	5.39	30.84	56.29	
0.04	17.51	7.56	5.06	9.95	14.84	
0.06	51.66	24.30	3.45	27.35	51.24	
0.08	83.38	50.74	4.86	32.63	60.41	
0.10	50.31	26.24	20.29	24.07	27.84	
0.15	75.92	37.61	20.52	38.30	56.08	
0.20	28.09	12.03	10.74	16.06	21.38	

Average CC gain of the best strategy and its lower limit (LL) and ipper limit (UL) with 95% confidence.

Conclusions

For STP: \triangle STP outperforms all others For TCSP:

- incBF outperforms ∆STP
- EdgeOrd & NewCyc always beneficial
- Future: exploit incrementality

	STP	TCSP
FW + AP	worse	worse
DPC + AP	better	OK
BF + AP	OK	-
ΔSTP	best	-
incBF + AP	good	good
Δ STP + EdgeOrd + NewCyc	-	better
incBF + AP + EdgeOrd + NewCyc	-	best

References

Cesta & Oddi. Gaining Efficiency and Flexibility in the Simple Temporal Problem. TIME 96

Choueiry & Xu. An Efficient Consistency Algorithm for the Temporal Constraint Satisfaction Problem. AlCom 2004 Dechter, Meiri, & Pearl. Temporal Constraint Networks. AlJ 91.

Stergiou & Koubarakis. Backtracking Algorithms for Disjunctions of Temporal Constraints. AlJ 2000. Xu & Choueiry. A New Efficient Algorithm for Solving the Simple Temporal Problem. TIME 2003.

Xu & Choueiry. Improving Backtrack Search for Solving the TCSP. CP 2003. Support: Layman award, NASA-Nebraska grant, NSF CAREER Award #0133568