
Configuring Random CSP Generators to Favor a Particular Consistency Algorithm

Daniel J. Geschwender, Robert J. Woodward, Berthe Y. Choueiry
Department of Computer Science & Engineering • University of Nebraska-Lincoln

Constraint Satisfaction Problem:

 Used to model constrained combinatorial

problems

 Important real-world applications:

hardware & software verification,

scheduling, resource allocation, etc.

A CSP is defined as follows:

Given
 A set of variables {A,B,C}
 Their domains DA={1,2,3}, DB={1,2,3,4}, DC={0,1}
 A set of constraints: {A≥B,B≠2,A+C<3}
Question
 Find a solution NP-complete
 Count number of solutions #P
 Find minimal network NP-complete
 Minimize number of broken constraints NP-hard

Minimal Network:

 Is a consistency property
 Guarantees that every tuple allowed by a constraint must participate in some

solution to the CSP (i.e., the constraints are as minimal as possible)

Two Algorithms for Enforcing Minimality:

 ALLSOL: better when there are many ‘almost’ solutions
o Finds all solutions without storing them, keeps tuples that appear in at least

one solution
o One search explores the entire search space

 PERTUPLE: better when many solutions are available
o For each tuple, finds one solution where it appears
oMany searches that stop after the first solution

RBGenerator: [Xu+ AIJ 2007]

 Generates hard satisfiable CSP instances at the phase transition

Future Work:

 Compare other consistency algorithms
 Use more parameterized CSP generator
 Apply results found to algorithm selection

Supported by NSF Grant No. RI-111795, Barry M. Goldwater

scholarship, and Undergraduate Creative Activities and

Research Experiences Program (UCARE) of the University of

Nebraska-Lincoln. Experiments conducted at UNL’s Holland

Computing Center.

Experiments:

 4 tests run, testing two factors:
o Configuring to favor PerTuple and AllSol
oWith adjustable and fixed problem size parameters

 Each test run over 10 configuration seeds
 Configuration run for 4 days
 Algorithm time limit of 20 minutes

Conclusion:

 Configured PerTuple 1000x faster, AllSol 100x faster
 PerTuple configuration: less constraints, lower constraint tightness
 AllSol configuration: more constraints, higher constraint tightness
 Adjustable problem size only offers marginally better configuration

Experiment Results:

Sequential Model-based Algorithm Configuration: [Hutter+ LION-5]

 SMAC tunes the parameter configuration of RBGenerator
 RBGenerator creates CSP to run on PerTuple and AllSol
 Compare runtimes and update SMAC response model
 Move toward parameters which favor one algorithm over the other

Date April 13, 2014

A B
{1,2,3} {1,2,3,4}

A≥B

(1,1) (2,1) (2,2)
(3,1) (3,2) (3,3)

A
B

C

{1,2,3}

{1,2,3,4}

{0,1}

B≠1

A≥B

A+C<3

Result
Input

parameters

SMAC: Sequential Model-based Algorithm Configuration

User-Defined Algorithm Wrapper

RBGenerator

Random

seed

Random

CSP

instance

AllSol

PerTuple

log10(
AllSol t ime

PerTuple t ime
)

User-Defined Parameter Space Parameter Space Response Model

Instance

list

t1

ti

t2

t3

ALLSOL PERTUPLE

Adjustable Problem Size:

Fixed Problem Size:

 k : arity of the constraints
 n : number of variables
 α : domain size d=nα
 r : # constraints m=rnln(n)

 δ : distance from phase transition,
pcr+ δ/1000

 forced : forced satisfiable?

 merged : merge similar scopes?

