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Constraint Satisfaction Problem: 

 Used to model constrained combinatorial 

problems 

 Important real-world applications: 

hardware & software verification, 

scheduling, resource allocation, etc. 

A CSP is defined as follows: 

Given 
 A set of variables                                                                         {A,B,C} 
 Their domains                                    DA={1,2,3}, DB={1,2,3,4}, DC={0,1} 
 A set of constraints:                                                     {A≥B,B≠2,A+C<3} 
Question 
 Find a solution                                                                     NP-complete 
 Count number of solutions                                                                   #P 
 Find minimal network                                                            NP-complete 
 Minimize number of broken constraints                                          NP-hard 

 
 

Minimal Network: 

 Is a consistency property 
 Guarantees that every tuple allowed by a constraint must participate in some 

solution to the CSP (i.e., the constraints are as minimal as possible) 
 

 

 

 

 

 

 

 

 

 

 

Two Algorithms for Enforcing Minimality: 

 ALLSOL: better when there are many ‘almost’ solutions 
o Finds all solutions without storing them, keeps tuples that appear in at least 

one solution 
o One search explores the entire search space 

 PERTUPLE: better when many solutions are available 
o For each tuple, finds one solution where it appears 
oMany searches that stop after the first solution 

 

RBGenerator:              [Xu+ AIJ 2007] 

 Generates hard satisfiable CSP instances at the phase transition 
 

Future Work: 

 Compare other consistency algorithms 
 Use more parameterized CSP generator 
 Apply results found to algorithm selection 
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Experiments: 

 4 tests run, testing two factors: 
o Configuring to favor PerTuple and AllSol 
oWith adjustable and fixed problem size parameters 

 Each test run over 10 configuration seeds 
 Configuration run for 4 days 
 Algorithm time limit of 20 minutes 

Conclusion: 

 Configured PerTuple 1000x faster, AllSol 100x faster 
 PerTuple configuration: less constraints, lower constraint tightness 
 AllSol configuration: more constraints, higher constraint tightness 
 Adjustable problem size only offers marginally better configuration 

 
 

Experiment Results: 

 
 

Sequential Model-based Algorithm Configuration:  [Hutter+ LION-5] 

 SMAC tunes the parameter configuration of RBGenerator 
 RBGenerator creates CSP to run on PerTuple and AllSol 
 Compare runtimes and update SMAC response model 
 Move toward parameters which favor one algorithm over the other 
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SMAC: Sequential Model-based Algorithm Configuration  
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Adjustable Problem Size: 

 

Fixed Problem Size: 

 

 k : arity of the constraints 
 n : number of variables 
 α : domain size d=nα 
 r : # constraints m=rnln(n) 

 δ : distance from phase transition, 
pcr+ δ/1000 

 forced : forced satisfiable? 

 merged : merge similar scopes? 


