Configuring Random CSP Generators to Favor a Particular Consistency Algorithm

Daniel J. Geschwender, Robert J. Woodward, Berthe Y. Choueiry Department of Computer Science & Engineering • University of Nebraska-Lincoln

Constraint Satisfaction Problem:

- Used to model constrained combinatorial problems
- Important real-world applications: hardware & software verification, scheduling, resource allocation, etc.

A CSP is defined as follows:

Given

- A set of variables
- Their domains
- A set of constraints:

Question

- Find a solution
- Count number of solutions
- Find minimal network
- Minimize number of broken constraints

Minimal Network:

- Is a consistency property
- Guarantees that every tuple allowed by a constraint must participate in some solution to the CSP (i.e., the constraints are as minimal as possible)

{A,B,C} $D_A = \{1, 2, 3\}, D_B = \{1, 2, 3, 4\}, D_C = \{0, 1\}$ {A≥B,B≠2,A+C<3}

> NP-complete NP-complete NP-hard

Date April 13, 2014

RBGenerator:

- [Xu+ AIJ 2007]
- Generates hard satisfiable CSP instances at the phase transition
- **k** : arity of the constraints
- *n* : number of variables
- *a* : domain size d=n^a
- **r**: # constraints m=rn/n(n)
- $\boldsymbol{\delta}$: distance from phase transition, $p_{cr} + \delta / 1000$
- *forced* : forced satisfiable?
- *merged* : merge similar scopes?

SMAC: Sequential Model-based Algorithm Configuration

Sequential Model-based Algorithm Configuration: [Hutter+ LION-5]

- SMAC tunes the parameter configuration of RBGenerator
- RBGenerator creates CSP to run on PerTuple and AllSol
- Compare runtimes and update SMAC response model
- Move toward parameters which favor one algorithm over the other

Experiments:

- 4 tests run, testing two factors: Configuring to favor PerTuple and AllSol • With adjustable and fixed problem size parameters
- Each test run over 10 configuration seeds
- Configuration run for 4 days
- Algorithm time limit of 20 minutes

150000

Configuration Time (Seconds)

200000

250000

Adjustable Problem Size:

Experiment Results:

ation Seed 1 2 3 5 6 7 8 10 10 	
ration Seed 11 12 13 14 15 17 18 20	

150000

Configuration Time (Seconds)

200000

	seed	k	n	a	r	δ	forced	merged	spædu
A djustable Size uple AllSol	1	4	19	0.75	9.91	578	n	V	101.3
	2	7	18	0.20	5.88	-9	У	y	36.3
	3	5	17	0.68	9.18	759	n	y	75.7
	4	2	20	1.74	8.28	309	n	y	348.43
	5	2	12	1.45	4.43	-54	n	n	11.2
	6	3	14	0.78	1.52	-100	У	n	9.6
	† 7	2	20	1.75	8.12	302	У	n	289.6
	8	3	8	1.70	1.00	-155	n	n	13.7
	9	5	19	0.72	7.70	825	n	n	80.7
	10	4	16	0.86	9.95	646	n	У	115.0
		2	9	1.28	5.29	-162	n	n	378.2
	† 2	2	17	0.79	0.61	-394	У	n	4627.3
		3	16		0.29	-190	n	n	296.9
		2	14		2.69	-235	У	n	531.8
P e		2	12	0.85	6.19	-98	У	У	442.2
	∓ 0 _ 7	4	13 10	9.80	8.UD	24Z	n n	n	
	/ /	2	19	0.50	5.09 1.05	234	n n	y n	0.9 1510 Q
	0 v 0		14 11	0.07	7.61	-524		n	
	⁺ 9 10	3	18	0.99	0.18	-780	y V	V	63.7
	<u> </u>	4	16	1.00	8.35	799	^ 	n	 103.0
	12	4	16	1.00	9.74	832	n	n	98.8
	13	4	16	1.00	9.33	826	n	n	107.1
	14	4	16	1.00	9.00	811	n	n	89.8
	15	4	16	1.00	8.36	794	n	У	87.4
	16	4	16	1.00	7.20	764	n	y	92.0
Fixed Size PerTuple	17	4	16	1.00	7.18	757	У	n	87.7
	18	4	16	1.00	8.59	808	n	n	102.1
	19	4	16	1.00	9.94	840	У	У	109.7
	20	4	16	1.00	7.73	786	n	У	100.2
	* 11	4	16	1.00	5.13	-62	У	n	1.0
	12	2	16	1.00	1.22	-361	У	У	311.4
	13	2	16	1.00	2.21	-276	У	У	69.7
		2	16	1.00	3.00	-265	n	n	47.0
	‡ 15	5	16	1.00	0.46	757	У	n	
	† 16	3	16	1.00	0.14	-950	У	n	40.3
	$ \mp 1/ $		10	1.00	9.91	-3//	n	n	
		ъ С	10	1.00	4.41 0.74	292 101	n	n	
	+ 20	2	16 16	1.00	0.74	-481 067	n	n	1200.0
		5	TO	1.00	0.10	-907	[]		09.7

*: all instances timeout, †: one or two instances crash, ‡: all instances crash

Conclusion:

- Configured PerTuple 1000x faster, AllSol 100x faster
- PerTuple configuration: less constraints, lower constraint tightness
- AllSol configuration: more constraints, higher constraint tightness
- Adjustable problem size only offers marginally better configuration

Future Work:

- Compare other consistency algorithms
- Use more parameterized CSP generator
- Apply results found to algorithm selection

scholarship, and Undergraduate Creative Activities an Research Experiences Program (UCARE) of Nebraska-Lincoln. Experiments conducted at UNL's Holland Computing Center.

