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Constraint Satisfaction Problem: 

 Used to model constrained combinatorial 

problems 

 Important real-world applications: 

hardware & software verification, 

scheduling, resource allocation, etc. 

A CSP is defined as follows: 

Given 
 A set of variables                                                                         {A,B,C} 
 Their domains                                    DA={1,2,3}, DB={1,2,3,4}, DC={0,1} 
 A set of constraints:                                                     {A≥B,B≠2,A+C<3} 
Question 
 Find a solution                                                                     NP-complete 
 Count number of solutions                                                                   #P 
 Find minimal network                                                            NP-complete 
 Minimize number of broken constraints                                          NP-hard 

 
 

Minimal Network: 

 Is a consistency property 
 Guarantees that every tuple allowed by a constraint must participate in some 

solution to the CSP (i.e., the constraints are as minimal as possible) 
 

 

 

 

 

 

 

 

 

 

 

Two Algorithms for Enforcing Minimality: 

 ALLSOL: better when there are many ‘almost’ solutions 
o Finds all solutions without storing them, keeps tuples that appear in at least 

one solution 
o One search explores the entire search space 

 PERTUPLE: better when many solutions are available 
o For each tuple, finds one solution where it appears 
oMany searches that stop after the first solution 

 

RBGenerator:              [Xu+ AIJ 2007] 

 Generates hard satisfiable CSP instances at the phase transition 
 

Future Work: 

 Compare other consistency algorithms 
 Use more parameterized CSP generator 
 Apply results found to algorithm selection 
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Experiments: 

 4 tests run, testing two factors: 
o Configuring to favor PerTuple and AllSol 
oWith adjustable and fixed problem size parameters 

 Each test run over 10 configuration seeds 
 Configuration run for 4 days 
 Algorithm time limit of 20 minutes 

Conclusion: 

 Configured PerTuple 1000x faster, AllSol 100x faster 
 PerTuple configuration: less constraints, lower constraint tightness 
 AllSol configuration: more constraints, higher constraint tightness 
 Adjustable problem size only offers marginally better configuration 

 
 

Experiment Results: 

 
 

Sequential Model-based Algorithm Configuration:  [Hutter+ LION-5] 

 SMAC tunes the parameter configuration of RBGenerator 
 RBGenerator creates CSP to run on PerTuple and AllSol 
 Compare runtimes and update SMAC response model 
 Move toward parameters which favor one algorithm over the other 
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SMAC: Sequential Model-based Algorithm Configuration  
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Adjustable Problem Size: 

 

Fixed Problem Size: 

 

 k : arity of the constraints 
 n : number of variables 
 α : domain size d=nα 
 r : # constraints m=rnln(n) 

 δ : distance from phase transition, 
pcr+ δ/1000 

 forced : forced satisfiable? 

 merged : merge similar scopes? 


