
By Chase Resio and Berthe Y. Choueiry

Visualization of Problem Solving
with Constraint Processing:

Case Study of the Minesweeper



Minesweeper and NP-Completeness

• Minesweeper is a popular 
computer game from the 
1990’s

• Click on cells to reveal a mine 
or a number indicating how 
many adjacent cells contain 
mines

• Deciding whether an instance 
of Minesweeper consistent is 
NP-Complete

24/10/22



Goals and Purpose

• Use Constraint Processing to model and 
solve Minesweeper

• Study Constraint Processing
• Learn and use React framework
• Solve an NP-Complete problem

34/10/22



Approach

• Minesweeper is a logic-based 
game

• Model it as a Constraint 
Satisfaction Problem

• Every cell is either safe or a 
mine

• Safe cells contain a number that 
constrains neighboring cells

• Use constraint satisfaction 
approaches to decide if a cell is 
safe

• The 1 places a constraint on cells 
A,B,C,G,H,K,L,M that one of them must 
contain a mine and the rest are safe.

• The 3 places a constraint on cells 
D,E,F,I,J,N,O,P that three of them must 
contain a mine and the other five are safe.

44/10/22



Web Application

54/10/22



Consistency and Constraint Propagation

Six levels of consistency implemented

ensures the consistency of 
each single constraint

ensures the consistency of 
each constraint and propagates 
to other constraints via the 
shared variables

ensures the consistency of 
every combination of two 
constraints with shared cells

64/10/22



Consistency and Constraint Propagation (Cont.)

ensures the consistency of 
every combination of three 
constraints that share cells

ensures the consistency of 
every combination of four 
constraints that share cells

ensures the 
consistency by finding the cell 
that has the same value in all 
solutions

74/10/22



Conclusion

• There is currently no way to efficiently
solve all instances

• Finding one would have profound impact 
on computing

Future improvements
• Better mobile view
• Use number of mines to solve cells once at 

steady state

84/10/22



Acknowledgments

Developers: Kenneth Bayer, Tomo Bessho, Taylor 
DeMint, Joshua Snyder, and Robert Woodward

UNL UCARE

NSF REU supplements grant RI-1619344


