
Configuring Random CSP Generators to Favor a Particular Consistency Algorithm

Daniel J. Geschwender, Robert J. Woodward, Berthe Y. Choueiry
Department of Computer Science & Engineering • University of Nebraska-Lincoln

Constraint Satisfaction Problem:

 Used to model constrained combinatorial

problems

 Important real-world applications:

hardware & software verification,

scheduling, resource allocation, etc.

A CSP is defined as follows:

Given
 A set of variables {A,B,C}
 Their domains DA={1,2,3}, DB={1,2,3,4}, DC={0,1}
 A set of constraints: {A≥B,B≠2,A+C<3}
Question
 Find a solution NP-complete
 Count number of solutions #P
 Find minimal network NP-complete
 Minimize number of broken constraints NP-hard

Minimal Network:

 Is a consistency property
 Guarantees that every tuple allowed by a constraint must participate in some

solution to the CSP (i.e., the constraints are as minimal as possible)

Two Algorithms for Enforcing Minimality:

 ALLSOL: better when there are many ‘almost’ solutions
o Finds all solutions without storing them, keeps tuples that appear in at least

one solution
o One search explores the entire search space

 PERTUPLE: better when many solutions are available
o For each tuple, finds one solution where it appears
oMany searches that stop after the first solution

RBGenerator: [Xu+ AIJ 2007]

 Generates hard satisfiable CSP instances at the phase transition

Future Work:

 Compare other consistency algorithms
 Use more parameterized CSP generator
 Apply results found to algorithm selection

Supported by NSF Grant No. RI-111795, Barry M. Goldwater

scholarship, and Undergraduate Creative Activities and

Research Experiences Program (UCARE) of the University of

Nebraska-Lincoln. Experiments conducted at UNL’s Holland

Computing Center.

Experiments:

 4 tests run, testing two factors:
o Configuring to favor PerTuple and AllSol
oWith adjustable and fixed problem size parameters

 Each test run over 10 configuration seeds
 Configuration run for 4 days
 Algorithm time limit of 20 minutes

Conclusion:

 Configured PerTuple 1000x faster, AllSol 100x faster
 PerTuple configuration: less constraints, lower constraint tightness
 AllSol configuration: more constraints, higher constraint tightness
 Adjustable problem size only offers marginally better configuration

Experiment Results:

Sequential Model-based Algorithm Configuration: [Hutter+ LION-5]

 SMAC tunes the parameter configuration of RBGenerator
 RBGenerator creates CSP to run on PerTuple and AllSol
 Compare runtimes and update SMAC response model
 Move toward parameters which favor one algorithm over the other

Date April 13, 2014

A B
{1,2,3} {1,2,3,4}

A≥B

(1,1) (2,1) (2,2)
(3,1) (3,2) (3,3)

A
B

C

{1,2,3}

{1,2,3,4}

{0,1}

B≠1

A≥B

A+C<3

Result
Input

parameters

SMAC: Sequential Model-based Algorithm Configuration

User-Defined Algorithm Wrapper

RBGenerator

Random

seed

Random

CSP

instance

AllSol

PerTuple

log10(
AllSol t ime

PerTuple t ime
)

User-Defined Parameter Space Parameter Space Response Model

Instance

list

t1

ti

t2

t3

ALLSOL PERTUPLE

Adjustable Problem Size:

Fixed Problem Size:

 k : arity of the constraints
 n : number of variables
 α : domain size d=nα
 r : # constraints m=rnln(n)

 δ : distance from phase transition,
pcr+ δ/1000

 forced : forced satisfiable?

 merged : merge similar scopes?

